JP2002362901A - Reforming apparatus - Google Patents

Reforming apparatus

Info

Publication number
JP2002362901A
JP2002362901A JP2001174478A JP2001174478A JP2002362901A JP 2002362901 A JP2002362901 A JP 2002362901A JP 2001174478 A JP2001174478 A JP 2001174478A JP 2001174478 A JP2001174478 A JP 2001174478A JP 2002362901 A JP2002362901 A JP 2002362901A
Authority
JP
Japan
Prior art keywords
cylindrical tube
catalyst
inner cylindrical
reforming
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001174478A
Other languages
Japanese (ja)
Inventor
Naohiko Matsuda
直彦 松田
Etsuro Hirai
悦郎 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001174478A priority Critical patent/JP2002362901A/en
Publication of JP2002362901A publication Critical patent/JP2002362901A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To make a reforming apparatus compact by housing a required quantity of a catalyst in a small space. SOLUTION: In the reforming apparatus having a double tube formed by arranging an inside cylindrical tube 11 and an outside cylindrical tube 12 having different diameter from each other concentrically and for reforming a gaseous starting material by introducing the heating gas into the inside of the inside cylindrical tube and heating the inside surface, mounting the reforming catalyst 14 in the gap between the inside cylindrical tube and the outside cylindrical tube, passing the gaseous starting material 15 through the gap and using the heat supplied from a heating gas through the inside surface of the inside cylindrical tube, a spiral fin 13 having a height equivalent to the gap of the double tube is provided on the outside surface of the inside cylindrical tube 11 facing the outside cylindrical tube 12 side, the reforming catalyst 14 is provided and filled in the gap of the spiral fin 13 and the gaseous starting material is passed through the gap of the spiral fin 13 along a flow passage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池発電装置
用の燃料ガスの製造に使用される改質装置に関する。
The present invention relates to a reformer used for producing fuel gas for a fuel cell power generator.

【0002】[0002]

【従来の技術】従来、燃料改質装置としては、例えば図
5に示すものが知られている。図中の符番1は表面が円
滑な内円筒管を示し、この内円筒管1の外側に該内円筒
管1と径が異なる外円筒管2が同心円状に配置されてい
る。前記内円筒管1と外円筒管2間には粒状触媒3が充
填されている。また、図示しないが、内円筒管1の内側
には、バーナーが配置される。
2. Description of the Related Art As a conventional fuel reformer, for example, the one shown in FIG. 5 is known. Reference numeral 1 in the drawing denotes an inner cylindrical tube having a smooth surface, and an outer cylindrical tube 2 having a diameter different from that of the inner cylindrical tube 1 is arranged concentrically outside the inner cylindrical tube 1. A granular catalyst 3 is filled between the inner cylindrical tube 1 and the outer cylindrical tube 2. Although not shown, a burner is arranged inside the inner cylindrical tube 1.

【0003】前記内円筒管1の内面をバーナーからの加
熱ガス4で加熱する一方、原料ガス5は粒状触媒3を充
填した領域に流入する。そして、加熱ガス4からの熱エ
ネルギーは内円筒管1から粒状触媒3へ、粒状触媒3同
士の接触による熱伝導と、粒状触媒3中を流入する原料
ガス5が触媒同士及び触媒と内円筒管1外壁面隙間を流
れて伝熱する強制対流熱伝導によって外円筒管2の方向
に供給される。その結果、流入した原料ガス5は改質ガ
ス6に変成される。
[0003] While the inner surface of the inner cylindrical tube 1 is heated by a heating gas 4 from a burner, a raw material gas 5 flows into a region filled with the granular catalyst 3. The heat energy from the heating gas 4 is transferred from the inner cylindrical tube 1 to the granular catalyst 3 by the contact between the granular catalysts 3 and the raw material gas 5 flowing into the granular catalyst 3 is formed between the catalysts and the catalyst and the inner cylindrical tube. 1 The air is supplied in the direction of the outer cylindrical tube 2 by forced convection heat conduction that flows through the outer wall gap and transfers heat. As a result, the inflowing raw material gas 5 is converted into the reformed gas 6.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
改質装置では、加熱された内円筒管1から粒状触媒3へ
の熱伝達率が悪く、触媒層の厚みを厚くすると、内円筒
管1の外壁面からはなれた粒状触媒3へは充分熱が供給
できず、その部分を通過する原料ガス5の改質率が低下
する。
However, in the conventional reforming apparatus, the heat transfer rate from the heated inner cylindrical tube 1 to the granular catalyst 3 is poor, and if the thickness of the catalyst layer is increased, the inner cylindrical tube 1 cannot be heated. Sufficient heat cannot be supplied to the granular catalyst 3 separated from the outer wall surface, and the reforming rate of the raw material gas 5 passing through that portion decreases.

【0005】また、内円筒管1の外壁面から離れた粒状
触媒へ熱を供給するために、加熱ガス温度を上げて加熱
ガスから内円筒管1への供給熱量を増大させても、内円
筒管1の外壁面に近接する粒状触媒3が耐久温度(例え
ば800℃)を超えて劣化してしまう。
In order to supply heat to the granular catalyst separated from the outer wall surface of the inner cylindrical tube 1, even if the heating gas temperature is increased to increase the amount of heat supplied from the heated gas to the inner cylindrical tube 1, The granular catalyst 3 near the outer wall surface of the tube 1 deteriorates beyond the endurance temperature (for example, 800 ° C.).

【0006】更に、粒状触媒中のガス流速の増大によ
り、ガスの強制対流伝達率を向上し、触媒間熱伝達を増
やして触媒層を厚くしようとしても、触媒量がガス流量
に対して不足して、未改質のガスが触媒を通過してしま
う。
Further, even if an attempt is made to increase the forced convection transfer rate of the gas and increase the inter-catalyst heat transfer to increase the thickness of the catalyst layer by increasing the gas flow rate in the granular catalyst, the amount of the catalyst becomes insufficient with respect to the gas flow rate. Thus, unreformed gas passes through the catalyst.

【0007】このようなことから、従来の改質装置で
は、改質ガスの増大(=改質触媒量の増大)を計画した時
に、内円筒管1と外円筒管2との間の触媒層厚みが厚く
できないので、円筒管の軸方向の距離を伸ばすか、もし
くは円筒管の直径を増やして、内円筒管1の粒状触媒3
に接する面積を増やすしか方法がなく、改質装置のサイ
ズが大型化してしまうという問題があった。
For this reason, in the conventional reformer, when an increase in the reformed gas (= an increase in the amount of the reforming catalyst) is planned, the catalyst layer between the inner cylindrical tube 1 and the outer cylindrical tube 2 is required. Since the thickness cannot be increased, the axial distance of the cylindrical tube is increased, or the diameter of the cylindrical tube is increased, and the granular catalyst 3 of the inner cylindrical tube 1 is formed.
There is no other way but to increase the area in contact with the surface, and there is a problem that the size of the reformer increases.

【0008】本発明は上記の課題を解決するためになさ
れたもので、内円筒管の外円筒管側に面する外壁面上に
二重管の隙間相当高さのスパイラルフィンを設け、該ス
パイラルフィン間に触媒を充填し、原料ガスをそのスパ
イラルフィン間の流路に従って流す構成にすることによ
り、必要量の触媒を小スペースで収納でき、コンパクト
なスパイラルフィン付き改質装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and a spiral fin having a height equivalent to the gap of a double pipe is provided on an outer wall surface facing an outer cylindrical pipe side of an inner cylindrical pipe. By providing a structure in which the catalyst is filled between the fins and the raw material gas flows along the flow path between the spiral fins, a required amount of the catalyst can be stored in a small space, and a compact reformer with a spiral fin can be provided. Aim.

【0009】[0009]

【課題を解決するための手段】本発明は、直径の異なる
内円筒管と外円筒管を同心円状に配置した二重管を有
し、内円筒管内側には加熱ガスを流入してその内面を加
熱し、かつ内円筒管と外円筒管の隙間には改質触媒を設
置して、原料ガスをその隙間に流し、内円筒管内面を介
して加熱ガスから供給される熱で改質を行う改質装置に
おいて、内円筒管の外円筒管側に面する外壁面上に二重
管の隙間相当高さのスパイラルフィンが設けられ、該ス
パイラルフィン間に改質触媒を充填し、原料ガスをその
スパイラルフィン間の流路に従って流すことを特徴とす
る改質装置である。
According to the present invention, there is provided a double pipe in which an inner cylindrical pipe and an outer cylindrical pipe having different diameters are arranged concentrically. Is heated, and a reforming catalyst is installed in the gap between the inner cylindrical pipe and the outer cylindrical pipe, and the raw material gas flows through the gap, and the reforming is performed by heat supplied from the heated gas through the inner surface of the inner cylindrical pipe. In the reformer to be performed, spiral fins having a height equivalent to the gap between the double tubes are provided on the outer wall surface facing the outer cylindrical tube side of the inner cylindrical tube, and a reforming catalyst is filled between the spiral fins, and the raw material gas is filled. In the flow path between the spiral fins.

【0010】[0010]

【発明の実施の形態】以下、本発明について更に詳しく
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0011】本発明において、スパイラルフィンを1本
以上設置してガス流路を1本以上設けことが好ましく、
更にガス入口側からガス出口側に向うにつれてフィン間
の距離を徐々に大きくすることが好ましい。ここで、ス
パイラルフィンを1本以上設置するのは、スパイラルフ
ィンなどで形成される原料ガス流路断面積を、フィンピ
ッチ、流路本数で任意に調整するためである。つまり、
原料ガス流路断面積を任意に調整できることにより、目
標とする改質ガス生成量、即ち所定の触媒量に対して任
意のガス流速が設定できる。従って、システムが許容で
きる最大圧損まで、ガス流速を上げて触媒間の強制対流
伝達率を上げることができ、内円筒管から離れた改質触
媒を加熱でき、更に触媒層の厚みを厚くできる。その結
果、内円筒管を加熱するガス温度を高くしても、内円筒
管の外壁面に隣接する改質触媒が触媒の耐久温度以上に
加熱されることが回避できる。また、加熱ガス温度の増
大に従い、加熱ガスに供給する空気量が低減でき、送風
動力などの低減が可能となる。
In the present invention, it is preferable that one or more spiral fins are provided and one or more gas channels are provided.
Further, it is preferable to gradually increase the distance between the fins from the gas inlet side to the gas outlet side. Here, the reason why one or more spiral fins are provided is to arbitrarily adjust the cross-sectional area of the source gas flow path formed by the spiral fin or the like by the fin pitch and the number of flow paths. That is,
The ability to arbitrarily adjust the cross-sectional area of the source gas flow passage allows an arbitrary gas flow rate to be set for a target reformed gas generation amount, that is, a predetermined catalyst amount. Therefore, the gas flow rate can be increased to increase the forced convection transmissivity between the catalysts to the maximum pressure loss that the system can tolerate, the reforming catalyst separated from the inner cylindrical tube can be heated, and the thickness of the catalyst layer can be increased. As a result, even if the temperature of the gas for heating the inner cylindrical tube is increased, it is possible to prevent the reforming catalyst adjacent to the outer wall surface of the inner cylindrical tube from being heated to the endurance temperature of the catalyst or higher. Further, as the heating gas temperature increases, the amount of air supplied to the heating gas can be reduced, and the blowing power and the like can be reduced.

【0012】一方、ガス入口側からガス出口側に向うに
フィン間の距離を徐々に大きくすることが望ましいの
は、内円筒管寄りの触媒に比べて外円筒管寄りの触媒の
方には熱が十分伝わりにくいので、ガス入口側寄りでの
原料ガスの流速を上げることにより、触媒中への熱伝達
率を上げるためである。
On the other hand, it is desirable to gradually increase the distance between the fins from the gas inlet side to the gas outlet side because the catalyst closer to the outer cylindrical tube is more heat than the catalyst closer to the inner cylindrical tube. Is not sufficiently transmitted, so that the heat transfer coefficient into the catalyst is increased by increasing the flow rate of the raw material gas near the gas inlet side.

【0013】本発明において、前記スパイラルフィンの
外周縁から内円筒管中心軸に向って複数箇所切欠け部を
設けることが好ましい。つまり、スパイラルフィンでは
根元では温度が高く、先端部は温度が低いので、根元と
先端部との熱延び差に起因して応力が発生し、運転条件
によってはスパイラルフィが破損する可能性がある。し
かし、切欠け部をスパイラルフィンに設けることによ
り、発生応力を分離することで応力を緩和することがで
き、フィンの破損、変形を防止できる。
In the present invention, it is preferable that a plurality of notches are provided from the outer peripheral edge of the spiral fin toward the center axis of the inner cylindrical tube. In other words, in the spiral fin, the temperature is high at the root and the temperature is low at the tip, so that stress is generated due to a difference in thermal elongation between the root and the tip, and the spiral fin may be broken depending on operating conditions. . However, by providing the cut-out portion in the spiral fin, the generated stress can be separated to alleviate the stress, thereby preventing the fin from being damaged or deformed.

【0014】1)粒状触媒などに見られる、触媒同士の
接触による破損、粉化を回避することができる。 2)多孔質体の密度を選定することで、内円筒管の外壁
面とフィン表面からの熱を輻射伝熱として多孔質体内部
まで届けることにより、触媒を均一に加熱できるととも
に、触媒層の厚みを増大することができる。
1) Damage and powdering due to contact between catalysts, which are observed in a granular catalyst or the like, can be avoided. 2) By selecting the density of the porous body, the heat from the outer wall surface of the inner cylindrical tube and the fin surface is delivered to the inside of the porous body as radiant heat transfer, so that the catalyst can be uniformly heated and the catalyst layer can be heated. The thickness can be increased.

【0015】3)多孔質体と原料ガスとの熱伝達率は粒
状触媒と原料ガスの熱伝達より高いので、更なる触媒温
度均一化と、触媒層厚みの増大が図れる。
3) Since the heat transfer coefficient between the porous body and the raw material gas is higher than the heat transfer between the granular catalyst and the raw material gas, the catalyst temperature can be further uniformed and the thickness of the catalyst layer can be increased.

【0016】4)体積あたりの表面積が粒状触媒より多
いので、体積あたりの改質性能が粒状触媒より高くな
り、同一の改質触媒性能の触媒体積を減らすことがで
き、改質管をコンパクトにすることができる。
4) Since the surface area per volume is larger than that of the granular catalyst, the reforming performance per volume is higher than that of the granular catalyst, and the catalyst volume of the same reforming catalyst performance can be reduced, and the reforming tube can be made compact. can do.

【0017】5)体積あたりの触媒重量がより小さいの
で、装置の重量低減が図れる。
5) Since the weight of the catalyst per volume is smaller, the weight of the apparatus can be reduced.

【0018】前記ポーラス質多孔質体においては、内円
筒管近くではポーラスが粗く、外側では細かくなるよう
に構成されていることが好ましい。つまり、内円筒管近
傍では目を粗くして、内円筒管壁面からの輻射熱を透過
し易くして、外円筒管近傍では、ポーラス質も目を細か
くして、輻射熱を触媒に吸収させきって、内円筒管壁面
からの輻射熱を均一に多孔質触媒に吸収させることがで
きる。
In the porous porous body, it is preferable that the porous body is configured so that the porous body is rough near the inner cylindrical tube and finer on the outer side. In other words, by coarsening the eyes near the inner cylindrical tube, it is easier to transmit the radiant heat from the inner cylindrical tube wall, and near the outer cylindrical tubes, the porous material is also finer, and the radiant heat is completely absorbed by the catalyst. In addition, the radiant heat from the inner cylindrical tube wall surface can be uniformly absorbed by the porous catalyst.

【0019】また、前記ポーラス質多孔質体において
は、原料ガス入口近くではポーラス質の目が細かく、出
口近くではその目が粗くなるように構成されていること
が好ましい。これは、原料ガスの入口部では熱伝達率を
上げ、出口部では反応が略終了しているので熱伝達率を
上げる必要がなく、むしろ粗くして圧損を低下させるた
めである。
In the porous porous body, it is preferable that the porous material has a fine mesh near the inlet of the raw material gas and a rough mesh near the outlet. This is because the heat transfer coefficient is increased at the inlet of the raw material gas and the reaction is almost completed at the outlet, so that it is not necessary to increase the heat transfer coefficient.

【0020】[0020]

【実施例】以下、本発明の各実施例について図面を参照
して説明する。なお、下記実施例で述べる各構成部材の
材料や数値は一例を示すもので、本発明の権利範囲を特
定するものではない。
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the materials and numerical values of the constituent members described in the following examples are merely examples, and do not specify the scope of the present invention.

【0021】(実施例1)図1を参照する。ここで、図
1は本発明の実施例1に係るスパイラルフィン付き改質
装置の全体図を示す。
(Embodiment 1) Referring to FIG. Here, FIG. 1 shows an overall view of a reformer with a spiral fin according to Embodiment 1 of the present invention.

【0022】図中の符番11は内円筒管を示し、この内
円筒管11の外側に該内円筒管11と径が異なる外円筒
管12が同心円状に配置されている。前記内円筒管11
の外壁面には、外円筒管12との隙間と同程度の高さを
もつスパイラルフィン13が、内円筒管11の一端部か
ら他端部まで連続的に溶接もしくは鋳造で内円筒管11
と一体化されている。前記内円筒管11の外壁面、外円
筒管12の内壁面及びスパイラルフィン13で囲まれた
領域には、粒状の改質触媒14が充填されている。ま
た、図示しないが、内円筒管11の内側には、バーナー
が配置される。
Reference numeral 11 in the figure denotes an inner cylindrical tube, and an outer cylindrical tube 12 having a diameter different from that of the inner cylindrical tube 11 is arranged concentrically outside the inner cylindrical tube 11. The inner cylindrical tube 11
Spiral fins 13 having the same height as the gap with the outer cylindrical tube 12 are continuously welded or cast on the outer wall surface from one end to the other end of the inner cylindrical tube 11.
It is integrated with. A region surrounded by the outer wall surface of the inner cylindrical tube 11, the inner wall surface of the outer cylindrical tube 12, and the spiral fin 13 is filled with a granular reforming catalyst 14. Although not shown, a burner is arranged inside the inner cylindrical tube 11.

【0023】原料ガス15は、スパイラルフィン13と
内円筒管11及び外円筒管12で囲まれた空間を改質触
媒14の隙間を通りながら流れるようになっている。そ
の過程で、原料ガス15は改質ガス16へと変成され
る。一方、内円筒管11の内側には改質触媒14にバー
ナーからの熱を供給するための、例えば900℃の加熱
ガス17が流入され、内円筒管11を加熱する。そし
て、加熱ガス17からの熱エネルギーは、内円筒管11
の外壁面及びスパイラルフィン表面から、改質触媒14
へ触媒同士及び前記壁面と改質触媒14との接触による
熱伝導と、改質触媒14の隙間を流れる原料ガス15の
強制対流熱伝導によって改質触媒14へ伝えられる。
The raw material gas 15 flows through a space surrounded by the spiral fin 13, the inner cylindrical tube 11 and the outer cylindrical tube 12 while passing through a gap of the reforming catalyst 14. In the process, the source gas 15 is converted into the reformed gas 16. On the other hand, a heating gas 17 of, for example, 900 ° C. for supplying heat from a burner to the reforming catalyst 14 flows into the inside of the inner cylindrical tube 11 to heat the inner cylindrical tube 11. The heat energy from the heating gas 17 is transferred to the inner cylindrical tube 11.
From the outer wall surface and the surface of the spiral fin,
The heat is transmitted to the reforming catalyst 14 by heat conduction due to contact between the reforming catalyst 14 and the reforming catalyst 14 and forced convection heat conduction of the raw material gas 15 flowing through the gap between the reforming catalysts 14.

【0024】上記実施例1によれば、内円筒管11の外
壁面に、外円筒管12との隙間と同程度の高さをもつス
パイラルフィン13を設けた構成となっているため、加
熱ガスから内円筒管内面に供給される熱を内円筒管外面
のみならず、フィン表面からも触媒へ伝熱することがで
きる。その結果、内円筒管から離れた改質触媒14にも
熱供給できて、触媒層厚みを厚くすることができる。従
って、所定量の触媒を収納する改質管をコンパクトにす
ることができる。
According to the first embodiment, since the spiral fins 13 having the same height as the gap with the outer cylindrical tube 12 are provided on the outer wall surface of the inner cylindrical tube 11, Can be transferred to the catalyst not only from the outer surface of the inner cylindrical tube but also from the fin surface. As a result, heat can also be supplied to the reforming catalyst 14 apart from the inner cylindrical tube, and the thickness of the catalyst layer can be increased. Therefore, it is possible to make the reforming tube containing a predetermined amount of the catalyst compact.

【0025】(実施例2)図2(A),(B)を参照す
る。図2(A)は実施例2に係るスパイラルフィン付き
改質装置の要部の説明図、図2(B)は図2(A)のX
矢視図を示す。ここで、図1と同部材は同符番を付して
説明を省略する。実施例2に係る改質装置は、実施例1
の改質装置の場合に比べ、4個のスパイラルフィン2
1,22,23,24を内円筒管11の一端部から他端
部まで形成した点が異なる。但し、スパイラルフィン2
1から24の高さは、内円筒管11と外円筒管12との
隙間と同程度の高さを有する。
(Embodiment 2) Referring to FIGS. 2A and 2B. FIG. 2A is an explanatory view of a main part of a reformer with a spiral fin according to a second embodiment, and FIG.
FIG. Here, the same members as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. The reforming apparatus according to the second embodiment is similar to the reforming apparatus according to the first embodiment.
4 spiral fins 2
The difference is that 1, 2, 23, and 24 are formed from one end to the other end of the inner cylindrical tube 11. However, spiral fin 2
The height from 1 to 24 is almost the same as the gap between the inner cylindrical tube 11 and the outer cylindrical tube 12.

【0026】実施例2によれば、複数のスパイラルフィ
ン21〜24を内円筒管11に設けたことにより、原料
ガス流路断面積をフィンピッチ、流路本数で任意に調整
することが可能なので、目標とする改質ガス生成量、即
ち所定の触媒量に対して任意のガス流速が設定できる。
従って、システムが許容できる最大圧損まで、ガス流速
を上げて触媒間の強制対流伝達率を上げることができ、
内円筒管11から離れた改質触媒14も十分に加熱で
き、更に触媒層の厚みを厚くできる。その結果、内円筒
管11を加熱するガス温度を高くしても、内円筒管11
の外壁面に隣接する改質触媒14が触媒の耐久温度以上
に加熱されることが回避できる。また、加熱ガス温度の
増大に従い、加熱ガスに供給する空気量が低減でき、送
風動力などの低減が可能となる。
According to the second embodiment, by providing a plurality of spiral fins 21 to 24 in the inner cylindrical tube 11, the cross-sectional area of the flow path of the source gas can be arbitrarily adjusted by the fin pitch and the number of flow paths. An arbitrary gas flow rate can be set for a target reformed gas generation amount, that is, a predetermined catalyst amount.
Therefore, the gas flow rate can be increased to increase the forced convection transfer rate between the catalysts up to the maximum pressure drop that the system can tolerate,
The reforming catalyst 14 separated from the inner cylindrical tube 11 can be sufficiently heated, and the thickness of the catalyst layer can be further increased. As a result, even if the gas temperature for heating the inner cylindrical tube 11 is increased, the inner cylindrical tube 11
The heating of the reforming catalyst 14 adjacent to the outer wall surface above the endurance temperature of the catalyst can be avoided. Further, as the heating gas temperature increases, the amount of air supplied to the heating gas can be reduced, and the blowing power and the like can be reduced.

【0027】(実施例3)図3を参照する。但し、図1
と同部材は同符番を付して説明を省略する。実施例3に
係るスパイラルフィン付き改質装置は、スパイラルフィ
ン13の外周縁から内円筒管中心軸に向って複数箇所切
欠け部25を設けたことを特徴とする。これは、スパイ
ラルフィン13では根元と先端部との熱延び差から応力
が発生し、運転条件によってはスパイラルフィン13が
破損する可能性があるので、これを回避するために前記
切欠け部25を設けるものである。つまり、切欠け部2
5をスパイラルフィン13に設けることにより、応力を
緩和することができる。
(Embodiment 3) Referring to FIG. However, FIG.
And the same members are denoted by the same reference numerals and description thereof is omitted. The reformer with a spiral fin according to the third embodiment is characterized in that a plurality of notches 25 are provided from the outer peripheral edge of the spiral fin 13 toward the central axis of the inner cylindrical tube. This is because, in the spiral fin 13, stress is generated due to a difference in thermal elongation between the root and the tip, and the spiral fin 13 may be broken depending on operating conditions. It is provided. That is, the notch 2
By providing the spiral fins 5, the stress can be reduced.

【0028】実施例3によれば、スパイラルフィン13
の外周縁から内円筒管中心軸に向って複数箇所切欠け部
25を設けることにより、スパイラルフィン13の根元
と先端部との熱伸び差から応力が発生するのを緩和する
ことができる。なお、上記実施例3において、切欠け部
の間隔や長さは任意に設定することができる。
According to the third embodiment, the spiral fin 13
By providing a plurality of cutouts 25 from the outer peripheral edge of the spiral fin 13 toward the center axis of the inner cylindrical tube, it is possible to reduce the occurrence of stress due to the difference in thermal expansion between the root and the tip of the spiral fin 13. In the third embodiment, the interval and length of the notch can be set arbitrarily.

【0029】(実施例4)図4を参照する。本実施例4
に係るスパイラルフィン付き改質装置は、上記実施例1
〜3に設けたような粒状の改質触媒とは異なり、ポーラ
ス質の例えばコージュライト材の多孔質体26に改質触
媒27を塗布、含浸したものを用いたことを特徴とす
る。改質触媒27は、多孔質体26の表面のみならず、
内部にも入り込んで形成されている。
(Embodiment 4) Referring to FIG. Example 4
The reformer with spiral fin according to the first embodiment
Unlike the granular reforming catalysts provided in Nos. 1 to 3, the present invention is characterized in that a reforming catalyst 27 is applied and impregnated on a porous body 26 made of a porous material, for example, a cordierite material. The reforming catalyst 27 includes not only the surface of the porous body 26 but also
It is formed to penetrate inside.

【0030】実施例4によれば、内円筒管及びスパイラ
ルフィン表面からの改質触媒27への伝熱が前記の熱伝
導と強制対流のみならず、多孔質体26が光透過距離を
もつため、多孔質体内部まで内円筒管、及びスパイラル
フィン表面からの輻射伝熱が可能となる。従って、触媒
厚みを厚くでき、装置のコンパクト化を図ることができ
る。また、多孔質体は、その微細構造から原料ガスとの
熱伝達がよいので改質性能が粒状触媒より向上する。
According to the fourth embodiment, the heat transfer from the inner cylindrical tube and the surface of the spiral fin to the reforming catalyst 27 is caused not only by the heat conduction and the forced convection, but also by the porous body 26 having a light transmission distance. In addition, radiant heat transfer from the inner cylindrical tube and the surface of the spiral fin to the inside of the porous body becomes possible. Therefore, the thickness of the catalyst can be increased, and the apparatus can be made compact. Further, since the porous body has good heat transfer with the raw material gas due to its fine structure, the reforming performance is improved as compared with the granular catalyst.

【0031】[0031]

【発明の効果】以上詳記したように本発明によれば、内
円筒管の外円筒管側に面する外壁面上に二重管の隙間相
当高さのスパイラルフィンが設けられ、該スパイラルフ
ィン間に触媒を充填し、原料ガスをそのスパイラルフィ
ン間の流路に従って流す構成にすることにより、必要量
の触媒を小スペースで収納でき、コンパクトな改質装置
を提供できる。また、スパイラルフィンで形成される原
料ガス流路断面積を、フィンピッチ、流路本数で任意に
調整すれば、触媒量に無関係に任意に原料ガス流路断面
積の設定が可能となり、触媒中のガス流速を増加でき
る。その結果、触媒中の熱伝達がよくなり、触媒層厚み
を厚くして、改質管ひいては改質装置をコンパクト化す
ることができる。更に、粒状触媒の代わりに多孔質触媒
を用いれば、内壁面とスパイラルフィンからの輻射熱が
多孔質触媒内部まで到達して、厚い触媒内部にも熱が供
給可能となり、触媒厚みが厚くでき、装置のコンパクト
化が可能となる。また、原料ガスへの強制対流熱伝達率
は多孔質体の方が粒状触媒より高いので、改質性能を向
上できる。
As described above in detail, according to the present invention, the spiral fin having a height equivalent to the gap of the double pipe is provided on the outer wall surface facing the outer cylindrical pipe side of the inner cylindrical pipe. By filling the space between the spiral fins with the catalyst, the necessary amount of the catalyst can be stored in a small space, and a compact reformer can be provided. In addition, by arbitrarily adjusting the cross-sectional area of the source gas flow path formed by the spiral fins by the fin pitch and the number of flow paths, the cross-sectional area of the raw material gas flow path can be arbitrarily set regardless of the amount of the catalyst. Gas flow rate can be increased. As a result, the heat transfer in the catalyst is improved, the thickness of the catalyst layer is increased, and the reforming tube and thus the reformer can be made compact. Furthermore, if a porous catalyst is used in place of the granular catalyst, the radiant heat from the inner wall surface and the spiral fins reaches the inside of the porous catalyst, and heat can be supplied to the inside of the thick catalyst. Can be made more compact. Further, since the porous body has a higher forced convection heat transfer coefficient to the raw material gas than the granular catalyst, the reforming performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係るスパイラルフィン付き
改質装置の全体図。
FIG. 1 is an overall view of a reformer with a spiral fin according to a first embodiment of the present invention.

【図2】本発明の実施例2に係るスパイラルフィン付き
改質装置の説明図。
FIG. 2 is an explanatory view of a reformer with a spiral fin according to a second embodiment of the present invention.

【図3】本発明の実施例3に係るスパイラルフィン付き
改質装置の要部の説明図。
FIG. 3 is an explanatory diagram of a main part of a reformer with a spiral fin according to a third embodiment of the present invention.

【図4】本発明の実施例4に係るスパイラルフィン付き
改質装置に使用される多孔質体の概略的な斜視図。
FIG. 4 is a schematic perspective view of a porous body used in a reformer with a spiral fin according to Embodiment 4 of the present invention.

【図5】従来の改質装置の説明図。FIG. 5 is an explanatory view of a conventional reformer.

【符号の説明】[Explanation of symbols]

1,11…内円筒管、 2,12…外円筒管、 13,21〜24…スパイラルフィン、 3,14,27…改質触媒、 5,15…原料ガス、 6,16…改質ガス、 4,17…加熱ガス、 25…切欠け部、 26…多孔質体。 1,11 ... inner cylindrical tube, 2,12 ... outer cylindrical tube, 13, 21-24 ... spiral fin, 3, 14, 27 ... reforming catalyst, 5, 15 ... raw material gas, 6, 16 ... reformed gas, 4, 17: heating gas, 25: notch, 26: porous body.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA01 EB14 EB24 EB46 EC07 4G070 AA01 AB06 AB08 BB03 CA01 CB16 DA11 DA23 5H027 BA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G040 EA01 EB14 EB24 EB46 EC07 4G070 AA01 AB06 AB08 BB03 CA01 CB16 DA11 DA23 5H027 BA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 直径の異なる内円筒管と外円筒管を同心
円状に配置した二重管を有し、内円筒管内側には加熱ガ
スを流入してその内面を加熱し、かつ内円筒管と外円筒
管の隙間には改質触媒を設置して、原料ガスをその隙間
に流し、内円筒管内面を介して加熱ガスから供給される
熱で改質を行う改質装置において、 内円筒管の外円筒管側に面する外壁面上に二重管の隙間
相当高さのスパイラルフィンが設けられ、該スパイラル
フィン間に改質触媒を充填し、原料ガスをそのスパイラ
ルフィン間の流路に従って流すことを特徴とする改質装
置。
1. A double pipe having an inner cylindrical pipe and an outer cylindrical pipe having different diameters arranged concentrically, wherein a heating gas flows into the inner cylindrical pipe to heat the inner surface thereof. A reforming catalyst is installed in the gap between the inner cylinder and the outer cylinder, and the raw material gas flows through the gap, and reforming is performed using heat supplied from the heating gas through the inner surface of the inner cylinder. Spiral fins having a height equivalent to the gap between the double tubes are provided on the outer wall surface facing the outer cylindrical tube side of the tube, a reforming catalyst is filled between the spiral fins, and a raw material gas is flowed between the spiral fins. A reformer characterized by flowing according to the following.
【請求項2】 前記スパイラルフィンを1本以上設置し
てガス流路を1本以上設け、ガス入口側からガス出口側
に向うにつれてフィン間の距離を徐々に大きくしたこと
を特徴とする請求項1に記載の改質装置。
2. The method according to claim 1, wherein at least one spiral fin is provided to provide at least one gas flow path, and a distance between the fins is gradually increased from a gas inlet side to a gas outlet side. 2. The reformer according to 1.
【請求項3】 前記スパイラルフィンの外周縁から内円
筒管中心軸に向って複数箇所切欠け部が設けられている
ことを特徴とする請求項1もしくは請求項2に記載の改
質装置。
3. The reformer according to claim 1, wherein a plurality of cutouts are provided from an outer peripheral edge of the spiral fin toward a central axis of the inner cylindrical tube.
【請求項4】 前記触媒は、ポーラス質多孔質体に触媒
を塗布、含浸したものであることを特徴とする請求項1
乃至請求項3のいずれかに記載の改質装置。
4. The catalyst according to claim 1, wherein the catalyst is obtained by applying and impregnating a porous porous body with the catalyst.
The reforming apparatus according to claim 3.
【請求項5】 前記ポーラス質多孔質体は、内円筒管近
くではポーラスが粗く、外側では細かくなるように構成
されていることを特徴とする請求項4記載の改質装置。
5. The reformer according to claim 4, wherein the porous porous body has a structure in which the porosity is rough near the inner cylindrical tube and finer on the outside.
【請求項6】 前記ポーラス質多孔質体は、原料ガス入
口近くではポーラスが粗く、出口近くでは細かくなるよ
うに構成されていることを特徴とする請求項4記載の改
質装置。
6. The reformer according to claim 4, wherein the porous porous body has a structure such that the porous material is coarse near the raw material gas inlet and finely porous near the raw material gas outlet.
JP2001174478A 2001-06-08 2001-06-08 Reforming apparatus Withdrawn JP2002362901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001174478A JP2002362901A (en) 2001-06-08 2001-06-08 Reforming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001174478A JP2002362901A (en) 2001-06-08 2001-06-08 Reforming apparatus

Publications (1)

Publication Number Publication Date
JP2002362901A true JP2002362901A (en) 2002-12-18

Family

ID=19015757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001174478A Withdrawn JP2002362901A (en) 2001-06-08 2001-06-08 Reforming apparatus

Country Status (1)

Country Link
JP (1) JP2002362901A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142288A (en) * 2005-11-01 2006-06-08 Sumitomo Chemical Co Ltd Fixed bed multitubular reactor
JP2006232610A (en) * 2005-02-24 2006-09-07 Cosmo Oil Co Ltd Reforming apparatus for producing hydrogen
CN100341189C (en) * 2004-02-26 2007-10-03 三星Sdi株式会社 Reformer for fuel cell system and fuel cell system having the same
JP2007273142A (en) * 2006-03-30 2007-10-18 Kyocera Corp Desulfurizer and its using method
KR100859939B1 (en) * 2006-11-02 2008-09-23 삼성에스디아이 주식회사 Reforming portion for former having heating portion and method for manufacturing the same
JP2020087789A (en) * 2018-11-28 2020-06-04 東京瓦斯株式会社 Reactor and fuel cell power generation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341189C (en) * 2004-02-26 2007-10-03 三星Sdi株式会社 Reformer for fuel cell system and fuel cell system having the same
JP2006232610A (en) * 2005-02-24 2006-09-07 Cosmo Oil Co Ltd Reforming apparatus for producing hydrogen
JP2006142288A (en) * 2005-11-01 2006-06-08 Sumitomo Chemical Co Ltd Fixed bed multitubular reactor
JP2007273142A (en) * 2006-03-30 2007-10-18 Kyocera Corp Desulfurizer and its using method
KR100859939B1 (en) * 2006-11-02 2008-09-23 삼성에스디아이 주식회사 Reforming portion for former having heating portion and method for manufacturing the same
JP2020087789A (en) * 2018-11-28 2020-06-04 東京瓦斯株式会社 Reactor and fuel cell power generation system
JP7181065B2 (en) 2018-11-28 2022-11-30 東京瓦斯株式会社 Reactor and fuel cell power generation system

Similar Documents

Publication Publication Date Title
CN1914118B (en) Modifier
JP4135640B2 (en) Reforming apparatus and operation method thereof
JP3625770B2 (en) Single tube cylindrical reformer and its operating method
US6932958B2 (en) Simplified three-stage fuel processor
US6797244B1 (en) Compact light weight autothermal reformer assembly
KR20070086973A (en) Reformer for a fuel cell
JP2003115307A (en) Interior reformer of solid electrolyte-type fuel cell
EP2161061B1 (en) Evaporator and fuel reformer having the same
JP2002362901A (en) Reforming apparatus
JPH0451482B2 (en)
JPH06219705A (en) Fuel reformer
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JPH0692242B2 (en) Fuel reformer
JPS62260701A (en) Raw material reforming apparatus
JP2000026101A (en) Apparatus for reforming fuel
JP2000281310A (en) Reforming device
JP4069621B2 (en) Reformer
JP2746108B2 (en) Reformer
JP3306430B2 (en) Reformer
JP2004014141A (en) Evaporator for reforming device
JPH0431243Y2 (en)
JPS6217002A (en) Device for reforming methanol for fuel cell
JP2004175580A (en) Steam reformer
JPH1143304A (en) Reforming unit
JPH02129001A (en) Reformer for fuel cell

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706