JP3722621B2 - Catalyst filling machine - Google Patents

Catalyst filling machine Download PDF

Info

Publication number
JP3722621B2
JP3722621B2 JP14928198A JP14928198A JP3722621B2 JP 3722621 B2 JP3722621 B2 JP 3722621B2 JP 14928198 A JP14928198 A JP 14928198A JP 14928198 A JP14928198 A JP 14928198A JP 3722621 B2 JP3722621 B2 JP 3722621B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction tube
hopper
conveyor
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14928198A
Other languages
Japanese (ja)
Other versions
JPH11333282A (en
Inventor
勝男 馬場
朗 西
浩彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP14928198A priority Critical patent/JP3722621B2/en
Publication of JPH11333282A publication Critical patent/JPH11333282A/en
Application granted granted Critical
Publication of JP3722621B2 publication Critical patent/JP3722621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は触媒充填機に関する。
【0002】
【従来の技術】
粒子状の触媒が充填される縦姿勢の多数の反応管は、収率の向上・反応温度の調節等のためにそれぞれ管径を小さく管長を長く設定してある。
【0003】
そのために、反応管に多数の触媒を一挙に投入した場合、触媒が落下中にせり合って反応管内にブリッジと呼ばれる架橋が生じやすい。
【0004】
ブリッジが生じると、各反応管内での触媒の分布が不均一になり、反応管ごとに反応流体の流通抵抗が異なって次のような問題が生じる。つまり、
1) ある反応管では反応流体と触媒との接触が過大で副反応が多くなり、他の反応管では前記接触が過少で未反応成分が多くなるというように、反応管ごとに反応状態が異なって収率・選択率が低下する。
【0005】
2) 各反応管を通過する反応流体の圧力損失が不均一になり、各反応管の反応温度が不均一になって、反応管に対する温度調整が困難になる。
【0006】
3) 反応流体が最も多く流れる反応管内の触媒が、他の反応管内の触媒よりも早く寿命に達して収率を低下させることから、前者の反応管内の触媒が寿命に達すると、まだ寿命に達していない後者の反応管内の触媒も、前者の反応管内の触媒とともに新しい触媒と交換しなければならず、触媒に要するコストが高くなる。
【0007】
そこで従来ではブリッジが生じないように、作業者が触媒を各反応管に少しづつ慎重に投入していた。
【0008】
【発明が解決しようとする課題】
しかしながら、上記従来の技術のように作業者が触媒を反応管に少しづつ慎重に投入するという手段では、反応管が多数あるために多大の労力と時間を必要としていた。
【0009】
この問題を解消するために、例えば特公昭47−11484号公報に開示されているように、粒子状の触媒を貯留する深めの第1ホッパーと、前記第1ホッパーから流下する触媒を受け入れて流下させる浅めの第2ホッパーと、前記第2ホッパーから流下する触媒を縦姿勢の反応管に導入する導管とで構成した触媒供給部を、多数の反応管に対応可能に支持フレームに位置変更自在に支持させ、第1ホッパー内の触媒を振動させる振動機構を設けて構成した触媒充填機が提案されている。
【0010】
つまり、第1ホッパー内の触媒を振動機構で振動させることにより、第1ホッパー内でのブリッジの発生を防止するとともに、第1ホッパー内の触媒を第2ホッパーを介して反応管側に円滑に流して、触媒の流下量にむらがないようにし、反応管内でのブリッジの発生を防止するというのである(類似の技術として特公昭47ー13043号公報,特公昭52ー4274号公報に開示されている技術がある)。
【0011】
しかしながら上記の構造によれば、触媒を振動させていたために、触媒同士がこすれ合いを繰り返し、粉化したり破壊されたりしやすかった。
【0012】
そして前記粉化等で粉塵が発生し、この粉塵が反応管内で凝集・はがれ・再飛散を繰り返し、反応管ごとに反応流体の流通抵抗が異なるようになって、ブリッジが発生したときと同様な問題が生じていた。
【0013】
本発明は上記実情に鑑みてなされたもので、その目的は、反応管への触媒の供給作業時間の短縮化と作業者の労力の軽減化とを図るとともに、収率・選択率を向上させ、反応管に対する温度調整の容易化を図り、各触媒を寿命に達するまで使い切れるようにして触媒に要するコストを低廉化する点にある。
【0014】
【課題を解決するための手段】
請求項1による発明の構成・作用・効果は次の通りである。
【0015】
[構成]反応管にその上方側から粒子状の触媒を供給する触媒供給部を、多数の反応管に各別に対応可能に、前記反応管が並ぶ方向にスライド往復移動自在に支持フレームに支持させ、前記触媒供給部を構成するに、ホッパーから流下する触媒を載せて前記反応管に搬送供給するコンベアを設け、前記コンベアの送り幅を、搬送幅方向に並ぶ所定数の反応管に対応した幅に設定するとともに、コンベア搬送面の上方の搬送空間を各反応管ごとに対応させて前記搬送幅方向で仕切る仕切り壁と、搬送触媒の層厚さを設定する層厚さ設定部とを設け、前記コンベアが設定搬送速度で触媒を搬送するよう構成してある。
【0016】
[作用]
[イ]請求項1の構成によれば、ホッパーから触媒が流下してコンベアに載り、コンベアの駆動に伴って、搬送触媒が仕切り壁の作用で各反応管に対応した送り幅に設定されるとともに、層厚さ設定部により所定の層厚さに設定され、その状態で反応管に供給される。
【0017】
[ロ]例えば、ホッパーからの触媒をスクリュウコンベアで反応管まで搬送すると、反応管への供給速度を一定にできるものの、触媒同士が繰り返しこすれ合って、破壊しやすいという不具合がある。
【0018】
また従来の技術のように、ホッパー内の触媒を振動機構で振動させることにより、ホッパー内でのブリッジの発生を防止して、反応管内での触媒の流下量にむらがないようにするという技術でも、前記振動で触媒同士が繰り返しこすれ合って、破壊しやすいという不具合がある。
【0019】
これに対して請求項1の構成では、触媒はホッパーから流下してコンベアに載り、その状態で反応管に搬送供給されるから、触媒同士のこすれ合いを少なくすることができて上記の不具合を回避でき、触媒の粉化や破壊による粉塵の発生を防止できる。
【0020】
これにより、前記粉塵が反応管内で凝集・はがれ・再飛散を繰り返すことに起因する不具合、すなわち、反応管ごとに反応流体の流通抵抗が異なるようになるという不具合を回避できる。
【0021】
[ハ]所定数の反応管への触媒の供給が終わると、触媒供給部を位置変更させて、別の所定数の反応管に上記[イ]と同様にして触媒を供給し、この繰り返しで多数の反応管に各別に触媒を供給する。
【0022】
[ニ]ところで従来は、反応管に一度に多数の触媒を投入すると、粒子状の触媒が落下中にせり合って反応管内にブリッジが生じやすいと考えられていたが、本発明者は、反応管の断面積内に納まる大きさの触媒で、かつ、単位時間当たりの投入量が所定量以下であれば、一度に多数の触媒を投入してもブリッジが発生しないことを見いだした。
【0023】
[ホ]その結果、上記[イ]のように、搬送触媒を仕切り壁の作用で各反応管に対応した送り幅に設定するとともに、層厚さ設定部により所定の層厚さに設定し、コンベアの搬送速度を適切な速度に設定することで、一度に多数の触媒をコンベアで反応管に供給しても、反応管内でのブリッジの発生を回避できるようになった。
【0024】
[ヘ]例えばコンベアの搬送速度を一定にすると、反応管への供給量にむらがなくなって、よりブリッジが生じにくくなる。そして、全ての反応管に対して同一の搬送速度(この場合も一定の搬送速度)で供給すると、全ての反応管内の触媒の分布状態が同一になりやすい。
【0025】
[ト]前記[ロ],[ヘ]により、反応流体の流通抵抗が全ての反応管で同一又はほぼ同一になりやすく、その結果、
1) 反応管ごとに反応状態が異なるのを防止でき、2) 各反応管を流れる反応流体の圧力損失を均一にすることができ、3) 各反応管を流れる反応流体の量が異なるのを防止できて、各反応管内の触媒の寿命をほぼ同一にすることができるようになった。
【0026】
[効果]
従って、前記作用[イ]〜[ハ]のように、コンベアにより各反応管に触媒を供給できて、各反応管への触媒の供給作業時間の短縮化と作業者の労力の軽減化とを図ることができ、前記作用[ロ],[ニ]〜[ト]により、収率・選択率を上げることができ、反応管に対する温度調整の容易化を図ることができ、各触媒を寿命に達するまで使うことができて触媒に要するコストを低廉化することができた。
【0027】
請求項2による発明の構成は次の通りである。
[構成]請求項1による発明の構成において、前記触媒供給部が、その縦軸芯周りに回転自在に構成してある
請求項による発明の構成・作用・効果は次の通りである。
【0028】
[構成]請求項1又は2による発明の構成において、前記ホッパーの下端側の触媒流下通路を、下端部側ほど前記コンベアの搬送方向下手側に位置する傾斜通路に形成してある。
【0029】
[作用]
請求項1の構成による作用と同様の作用を奏することができるのに加え、ホッパーからの触媒がコンベアに、その搬送方向上手側から下手側に向かって供給されるから、コンベアへの触媒の受け渡しを円滑に行うことができて、コンベア上で触媒の量が不均一になるのを抑制できる。その結果、反応管への供給量にむらが出るのを防止できて、反応管内にブリッジがより生じにくくなる。
【0030】
[効果]
従って、請求項1の構成による効果と同様の効果を奏することができるのに加え、収率・選択率の向上と、反応管に対する温度調整の容易化と、触媒に要するコストの低廉化という効果を、より得やすくなった。
【0031】
請求項による発明の構成・作用・効果は次の通りである。
【0032】
[構成]請求項1又はによる発明の構成において、前記ホッパーの触媒吐出口の垂直方向上方側に触媒の傾斜案内壁を設けて、触媒を前記傾斜案内壁で案内して前記触媒吐出口側に流下させるよう構成してある。
【0033】
[作用]請求項1又はの構成による作用と同様の作用を奏することができるのに加え、次の作用を奏することができる。
【0034】
例えば、ホッパーの上部側の触媒貯留空間と触媒吐出口とが垂直に連通している構造のものでは、ホッパーの触媒吐出口が臨むコンベア搬送面部分に、ホッパー内の触媒の重量が垂直に加わる。
【0035】
そのために、例えばコンベアをベルトコンベアで構成した場合、反応管への触媒の供給前は前記コンベア搬送面部分の負担が大きくてそのコンベア搬送面部分が沈み込み、触媒の供給が進むと負担が小さくなって前記沈み込み量が小さくなるというように、触媒の供給に伴って搬送触媒の層厚さが変わり、反応管への供給量にむらが生じるという不具合がある。
【0036】
これに対して請求項の構成によれば、例えば図1に示すように、下端部側ほどコンベア3の搬送方向上手側に位置する傾斜姿勢の傾斜案内壁12を、ホッパー1の触媒吐出口10の垂直方向上方側に設けて、触媒を傾斜案内壁12で案内して触媒吐出口10側に流下させるよう構成することができる。
【0037】
この構造では、ホッパー内の触媒の重量が傾斜案内壁12に加わるから、前記コンベア搬送面部分の負担を軽くできて、その沈み込みを抑制でき、前記不具合(反応管への供給量にむらが生じるという不具合)を回避できる。
【0038】
[効果]従って、請求項1又はの効果と同様の効果をさらに得やすくなった。
【0039】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0040】
[第1実施形態]
図1,図2,図3に、多管式触媒反応器に触媒を充填する触媒充填機を示してある。前記多管式触媒反応器は、例えば酸化エチレン、無水フタル酸、無水マレイン酸、アクロレイン、アクリル酸、メタクロレイン、メタクリル酸、アニリン、塩化ビニルモノマーアクリロニトリル、ピリジン、およびその他アルカン類の脱水素等の製造に工業的な規模で使われている。前記触媒充填機はこの多管式触媒反応器の各反応管2に対する触媒の充填のために用いるものである。
【0041】
前記触媒充填機は、反応管2にその上方側から粒子状の触媒を供給する触媒供給部4を、多数の反応管2に各別に対応可能に、支持フレーム5に位置変更機構(図示せず)を介して前記反応管2が並ぶ方向に位置変更自在に支持させて構成してある。
【0042】
前記触媒供給部4を構成するに、粒子状の触媒を貯留するホッパー1と、ホッパー1から流下する触媒を載せて反応管2にその上方側から搬送供給するベルトコンベア3とを設け、前記ベルトコンベアの送り幅を、搬送幅方向に並ぶ5本の反応管に対応した幅に設定し、ベルトコンベア3のコンベア搬送面の上方の搬送空間を各反応管2ごとに対応させて搬送幅方向で仕切る仕切り壁6と、搬送触媒の層厚さTを設定する層厚さ設定板7(層厚さ設定部に相当)と、ベルトコンベア3の搬送終端部からの触媒を各反応管2に案内するシュート8とを設けてある。
【0043】
そして、触媒供給部4から5本の反応管2に触媒を供給し、この供給が終わると位置変更機構の作動により触媒供給部4を位置変更させて、別の5本の反応管2に触媒を供給し、この繰り返しで多数の反応管2に各別に触媒を供給するようになっている。
【0044】
前記ホッパー1内は各反応管2ごとに触媒貯留空間14を設けてある。またホッパー1にスライドダンパー13を設けて、作業者によるスライドダンパー13の横方向の押し引き操作で触媒流下通路9に対する触媒の流下を許す状態と、流下が阻止される状態とに切り換え自在に構成してある。このスライドダンパー13は次のように操作する。
【0045】
1) スライドダンパー13を閉じにした状態で、作業者がホッパー1の各触媒貯留空間14に1本の反応管分の触媒を補給し、2) ベルトコンベア3を駆動し(この駆動は前記1)の前に開始してもよい。) 3) スライドダンパー13を開き操作して反応管2に触媒を供給する。
【0046】
前記ホッパー1の下端側の触媒流下通路9を、下端部側ほどベルトコンベア3の搬送方向下手側に位置する傾斜通路に形成するとともに、下端部側ほどベルトコンベア3の搬送方向上手側に位置する傾斜姿勢の触媒案内壁(傾斜案内壁に相当)12を、ホッパー1の触媒吐出口10の垂直方向上方側に設けて、前記垂直方向上方側の触媒を傾斜案内壁12で案内して触媒吐出口10側に流下させるよう構成してある。
【0047】
この構造により、前記ホッパー1内の触媒の重量が触媒案内壁12と、触媒流下通路9を形成する傾斜壁23とに加わるから、触媒吐出口10が臨むコンベア搬送面部分の負担を軽くできて、コンベア搬送面部分の沈み込みを抑制できる。
【0048】
前記層厚さ設定板7は、ベルトコンベア3の搬送方向下手側のホッパー側壁11に、各反応管2ごとに対応させて、上下位置変更調節自在に設けて、前記層厚さTを反応管2に合った寸法に調節可能に構成してある。
【0049】
ホッパー1から流下してベルトコンベア3に載った触媒は、ベルトコンベア3の搬送に伴って、その上端側を層厚さ設定板7の下端部に受け止められて、層厚さTを設定される。
【0050】
搬送触媒の層厚さTは反応管2の内径よりやや小さめに設定し、各反応管2に対応する一対の仕切り壁6の間隔も同様に反応管2の内径よりやや小さめに設定する。そして、前記ベルトコンベア3の搬送速度は一定に設定する。
【0051】
以上の構造により、ホッパー1から触媒が流下してベルトコンベア3に載り、ベルトコンベア3の駆動に伴って、搬送触媒が仕切り壁6の作用で各反応管2に対応した送り幅に設定されるとともに、層厚さ設定板7により所定の層厚さTに設定され、その状態で反応管2に供給される。
【0052】
本発明者は、反応管2の断面積内に納まる大きさの触媒で、かつ、単位時間当たりの投入量が所定量以下であれば、一度に多数の触媒を投入してもブリッジが発生しないことを見いだした。
【0053】
その結果、上記のように、搬送触媒を仕切り壁6の作用で各反応管2に対応した送り幅に設定するとともに、層厚さ設定板7により所定の層厚さTに設定し、ベルトコンベア3の搬送速度を適切な速度に設定することで、一度に多数の触媒をベルトコンベア3で反応管2に供給しても、反応管2内でのブリッジの発生を回避できるようになった。
【0054】
上記のように、ベルトコンベア3の搬送速度を一定にすると、反応管2への供給量にむらがなくなって、よりブリッジが生じにくくなる。そして、全ての反応管2に対して同一の搬送速度(この場合も一定の搬送速度)で供給すると、全ての反応管2内の触媒の分布状態が同一になりやすく、反応流体の流通抵抗が全ての反応管2で同一又はほぼ同一になりやすい。
【0055】
[第2実施形態]
図4に第2実施形態における触媒充填機を示してある。この触媒充填機の触媒供給部4は、第1実施形態における触媒供給部4とほぼ同様の構造であり、その説明は省略する。
【0056】
触媒充填機の支持フレーム5を構成するに、平面視で円形状の反応管群Aの中心部に第1フレーム部材15を設けるとともに、平面視で反応管群Aを囲む第2フレーム部材16を設け、中間フレーム部材17の一端部を第1フレーム部材15に第1縦軸芯O周りに回転自在に支持させ、中間フレーム部材17の第1縦軸芯O周りの回転に伴って、第2フレーム部材16上のガイドレール19を移動するガイド部18を、中間フレーム部材17の他端部に設けてある。
【0057】
前記触媒供給部4を中間フレーム部材17に、その長手方向に沿ってスライド往復移動自在に支持させるとともに、触媒供給部4を第2縦軸芯P周りに回転自在に構成してある。
【0058】
そして、中間フレーム部材17を第1縦軸芯O周りに回転させる第1駆動部と、触媒供給部4をスライド往復移動させる第2駆動部と、触媒供給部4を第2縦軸芯P周りに回転させる第3駆動部とを設けるとともに、前記第1,第2、第3駆動部(いずれも図示せず)を制御する制御装置(図示せず)を設けてある。
【0059】
上記の構造により、制御装置が第1,第2、第3駆動部を制御して次のように作動する。
【0060】
触媒供給部4のベルトコンベア3の終端部(詳しくは5本のシュート8)が、5本の反応管2に臨んで触媒を供給する。次に、触媒供給部4が中間フレーム部材17上を移動して、ベルトコンベア3の終端部が別の5本の反応管2に臨み、その反応管2に触媒を供給する。
【0061】
反応管2とベルトコンベア3の終端部とが位置ずれしていた場合は、触媒供給部4が第2縦軸芯P周りに回転して、ベルトコンベア3の終端部を反応管に臨ませる。
【0062】
中間フレーム部材17の長手方向に沿う方向に並ぶ反応管2への触媒の供給が終わると、第1フレーム部材15が第1縦軸芯O周りに回転して、上記と同様の作動で触媒を供給していく。そして、以上の作動を繰り返して、全ての反応管2への触媒の供給を完了する。ホッパー1へは触媒を適宜補給する。
【0063】
[第3実施形態]
図5に第3実施形態における触媒充填機を示してある。この触媒充填機には一対の触媒供給部4を設けてある。各触媒供給部4は第1実施形態における触媒供給部4とほぼ同様の構造であり、説明は省略する。
【0064】
触媒充填機の支持フレーム5を構成するに、平面視で円形状の反応管群Aの半円部分を覆う状態に跨がる四角枠状の第1枠体20と、この第1枠体20上をその長辺に沿う方向にスライド移動する四角枠状の第2枠体21と、第2枠体21上を前記第1枠体20の短辺に沿う方向にスライド移動する四角枠状の第3枠体22とを設けてある。
【0065】
そして前記第3枠体22に前記一対の触媒供給部4を、互いのベルトコンベア3の終端部が対向する状態に載置固定し、第2,第3枠体21,22をスライド移動させる第1駆動部と、その第1駆動部を制御する制御装置(共に図示せず)とを設けてある。
【0066】
上記の構造により、制御装置が第1駆動部を制御して次のように作動する。
【0067】
各触媒供給部4のベルトコンベア3の終端部(詳しくは5本のシュート8)が、5本の反応管2に臨んで触媒を供給する。次に、第3枠体22がスライド移動して、各触媒供給部4のベルトコンベア3の終端部が別の5本の反応管2に臨み、その反応管2に触媒を供給する。
【0068】
第1枠体20の短辺に沿う方向に並ぶ反応管2への触媒の供給が終わると、第2枠体21スライド移動して、別の反応管2に上記と同様の作動で触媒を供給していく。そして、以上の作動を繰り返して、反応管群Aの半分の反応管2への触媒の供給を終える。
【0069】
次に、第1枠体20を反応管群Aの別の半円部分を覆う状態に跨がらせ、上記と同様の作動でその半円部分の反応管2に触媒を供給する。
【0070】
[第4実施形態]
図6に第4実施形態における触媒充填機を示してある。この触媒充填機は第3実施形態における充填機を小型にしたもので、前記四角枠状の第1枠体20が平面視で円形状の反応管群Aの一部分(反応管群Aの半円部分よりも小さい)に跨がるようになっている。
【0071】
この充填機は第3実施形態における充填機に比べると運搬が容易であるという利点がある。なお前記反応管群Aに対して複数台設置して、触媒を充填させることもできる。
【0072】
[別実施形態]
前記ベルトコンベア3の送り幅を、搬送幅方向に並ぶ6本以上あるいは4本以下の反応管2に対応する幅に設定してあってもよい。
【0073】
ホッパー1へは、ニューマチックコンベア(空気を媒体とするコンベア)により触媒を供給するよう構成してもよく、あるいは人為的に供給するよう構成してあってもよい。
【0074】
前記反応管2が触媒で満杯になったことを例えば光センサーで検出し、その検出情報に基づいて、前記制御装置で第1、第2,第3駆動部等を制御するよう構成してもよい。
【0075】
つまり、ホッパー1に多量の触媒を貯留しておいて、反応管2が触媒で満杯になったことを光センサーが検出すると、その検出情報に基づいて、制御装置の制御によりベルトコンベア3を停止させる。この場合、各反応管2ごとにベルトコンベア3を設けて、各ベルトコンベア3を独立して駆動させる。なおスライドダンパー13は開放状態にしておく。
【0076】
そして、別の反応管2側に触媒供給部4を位置変更させ、再びベルトコンベア3を駆動させて触媒を供給する。触媒供給部4が前記反応管2側に位置したことは位置センサーで検出する。
【0077】
前記ホッパー1の下端側からホッパー1内に圧縮空気を間欠的に噴出するノズルを設けて、ホッパー1内の触媒の詰まりを防止するよう構成してあってもよい。例えば、ベルトコンベア3の搬送方向下手側のホッパー側壁11の下端側に前記ノズルを設けて、ホッパー1の触媒吐出口10から触媒流下通路9内に、後ろ斜め上方に向けて1Kg/cm2 のエアーパルスを1sec/2〜3sec間隔で噴出するよう構成する。
【0078】
【実施例1】
本発明の方式による高速充填が可能である事を証明する為に以下の実験を行なった。直径5mm、高さ6mmの円柱形の触媒粒子を用い、内径25mm、高さ2mの反応管に投入を行なった。投入は1100g/分であった。
【0079】
一方、比較のために同じ触媒粒子を用いて同じ管に手作業による充填を行なった。この充填はできるだけ一個ずつ触媒が投入されるように、約300g/分で実施した。
【0080】
この時の圧力損失の平均は277.8mmH2 O、標準偏差は3.9mmH2 Oであった。
【0081】
一方本触媒充填機を用いて充填を行なった反応管の平均圧力損失は267.7mmH2 O、標準偏差は3mmH2 Oであり、3倍の高速充填を行なったにもかかわらず、一個づつ投入する従来の作業より小さなばらつきであることがわかった。
【0082】
【実施例2】
[触媒の粉化と触媒層圧力損失のばらつき]
触媒の粉化、発塵による触媒層圧力損失への影響を調査するために以下のような実験を行なった。
【0083】
比較的発塵しやすい直径5mm、高さ6mmの円柱形の触媒粒子を用い、粉塵の発生しやすい振動フィーダーで内径25mm、高さ2mの反応管に投入した。150g/分の速度で反応管が満杯になるまで充填を行なったところ、平均圧力損失が320mmH2 Oと大きく、また標準偏差も24.78mmH2 Oという大きなばらつきをもった。
【0084】
この管に対して下部から強制エアブローを実施して発生粉塵を除去したところ、平均圧力損失が301mmH2 Oに低下するとともに、その標準偏差も6.7mmH2 Oにまで低下した。よって圧力損失のばらつき発生に粉塵の発生が大きく寄与していることが明らかになった。
【0085】
同様の条件で本発明にかかる触媒充填機を用いると、圧力損失の平均307mmH2 O、その標準偏差は3.7mmH2 Oと小さくなり、振動フィーダーに対する優位性が示された。
【0086】
【実施例3】
触媒充填機の有用性を示すために、実際に多管式触媒反応器に充填した場合のばらつきと、充填速度を手作業で行った場合と比較した。実験は以下のような多管式触媒反応器において触媒の充填を行なった。管内径24.5mm、長さ4mである。触媒は直径5mm、高さ6mmの円筒形セラミック担持触媒を用いた。比較データーは手作業による充填作業から得た。手作業は漏斗と樹脂製ビーカーを用い、管にできるだけ1個づつ触媒を投入していく方法によった。
【0087】
手作業充填の速度は4分30秒/1本、これに対して触媒充填機は1分/1本で充填を実施した。
【0088】
また、手作業・触媒充填機のどちらによる場合も、1本に充填する量を予め秤量し、同量が充填できるようにした。
【0089】
圧力損失のばらつきは以下のようになった。
【0090】
手作業による充填平均圧力損失 319mmH2 O/4m、標準偏差12.2 mmH2 O/4m
触媒充填機使用平均圧力損失 331mmH2 0/4m、標準偏差7.6mmH2 O/4m
このように、従来の手作業と比較して高速かつばらつきの少ない充填を実現する事ができた。
【図面の簡単な説明】
【図1】触媒充填機の触媒供給部を示す概略側面図
【図2】触媒供給部の斜視図
【図3】触媒供給部の平面図
【図4】第2実施形態の斜視図
【図5】第3実施形態の斜視図
【図6】第4実施形態の斜視図
【符号の説明】
1 ホッパー
2 反応管
3 コンベア
4 触媒供給部
5 支持フレーム
6 仕切り壁
7 層厚さ設定部
9 触媒流下通路
10 触媒吐出口
12 傾斜案内壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst filling machine.
[0002]
[Prior art]
A large number of vertical reaction tubes filled with a particulate catalyst have a small tube diameter and a long tube length in order to improve the yield and adjust the reaction temperature.
[0003]
Therefore, when a large number of catalysts are put into the reaction tube all at once, the catalysts tend to collide with each other while falling, and a bridge called a bridge tends to occur in the reaction tube.
[0004]
When the bridge is generated, the distribution of the catalyst in each reaction tube becomes non-uniform, and the flow resistance of the reaction fluid differs for each reaction tube, causing the following problems. That means
1) The reaction state varies from reaction tube to reaction tube, such that in some reaction tubes, the contact between the reaction fluid and the catalyst is excessive and side reactions increase, while in other reaction tubes the contact is insufficient and the amount of unreacted components increases. Yield / selectivity decreases.
[0005]
2) The pressure loss of the reaction fluid passing through each reaction tube becomes non-uniform, the reaction temperature of each reaction tube becomes non-uniform, and the temperature adjustment for the reaction tube becomes difficult.
[0006]
3) Since the catalyst in the reaction tube in which the reaction fluid flows most reaches the life earlier than the catalyst in the other reaction tube and decreases the yield, when the catalyst in the former reaction tube reaches the life, The catalyst in the latter reaction tube that has not been reached must be replaced with a new catalyst together with the catalyst in the former reaction tube, and the cost required for the catalyst increases.
[0007]
Therefore, conventionally, an operator has carefully put the catalyst into each reaction tube little by little so that no bridge is formed.
[0008]
[Problems to be solved by the invention]
However, as in the prior art described above, the method in which the operator carefully puts the catalyst into the reaction tube little by little requires a lot of labor and time because there are many reaction tubes.
[0009]
In order to solve this problem, for example, as disclosed in Japanese Patent Publication No. 47-11484, a deep first hopper for storing particulate catalyst and a catalyst flowing down from the first hopper are received and flowed down. The position of the catalyst supply part composed of a shallow second hopper to be introduced and a conduit for introducing the catalyst flowing down from the second hopper into the vertical reaction tube can be changed to the support frame so as to be compatible with many reaction tubes. There has been proposed a catalyst filling machine that is provided with a vibration mechanism that supports and vibrates the catalyst in the first hopper.
[0010]
That is, the catalyst in the first hopper is vibrated by the vibration mechanism, thereby preventing the bridge in the first hopper and smoothly moving the catalyst in the first hopper to the reaction tube side through the second hopper. In order to prevent the flow of the catalyst from becoming uneven and prevent the occurrence of bridging in the reaction tube (similar techniques are disclosed in Japanese Patent Publication Nos. 47-13043 and 52-4274). Technology).
[0011]
However, according to the above structure, since the catalysts were vibrated, the catalysts were repeatedly rubbed and easily pulverized or destroyed.
[0012]
And dust is generated by the above-mentioned pulverization, etc., this dust is repeatedly agglomerated, peeled off, and re-scattered in the reaction tube, and the reaction resistance of the reaction fluid differs from reaction tube to reaction tube. There was a problem.
[0013]
The present invention has been made in view of the above circumstances, and its purpose is to shorten the time for supplying the catalyst to the reaction tube and reduce the labor of the worker, and to improve the yield and selectivity. In addition, the temperature adjustment for the reaction tube is facilitated, and the cost required for the catalyst is reduced by using each catalyst until it reaches the end of its life.
[0014]
[Means for Solving the Problems]
The structure, operation, and effect of the invention according to claim 1 are as follows.
[0015]
[Configuration] A catalyst supply unit for supplying particulate catalyst to the reaction tube from above is supported on a support frame so as to be slidable and reciprocally movable in the direction in which the reaction tubes are arranged in order to be able to correspond to each of the multiple reaction tubes. The catalyst supply unit is provided with a conveyor on which the catalyst flowing down from the hopper is loaded and supplied to the reaction tube, and the feed width of the conveyor is a width corresponding to a predetermined number of reaction tubes arranged in the transfer width direction. And a partition wall that partitions the transport space above the conveyor transport surface for each reaction tube in the transport width direction, and a layer thickness setting unit that sets the layer thickness of the transport catalyst, The conveyor is configured to convey the catalyst at a set conveyance speed.
[0016]
[Action]
[A] According to the configuration of the first aspect, the catalyst flows down from the hopper and is placed on the conveyor. As the conveyor is driven, the transport catalyst is set to a feed width corresponding to each reaction tube by the action of the partition wall. At the same time, the layer thickness is set to a predetermined layer thickness by the layer thickness setting unit, and is supplied to the reaction tube in that state.
[0017]
[B] For example, when the catalyst from the hopper is conveyed to the reaction tube by the screw conveyor, the supply rate to the reaction tube can be made constant, but the catalysts are repeatedly rubbed and easily broken.
[0018]
In addition, as in the prior art, the catalyst in the hopper is vibrated by a vibration mechanism, thereby preventing the occurrence of bridging in the hopper so that the amount of flow of the catalyst in the reaction tube is not uneven. However, there is a problem that the catalyst is repeatedly rubbed by the vibration and easily broken.
[0019]
On the other hand, in the configuration of claim 1, the catalyst flows down from the hopper and is placed on the conveyor, and is conveyed and supplied to the reaction tube in that state. It can be avoided, and the generation of dust due to catalyst pulverization or destruction can be prevented.
[0020]
As a result, it is possible to avoid a problem caused by the dust being repeatedly agglomerated / peeled / re-scattered in the reaction tube, that is, a problem that the flow resistance of the reaction fluid is different for each reaction tube.
[0021]
[C] When the supply of the catalyst to the predetermined number of reaction tubes is completed, the position of the catalyst supply unit is changed, and the catalyst is supplied to another predetermined number of reaction tubes in the same manner as in the above [A]. A catalyst is supplied to each of a large number of reaction tubes.
[0022]
[D] In the past, it was thought that when a large number of catalysts were put into the reaction tube at once, the particulate catalyst would collide during the fall and bridges would easily occur in the reaction tube. It was found that even when a catalyst having a size that fits within the cross-sectional area of the tube and the input amount per unit time is equal to or less than a predetermined amount, no bridging occurs even if a large number of catalysts are input at a time.
[0023]
[E] As a result, as in [A] above, the carrier catalyst is set to a feed width corresponding to each reaction tube by the action of the partition wall, and set to a predetermined layer thickness by the layer thickness setting unit, By setting the conveying speed of the conveyor to an appropriate speed, it has become possible to avoid the occurrence of bridges in the reaction tube even when a large number of catalysts are supplied to the reaction tube by the conveyor at a time.
[0024]
[F] For example, if the conveying speed of the conveyor is made constant, there will be no unevenness in the amount supplied to the reaction tube, and bridges will be less likely to occur. And if it supplies with the same conveyance speed (in this case also constant conveyance speed) with respect to all the reaction tubes, the distribution state of the catalyst in all the reaction tubes will become the same easily.
[0025]
[G] Due to the above [b] and [f], the flow resistance of the reaction fluid tends to be the same or almost the same in all the reaction tubes.
1) It is possible to prevent the reaction state from being different for each reaction tube, 2) the pressure loss of the reaction fluid flowing through each reaction tube can be made uniform, and 3) the amount of reaction fluid flowing through each reaction tube is different. The life of the catalyst in each reaction tube can be made almost the same.
[0026]
[effect]
Therefore, as in the above operations [A] to [C], the catalyst can be supplied to each reaction tube by the conveyor, so that the time for supplying the catalyst to each reaction tube can be shortened and the labor of the operator can be reduced. With the above actions [b], [d] to [g], the yield and selectivity can be increased, temperature adjustment for the reaction tube can be facilitated, and each catalyst can be made to have a lifetime. It was possible to use until it reached, and the cost required for the catalyst could be reduced.
[0027]
The configuration of the invention according to claim 2 is as follows.
[Configuration] In the configuration of the invention according to claim 1, the catalyst supply section is configured to be rotatable around its longitudinal axis .
The structure, operation, and effect of the invention according to claim 3 are as follows.
[0028]
[Configuration] In the configuration of the invention according to claim 1 or 2 , the catalyst flow-down passage on the lower end side of the hopper is formed as an inclined passage located on the lower side in the conveying direction of the conveyor toward the lower end portion side.
[0029]
[Action]
In addition to being able to achieve the same operation as that of the configuration of claim 1, since the catalyst from the hopper is supplied to the conveyor from the upper side to the lower side in the conveying direction, the catalyst is transferred to the conveyor. Can be performed smoothly, and the amount of catalyst on the conveyor can be prevented from becoming uneven. As a result, unevenness in the amount supplied to the reaction tube can be prevented, and a bridge is less likely to occur in the reaction tube.
[0030]
[effect]
Therefore, in addition to the effects similar to the effects of the structure of claim 1, the effects of improving the yield and selectivity, facilitating temperature adjustment for the reaction tube, and reducing the cost required for the catalyst. It became easier to get.
[0031]
The structure, operation, and effect of the invention according to claim 4 are as follows.
[0032]
[Configuration] In the configuration of the invention according to claim 1 or 3 , an inclined guide wall of the catalyst is provided on a vertically upper side of the catalyst discharge port of the hopper, and the catalyst is guided by the inclined guide wall to be on the catalyst discharge port side. It is configured to flow down.
[0033]
[Operation] In addition to the same operation as that of the first or third aspect , the following operation can be achieved.
[0034]
For example, in a structure in which the catalyst storage space on the upper side of the hopper and the catalyst discharge port communicate with each other vertically, the weight of the catalyst in the hopper is vertically applied to the conveyor conveyance surface portion where the catalyst discharge port of the hopper faces. .
[0035]
Therefore, for example, when the conveyor is constituted by a belt conveyor, the burden on the conveyor conveyance surface portion is large before the catalyst is supplied to the reaction tube, the conveyor conveyance surface portion sinks, and the burden is reduced as the catalyst supply proceeds. Thus, there is a problem that the layer thickness of the transported catalyst changes with the supply of the catalyst so that the subsidence amount becomes small, and the supply amount to the reaction tube becomes uneven.
[0036]
On the other hand, according to the configuration of claim 4 , for example, as shown in FIG. 1, the inclined guide wall 12, which is inclined toward the upper end side in the conveying direction of the conveyor 3 toward the lower end side, is connected to the catalyst discharge port of the hopper 1. 10 on the upper side in the vertical direction, and the catalyst can be guided by the inclined guide wall 12 to flow down to the catalyst discharge port 10 side.
[0037]
In this structure, since the weight of the catalyst in the hopper is added to the inclined guide wall 12, the burden on the conveyor conveyance surface portion can be reduced, and the sinking can be suppressed, and the above-mentioned problem (unevenness in the supply amount to the reaction tube is caused). Can be avoided.
[0038]
[Effects] Accordingly, the same effects as those of the first or third aspect can be obtained more easily.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0040]
[First Embodiment]
FIG. 1, FIG. 2, and FIG. 3 show a catalyst filling machine that fills a multi-tubular catalyst reactor with a catalyst. The multi-tubular catalyst reactor is, for example, dehydrogenation of ethylene oxide, phthalic anhydride, maleic anhydride, acrolein, acrylic acid, methacrolein, methacrylic acid, aniline, vinyl chloride monomer acrylonitrile, pyridine, and other alkanes. Used on an industrial scale for manufacturing. The catalyst filling machine is used for filling a catalyst into each reaction tube 2 of this multi-tube type catalyst reactor.
[0041]
The catalyst filling machine is provided with a position changing mechanism (not shown) on the support frame 5 so that the catalyst supply unit 4 for supplying the particulate catalyst from the upper side to the reaction tube 2 can correspond to each of the many reaction tubes 2. ), The reaction tubes 2 are supported in such a manner that their positions can be changed in the direction in which they are arranged.
[0042]
The catalyst supply unit 4 includes a hopper 1 for storing a particulate catalyst, and a belt conveyor 3 on which a catalyst flowing down from the hopper 1 is placed and conveyed to the reaction tube 2 from above. The conveyor feed width is set to a width corresponding to the five reaction tubes arranged in the conveyance width direction, and the conveyance space above the conveyor conveyance surface of the belt conveyor 3 is associated with each reaction tube 2 in the conveyance width direction. A partition wall 6 for partitioning, a layer thickness setting plate 7 for setting the layer thickness T of the transported catalyst (corresponding to a layer thickness setting unit), and a catalyst from the transport end portion of the belt conveyor 3 are guided to each reaction tube 2. A chute 8 is provided.
[0043]
Then, the catalyst is supplied from the catalyst supply unit 4 to the five reaction tubes 2, and when this supply is finished, the position of the catalyst supply unit 4 is changed by the operation of the position changing mechanism, and the catalyst is supplied to another five reaction tubes 2. The catalyst is supplied separately to each of the plurality of reaction tubes 2 by repeating this process.
[0044]
Inside the hopper 1, a catalyst storage space 14 is provided for each reaction tube 2. Further, a slide damper 13 is provided in the hopper 1 so that the operator can switch between a state in which the flow of the catalyst with respect to the catalyst flow-down passage 9 is permitted and a state in which the flow is prevented by an operator pushing and pulling the slide damper 13 in the lateral direction. It is. The slide damper 13 is operated as follows.
[0045]
1) With the slide damper 13 closed, the operator replenishes each catalyst storage space 14 of the hopper 1 with a catalyst for one reaction tube, and 2) drives the belt conveyor 3 (this driving is the above-mentioned 1). ) May start before. 3) Open the slide damper 13 and supply the catalyst to the reaction tube 2.
[0046]
The catalyst flow-down passage 9 on the lower end side of the hopper 1 is formed in an inclined passage located on the lower side in the conveying direction of the belt conveyor 3 toward the lower end portion, and located on the upper side in the conveying direction of the belt conveyor 3 toward the lower end portion. An inclined catalyst guide wall (corresponding to an inclined guide wall) 12 is provided on the upper side in the vertical direction of the catalyst discharge port 10 of the hopper 1, and the catalyst on the upper side in the vertical direction is guided by the inclined guide wall 12 to discharge the catalyst. It is configured to flow down to the outlet 10 side.
[0047]
With this structure, the weight of the catalyst in the hopper 1 is applied to the catalyst guide wall 12 and the inclined wall 23 that forms the catalyst flow-down passage 9, so that the burden on the conveyor conveyance surface portion where the catalyst discharge port 10 faces can be reduced. The sinking of the conveyor conveyance surface portion can be suppressed.
[0048]
The layer thickness setting plate 7 is provided on the hopper side wall 11 on the lower side in the transport direction of the belt conveyor 3 so as to be adjustable for changing the vertical position corresponding to each reaction tube 2, and the layer thickness T is set to the reaction tube. It is configured to be adjustable to a size suitable for 2.
[0049]
The catalyst that has flowed down from the hopper 1 and placed on the belt conveyor 3 is received by the lower end portion of the layer thickness setting plate 7 at the upper end side as the belt conveyor 3 is conveyed, and the layer thickness T is set. .
[0050]
The layer thickness T of the carrier catalyst is set slightly smaller than the inner diameter of the reaction tube 2, and the distance between the pair of partition walls 6 corresponding to each reaction tube 2 is also set slightly smaller than the inner diameter of the reaction tube 2. The conveying speed of the belt conveyor 3 is set to be constant.
[0051]
With the above structure, the catalyst flows down from the hopper 1 and is placed on the belt conveyor 3, and the transport catalyst is set to a feed width corresponding to each reaction tube 2 by the action of the partition wall 6 as the belt conveyor 3 is driven. At the same time, a predetermined layer thickness T is set by the layer thickness setting plate 7 and is supplied to the reaction tube 2 in this state.
[0052]
The present inventor is a catalyst having a size that can be accommodated within the cross-sectional area of the reaction tube 2, and if the input amount per unit time is not more than a predetermined amount, no bridge is generated even if a large number of catalysts are input at a time. I found out.
[0053]
As a result, as described above, the transport catalyst is set to a feed width corresponding to each reaction tube 2 by the action of the partition wall 6, and is set to a predetermined layer thickness T by the layer thickness setting plate 7, and the belt conveyor. By setting the transport speed of 3 to an appropriate speed, even if a large number of catalysts are supplied to the reaction tube 2 by the belt conveyor 3 at a time, the occurrence of bridges in the reaction tube 2 can be avoided.
[0054]
As described above, if the conveyance speed of the belt conveyor 3 is constant, the amount supplied to the reaction tube 2 is not uneven, and bridges are less likely to occur. And if it supplies with the same conveyance speed (in this case constant conveyance speed) with respect to all the reaction tubes 2, the distribution state of the catalyst in all the reaction tubes 2 will become easy to become the same, and the distribution resistance of the reaction fluid will be All reaction tubes 2 are likely to be the same or nearly the same.
[0055]
[Second Embodiment]
FIG. 4 shows a catalyst filling machine in the second embodiment. The catalyst supply unit 4 of this catalyst filling machine has substantially the same structure as the catalyst supply unit 4 in the first embodiment, and a description thereof will be omitted.
[0056]
To constitute the support frame 5 of the catalyst filling machine, a first frame member 15 is provided at the center of a circular reaction tube group A in plan view, and a second frame member 16 surrounding the reaction tube group A in plan view is provided. Provided, one end of the intermediate frame member 17 is supported by the first frame member 15 so as to be rotatable around the first longitudinal axis O, and the second is accompanied by the rotation of the intermediate frame member 17 around the first longitudinal axis O. A guide portion 18 for moving the guide rail 19 on the frame member 16 is provided at the other end portion of the intermediate frame member 17.
[0057]
The catalyst supply unit 4 is supported by the intermediate frame member 17 so as to be slidable and reciprocally movable along the longitudinal direction thereof, and the catalyst supply unit 4 is configured to be rotatable around the second longitudinal axis P.
[0058]
Then, a first drive unit that rotates the intermediate frame member 17 around the first vertical axis O, a second drive unit that slides the catalyst supply unit 4 back and forth, and the catalyst supply unit 4 around the second vertical axis P And a control device (not shown) for controlling the first, second and third drive parts (none of which are shown).
[0059]
With the above structure, the control device controls the first, second, and third driving units and operates as follows.
[0060]
The terminal portion (specifically, five chutes 8) of the belt conveyor 3 of the catalyst supply unit 4 faces the five reaction tubes 2 and supplies the catalyst. Next, the catalyst supply unit 4 moves on the intermediate frame member 17, and the end portion of the belt conveyor 3 faces another five reaction tubes 2, and supplies the catalyst to the reaction tubes 2.
[0061]
When the reaction tube 2 and the end portion of the belt conveyor 3 are misaligned, the catalyst supply unit 4 rotates around the second vertical axis P, and the end portion of the belt conveyor 3 faces the reaction tube.
[0062]
When the supply of the catalyst to the reaction tubes 2 arranged in the direction along the longitudinal direction of the intermediate frame member 17 is finished, the first frame member 15 rotates around the first longitudinal axis O, and the catalyst is operated by the same operation as described above. Supply. Then, the above operation is repeated to complete the supply of the catalyst to all the reaction tubes 2. A catalyst is appropriately supplied to the hopper 1.
[0063]
[Third Embodiment]
FIG. 5 shows a catalyst filling machine in the third embodiment. This catalyst filling machine is provided with a pair of catalyst supply sections 4. Each catalyst supply unit 4 has substantially the same structure as the catalyst supply unit 4 in the first embodiment, and a description thereof will be omitted.
[0064]
To constitute the support frame 5 of the catalyst filling machine, the first frame body 20 having a rectangular frame shape that covers the semicircular portion of the circular reaction tube group A in plan view, and the first frame body 20. A square frame-shaped second frame body 21 that slides in the direction along its long side, and a square frame shape that slides in a direction along the short side of the first frame body 20 on the second frame body 21. A third frame 22 is provided.
[0065]
Then, the pair of catalyst supply sections 4 are placed and fixed on the third frame body 22 so that the end portions of the belt conveyors 3 face each other, and the second and third frame bodies 21 and 22 are slid and moved. One drive unit and a control device (both not shown) for controlling the first drive unit are provided.
[0066]
With the above structure, the control device controls the first drive unit and operates as follows.
[0067]
Terminal portions (specifically, five chutes 8) of the belt conveyor 3 of each catalyst supply unit 4 face the five reaction tubes 2 and supply the catalyst. Next, the third frame body 22 slides and the end portion of the belt conveyor 3 of each catalyst supply unit 4 faces another five reaction tubes 2 to supply the catalyst to the reaction tubes 2.
[0068]
When the supply of the catalyst to the reaction tubes 2 arranged in the direction along the short side of the first frame 20 is finished, the second frame 21 slides and the catalyst is supplied to another reaction tube 2 by the same operation as described above. I will do it. Then, the above operation is repeated, and the supply of the catalyst to the reaction tubes 2 that are half of the reaction tube group A is completed.
[0069]
Next, the first frame body 20 is straddled over a state in which another semicircular portion of the reaction tube group A is covered, and the catalyst is supplied to the semicircular portion of the reaction tube 2 by the same operation as described above.
[0070]
[Fourth Embodiment]
FIG. 6 shows a catalyst filling machine in the fourth embodiment. This catalyst filling machine is a miniaturization of the filling machine in the third embodiment, and the rectangular frame-like first frame body 20 is a part of a circular reaction tube group A in plan view (a semicircle of the reaction tube group A). Is smaller than the part).
[0071]
This filling machine has the advantage that it is easier to transport than the filling machine in the third embodiment. A plurality of reactors can be installed in the reaction tube group A and filled with a catalyst.
[0072]
[Another embodiment]
The feed width of the belt conveyor 3 may be set to a width corresponding to 6 or more or 4 or less reaction tubes 2 arranged in the conveyance width direction.
[0073]
The hopper 1 may be configured to supply the catalyst by a pneumatic conveyor (a conveyor using air as a medium), or may be configured to be supplied artificially.
[0074]
The reaction tube 2 may be configured to detect that the reaction tube 2 is filled with a catalyst, for example, using an optical sensor, and to control the first, second, and third drive units by the control device based on the detection information. Good.
[0075]
That is, when a large amount of catalyst is stored in the hopper 1 and the optical sensor detects that the reaction tube 2 is full of catalyst, the belt conveyor 3 is stopped by the control of the control device based on the detection information. Let In this case, a belt conveyor 3 is provided for each reaction tube 2, and each belt conveyor 3 is driven independently. The slide damper 13 is left open.
[0076]
Then, the position of the catalyst supply unit 4 is changed to another reaction tube 2 side, and the belt conveyor 3 is driven again to supply the catalyst. The position sensor detects that the catalyst supply unit 4 is positioned on the reaction tube 2 side.
[0077]
A nozzle that intermittently ejects compressed air into the hopper 1 from the lower end side of the hopper 1 may be provided to prevent clogging of the catalyst in the hopper 1. For example, the nozzle is provided at the lower end side of the hopper side wall 11 on the lower side in the conveying direction of the belt conveyor 3, and is 1 Kg / cm 2 from the catalyst discharge port 10 of the hopper 1 into the catalyst flow down passage 9 and obliquely rearward and upward. An air pulse is configured to be ejected at intervals of 1 sec / 2 to 3 sec.
[0078]
[Example 1]
In order to prove that high-speed filling by the method of the present invention is possible, the following experiment was conducted. Cylindrical catalyst particles having a diameter of 5 mm and a height of 6 mm were used and charged into a reaction tube having an inner diameter of 25 mm and a height of 2 m. The input was 1100 g / min.
[0079]
On the other hand, for comparison, the same tube was filled manually by using the same catalyst particles. This filling was performed at about 300 g / min so that the catalyst was charged one by one as much as possible.
[0080]
At this time, the average pressure loss was 277.8 mmH 2 O, and the standard deviation was 3.9 mmH 2 O.
[0081]
On the other hand, the average pressure loss of the reaction tube filled with this catalyst filling machine is 267.7 mmH 2 O and the standard deviation is 3 mmH 2 O. It was found that the variation was smaller than the conventional work.
[0082]
[Example 2]
[Dispersion of catalyst pulverization and catalyst layer pressure loss]
In order to investigate the influence of catalyst pulverization and dust generation on the pressure loss of the catalyst layer, the following experiment was conducted.
[0083]
Cylindrical catalyst particles having a diameter of 5 mm and a height of 6 mm, which are relatively easy to generate dust, were put into a reaction tube having an inner diameter of 25 mm and a height of 2 m using a vibration feeder that easily generates dust. When the reactor was filled at a rate of 150 g / min until the reaction tube was full, the average pressure loss was as large as 320 mmH 2 O, and the standard deviation was as large as 24.78 mmH 2 O.
[0084]
When forced dust was blown from the bottom of the tube to remove the generated dust, the average pressure loss decreased to 301 mmH 2 O, and its standard deviation also decreased to 6.7 mmH 2 O. Therefore, it became clear that the generation of dust greatly contributed to the variation in pressure loss.
[0085]
When the catalyst filling machine according to the present invention was used under the same conditions, the average pressure loss was 307 mmH 2 O and its standard deviation was as small as 3.7 mmH 2 O, indicating superiority to the vibration feeder.
[0086]
[Example 3]
In order to show the usefulness of the catalyst filling machine, it was compared with the case of actually filling the multitubular catalyst reactor and the case where the filling speed was manually performed. In the experiment, the catalyst was charged in the following multi-tubular catalyst reactor. The inner diameter of the tube is 24.5 mm and the length is 4 m. As the catalyst, a cylindrical ceramic supported catalyst having a diameter of 5 mm and a height of 6 mm was used. Comparison data were obtained from manual filling operations. The manual operation was performed by using a funnel and a beaker made of resin, and charging the catalyst one by one into the tube as much as possible.
[0087]
Manual filling was performed at a rate of 4 minutes 30 seconds per one, whereas the catalyst filling machine was filled at 1 minute per one.
[0088]
Moreover, in both cases of manual work and catalyst filling machine, the amount to be filled in one was weighed in advance so that the same amount could be filled.
[0089]
The variation in pressure loss was as follows.
[0090]
Manual filling pressure loss 319mmH 2 O / 4m, standard deviation 12.2mmH 2 O / 4m
Average pressure loss of catalyst filling machine 331mmH 2 0 / 4m, standard deviation 7.6mmH 2 O / 4m
In this way, it was possible to realize filling with high speed and less variation compared to conventional manual work.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing a catalyst supply unit of a catalyst filling machine. FIG. 2 is a perspective view of the catalyst supply unit. FIG. 3 is a plan view of the catalyst supply unit. FIG. 6 is a perspective view of the third embodiment. FIG. 6 is a perspective view of the fourth embodiment.
DESCRIPTION OF SYMBOLS 1 Hopper 2 Reaction tube 3 Conveyor 4 Catalyst supply part 5 Support frame 6 Partition wall 7 Layer thickness setting part 9 Catalyst flow path 10 Catalyst discharge port 12 Inclination guide wall

Claims (4)

反応管にその上方側から粒子状の触媒を供給する触媒供給部を、多数の反応管に各別に対応可能に、前記反応管が並ぶ方向にスライド往復移動自在に支持フレームに支持させ、前記触媒供給部を構成するに、ホッパーから流下する触媒を載せて前記反応管に搬送供給するコンベアを設け、前記コンベアの送り幅を、搬送幅方向に並ぶ所定数の反応管に対応した幅に設定するとともに、コンベア搬送面の上方の搬送空間を各反応管ごとに対応させて前記搬送幅方向で仕切る仕切り壁と、搬送触媒の層厚さを設定する層厚さ設定部とを設け、前記コンベアが設定搬送速度で触媒を搬送するよう構成してある触媒充填機。A catalyst supply section for supplying a particulate catalyst to the reaction tube from above is supported on a support frame so as to be slidably reciprocable in a direction in which the reaction tubes are arranged in order to be able to correspond to each of a plurality of reaction tubes. In order to configure the supply unit, a conveyor is provided that carries the catalyst flowing down from the hopper and is conveyed and supplied to the reaction tube, and the feed width of the conveyor is set to a width corresponding to a predetermined number of reaction tubes arranged in the conveyance width direction. And a partition wall for partitioning the transport space above the conveyor transport surface for each reaction tube in the transport width direction and a layer thickness setting unit for setting the layer thickness of the transport catalyst. A catalyst filling machine configured to convey a catalyst at a set conveyance speed. 前記触媒供給部が、その縦軸芯周りに回転自在に構成してある請求項1記載の触媒充填機。The catalyst filling machine according to claim 1 , wherein the catalyst supply unit is configured to be rotatable around its longitudinal axis . 前記ホッパーの下端側の触媒流下通路を、下端部側ほど前記コンベアの搬送方向下手側に位置する傾斜通路に形成してある請求項1又は2記載の触媒充填機。3. The catalyst filling machine according to claim 1, wherein the catalyst flow-down passage on the lower end side of the hopper is formed in an inclined passage located on the lower side in the transport direction of the conveyor toward the lower end portion . 前記ホッパーの触媒吐出口の垂直方向上方側に触媒の傾斜案内壁を設けて、触媒を前記傾斜案内壁で案内して前記触媒吐出口側に流下させるよう構成してある請求項1,2又は3記載の触媒充填機 An inclined guide wall of a catalyst is provided on the upper side in the vertical direction of the catalyst discharge port of the hopper, and the catalyst is guided by the inclined guide wall to flow down to the catalyst discharge port side. 3. The catalyst filling machine according to 3 .
JP14928198A 1998-05-29 1998-05-29 Catalyst filling machine Expired - Fee Related JP3722621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14928198A JP3722621B2 (en) 1998-05-29 1998-05-29 Catalyst filling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14928198A JP3722621B2 (en) 1998-05-29 1998-05-29 Catalyst filling machine

Publications (2)

Publication Number Publication Date
JPH11333282A JPH11333282A (en) 1999-12-07
JP3722621B2 true JP3722621B2 (en) 2005-11-30

Family

ID=15471782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14928198A Expired - Fee Related JP3722621B2 (en) 1998-05-29 1998-05-29 Catalyst filling machine

Country Status (1)

Country Link
JP (1) JP3722621B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809054B1 (en) * 2000-11-21 2004-10-26 Uop Llc FCC spent catalyst distributor
ZA200200049B (en) 2001-01-25 2002-07-16 Nippon Catalytic Chem Ind Fixed-bed shell-and-tube reactor and its usage.
WO2002074428A2 (en) * 2001-03-16 2002-09-26 Tubemaster, Inc. Device and method for blowing down and measuring the back pressure of chemical reactor tubes
ES2743407T3 (en) 2001-12-28 2020-02-19 Mitsubishi Chem Corp Method for catalytic oxidation in vapor phase
JP4543756B2 (en) 2004-05-31 2010-09-15 三菱化学株式会社 Maintenance method for multi-tube reactors
JP2006142297A (en) * 2005-11-18 2006-06-08 Sumitomo Chemical Co Ltd Method and machine for packing catalyst
JP5326218B2 (en) * 2007-03-29 2013-10-30 住友化学株式会社 Catalyst filling method
JP2009046256A (en) * 2007-08-21 2009-03-05 S & T Kk Dust collector in particulate tank supply part
JP5593600B2 (en) * 2008-03-31 2014-09-24 三菱化学株式会社 Plate-type catalyst layer reactor, method for filling catalyst in the plate-type catalyst layer reactor, and method for producing reaction products using the plate-type catalyst layer reactor
EP2295136A4 (en) 2008-06-30 2011-12-28 Nippon Catalytic Chem Ind Method of packing solid particulate substance into fixed-bed multitubular reactor
JP5358498B2 (en) * 2010-03-25 2013-12-04 住友化学株式会社 Catalyst filling method
JP5150709B2 (en) * 2010-11-11 2013-02-27 住友化学株式会社 Catalyst filling machine and catalyst filling method using the same
JP2018153741A (en) * 2017-03-16 2018-10-04 三菱ケミカル株式会社 Method for filling granular material into multi-tubular reactor
CN113144899B (en) * 2021-04-20 2022-08-30 重庆科技学院 Low-temperature plasma catalysis experimental device for purifying tail gas

Also Published As

Publication number Publication date
JPH11333282A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP3722621B2 (en) Catalyst filling machine
JP4299891B2 (en) Method and apparatus for supplying granular catalyst
US4402643A (en) Catalyst loader
US4701101A (en) Modular multi-tube catalyst loading funnel
US7897120B2 (en) Feeding device for bundled tube reactor
KR100451805B1 (en) Method and apparatus for uniformly charging solid catalyst particles in a tubular reactor
US20010041117A1 (en) Catalytic reactor charging system and method for operation thereof
JP5150709B2 (en) Catalyst filling machine and catalyst filling method using the same
JP2007529301A (en) Equipment for introducing bulk material into tubes, containers, etc.
JP2006142297A (en) Method and machine for packing catalyst
US20060243342A1 (en) Method for filling apparatuses with solids
CN113601041B (en) Self-adjusting clamping alignment marking machine
MX2010013227A (en) Method for blending and loading solid catalyst material into tubular structures.
CN104828522B (en) A kind of axial workpiece feeding device
EP0311712A1 (en) Modular multi-tube catalyst loading funnel
WO1993008907A1 (en) Conveyor trough apparatus for loading catalyst pellets into vertical, tubular reactors
JP4202469B2 (en) Granule supply device
WO1998014392A1 (en) Catalytic reactor charging system and method
CN212863035U (en) Material package conveying mechanism
JP2862863B2 (en) Multi-chamber split type fluidized bed furnace
US20230078727A1 (en) Three-Dimensional Shaping Apparatus And Manufacturing Method For Three-Dimensional Shaped Object
JP7309564B2 (en) Flavoring device and semi-finished product supply method
SU1129239A1 (en) Apparatus for thermochemical treatment of bulk materials with gas flow
CN211048137U (en) Quantitative automatic control feeding device
WO2003029740A1 (en) Raw material loading device for rotary hearth furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees