JP2013081898A - Granular substance-filling device - Google Patents

Granular substance-filling device Download PDF

Info

Publication number
JP2013081898A
JP2013081898A JP2011223449A JP2011223449A JP2013081898A JP 2013081898 A JP2013081898 A JP 2013081898A JP 2011223449 A JP2011223449 A JP 2011223449A JP 2011223449 A JP2011223449 A JP 2011223449A JP 2013081898 A JP2013081898 A JP 2013081898A
Authority
JP
Japan
Prior art keywords
granular material
hopper
conveyance path
side wall
rear side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011223449A
Other languages
Japanese (ja)
Other versions
JP5855413B2 (en
Inventor
Tatsuaki Yoshimura
龍明 吉村
Hideyuki Hironaka
秀幸 弘中
Hideo Onodera
秀夫 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011223449A priority Critical patent/JP5855413B2/en
Publication of JP2013081898A publication Critical patent/JP2013081898A/en
Application granted granted Critical
Publication of JP5855413B2 publication Critical patent/JP5855413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a granular substance-filling device hardly causing formation of a bridge by the granular substance, and capable of uniformly supplying the granular substance to a plurality of reaction tubes.SOLUTION: This granular substance-filling device includes a plurality of hoppers arranged in parallel to one another, and transport paths each arranged on the output side of each hopper, wherein the hopper includes a rear side wall located on the upstream side of the transport path, the rear side wall is tilted so that its lower side is located on the downstream side of the transport path relative to its upper side, and a projection vector L to the transport path of a normal vector H toward the inside of the hopper has a part becoming nonparallel to the downstream direction of the transport path. Alternatively, the granular substance filling device includes a plurality of hoppers arranged in parallel to one another, transport paths each arranged on the output side of each hopper, and input parts each arranged on the output side of each transport path, wherein the input part is formed by connecting a lower cylinder having a small caliber to the lower side of an upper cylinder having a large caliber by shifting the axis thereof.

Description

本発明は、固定床多管式反応器に触媒等の粒状物を充填するための装置に関するものである。   The present invention relates to an apparatus for filling a fixed-bed multitubular reactor with particulates such as a catalyst.

従来、固定床多管式反応器に触媒等の粒状物を供給し、反応器の各反応管に粒状物を充填するための粒状物充填装置が知られている。例えば、特許文献1には、複数のホッパーと、各ホッパーの出側に各々設けられたトラフ状の搬送路を有し、バイブレーターによりトラフ状の搬送路を振動させることにより、粒状物が搬送路を搬送され、搬送路の先端に形成された開口から反応器の各反応管に供給される粒状物充填装置が開示されている。特許文献2には、複数のホッパーと、各ホッパーの出側に各々設けられた搬送路と、各搬送路の出側に各々設けられた傾斜面のシュートを有する粒状物充填装置であって、搬送路の底面にはコンベアが備えられ、コンベアにより粒状物が搬送路を搬送され、シュートを通って反応器の各反応管に供給される粒状物充填装置が開示されている。   2. Description of the Related Art Conventionally, a granular material filling apparatus for supplying granular materials such as a catalyst to a fixed bed multitubular reactor and filling each reaction tube of the reactor with the granular material is known. For example, Patent Document 1 includes a plurality of hoppers and a trough-shaped transport path provided on the exit side of each hopper, and the granular material is transported by vibrating the trough-shaped transport path with a vibrator. And a granular material filling device that is supplied to each reaction tube of the reactor from an opening formed at the tip of the conveyance path. Patent Document 2 is a granular material filling device having a plurality of hoppers, a conveyance path provided on the exit side of each hopper, and an inclined surface chute provided on the exit side of each conveyance path, A conveyor is provided on the bottom surface of the conveyance path, and a granular material filling apparatus is disclosed in which the granular material is conveyed through the conveyance path by the conveyor and supplied to each reaction tube of the reactor through a chute.

特開2000−37621号公報JP 2000-37621 A 特開2006−142297号公報JP 2006-142297 A

粒状物充填装置においては、粒状物を複数の反応管に均一に供給できることが性能として求められる。つまり、粒状物はホッパーから反応管までスムーズに運ばれることが必要とされる。しかし、粒状物充填装置では、粒状物の搬送の途中で粒状物によるブリッジが形成される場合があり、その場合、粒状物を複数の反応管に均一に供給することが困難となる。   In the granular material filling apparatus, it is required as performance that the granular material can be uniformly supplied to a plurality of reaction tubes. That is, it is necessary that the granular material be smoothly transported from the hopper to the reaction tube. However, in the granular material filling apparatus, a bridge made of the granular material may be formed in the course of conveying the granular material, and in that case, it becomes difficult to uniformly supply the granular material to the plurality of reaction tubes.

本発明は前記事情に鑑みてなされたものであり、その目的は、粒状物によるブリッジの形成が起こりにくく、粒状物を複数の反応管に均一に供給することができる粒状物充填装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a granular material filling apparatus that can hardly form a bridge due to granular materials and can uniformly supply the granular materials to a plurality of reaction tubes. There is.

前記課題を解決することができた本発明の粒状物充填装置とは、固定床多管式反応器の各反応管に粒状物を供給する粒状物充填装置であって、並列に配置された複数のホッパーと、各ホッパーの出側に各々設けられた搬送路とを有しており、ホッパーが搬送路の上流側に位置する後側壁を有し、後側壁は、その下方が上方より搬送路の下流側に位置するように傾斜しているとともに、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分を有しているところに特徴を有する。ホッパーの後側壁がこのように形成されていれば、粒状物は後側壁の内側面から受けるベクトルHの垂直抗力が搬送路の下流側に位置する前側壁に向かいにくくなり、粒状物が後側壁と前側壁との間でブリッジを形成しにくくなる。その結果、粒状物がホッパーからスムーズに搬送路に供給され、粒状物が反応管に均一に供給されやすくなる。   The granular material filling device of the present invention that has solved the above problems is a granular material filling device that supplies granular materials to each reaction tube of a fixed-bed multitubular reactor, and is a plurality of the granular material filling devices arranged in parallel. Each hopper and a transport path provided on the exit side of each hopper, the hopper has a rear side wall located on the upstream side of the transport path, and the lower side of the rear side wall is a transport path from above. In addition, the projection vector L onto the conveyance path of the normal vector H that is directed to the inside of the hopper has a portion that is not parallel to the downstream direction of the conveyance path. It has the characteristics. If the rear side wall of the hopper is formed in this way, the granular material is less likely to have the vertical drag of the vector H received from the inner side surface of the rear side wall directed to the front side wall located on the downstream side of the conveying path. It becomes difficult to form a bridge between the front wall and the front wall. As a result, the granular material is smoothly supplied from the hopper to the conveyance path, and the granular material is easily supplied uniformly to the reaction tube.

ホッパーは、搬送路の下流側に位置する前側壁が略垂直に形成されていることが好ましい。このように前側壁が形成されていれば、粒状物が後側壁と前側壁との間でブリッジを形成しにくくなる。   In the hopper, it is preferable that the front side wall located on the downstream side of the transport path is formed substantially vertically. If the front side wall is formed in this way, it becomes difficult for the granular material to form a bridge between the rear side wall and the front side wall.

後側壁は、水平断面がV字状またはU字状に形成されていることが好ましい。このように後側壁が形成されていれば、後側壁のホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分が、後側壁の水平断面において後側壁の大部分を占めることとなり、粒状物が後側壁と前側壁との間でブリッジを形成しにくくなる。   The rear side wall is preferably formed in a V-shaped or U-shaped horizontal cross section. If the rear side wall is formed in this way, a portion where the projection vector L of the normal vector H toward the inside of the hopper on the rear side wall is not parallel to the downstream direction of the conveyance path is a portion of the rear side wall. It occupies most of the rear side wall in the horizontal section, and it becomes difficult for the particulate matter to form a bridge between the rear side wall and the front side wall.

本発明はまた、固定床多管式反応器の各反応管に粒状物を供給する粒状物充填装置であって、並列に配置された複数のホッパーと、各ホッパーの出側に各々設けられた搬送路と、各搬送路の出側に各々設けられた投入部とを有し、投入部が、大口径を有する上側円筒の下側に小口径を有する下側円筒が軸をずらして接続して形成されている粒状物充填装置を提供する。投入部がこのように形成されていれば、投入部内で粒状物の落下速度に差が生じて、投入部内で粒状物がブリッジを形成しにくくなる。その結果、粒状物が反応管に均一に供給されやすくなる。   The present invention is also a granular material filling device for supplying granular material to each reaction tube of a fixed bed multitubular reactor, provided with a plurality of hoppers arranged in parallel and on the outlet side of each hopper. It has a conveyance path and an input part provided on the exit side of each conveyance path, and the input part is connected to the lower cylinder having a small diameter on the lower side of the upper cylinder having a large diameter while shifting the axis. A granular material filling device is provided. If the charging part is formed in this way, a difference occurs in the falling speed of the granular material in the charging part, and it becomes difficult for the granular material to form a bridge in the charging part. As a result, the particulate matter is easily supplied uniformly to the reaction tube.

投入部が、大口径を有する上側円筒の下側に小口径を有する下側円筒が軸をずらして接続して形成されている粒状物充填装置においても、ホッパーの後側壁が、その下方が上方より搬送路の下流側に位置するように傾斜しているとともに、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分を有していることが好ましい。   Even in the granular material filling apparatus in which the lower portion of the upper cylinder having the large diameter is connected to the lower cylinder having the small diameter and the shaft is shifted from each other, the rear side wall of the hopper is located above the lower portion. In addition to being inclined so as to be located on the downstream side of the conveyance path, the projection vector L of the normal vector H toward the inside of the hopper onto the conveyance path has a portion that is not parallel to the downstream direction of the conveyance path. It is preferable.

投入部は、上側円筒の軸が下側円筒の軸より搬送路からみて遠位側に位置することが好ましい。このように投入部が形成されていれば、粒状物が投入部内でブリッジをより形成しにくくなる。   It is preferable that the input portion is positioned such that the axis of the upper cylinder is located more distally than the axis of the lower cylinder when viewed from the conveyance path. If the input part is formed in this way, it becomes more difficult for the granular material to form a bridge in the input part.

搬送路の底面には粉状物をふるい落とす孔が形成されていることが好ましい。搬送路の底面に粉状物をふるい落とす孔を設けることにより、反応管には粒状物のみが供給されやすくなる。その結果、反応管の圧力損失を均一化させることが容易になる。   It is preferable that a hole through which the powdery material is removed is formed on the bottom surface of the conveyance path. By providing a hole through which the powdered material is removed on the bottom surface of the conveyance path, only the granular material is easily supplied to the reaction tube. As a result, it becomes easy to make the pressure loss of the reaction tube uniform.

本発明の粒状物充填装置は、ホッパーや投入部で粒状物によるブリッジの形成が起こりにくく、粒状物を複数の反応管に均一に供給しやすくなる。   In the granular material filling apparatus of the present invention, it is difficult for the granular material to form a bridge in the hopper or the charging portion, and it becomes easy to uniformly supply the granular material to a plurality of reaction tubes.

本発明の粒状物充填装置の側面図の一例を表す。An example of the side view of the granular material filling apparatus of this invention is represented. 図1に示した粒状物充填装置の上面図を表す。The top view of the granular material filling apparatus shown in FIG. 1 is represented. 図1に示した粒状物充填装置のホッパーと搬送路の一部の斜視図を表す。The perspective view of a part of hopper and conveyance path of the granular material filling apparatus shown in FIG. 1 is represented. 図3に示したホッパーの拡大図を表す。The enlarged view of the hopper shown in FIG. 3 is represented. ホッパーの他の例を表す。Another example of a hopper is shown. 図6(a)は図2に示した粒状物充填装置の投入部と搬送路の一部の拡大図を表し、図6(b)は、図1に示した粒状物充填装置の投入部と搬送路の一部の拡大図を表す。6A shows an enlarged view of a part of the granular material filling apparatus shown in FIG. 2 and a part of the conveyance path, and FIG. 6B shows an input part of the granular material filling apparatus shown in FIG. An enlarged view of a part of the conveyance path is shown. 図7(a)は投入部と搬送路の一部の上面図の他の例を表し、図7(b)はその側面図を表す。FIG. 7A shows another example of a top view of a part of the input unit and the conveyance path, and FIG. 7B shows a side view thereof. 図8(a)は投入部と搬送路の一部の上面図の他の例を表し、図8(b)はその側面図を表す。FIG. 8A shows another example of a top view of a part of the input unit and the conveyance path, and FIG. 8B shows a side view thereof. ホッパーの参考例を表す。Represents a reference example of a hopper. 図10(a)は投入部と搬送路の一部の上面図の参考例を表し、図10(b)はその側面図を表す。FIG. 10A shows a reference example of a top view of a part of the input unit and the conveyance path, and FIG. 10B shows a side view thereof.

本発明の粒状物充填装置は、固定床多管式反応器の各反応管に粒状物を供給するものである。本発明の粒状物充填装置を用いれば、固定床多管式反応器の複数の反応管に触媒等の粒状物を等量供給することが容易になり、複数の反応管に粒状物を均一に充填しやすくなる。   The granular material filling apparatus of the present invention supplies granular material to each reaction tube of a fixed bed multitubular reactor. By using the granular material filling device of the present invention, it becomes easy to supply an equal amount of granular materials such as catalyst to a plurality of reaction tubes of a fixed bed multitubular reactor, and the granular materials are uniformly distributed to the plurality of reaction tubes. Easy to fill.

本発明の粒状物充填装置は、一般に用いられている固定床多管式反応器を対象に粒状物を充填するのに用いることができる。固定床多管式反応器は、複数の反応管が略鉛直方向に配されていることが好ましい。固定床多管式反応器で行われる反応は特に限定されず、反応管に導入する反応原料も特に限定されない。   The granular material filling apparatus of the present invention can be used to fill a granular material for a generally used fixed-bed multitubular reactor. In the fixed bed multitubular reactor, a plurality of reaction tubes are preferably arranged in a substantially vertical direction. The reaction performed in the fixed bed multitubular reactor is not particularly limited, and the reaction raw material introduced into the reaction tube is not particularly limited.

固定床多管式反応器の反応管としては、その断面形状が円形の一般的なものを用いればよい。反応管の内径は特に限定されないが、15mm以上が好ましく、20mm以上がより好ましく、22mm以上がさらに好ましく、また50mm以下が好ましく、40mm以下がより好ましく、38mm以下がさらに好ましい。反応管の長さは、関連機器の能力等に応じて決められるが、1m〜10mの範囲で適宜選定すればよい。   As the reaction tube of the fixed bed multitubular reactor, a general tube having a circular cross section may be used. The inner diameter of the reaction tube is not particularly limited, but is preferably 15 mm or more, more preferably 20 mm or more, further preferably 22 mm or more, more preferably 50 mm or less, more preferably 40 mm or less, and still more preferably 38 mm or less. The length of the reaction tube is determined according to the capability of the related equipment, but may be appropriately selected within a range of 1 m to 10 m.

粒状物としては、触媒、不活性物質等が挙げられる。好ましくは、粒状物の少なくとも1種として、触媒が使用される。   Examples of the particulate material include a catalyst and an inert substance. Preferably, a catalyst is used as at least one of the particulates.

触媒としては、例えば、気相接触酸化反応、アンモ酸化反応、水素化反応、脱水素反応等に用いられる粒状触媒が挙げられる。触媒としては、触媒活性成分をそのまま用いてもよく、触媒活性成分を反応に不活性な粉末状物質と混合して成型した成型触媒を用いてもよく、反応に不活性な担体に触媒活性成分を担持した担持触媒を用いてもよい。   Examples of the catalyst include granular catalysts used for gas phase catalytic oxidation reaction, ammoxidation reaction, hydrogenation reaction, dehydrogenation reaction and the like. As the catalyst, the catalytically active component may be used as it is, or a molded catalyst obtained by mixing the catalytically active component with a powdery substance that is inactive to the reaction may be used. You may use the supported catalyst which carry | supported.

不活性物質としては、触媒を固定床多管式反応器に充填するに当たり、触媒を支持するための支持体;触媒の希釈材;反応ガスの予熱層あるいは冷却層等として用いられる物質等が挙げられ、具体例としては、例えば、シリカ、アルミナ、シリカアルミナ、金属(ステンレススチール、鉄等)、シリコンカーバイト、チタニア、マグネシア、ステアタイト、陶器、磁器、各種セラミック等から形成される耐火物等が挙げられる。不活性物質とは、反応原料や目的生成物等に対して一般的に不活性な物質を意味する。   Examples of the inert substance include a support for supporting the catalyst in filling the fixed bed multi-tubular reactor; a catalyst diluent; a substance used as a reaction gas preheating layer or a cooling layer, and the like. Specific examples include, for example, refractories formed from silica, alumina, silica alumina, metal (stainless steel, iron, etc.), silicon carbide, titania, magnesia, steatite, earthenware, porcelain, various ceramics, etc. Is mentioned. The inert substance means a substance that is generally inactive with respect to a reaction raw material, a target product, and the like.

粒状物の形状は特に限定されず、例えば、円柱状、リング状、球状、不定形等が挙げられる。   The shape of the granular material is not particularly limited, and examples thereof include a columnar shape, a ring shape, a spherical shape, and an indefinite shape.

粒状物の大きさは、反応管に収まる限り特に限定されないが、粒状物の粒径(d)は、充填する反応管の内径(D)との関係において、比率D/dが2/1以上であることが好ましく、2.5/1以上であることがより好ましく、また15/1以下であることが好ましく、10/1以下であることがより好ましい。なお、粒状物の粒径(d)とは、粒状物の形状が球状の場合はその直径を、円柱またはリング状の形状の場合は円形断面または多重円形断面の直径を、その他の形状の場合は、粒状物の任意の2点の距離の中で最長のものを意味する。さらに、粒状物の形状が円柱またはリング状の場合は、断面直径(φ)に対する高さ(h:前記断面に対し垂直方向の長さ)の比h/φが、0.3/1以上3/1以下の範囲となることが好ましい。   The size of the granular material is not particularly limited as long as it fits in the reaction tube, but the particle size (d) of the granular material has a ratio D / d of 2/1 or more in relation to the inner diameter (D) of the reaction tube to be filled. It is preferably 2.5 / 1 or more, more preferably 15/1 or less, and even more preferably 10/1 or less. The particle size (d) of the granular material is the diameter when the shape of the granular material is spherical, the diameter of a circular cross section or multiple circular cross section when it is a cylinder or ring shape, and the case of other shapes. Means the longest distance between any two points of the granular material. Furthermore, when the shape of the granular material is a cylinder or a ring, the ratio h / φ of the height (h: length in the direction perpendicular to the cross-section) to the cross-sectional diameter (φ) is 0.3 / 1 or more and 3 / 1 or less is preferable.

本発明の粒状物充填装置の構成について、図面を参照しながら説明する。なお、本発明は図面に示された実施態様に限定されるものではない。図1は粒状物充填装置の側面図を表し、図2は図1に示した粒状物充填装置の上面図を表し、図3は図1に示した粒状物充填装置のホッパーと搬送路の一部の斜視図を表す。   The structure of the granular material filling device of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiment shown in the drawings. 1 shows a side view of the granular material filling device, FIG. 2 shows a top view of the granular material filling device shown in FIG. 1, and FIG. 3 shows one of the hopper and conveyance path of the granular material filling device shown in FIG. The perspective view of a part is represented.

粒状物充填装置1は、並列に配置された複数のホッパー11と、各ホッパー11の出側に各々設けられた搬送路2を有している。粒状物は、ホッパー11に貯留されるとともに、ホッパー11の出口から搬送路2に供給され、搬送路2を通って各反応管に供給される。   The granular material filling apparatus 1 includes a plurality of hoppers 11 arranged in parallel and a conveyance path 2 provided on the exit side of each hopper 11. The particulate matter is stored in the hopper 11, supplied from the outlet of the hopper 11 to the transport path 2, and then supplied to each reaction tube through the transport path 2.

ホッパー11と搬送路2はそれぞれ複数設けられ、1つのホッパー11に対し1つの搬送路2が対応するように設けられている。図では、ホッパーと搬送路はそれぞれ8つ設けられているが、ホッパーと搬送路の数は2つ以上であれば特に限定されない。粒状物充填装置1は、それぞれのホッパー11から一定量の粒状物が搬送路2に供給されるとともに、搬送路2を通って各供給管に一定量の粒状物が供給される。   A plurality of hoppers 11 and transport paths 2 are provided, and one transport path 2 corresponds to one hopper 11. In the figure, eight hoppers and eight conveyance paths are provided, but the number of hoppers and conveyance paths is not particularly limited as long as it is two or more. In the granular material filling device 1, a certain amount of granular material is supplied from each hopper 11 to the conveyance path 2, and a certain amount of granular material is supplied to each supply pipe through the conveyance path 2.

ホッパー11は、粒状物を貯留するとともに、粒状物を各搬送路2に供給する。ホッパー11は上側開口と下側開口を有し、上側開口から粒状物をホッパーに供給し、ホッパー内の粒状物は下側開口から落下することにより搬送路2に供給される。各下側開口の下方には、いずれかの搬送路2が設けられている。   The hopper 11 stores the particulate matter and supplies the particulate matter to each conveyance path 2. The hopper 11 has an upper opening and a lower opening, and supplies the granular material to the hopper from the upper opening, and the granular material in the hopper is supplied to the conveying path 2 by dropping from the lower opening. One of the transport paths 2 is provided below each lower opening.

ホッパー11は複数が並列に配置されている。具体的には、複数の搬送路2に対応して、複数のホッパー11が並列に配置されている。複数のホッパーはそれぞれ独立して配置されていてもよく、例えば、互いに離間して複数のホッパーが配置されていてもよい。しかし、図3に示すように、複数のホッパー11は互いに隣接して配置されていることが好ましい。このとき、各ホッパー11には、図3に示すように、搬送路2の粒状物の搬送方向(下流方向)Fに略平行な左右側壁14が略垂直(略鉛直)に設けられることが好ましく、この側壁14によって隣接するホッパー11間が区分されることが好ましい。   A plurality of hoppers 11 are arranged in parallel. Specifically, a plurality of hoppers 11 are arranged in parallel corresponding to the plurality of transport paths 2. The plurality of hoppers may be arranged independently. For example, the plurality of hoppers may be arranged apart from each other. However, as shown in FIG. 3, the plurality of hoppers 11 are preferably arranged adjacent to each other. At this time, as shown in FIG. 3, it is preferable that the left and right side walls 14 substantially parallel to the conveying direction (downstream direction) F of the granular material in the conveying path 2 are provided in each hopper 11 substantially vertically (substantially vertically). The adjacent hoppers 11 are preferably divided by the side walls 14.

複数のホッパー11は互いに実質的に同一形状を有していることが好ましい。このように複数のホッパーが形成されていれば、それぞれのホッパーから一定量の粒状物が供給されやすくなる。   The plurality of hoppers 11 preferably have substantially the same shape. If a plurality of hoppers are formed in this way, a certain amount of particulate matter is easily supplied from each hopper.

搬送路2は、ホッパー11から供給された粒状物を各反応管に移送するための通路である。粒状物は、搬送路2の上流側から下流側に搬送され、例えば、図1および図2では粒状物は図の左側から右側に搬送される。なお、本発明において、「上流」、「下流」とは高低を表すものではなく、搬送の方向を表す。つまり、「上流側」とは搬送の始点側を表し、「下流側」とは搬送の終点側を表す。また「下流方向」とは、粒状物が搬送路を搬送される方向であり、搬送路の幅中心線が延びる方向を意味する。   The conveyance path 2 is a path for transferring the granular material supplied from the hopper 11 to each reaction tube. The granular material is conveyed from the upstream side to the downstream side of the conveying path 2. For example, in FIGS. 1 and 2, the granular material is conveyed from the left side to the right side of the drawing. In the present invention, “upstream” and “downstream” do not represent elevation, but represent the direction of conveyance. That is, the “upstream side” represents the start point side of the conveyance, and the “downstream side” represents the end point side of the conveyance. The “downstream direction” means a direction in which the granular material is transported through the transport path, and means a direction in which the width center line of the transport path extends.

搬送路2は、ホッパー11の出口(下側開口)と反応管とを繋ぐように設けられる。すなわち、各搬送路2は、いずれかのホッパー11の出口(下側開口)の下方に設けられるとともに、いずれかの反応管の上方に設けられる。搬送路2は、図3に示すように樋状に形成されることが好ましく、その結果、粒状物が搬送路2を好適に搬送されるようになる。また、各搬送路2は、反応管の内径以上の幅を有していることが好ましい。   The conveyance path 2 is provided so as to connect the outlet (lower opening) of the hopper 11 and the reaction tube. That is, each transport path 2 is provided below the outlet (lower opening) of any hopper 11 and above any reaction tube. The conveyance path 2 is preferably formed in a bowl shape as shown in FIG. 3, and as a result, the granular material is suitably conveyed along the conveyance path 2. Moreover, it is preferable that each conveyance path 2 has the width | variety beyond the internal diameter of a reaction tube.

搬送路2にはコンベア等の搬送手段が設けられていることが好ましい。図1では、搬送路2の底面がコンベア3となっており、コンベア3のベルト4面が略水平に設けられている。なお図1では、コンベア3は搬送路2の上流側に設けられ、それ以降は、搬送路2は下流側が下方に傾斜して設けられている。つまり、図1では、粒状物は、ホッパー11から供給され搬送路2の途中まではコンベア3で下流側に搬送され、それ以降は、自然流下によりさらに下流側に搬送されている。なお、搬送手段はコンベアに限定されず、例えば、バイブレーターにより搬送路が振動することによって粒状物が下流側に搬送されてもよい。また、搬送路は略水平に設けられても、下流側が上方または下方に傾斜して設けられていてもよい。   The conveyance path 2 is preferably provided with conveyance means such as a conveyor. In FIG. 1, the bottom surface of the conveyance path 2 is a conveyor 3, and the belt 4 surface of the conveyor 3 is provided substantially horizontally. In FIG. 1, the conveyor 3 is provided on the upstream side of the conveyance path 2, and thereafter, the conveyance path 2 is provided with the downstream side inclined downward. That is, in FIG. 1, the granular material is supplied from the hopper 11 and is conveyed to the downstream side by the conveyor 3 up to the middle of the conveying path 2, and thereafter is further conveyed to the downstream side by natural flow. In addition, a conveyance means is not limited to a conveyor, For example, a granular material may be conveyed downstream by vibrating a conveyance path with a vibrator. Further, the conveyance path may be provided substantially horizontally, or the downstream side may be provided inclined upward or downward.

搬送路2は複数が並列に配置されている。図に示すように、各搬送路は直線状に延びていることが好ましく、さらに、それぞれの搬送路が互いに平行に配されていることが好ましい。なお、それぞれの搬送路は互いに非平行に配されてもよく、例えば搬送路が放射状に配されていてもよい。   A plurality of transport paths 2 are arranged in parallel. As shown in the figure, it is preferable that each conveyance path extends linearly, and it is preferable that the respective conveyance paths are arranged in parallel to each other. In addition, each conveyance path may be distribute | arranged mutually non-parallel, for example, a conveyance path may be distribute | arranged radially.

ところで、粒状物充填装置においては、粒状物を複数の反応管に均一に供給できることが性能として求められる。つまり、粒状物はホッパーから反応管までスムーズに運ばれることが必要とされる。しかし、粒状物充填装置では、ホッパー内や、搬送路から反応管に供給される接続部分で、粒状物によるブリッジが形成されやすく、その結果、粒状物がホッパー内や前記接続部分で詰まるおそれがある。   By the way, in a granular material filling apparatus, it is calculated | required as performance that a granular material can be uniformly supplied to a some reaction tube. That is, it is necessary that the granular material be smoothly transported from the hopper to the reaction tube. However, in the granular material filling device, a bridge due to the granular material is likely to be formed in the hopper or in the connection portion supplied from the conveyance path to the reaction tube, and as a result, the granular material may be clogged in the hopper or in the connection portion. is there.

そこで本発明の粒状物充填装置では、ホッパーの形状や搬送路と反応管との接続部分の形状を工夫することにより、粒状物によるブリッジの形成を抑制し、粒状物の詰まりを起こりにくくしている。   Therefore, in the granular material filling apparatus of the present invention, the shape of the hopper and the shape of the connection portion between the conveyance path and the reaction tube are devised to suppress the formation of bridges due to the granular material, and to prevent the clogging of the granular material. Yes.

ホッパーの形状について説明する。ホッパー11は、搬送路2の上流側に位置する後側壁12を有し、後側壁12は、その下方が上方より搬送路2の下流側に位置するように傾斜している。ホッパー11の後側壁12が、下方が上方より搬送路2の下流側に位置するように傾斜して設けられていれば、粒状物が搬送路2を下流側に搬送されると、後側壁12を伝って粒状物が搬送路2にスムーズに供給されやすくなる。このとき、後側壁12は粒状物の安息角より大きな傾斜角となるように形成されていることが好ましい。   The shape of the hopper will be described. The hopper 11 has a rear side wall 12 located on the upstream side of the conveyance path 2, and the rear side wall 12 is inclined so that the lower side thereof is located on the downstream side of the conveyance path 2 from above. If the rear side wall 12 of the hopper 11 is provided so as to be inclined so that the lower side is located on the downstream side of the transport path 2 from above, the rear side wall 12 when the particulate matter is transported to the downstream side of the transport path 2. The granular material is easily supplied to the conveyance path 2 along the path. At this time, the rear side wall 12 is preferably formed to have an inclination angle larger than the repose angle of the granular material.

しかし、ホッパー11の後側壁12が上記のように傾斜して設けられていると、粒状物が後側壁12上でホッパー11の下部に押し込まれる形となり、その結果、粒状物がホッパー11内でブリッジを形成しやすくなる。このとき、後側壁12の内側面の法線ベクトルの搬送路2への投影ベクトルが搬送路2の下流方向に対し平行となるように、後側壁12が設けられていると、粒状物はブリッジを形成しやすくなる。このことは次のように説明されると考えられる。   However, when the rear side wall 12 of the hopper 11 is inclined as described above, the granular material is pushed into the lower portion of the hopper 11 on the rear side wall 12, and as a result, the granular material is formed in the hopper 11. It becomes easy to form a bridge. At this time, if the rear side wall 12 is provided so that the projection vector of the normal vector of the inner side surface of the rear side wall 12 onto the conveyance path 2 is parallel to the downstream direction of the conveyance path 2, the particulate matter is bridged. It becomes easy to form. This can be explained as follows.

図9には、図3に示した粒状物充填装置のホッパーにおいて、後側壁が平面状、すなわち後側壁の内側面の法線ベクトルの搬送路への投影ベクトルが搬送路の下流方向に対し平行となるように後側壁が設けられたホッパーを示した。図9には、搬送路と平行な平面P上に載せられたホッパーが1つ示されている。ホッパー11の後側壁12は、ホッパー11内部に向かう法線ベクトルHの平面Pへの投影ベクトルLが、搬送路の下流方向Fに対して平行となっている。このとき、粒状物は後側壁12の内側面からベクトルHの垂直抗力を受けるが、ベクトルHの平面Pへの投影ベクトルLが搬送路の下流方向Fに対し平行となるように後側壁12が設けられていると、粒状物は搬送路の下流方向Fに沿ってホッパー11内でブリッジを形成しやすくなる。すなわち、粒状物は、ホッパー11の後側壁12と前側壁13との間でブリッジを形成しやすくなる。なお、前側壁13とは、搬送路の下流側に位置するホッパーの側壁を意味する。   In FIG. 9, in the hopper of the granular material filling apparatus shown in FIG. 3, the rear side wall is planar, that is, the projection vector of the normal vector on the inner side surface of the rear side wall to the transport path is parallel to the downstream direction of the transport path. A hopper provided with a rear side wall is shown. FIG. 9 shows one hopper placed on a plane P parallel to the transport path. On the rear side wall 12 of the hopper 11, the projection vector L of the normal vector H toward the inside of the hopper 11 onto the plane P is parallel to the downstream direction F of the transport path. At this time, the granular material receives the vertical drag of the vector H from the inner side surface of the rear side wall 12, but the rear side wall 12 is such that the projection vector L of the vector H onto the plane P is parallel to the downstream direction F of the transport path. If provided, the granular material easily forms a bridge in the hopper 11 along the downstream direction F of the conveyance path. That is, the granular material easily forms a bridge between the rear side wall 12 and the front side wall 13 of the hopper 11. In addition, the front side wall 13 means the side wall of the hopper located in the downstream of a conveyance path.

そこで本発明の粒状物充填装置では、ホッパーの後側壁を、下方が上方よりも搬送路の下流側に位置するように傾斜するように設けるとともに、後側壁が、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分を有するように形成している。これについて、図4を用いて説明する。   Therefore, in the granular material filling device according to the present invention, the rear side wall of the hopper is provided so as to be inclined so that the lower side is located on the downstream side of the conveying path from the upper side, and the normal vector H toward the inside of the hopper is provided. The projection vector L onto the transport path is formed so as to have a portion that is not parallel to the downstream direction of the transport path. This will be described with reference to FIG.

図4には、図3に示した粒状物充填装置1のホッパー11を抜き出して示した。図4には、搬送路2と平行な平面P上に載せられたホッパー11が1つ示されている。図4では、ホッパー11の後側壁12の内側面が水平断面V字状に形成されている。後側壁12は、水平断面がV字状を形成するように2つの平面から構成され、各平面のホッパー11内部に向かう法線ベクトルHの搬送路への投影ベクトルLが、搬送路の下流方向Fに対し非平行となっている。このように後側壁12が形成されていれば、粒状物は後側壁12の内側面から受けるベクトルHの垂直抗力が前側壁13に向かいにくくなり、粒状物が後側壁12と前側壁13との間でブリッジを形成しにくくなる。その結果、粒状物がホッパー11からスムーズに搬送路2に供給され、粒状物が反応管に均一に供給されやすくなる。なお、V字状とは、断面が左右対称のV字状に限らず、断面が左右非対称のV字状も含まれる。すなわち、V字状とは、断面が2つの直線の組み合わせにより形成される任意の形状であればよい。   FIG. 4 shows the hopper 11 extracted from the granular material filling apparatus 1 shown in FIG. FIG. 4 shows one hopper 11 placed on a plane P parallel to the transport path 2. In FIG. 4, the inner side surface of the rear side wall 12 of the hopper 11 is formed in a horizontal cross-section V shape. The rear side wall 12 is composed of two planes so that the horizontal cross section forms a V-shape, and the projection vector L of the normal vector H toward the inside of the hopper 11 in each plane onto the conveyance path is in the downstream direction of the conveyance path. Non-parallel to F. When the rear side wall 12 is formed in this way, the vertical force of the vector H received from the inner side surface of the rear side wall 12 becomes difficult for the granular material to go to the front side wall 13, and the granular material becomes difficult to move between the rear side wall 12 and the front side wall 13. It becomes difficult to form a bridge between them. As a result, the granular material is smoothly supplied from the hopper 11 to the transport path 2, and the granular material is easily supplied uniformly to the reaction tube. The V-shape is not limited to a V-shape whose cross section is symmetric, and includes a V-shape whose cross-section is asymmetrical. That is, the V shape may be any shape having a cross section formed by a combination of two straight lines.

図5には、本発明の粒状物充填装置に備えられるホッパーの他の例を示した。図5(a)には、後側壁12の内側面に、水平断面で底部が切り取られたV字状に形成されたホッパー11を示した。図5(a)のホッパーでは、後側壁12は、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが、搬送路の下流方向に対して非平行となる部分12aと平行となる部分12bとを有している。このように、ホッパー11の後側壁12は、投影ベクトルLが搬送路の下流方向に対して非平行となる部分が全てを占めていなくてもよく、後側壁12の一部のみが、投影ベクトルLが搬送路の下流方向に対して非平行となるように形成されていればよい。   In FIG. 5, the other example of the hopper with which the granular material filling apparatus of this invention is equipped was shown. FIG. 5A shows a hopper 11 formed on the inner surface of the rear side wall 12 in a V shape with the bottom cut off in a horizontal section. In the hopper of FIG. 5A, the rear side wall 12 is parallel to a portion 12a in which the projection vector L of the normal vector H toward the inside of the hopper onto the conveyance path is non-parallel to the downstream direction of the conveyance path. Part 12b. Thus, the rear side wall 12 of the hopper 11 does not have to occupy all the portions where the projection vector L is non-parallel to the downstream direction of the transport path, and only a part of the rear side wall 12 is projected vector. It suffices if L is formed so as to be non-parallel to the downstream direction of the transport path.

図5(b)には、後側壁12の内側面に水平断面でU字状に形成されたホッパーを示した。図5(b)のホッパーにおいても、後側壁12が、ホッパー11内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分を有している。なお、U字状とは、断面形状において底部が曲線状に形成された形状であればよく、例えば、断面形状の一部が曲線に加え直線で構成されていてもよく、断面形状が左右対称であっても左右非対称であってもよい。   FIG. 5B shows a hopper formed in a U-shape in a horizontal cross section on the inner side surface of the rear side wall 12. Also in the hopper of FIG. 5B, the rear side wall 12 has a portion where the projection vector L of the normal vector H toward the inside of the hopper 11 onto the conveyance path is non-parallel to the downstream direction of the conveyance path. Yes. The U shape may be any shape in which the bottom is formed in a curved shape in the cross-sectional shape. For example, a part of the cross-sectional shape may be configured by a straight line in addition to the curve, and the cross-sectional shape is symmetrical. Or left-right asymmetrical.

ホッパーの後側壁12において、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分12a(以下、「非平行部分」と称する場合がある)は、少なくとも後側壁の下側端部に形成されていることが好ましい。具体的には、非平行部分12aは、後側壁12の下側端12Lを始点として、後側壁12の下側端12Lから上側端12Uに至る1/3以上の部分に形成されることが好ましく、1/2以上の部分に形成されることがより好ましく、後側壁12の下側端12Lから上側端12Uまで形成されることがさらに好ましい。このように非平行部分12aが形成されていれば、粒状物がホッパー内でブリッジを形成することなく、粒状物がホッパーの下側開口から好適に排出されやすくなる。   On the rear side wall 12 of the hopper, a portion 12a (hereinafter, referred to as “non-parallel portion”) in which the projection vector L of the normal vector H toward the inside of the hopper onto the conveyance path is non-parallel to the downstream direction of the conveyance path. Is preferably formed at least at the lower end of the rear side wall. Specifically, the non-parallel portion 12a is preferably formed in a portion of 1/3 or more starting from the lower end 12L of the rear side wall 12 and extending from the lower end 12L of the rear side wall 12 to the upper end 12U. , More preferably ½ or more, and more preferably from the lower end 12L of the rear side wall 12 to the upper end 12U. Thus, if the non-parallel part 12a is formed, a granular material will become easy to discharge | emit suitably from the lower side opening of a hopper, without forming a bridge | bridging in a hopper.

非平行部分12aは、後側壁12の水平断面において内側面の1/2以上を占めるように後側壁12に形成されることが好ましい。より好ましくは、非平行部分12aは、後側壁12の水平断面において内側面の2/3以上を占め、さらに好ましくは3/4以上を占める。例えば、図4に示すように後側壁が水平断面V字状に形成されたり、図5(b)に示すように後側壁が水平断面U字状に形成されていると、非平行部分が後側壁の水平断面において内側面の大部分(あるいは実質的に全体)を占めており、このように非平行部分が形成される態様は特に好ましい。また、後側壁の水平断面において内側面の前記所定割合を占める非平行部分が、上記に説明したように、少なくとも後側壁の下側端部に形成されていることが好ましい。   The non-parallel portion 12 a is preferably formed on the rear side wall 12 so as to occupy 1/2 or more of the inner side surface in the horizontal cross section of the rear side wall 12. More preferably, the non-parallel portion 12a occupies 2/3 or more of the inner surface in the horizontal cross section of the rear side wall 12, and more preferably occupies 3/4 or more. For example, if the rear side wall is formed in a V-shaped horizontal section as shown in FIG. 4 or the rear side wall is formed in a U-shaped horizontal section as shown in FIG. A mode in which most (or substantially the whole) of the inner side surface is occupied in the horizontal cross section of the side wall, and the non-parallel portion is thus formed is particularly preferable. Moreover, it is preferable that the non-parallel part which occupies the said predetermined ratio of an inner surface in the horizontal cross section of a rear side wall is formed in the lower side edge part of a rear side wall at least as demonstrated above.

非平行部分は、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが前側壁の搬送路へ投影と交わらない部分であることが好ましい。なお、法線ベクトルHは後側壁12の内側面を始点とし、長さは無限長と見なされる。このように非平行部分が規定されれば、粒状物が後側壁と前側壁との間でブリッジをより形成しにくくなる。   The non-parallel portion is preferably a portion where the projection vector L of the normal vector H directed toward the inside of the hopper does not intersect with the projection onto the conveyance path of the front side wall. The normal vector H is assumed to have an infinite length with the inner surface of the rear side wall 12 as a starting point. If the non-parallel portion is defined in this way, it becomes difficult for the granular material to form a bridge between the rear side wall and the front side wall.

一方、ホッパーの前側壁13の形状は特に限定されない。例えば、前側壁13は、その下方が上方より搬送路2の上流側に位置するように傾斜して設けられてもよく、さらに後側壁12と同様に非平行部分を有していてもよい。しかし、図1〜図5に示すように、前側壁13は略垂直に形成されていることが好ましい。なお、略垂直とは水平面を基準とするものであり、略鉛直を意味する。このように前側壁13が形成されていれば、粒状物が後側壁12と前側壁13との間でブリッジを形成しにくくなる。   On the other hand, the shape of the front side wall 13 of the hopper is not particularly limited. For example, the front side wall 13 may be provided so as to be inclined such that the lower side thereof is located on the upstream side of the transport path 2 from the upper side, and may further have a non-parallel portion like the rear side wall 12. However, as shown in FIGS. 1 to 5, the front side wall 13 is preferably formed substantially vertically. Note that “substantially vertical” is based on a horizontal plane and means substantially vertical. If the front side wall 13 is thus formed, it becomes difficult for the granular material to form a bridge between the rear side wall 12 and the front side wall 13.

前側壁には、下側端の高さを調整できるようにゲートが設けられていることが好ましい。前側壁の下側端の高さを調整することにより、ホッパーから搬送路に供給される粒状物の量を調整することができる。   It is preferable that a gate is provided on the front side wall so that the height of the lower end can be adjusted. By adjusting the height of the lower end of the front side wall, the amount of the granular material supplied from the hopper to the conveyance path can be adjusted.

次に、搬送路と反応管との接続部分の形状について説明する。図1に示すように、各搬送路2の出側には、各々投入部21が設けられている。投入部21は、搬送路2で搬送された粒状物を各反応管に導入するために設けられる。投入部21は、図1に示すように、上側端部が搬送路2の下側に接続して設けられることが好ましく、投入部21の下側端部は反応管に直接接続するか、ホース等を介して反応管に接続していることが好ましい。   Next, the shape of the connection portion between the conveyance path and the reaction tube will be described. As shown in FIG. 1, a loading portion 21 is provided on the exit side of each conveyance path 2. The input part 21 is provided in order to introduce the granular material conveyed by the conveyance path 2 into each reaction tube. As shown in FIG. 1, the charging unit 21 is preferably provided with an upper end connected to the lower side of the conveyance path 2, and the lower end of the charging unit 21 is directly connected to a reaction tube or a hose. It is preferable to be connected to the reaction tube through the like.

ところで、投入部21が単なる円筒形状であったり、円錐や四角錐の先端に円筒が繋がった形状である場合、投入部21内で粒状物がブリッジを形成して、粒状物が投入部21で詰まりやすくなる。そこで本発明の粒状物充填装置1では、投入部21の形状を工夫して、投入部21で粒状物が詰まりにくくしている。これについて、図6を用いて説明する。   By the way, when the charging unit 21 has a simple cylindrical shape or a shape in which a cylinder is connected to the tip of a cone or a quadrangular pyramid, the granular material forms a bridge in the charging unit 21, and the granular material is It becomes easy to clog. Therefore, in the granular material filling device 1 of the present invention, the shape of the charging unit 21 is devised so that the granular material is not easily clogged by the charging unit 21. This will be described with reference to FIG.

図6(a)には、図2の粒状物充填装置1の投入部21と搬送路2の一部の拡大図を示し、図6(b)には、図1の粒状物充填装置1の投入部21と搬送路2の一部の拡大図を示した。すなわち、図6(a)は投入部と搬送路の一部の上面図を表し、図6(b)はその側面図を表す。   6A shows an enlarged view of a part of the charging unit 21 and the conveyance path 2 of the granular material filling apparatus 1 of FIG. 2, and FIG. 6B shows the granular material filling apparatus 1 of FIG. An enlarged view of a part of the input unit 21 and the conveyance path 2 is shown. That is, FIG. 6A shows a top view of a part of the input unit and the conveyance path, and FIG. 6B shows a side view thereof.

投入部21は、大口径を有する上側円筒22の下側に小口径を有する下側円筒24が軸をずらして接続して形成されている。このように投入部21が形成されていれば、投入部21内で粒状物の落下速度に差が生じて、投入部21内で粒状物がブリッジを形成しにくくなると考えられる。すなわち、供給路2から投入部21に入った粒状物は、一部は上側円筒22から下側円筒24に直接落下し落下速度が速くなるのに対し、他部は上側円筒22から下側円筒24に落下する際にその間の接続部26に当たって落下速度が遅くなるため、この落下速度の差により粒状物の投入21部内でのブリッジの形成が抑えられると考えられる。その結果、粒状物は反応管に連続的に供給され、粒状物が反応管に均一に充填されやすくなる。   The insertion portion 21 is formed by connecting a lower cylinder 24 having a small diameter to the lower side of the upper cylinder 22 having a large diameter while shifting the axis. If the charging part 21 is formed in this manner, it is considered that a difference occurs in the falling speed of the granular material in the charging part 21 and it becomes difficult for the granular material to form a bridge in the charging part 21. That is, a part of the granular material that has entered the feeding portion 21 from the supply path 2 falls directly from the upper cylinder 22 to the lower cylinder 24, and the falling speed increases, while the other portion from the upper cylinder 22 to the lower cylinder. When falling to 24, the drop speed falls upon hitting the connecting portion 26 between them, and it is considered that the formation of a bridge in the 21 parts of the granular material is suppressed by this difference in drop speed. As a result, the particulate matter is continuously supplied to the reaction tube, and the particulate matter is easily filled uniformly in the reaction tube.

図6では、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて遠位側に位置している。このように投入部21が形成されていれば、粒状物が投入部21内でブリッジをより形成しにくくなる。その理由は明確ではないが、次のように考えられる。すなわち、供給路2から投入部21に粒状物が運ばれる際、搬送の勢いにより、投入部21には搬送路2からみて遠位側ほど粒状物が多く導入されやすくなる。このとき、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて遠位側に位置していれば、遠位側により多く導入された粒状物が接続部26に当たって落下の流れが分散し、粒状物が投入部21内でブリッジを形成しにくくなると考えられる。   In FIG. 6, the shaft 23 of the upper cylinder 22 is positioned more distally than the shaft 25 of the lower cylinder 24 as viewed from the conveyance path 2. If the input part 21 is formed in this way, it becomes more difficult for the granular material to form a bridge in the input part 21. The reason is not clear, but it can be considered as follows. That is, when the granular material is conveyed from the supply path 2 to the input portion 21, the amount of the granular material is easily introduced into the input portion 21 toward the distal side as viewed from the conveying path 2 due to the momentum of conveyance. At this time, if the shaft 23 of the upper cylinder 22 is located further on the distal side than the shaft 25 of the lower cylinder 24, the granular material introduced more in the distal side hits the connecting portion 26 and falls. It is considered that the flow is dispersed and it becomes difficult for the granular material to form a bridge in the input portion 21.

なお、投入部21は、上側円筒22に下側円筒24が軸をずらして接続していて形成されていれば、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて遠位側に必ずしも位置している必要はない。例えば、図7に示すように(図7(a)は投入部と搬送路の一部の上面図の他の例を表し、図7(b)はその側面図を表す)、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて近位側に位置していてもよく、図8に示すように(図8(a)は投入部と搬送路の一部の上面図の他の例を表し、図8(b)はその側面図を表す)、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて左側または右側に位置してもよい。図7や図8に示した投入部21でも、粒状物によるブリッジ形成抑制効果が得られる。   If the lower cylinder 24 is connected to the upper cylinder 22 by shifting the axis, the insertion portion 21 is formed so that the shaft 23 of the upper cylinder 22 is seen from the conveyance path 2 from the shaft 25 of the lower cylinder 24. It is not necessarily located on the distal side. For example, as shown in FIG. 7 (FIG. 7A shows another example of a top view of a part of the feeding portion and the conveyance path, and FIG. 7B shows a side view thereof) The shaft 23 may be located closer to the proximal side of the lower cylinder 24 than the shaft 25, as shown in FIG. 8 (FIG. 8 (a) shows the top surface of the input portion and part of the transport path. FIG. 8B shows a side view thereof), and the shaft 23 of the upper cylinder 22 may be located on the left side or the right side as viewed from the conveyance path 2 with respect to the shaft 25 of the lower cylinder 24. . 7 and FIG. 8, the bridge formation suppression effect by the granular material can be obtained.

参考例として、図10には、大口径を有する上側円筒22と小口径を有する下側円筒24が軸が一致するように接続して形成された投入部を示すが(図10(a)は投入部と搬送路の一部の上面図の参考例を表し、図10(b)はその側面図を表す)、この場合、供給路2から投入部21に導入された粒状物は、多くが上側円筒22と下側円筒24の間の接続部26に当たりやすくなる。従って、投入部21内で粒状物が互いにほぼ同じ速度で落下しやすくなり、投入部21内で粒状物がブリッジを形成しやすくなる。特に、粒状物は、接続部26を基盤としてブリッジを形成しやすくなる。   As a reference example, FIG. 10 shows an insertion portion formed by connecting an upper cylinder 22 having a large diameter and a lower cylinder 24 having a small diameter so that the axes thereof coincide with each other (FIG. 10A). 10 (b) shows a side view thereof), and in this case, most of the granular material introduced from the supply path 2 into the input section 21 It becomes easy to hit the connecting portion 26 between the upper cylinder 22 and the lower cylinder 24. Therefore, the granular materials are likely to fall at the same speed in the charging portion 21, and the granular materials are likely to form a bridge in the charging portion 21. In particular, the granular material easily forms a bridge on the basis of the connection portion 26.

投入部21のより好適な態様について説明する。図6〜図8に示すように、上側円筒22と下側円筒24の間の接続部26は、断面径が下方に漸減していることが好ましい。このように投入部21が形成されていれば、粒状物が投入部21内を落下する際、接続部26で粒状物が留まりにくくなり、粒状物が投入部21内でブリッジを形成しにくくなる。このとき接続部26は、上側円筒22と下側円筒24の両軸23,25を含む断面において、それぞれの軸23,25に対する最大角度が2°〜40°の範囲(より好ましくは5°〜30°の範囲)となるように形成されていることが好ましい。   A more preferable aspect of the charging unit 21 will be described. As shown in FIGS. 6-8, it is preferable that the connection part 26 between the upper side cylinder 22 and the lower side cylinder 24 is gradually reducing the cross-sectional diameter below. If the charging part 21 is formed in this way, when the granular material falls in the charging part 21, it becomes difficult for the granular material to stay in the connecting part 26, and the granular material is difficult to form a bridge in the charging part 21. . At this time, in the cross section including both the shafts 23 and 25 of the upper cylinder 22 and the lower cylinder 24, the connecting portion 26 has a maximum angle with respect to the respective shafts 23 and 25 in a range of 2 ° to 40 ° (more preferably 5 ° to It is preferably formed so as to be within a range of 30 °.

上側円筒22の内径は下側円筒24の内径の1.1倍以上が好ましく、1.2倍以上がより好ましく、また2.5倍以下が好ましく、2.0倍以下がより好ましい。上側円筒22の内径が下側円筒24の内径の1.1倍以上であれば、粒状物が投入部21内を落下する際、粒状物が接続部26に当たりやすくなり、粒状物が投入部21内でブリッジを形成しにくくなる。上側円筒22の内径が下側円筒24の内径の2.5倍以下であれば、粒状物が投入部21内を落下する際、粒状物が接続部26に留まりにくくなり、粒状物が投入部21内でブリッジを形成しにくくなる。   The inner diameter of the upper cylinder 22 is preferably 1.1 times or more, more preferably 1.2 times or more, more preferably 2.5 times or less, and more preferably 2.0 times or less that of the lower cylinder 24. When the inner diameter of the upper cylinder 22 is 1.1 times or more than the inner diameter of the lower cylinder 24, when the granular material falls in the input portion 21, the granular material easily hits the connecting portion 26, and the granular material becomes the input portion 21. It becomes difficult to form a bridge inside. If the inner diameter of the upper cylinder 22 is 2.5 times or less than the inner diameter of the lower cylinder 24, when the granular material falls in the input portion 21, the granular material is less likely to stay at the connecting portion 26, and the granular material is It becomes difficult to form a bridge within 21.

上側円筒22と下側円筒24は次のように位置していることが好ましい。すなわち、上側円筒と下側円筒の軸間距離Xは、上側円筒の半径RUと下側円筒の半径RDの差RU−RDの0.5倍以上であることが好ましく、0.7倍以上であることがより好ましく、0.9倍以上であることがさらに好ましく、RU−RDと実質的に等しいことが特に好ましい。なお、上側円筒と下側円筒の軸間距離XがRU−RDと等しい場合は、上側円筒と下側円筒の軸に垂直な面に対し、下側円筒の投射円が上側円筒の投射円に対し内接することとなる。 The upper cylinder 22 and the lower cylinder 24 are preferably positioned as follows. That is, the axial distance X of the upper cylinder and lower cylinder is preferably at least 0.5 times the difference between R U -R D of radius R D of radius R U and the lower cylinder of the upper cylinder, 0. more preferably 7 times or more, more preferably 0.9 times or more, and particularly preferably equal to R U -R D substantially. In the case the center distance X of the upper cylinder and lower cylinder is equal to R U -R D, compared to a plane perpendicular to the upper cylinder and the lower cylinder axis, the projected projection circle of the lower cylinder of the upper cylinder It will be inscribed in the circle.

以上のように、本発明の粒状物充填装置では、ホッパーの形状や投入部の形状を工夫することにより、粒状物によるブリッジの形成を抑制し、粒状物の詰まりを起こりにくくしている。本発明の粒状物充填装置は、上記ホッパーと上記投入部の少なくとも1つを備えていればよく、それにより粒状物によるブリッジの形成が抑制され、粒状物を複数の反応管に均一に供給しやすくなる。   As described above, in the granular material filling device of the present invention, the shape of the hopper and the shape of the charging portion are devised to suppress the formation of bridges due to the granular material and to prevent clogging of the granular material. The granular material filling apparatus of the present invention only needs to include at least one of the hopper and the charging unit, thereby suppressing the formation of bridges due to the granular material and supplying the granular material uniformly to the plurality of reaction tubes. It becomes easy.

次に、本発明の粒状物充填装置において、搬送路の好適な態様について説明する。   Next, the suitable aspect of a conveyance path is demonstrated in the granular material filling apparatus of this invention.

搬送路2の底面がコンベア3により構成されている場合、コンベア3は、無限軌道のベルト4が少なくとも2つのローラー5により支持されて構成され、ベルト4はローラー5の回転により搬送される。このとき、ベルト4が蛇行することなく搬送路2の下流方向にまっすぐ進むようにするために、ベルト4の裏面(ローラー側表面)には、ベルト4の周方向に延びる凸部が設けられ、ローラー5の表面にはローラー5の周方向に延びる凹部が形成されていることが好ましい。ベルト4の裏面に設けられた凸部は、ローラー5の表面の凹部にはまるように形成される。このようにベルト4とローラー5が形成されていれば、ベルト4がローラー5により搬送される際、ベルト4がローラー5の軸方向に対してずれにくくなり、搬送路2の下流方向にまっすぐ進みやすくなる。その結果、コンベア3により粒状物が搬送路2を均一に搬送されるようになる。   When the bottom surface of the conveyance path 2 is constituted by the conveyor 3, the conveyor 3 is constituted by an endless track belt 4 supported by at least two rollers 5, and the belt 4 is conveyed by the rotation of the rollers 5. At this time, in order to make the belt 4 go straight in the downstream direction of the conveyance path 2 without meandering, the back surface (roller side surface) of the belt 4 is provided with a convex portion extending in the circumferential direction of the belt 4, A recess extending in the circumferential direction of the roller 5 is preferably formed on the surface of the roller 5. The convex portion provided on the back surface of the belt 4 is formed so as to fit into the concave portion on the surface of the roller 5. If the belt 4 and the roller 5 are formed in this way, when the belt 4 is conveyed by the roller 5, the belt 4 is less likely to be displaced with respect to the axial direction of the roller 5, and advances straight in the downstream direction of the conveyance path 2. It becomes easy. As a result, the granular material is uniformly conveyed on the conveyance path 2 by the conveyor 3.

コンベア3には、搬送路2の底面を構成しないベルト4の部分に、ベルト4の表面と接するようにブラシ6が取りつけられていることが好ましい。図1では、コンベア3の下側に、ベルト4の下面に接するようにブラシ6が取りつけられている。このようにブラシ6が取りつけられていれば、ベルト4がローラー5の回転により搬送されると、ベルト4の表面に付着した粉状物(粒状物の摩耗により生成した粉状物)がブラシ6により連続的に除去されるようになる。その結果、粉状物の吸湿等によるベルト4上への堆積物の生成が抑えられ、反応管には粒状物のみが供給されやすくなる。   It is preferable that a brush 6 is attached to the conveyor 3 at a portion of the belt 4 that does not constitute the bottom surface of the conveyance path 2 so as to contact the surface of the belt 4. In FIG. 1, a brush 6 is attached to the lower side of the conveyor 3 so as to contact the lower surface of the belt 4. If the brush 6 is attached in this way, when the belt 4 is conveyed by the rotation of the roller 5, the powdery material (powdered material generated by wear of the granular material) attached to the surface of the belt 4 is brushed 6. Is continuously removed. As a result, the formation of deposits on the belt 4 due to moisture absorption of the powdery material is suppressed, and only the granular material is easily supplied to the reaction tube.

図2に示すように、搬送路2の底面には粉状物をふるい落とす孔7が形成されていることが好ましい。粉状物が反応管に供給されると反応管の圧力損失が高まりやすくなるため、複数の反応管で圧力損失を均一に揃えることが難しくなり、反応管ごとに反応効率が変化し、反応収率の低下につながる。従って、搬送路2の底面に粉状物をふるい落とす孔7を設けることにより、反応管には粒状物のみが供給されやすくなる。粉状物をふるい落とす孔7としては、例えば、パンチングメタルを採用すればよい。粉粒物をふるい落とす孔7は、粒状物が投入部21に導入される直前、すなわち、搬送路2の下流側に設けられることが好ましい。また、孔7は、粒状物の摩耗により生成する粉状物をふるい落とすだけでなく、粒状物の破砕により生成する破片もふるい落とすように、適度な孔径を有するように形成されていることが好ましい。図1では、粉状物をふるい落とす孔7の下方に、孔から落ちた粉状物を受ける受け皿8が設けられており、粒状物充填装置1はこのように受け皿8が設けられていることが好ましい。   As shown in FIG. 2, it is preferable that a hole 7 is formed on the bottom surface of the conveyance path 2 to screen off the powdery material. When powder is supplied to the reaction tube, the pressure loss in the reaction tube is likely to increase, making it difficult to evenly distribute the pressure loss in multiple reaction tubes, and the reaction efficiency varies from reaction tube to reaction tube. Leading to a decline in the rate. Therefore, by providing the hole 7 through which the powdery material is removed on the bottom surface of the transport path 2, only the granular material is easily supplied to the reaction tube. For example, a punching metal may be employed as the hole 7 through which the powdered material is removed. It is preferable that the hole 7 through which the particulate matter is screened is provided immediately before the particulate matter is introduced into the input unit 21, that is, on the downstream side of the conveyance path 2. Moreover, the hole 7 is formed so as to have an appropriate hole diameter so that not only the powdered material generated by the abrasion of the granular material is screened but also the fragments generated by the crushing of the granular material are screened out. preferable. In FIG. 1, a receiving tray 8 for receiving the powdered material dropped from the hole is provided below the hole 7 through which the powdered material is screened, and the granular material filling apparatus 1 is provided with the receiving tray 8 in this way. Is preferred.

搬送路2は、投入部21側の端部が、投入部21の入口に向かって幅が漸減するように形成されていることが好ましい。図2や図6〜図8では、搬送路2の投入部21側の端部はこのように形成されている。投入部21の下側円筒24は、粒状物がスムーズに投入部21から反応管に充填されるようにするために、反応管の径と同じかそれに近い径であることが好ましいが、搬送路2の幅を投入部21の径に合わせて設定すると、搬送路2の粒状物搬送能力が十分確保できなくなり、粒状物の反応管への充填作業に多くの時間がかかりやすくなる。しかし、搬送路2の投入部21側の端部が、投入部21の入口に向かって幅が漸減するように形成されていれば、搬送路2の粒状物搬送量を高くすることができ、粒状物を効率的に反応管に供給できるようになる。また、搬送路2から投入部21に粒状物をスムーズに導入できるようになる。搬送路2の最大幅は、投入部21の上側円筒22の内径の1.1倍以上が好ましく、1.2倍以上がより好ましく、また3.0倍以下が好ましく、2.5倍以下がより好ましい。   It is preferable that the conveyance path 2 is formed so that the end portion on the input portion 21 side gradually decreases in width toward the entrance of the input portion 21. In FIG. 2 and FIGS. 6 to 8, the end portion on the input portion 21 side of the transport path 2 is formed in this way. The lower cylinder 24 of the charging unit 21 is preferably the same diameter as the diameter of the reaction tube or a diameter close to that in order to smoothly fill the reaction tube with the granular material from the charging unit 21. When the width of 2 is set in accordance with the diameter of the charging unit 21, the granular material conveying ability of the conveying path 2 cannot be secured sufficiently, and it takes a lot of time for the filling operation of the granular material into the reaction tube. However, if the end of the transport path 2 on the input unit 21 side is formed so that the width gradually decreases toward the entrance of the input unit 21, the amount of the granular material transport in the transport path 2 can be increased. The granular material can be efficiently supplied to the reaction tube. In addition, the granular material can be smoothly introduced from the conveyance path 2 to the input unit 21. The maximum width of the conveyance path 2 is preferably 1.1 times or more, more preferably 1.2 times or more, more preferably 3.0 times or less, and preferably 2.5 times or less of the inner diameter of the upper cylinder 22 of the input unit 21. More preferred.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記の実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and appropriate modifications are made within a range that can meet the purpose described above and below. Any of these can be carried out and are included in the technical scope of the present invention.

触媒の調製
イオン交換水500部に硝酸コバルト392部、硝酸ニッケル172部を溶解し、溶液Aを調製した。また、硝酸第二鉄95部および硝酸ビスマス137部を61質量%の硝酸80部とイオン交換水300部とからなる硝酸水溶液に溶解し、溶液Bを調製した。別に、加熱したイオン交換水1500部にパラモリブデン酸アンモニウム500部を添加し、撹拌しながら溶解し、溶液Cを調製した。溶液Cに溶液Aと溶液Bを滴下し、混合し、次いで硝酸カリウム2.4部をイオン交換水40部に溶解した水溶液を添加し、懸濁液を得た。得られた懸濁液を加熱、撹拌、蒸発乾固させ、固形物を得た。このようにして得られた固形物を150℃で乾燥後、150μm以下に粉砕し、得られた粉体に適量の硝酸アンモニウムとイオン交換水を加え、混練して、ペースト状物質を得た。このペースト状物質を、外径8mm、内径2mm、長さが8.8mmのリング状に成型し、空気流通下、470℃で8時間焼成して、触媒を得た。この触媒の酸素を除く金属元素組成はMo12Bi1.2Fe1Co5.7Ni2.50.1であった。
Preparation of Catalyst Solution A was prepared by dissolving 392 parts of cobalt nitrate and 172 parts of nickel nitrate in 500 parts of ion-exchanged water. Further, 95 parts of ferric nitrate and 137 parts of bismuth nitrate were dissolved in a nitric acid aqueous solution composed of 80 parts of 61% by mass nitric acid and 300 parts of ion-exchanged water to prepare a solution B. Separately, 500 parts of ammonium paramolybdate was added to 1500 parts of heated ion-exchanged water and dissolved with stirring to prepare Solution C. Solution A and solution B were added dropwise to solution C and mixed, and then an aqueous solution in which 2.4 parts of potassium nitrate was dissolved in 40 parts of ion-exchanged water was added to obtain a suspension. The resulting suspension was heated, stirred and evaporated to dryness to give a solid. The solid thus obtained was dried at 150 ° C. and then pulverized to 150 μm or less. An appropriate amount of ammonium nitrate and ion-exchanged water were added to the obtained powder and kneaded to obtain a paste-like substance. This pasty substance was molded into a ring shape having an outer diameter of 8 mm, an inner diameter of 2 mm, and a length of 8.8 mm, and calcined at 470 ° C. for 8 hours under air flow to obtain a catalyst. The metal element composition excluding oxygen of this catalyst was Mo 12 Bi 1.2 Fe 1 Co 5.7 Ni 2.5 K 0.1 .

試験例1
図1および図2に示した粒状物充填装置を用いて、上記で調製した触媒を固定床多管式反応器の反応管に充填した。粒状物充填装置のホッパーは、図3および図4に示すように、後側壁がその下方が上方より搬送路の下流側に位置するように傾斜するとともに、後側壁が水平断面V字状に形成されていた。後側壁は62°の角度で傾斜していた。投入部は、図6に示すように、大口径を有する上側円筒の下側に小口径を有する下側円筒が軸をずらして接続され、上側円筒の軸が下側円筒の軸より搬送路からみて遠位側に位置するように形成されていた。このとき、上側円筒は内径27mmφであり、下側円筒は内径21mmφであった。固定床多管式反応器は、内径25mm、長さ3000mmの反応管を11,000本備えていた。
Test example 1
The catalyst prepared as described above was charged into a reaction tube of a fixed bed multitubular reactor using the granular material filling apparatus shown in FIGS. As shown in FIG. 3 and FIG. 4, the hopper of the granular material filling apparatus is inclined such that the rear side wall is positioned on the downstream side of the conveying path from above and the rear side wall is formed in a V-shaped horizontal section. It had been. The rear side wall was inclined at an angle of 62 °. As shown in FIG. 6, the insertion portion is connected to the lower cylinder having a small diameter on the lower side of the upper cylinder having a large diameter while the axis of the upper cylinder is shifted from the conveyance path from the axis of the lower cylinder. It was formed to be located on the distal side. At this time, the upper cylinder had an inner diameter of 27 mmφ, and the lower cylinder had an inner diameter of 21 mmφ. The fixed bed multitubular reactor was equipped with 11,000 reaction tubes having an inner diameter of 25 mm and a length of 3000 mm.

粒状物充填装置は、8つの搬送路をすべて使用して、触媒を同時に8本の反応管に充填した。各ホッパーには触媒を1L入れ、対応する反応管に搬送時間30秒で触媒を供給した。8本の反応管に触媒を充填したら、別の8本の反応管に同じように触媒を充填し、この触媒充填作業を25回繰り返すことで、200本の反応管に触媒を充填した。   The granular material filling apparatus used all eight conveying paths, and charged the catalyst into eight reaction tubes at the same time. Each hopper was charged with 1 L of catalyst, and the catalyst was supplied to the corresponding reaction tube with a transfer time of 30 seconds. After the eight reaction tubes were filled with the catalyst, another eight reaction tubes were filled with the catalyst in the same manner, and this catalyst filling operation was repeated 25 times to fill the 200 reaction tubes with the catalyst.

試験例1では、ホッパーと投入部で触媒によるブリッジは生じなかった。反応管に触媒を充填後、反応管に充填された触媒の層長(充填層長)と反応管の圧力損失を測定した。その結果、充填層長の分布は平均充填層長の±2%の範囲であり、圧力損失の分布は平均圧力損失の±3%の範囲であった。   In Test Example 1, no bridging by the catalyst occurred in the hopper and the charging part. After filling the reaction tube with the catalyst, the layer length (packed layer length) of the catalyst filled in the reaction tube and the pressure loss of the reaction tube were measured. As a result, the packed bed length distribution was in the range of ± 2% of the average packed bed length, and the pressure loss distribution was in the range of ± 3% of the average pressure loss.

試験例2
投入部として、図7に示すように上側円筒の軸が下側円筒の軸より搬送路からみて近位側に位置するように形成された投入部を用いた以外は、試験例1と同様にして触媒を反応管に充填した。なお、投入部の上側円筒と下側円筒の内径は試験例1と同じであった。
Test example 2
As shown in FIG. 7, the input portion is the same as in Test Example 1 except that the input portion formed so that the axis of the upper cylinder is located closer to the proximal side than the axis of the lower cylinder as shown in FIG. The catalyst was charged into the reaction tube. Note that the inner diameters of the upper and lower cylinders of the charging portion were the same as those in Test Example 1.

試験例2では、ホッパーでブリッジは生じなかったが、投入部ではブリッジが生じそうになることがあった。しかし、棒で軽く突きながら充填を継続することにより、投入部でもブリッジは生じなかった。反応管への触媒の充填後、反応管の充填層長と圧力損失を測定した結果、充填層長の分布は平均充填層長の±3%の範囲であり、圧力損失の分布は平均圧力損失の±4%の範囲であった。   In Test Example 2, no bridging occurred in the hopper, but bridging was likely to occur in the charging part. However, no bridging occurred in the charging section by continuing the filling with light sticking with the stick. After packing the catalyst into the reaction tube, the packed bed length and pressure loss of the reaction tube were measured. As a result, the distribution of packed bed length was within ± 3% of the average packed bed length, and the distribution of pressure loss was the average pressure loss. Of ± 4%.

試験例3
投入部として、図8に示すように上側円筒の軸が下側円筒の軸より搬送路からみて左側または右側に位置するように形成された投入部を用いた以外は、試験例1と同様にして触媒を反応管に充填した。なお、投入部の上側円筒と下側円筒の内径は試験例1と同じであった。
Test example 3
As shown in FIG. 8, the same as in Test Example 1 except that an input portion formed so that the axis of the upper cylinder is positioned on the left side or the right side as viewed from the conveyance path as shown in FIG. The catalyst was charged into the reaction tube. Note that the inner diameters of the upper and lower cylinders of the charging portion were the same as those in Test Example 1.

試験例3では、ホッパーでブリッジは生じなかったが、投入部ではブリッジが生じそうになることがあった。しかし、棒で軽く突きながら充填を継続することにより、投入部でもブリッジは生じなかった。反応管への触媒の充填後、反応管の充填層長と圧力損失を測定した結果、充填層長の分布は平均充填層長の±2%の範囲であり、圧力損失の分布は平均圧力損失の±4%の範囲であった。   In Test Example 3, no bridging occurred in the hopper, but bridging was likely to occur in the charging part. However, no bridging occurred in the charging section by continuing the filling with light sticking with the stick. As a result of measuring the packed bed length and pressure loss of the reaction tube after filling the catalyst into the reaction tube, the packed bed length distribution is within ± 2% of the average packed bed length, and the pressure loss distribution is the average pressure loss. Of ± 4%.

試験例4
ホッパーとして、図9に示すように後側壁が平面状(水平断面直線状)のホッパーを用いた以外は、試験例1と同様にして触媒を反応管に充填した。
Test example 4
As shown in FIG. 9, the catalyst was filled into the reaction tube in the same manner as in Test Example 1 except that a hopper having a flat rear wall (horizontal cross-sectional shape) was used.

試験例4では、1回目の触媒充填作業で、5つのホッパーの下側開口付近でブリッジが生じた。そこで、ヘラで触媒を突いて触媒の排出を促したが、搬送路への触媒の排出時間にばらつきが生じた。さらに合計25回の触媒充填作業を行ったが、いずれの場合も複数のホッパーでブリッジが生じた。なお、投入部ではブリッジは生じなかった。反応管への触媒の充填後、反応管の充填層長と圧力損失を測定した結果、充填層長の分布は平均充填層長の±4%の範囲であり、圧力損失の分布は平均圧力損失の±9%の範囲であった。   In Test Example 4, a bridge was generated near the lower openings of the five hoppers in the first catalyst filling operation. Therefore, although the catalyst was urged with a spatula to urge the catalyst to be discharged, the discharge time of the catalyst to the conveying path varied. Further, a total of 25 catalyst filling operations were performed, and in each case, a bridge was formed by a plurality of hoppers. Note that no bridging occurred in the charging section. As a result of measuring the packed bed length and pressure loss of the reaction tube after filling the catalyst into the reaction tube, the distribution of packed bed length is within ± 4% of the average packed bed length, and the distribution of pressure loss is the average pressure loss. Of ± 9%.

試験例5
投入部として、図10に示すように上側円筒の軸と下側円筒の軸が一致するように形成された投入部を用いた以外は、試験例1と同様にして触媒を反応管に充填した。なお、投入部の上側円筒と下側円筒の内径は試験例1と同じであった。
Test Example 5
As shown in FIG. 10, the reaction tube was filled with the catalyst in the same manner as in Test Example 1 except that the input portion was formed so that the axis of the upper cylinder and the axis of the lower cylinder coincided as shown in FIG. . Note that the inner diameters of the upper and lower cylinders of the charging portion were the same as those in Test Example 1.

試験例5では、ホッパーでブリッジは生じなかったが、投入部ではブリッジが形成してしまうことがあった。投入部を棒で軽く突きながら充填を行ったが、ブリッジの形成を抑えることができなかった。そのため、一時的に搬送路のコンベアを停止し、投入部でのブリッジを取り除いた後、充填を再開することで作業を継続したが、中断のために余分の作業時間を要した。反応管への触媒の充填後、反応管の充填層長と圧力損失を測定した結果、充填層長の分布は平均充填層長の±5%の範囲であり、圧力損失の分布は平均圧力損失の±11%の範囲であった。   In Test Example 5, no bridge occurred in the hopper, but a bridge sometimes formed in the charging portion. Although filling was performed while lightly pushing the charging portion with a stick, formation of the bridge could not be suppressed. Therefore, the work was continued by temporarily stopping the conveyor on the transport path and removing the bridge at the charging section, and then restarting the filling. However, extra work time was required for interruption. As a result of measuring the packed bed length and pressure loss of the reaction tube after filling the catalyst into the reaction tube, the distribution of packed bed length is within ± 5% of the average packed bed length, and the distribution of pressure loss is the average pressure loss. Of ± 11%.

本発明の粒状物充填装置は、固定床多管式反応器の各反応管に触媒等の粒状物を充填するのに用いることができる。   The granular material filling apparatus of the present invention can be used to fill each reaction tube of a fixed bed multitubular reactor with a granular material such as a catalyst.

1: 粒状物充填装置
2: 搬送路
3: コンベア
11: ホッパー
12: 後側壁
13: 前側壁
21: 投入部
22: 上側円筒
24: 下側円筒
1: Granular material filling device 2: Conveyance path 3: Conveyor 11: Hopper 12: Rear side wall 13: Front side wall 21: Loading part 22: Upper cylinder 24: Lower cylinder

Claims (7)

固定床多管式反応器の各反応管に粒状物を供給する粒状物充填装置であって、
並列に配置された複数のホッパーと、
各ホッパーの出側に各々設けられた搬送路とを有しており、
前記ホッパーは前記搬送路の上流側に位置する後側壁を有し、後側壁は、その下方が上方より前記搬送路の下流側に位置するように傾斜しているとともに、ホッパー内部に向かう法線ベクトルHの前記搬送路への投影ベクトルLが前記搬送路の下流方向に対して非平行となる部分を有していることを特徴とする粒状物充填装置。
A granular material filling device for supplying granular materials to each reaction tube of a fixed bed multitubular reactor,
A plurality of hoppers arranged in parallel;
Each having a transport path provided on the exit side of each hopper,
The hopper has a rear side wall located on the upstream side of the conveyance path, and the rear side wall is inclined so that the lower side is located on the downstream side of the conveyance path from above and is normal to the inside of the hopper The granular material filling apparatus, wherein a projection vector L of the vector H onto the conveyance path has a portion that is not parallel to the downstream direction of the conveyance path.
前記ホッパーは、前記搬送路の下流側に位置する前側壁が略垂直に形成されている請求項1に記載の粒状物充填装置。   The granular material filling apparatus according to claim 1, wherein the hopper has a front side wall positioned substantially downstream of the conveyance path. 前記後側壁は、水平断面がV字状またはU字状に形成されている請求項1または2に記載の粒状物充填装置。   The granular material filling device according to claim 1 or 2, wherein the rear side wall is formed in a V-shaped or U-shaped horizontal section. 固定床多管式反応器の各反応管に粒状物を供給する粒状物充填装置であって、
並列に配置された複数のホッパーと、
各ホッパーの出側に各々設けられた搬送路と、
各搬送路の出側に各々設けられた投入部とを有し、
前記投入部は、大口径を有する上側円筒の下側に小口径を有する下側円筒が軸をずらして接続して形成されていることを特徴とする粒状物充填装置。
A granular material filling device for supplying granular materials to each reaction tube of a fixed bed multitubular reactor,
A plurality of hoppers arranged in parallel;
A transport path provided on the exit side of each hopper;
Each having a loading section provided on the exit side of each conveyance path,
The granular material filling apparatus, wherein the charging portion is formed by connecting a lower cylinder having a small diameter to a lower side of an upper cylinder having a large diameter while shifting an axis.
前記ホッパーは前記搬送路の上流側に位置する後側壁を有し、後側壁は、その下方が上方より前記搬送路の下流側に位置するように傾斜しているとともに、ホッパー内部に向かう法線ベクトルHの前記搬送路への投影ベクトルLが前記搬送路の下流方向に対して非平行となる部分を有している請求項4に記載の粒状物充填装置。   The hopper has a rear side wall located on the upstream side of the conveyance path, and the rear side wall is inclined so that the lower side is located on the downstream side of the conveyance path from above and is normal to the inside of the hopper The granular material filling device according to claim 4, wherein a projection vector L of the vector H onto the conveyance path has a portion that is non-parallel to the downstream direction of the conveyance path. 上側円筒の軸が下側円筒の軸より前記搬送路からみて遠位側に位置する請求項4または5に記載の粒状物充填装置。   The granular material filling device according to claim 4 or 5, wherein an axis of the upper cylinder is located distal to the axis of the lower cylinder as viewed from the conveyance path. 前記搬送路の底面には粉状物をふるい落とす孔が形成されている請求項4〜6のいずれか一項に記載の粒状物充填装置。   The granular material filling device according to any one of claims 4 to 6, wherein a hole through which a powdery material is removed is formed on a bottom surface of the conveyance path.
JP2011223449A 2011-10-07 2011-10-07 Granular filling device Active JP5855413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223449A JP5855413B2 (en) 2011-10-07 2011-10-07 Granular filling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223449A JP5855413B2 (en) 2011-10-07 2011-10-07 Granular filling device

Publications (2)

Publication Number Publication Date
JP2013081898A true JP2013081898A (en) 2013-05-09
JP5855413B2 JP5855413B2 (en) 2016-02-09

Family

ID=48527676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223449A Active JP5855413B2 (en) 2011-10-07 2011-10-07 Granular filling device

Country Status (1)

Country Link
JP (1) JP5855413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102030924B1 (en) * 2018-04-13 2019-10-17 유한기술주식회사 Apparatus for loading catalyst and system comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037621A (en) * 1998-07-23 2000-02-08 Nippon Shokubai Co Ltd Apparatus for supplying granular material
JP2002370714A (en) * 2001-06-15 2002-12-24 Yuyama Manufacturing Co Ltd Packaging hopper
JP2003265944A (en) * 2002-03-15 2003-09-24 Mitsubishi Rayon Co Ltd Catalyst packing hopper, method for packing catalyst by using the same, and catalyst packing apparatus provided with the same
JP2006142297A (en) * 2005-11-18 2006-06-08 Sumitomo Chemical Co Ltd Method and machine for packing catalyst
JP2012101189A (en) * 2010-11-11 2012-05-31 Sumitomo Chemical Co Ltd Catalyst filling machine and method of filling catalyst using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037621A (en) * 1998-07-23 2000-02-08 Nippon Shokubai Co Ltd Apparatus for supplying granular material
JP2002370714A (en) * 2001-06-15 2002-12-24 Yuyama Manufacturing Co Ltd Packaging hopper
JP2003265944A (en) * 2002-03-15 2003-09-24 Mitsubishi Rayon Co Ltd Catalyst packing hopper, method for packing catalyst by using the same, and catalyst packing apparatus provided with the same
JP2006142297A (en) * 2005-11-18 2006-06-08 Sumitomo Chemical Co Ltd Method and machine for packing catalyst
JP2012101189A (en) * 2010-11-11 2012-05-31 Sumitomo Chemical Co Ltd Catalyst filling machine and method of filling catalyst using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102030924B1 (en) * 2018-04-13 2019-10-17 유한기술주식회사 Apparatus for loading catalyst and system comprising the same

Also Published As

Publication number Publication date
JP5855413B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
TWI356814B (en)
RU2418550C1 (en) Pneumatic system for seasoning with flavour substances
BRPI0609444A2 (en) beam tube reactor power supply
JP5855413B2 (en) Granular filling device
JPWO2010001732A1 (en) Packing method of solid particles in fixed bed multitubular reactor
JP2007529301A (en) Equipment for introducing bulk material into tubes, containers, etc.
JP2011121048A (en) Method for blending and loading solid catalyst material into tubular structure
CN102442552A (en) Feeding tank for pneumatically conveying solid particles and feeding system
JPH11333282A (en) Catalyst filling machine
JP2006142297A (en) Method and machine for packing catalyst
KR101455869B1 (en) Powder and granule supplying machine
WO2018235798A1 (en) Method for producing compound
TWI638963B (en) Combustion burner, burner apparatus, and raw powder heating method
US4413932A (en) Pneumatic conveyors for flow of gas-borne particulate material
JP2009090193A (en) Tilted-rack fluidized-bed apparatus
CN201459175U (en) Complete set of granulated magnesium injection melted iron desulfuration device
JP2022520559A (en) Supply device for supplying powder material
JP2001522937A (en) Upright furnace
EP3950114B1 (en) Granulated substance loading method
RU2809250C2 (en) Method of loading granules
CN212402741U (en) Powder feeding device
JP2007230756A (en) Continuous constant amount supply device for powdery and granular material
JPS6029417Y2 (en) Workpiece feeding and feeding device for continuous centrifugal blasting machine
RU2261754C1 (en) Mixer
JP6180720B2 (en) Metering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151209

R150 Certificate of patent or registration of utility model

Ref document number: 5855413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150