JP5358498B2 - Catalyst filling method - Google Patents

Catalyst filling method Download PDF

Info

Publication number
JP5358498B2
JP5358498B2 JP2010069126A JP2010069126A JP5358498B2 JP 5358498 B2 JP5358498 B2 JP 5358498B2 JP 2010069126 A JP2010069126 A JP 2010069126A JP 2010069126 A JP2010069126 A JP 2010069126A JP 5358498 B2 JP5358498 B2 JP 5358498B2
Authority
JP
Japan
Prior art keywords
catalyst
filling
reaction tube
photoelectric sensor
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010069126A
Other languages
Japanese (ja)
Other versions
JP2011200772A (en
Inventor
範明 須安
英市 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010069126A priority Critical patent/JP5358498B2/en
Priority to SG2011019437A priority patent/SG174701A1/en
Priority to KR1020110026386A priority patent/KR101814801B1/en
Publication of JP2011200772A publication Critical patent/JP2011200772A/en
Application granted granted Critical
Publication of JP5358498B2 publication Critical patent/JP5358498B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)

Description

本発明は、工業的規模で使用する固定床多管式反応器の各反応管に、触媒を充填する方法に関する。   The present invention relates to a method for filling a catalyst in each reaction tube of a fixed bed multitubular reactor used on an industrial scale.

触媒などの固体粒状物を固定床多管式反応器に充填する方法としては、各反応管の上端開口部から固体粒状物を落下させて充填する方法が一般的である。また、工業的規模で使用される固定床多管式反応器は、数百から数万本の反応管を有するものであり、各反応管への触媒充填方法については、より簡便で反応管ごとの触媒層の充填高さや圧力損失のばらつきが小さく、かつ充填作業の簡便化が求められている。   As a method of filling a solid bed such as a catalyst into a fixed bed multitubular reactor, a method of dropping and filling solid particles from the upper end opening of each reaction tube is common. In addition, the fixed-bed multitubular reactor used on an industrial scale has hundreds to tens of thousands of reaction tubes, and the catalyst filling method for each reaction tube is simpler and easier for each reaction tube. There are demands for a small filling height of the catalyst layer and variations in pressure loss, and simplification of the filling operation.

特許文献1には、複数回にわたって製造した不飽和アルデヒド製造用触媒又は不飽和カルボン酸製造用触媒を固定床多管式反応器の各反応管に充填するにあたり、上記触媒のかさ密度によることなく、一の反応管に充填する上記触媒の充填重量が、各反応管に充填する上記触媒の各充填重量の平均値に対して99〜101%の範囲内になるように、上記触媒を反応管ごとにそれぞれ計量した後、該触媒を一の反応管に充填する速度が、各反応管に充填する各速度の平均値に対して80〜120%の範囲内になるように、該触媒を各反応管にそれぞれ充填することにより、触媒充填後の各反応管における圧力損失のばらつきを良好に抑制し、より簡便に上記触媒を充填する方法が記載されている。
また、特許文献2には、コンベアにより一定の供給速度で各反応管に触媒を供給できて、反応管への触媒の供給作業時間の短縮化と作業者の労力の軽減化を図ることができ、触媒層圧力損失のばらつきを抑えることができる触媒充填機について記載されている。
In Patent Document 1, when the unsaturated aldehyde production catalyst or unsaturated carboxylic acid production catalyst produced multiple times is filled in each reaction tube of a fixed bed multitubular reactor, it does not depend on the bulk density of the catalyst. The catalyst is placed in the reaction tube so that the filling weight of the catalyst filling one reaction tube is within a range of 99 to 101% with respect to the average value of the filling weights of the catalyst filling each reaction tube. After weighing each time, the catalyst is added to each catalyst so that the rate at which the catalyst is filled into one reaction tube is within a range of 80 to 120% with respect to the average value of the rates at which each reaction tube is filled. A method is described in which, by filling each reaction tube, the variation in pressure loss in each reaction tube after filling the catalyst is satisfactorily suppressed, and the catalyst is filled more simply.
Further, in Patent Document 2, a catalyst can be supplied to each reaction tube at a constant supply speed by a conveyor, so that the time for supplying the catalyst to the reaction tube can be shortened and the labor of the operator can be reduced. A catalyst filling machine that can suppress variations in catalyst layer pressure loss is described.

特開2009−82865号公報JP 2009-82865 A 特開平11−333282号公報JP-A-11-333282

しかしながら、上記従来の方法では、反応管ごとに触媒充填量をそれぞれ計量しなければならないことや、各反応管における触媒充填層の高さを所定の高さに調整しにくいといった問題があり、反応管への触媒の供給作業時間の短縮化と作業者の労力の軽減化、触媒層圧力損失のばらつき等の問題を解決することは難しかった。   However, the above-described conventional methods have a problem that the catalyst filling amount must be measured for each reaction tube, and it is difficult to adjust the height of the catalyst packed bed in each reaction tube to a predetermined height. It has been difficult to solve problems such as shortening the time for supplying the catalyst to the pipe, reducing the labor of the worker, and variations in catalyst layer pressure loss.

本発明の課題は、反応管への触媒の供給作業時間を短縮し、且つ作業者の労力を軽減し、触媒層圧力損失のばらつきを抑制する、主として固定床多管式反応器で用いられる触媒の充填方法を提供することである。   An object of the present invention is a catalyst mainly used in a fixed bed multi-tubular reactor that shortens the time for supplying a catalyst to a reaction tube, reduces the labor of an operator, and suppresses variations in catalyst layer pressure loss. It is to provide a filling method.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、触媒を固定床多管式反応器の各反応管に充填するにあたり、拡散反射型の光電センサを反応管に所定高さまで挿入し、該光電センサにて触媒高さを検出し、所定の高さで充填を停止させるように、該触媒を各反応管にそれぞれ充填することにより、上記目的を達成しうることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have used a diffusion-reflective photoelectric sensor up to a predetermined height in a reaction tube when filling a catalyst in each reaction tube of a fixed bed multitubular reactor. Inserting, detecting the catalyst height with the photoelectric sensor, and finding that the above object can be achieved by filling each reaction tube with the catalyst so as to stop the filling at a predetermined height, The present invention has been completed.

すなわち、本発明の触媒の充填方法は、以下の構成を有する。
(1)反応管の上方から固体状の触媒を反応管に充填する方法であって、白画用紙を標準検出物として、90〜1000mmの範囲の検出距離を有し、且つ保護管で覆われた拡散反射型の光電センサを反応管内に挿入した状態で触媒を充填し、前記光電センサが触媒の充填高さを検出し、触媒の充填高さが設定値に到達した時、触媒の充填を停止させ、且つ前記保護管内に上方から空気、不活性ガス、またはこれらの混合ガスを送ることを特徴とする触媒の充填方法。
(2)前記光電センサから出力された検出信号により、反応管への触媒の充填を停止させる制御手段を有する(1)に記載の触媒の充填方法。
(3)前記光電センサから下向きに照射された検出光が充填された触媒の表面で反射して受光部に戻る受光量の大きさがしきい値を超えた時、反応管への触媒の充填を停止させる制御手段を有する(1)または(2)のいずれかに記載の触媒の充填方法
That is, the catalyst filling method of the present invention has the following configuration.
(1) A method of filling from above the reaction tube a solid catalyst in the reaction tube, the White paper as a standard detected object, have a detection distance range of 90~1000Mm, was and covered with a protective tube Filling the catalyst with a diffuse reflection type photoelectric sensor inserted in the reaction tube, the photoelectric sensor detects the catalyst filling height, and stops filling the catalyst when the catalyst filling height reaches the set value It is allowed, and the air from above the protective tube, an inert gas or filling a catalyst, wherein you route these mixed gases.
(2) The catalyst filling method according to (1), further comprising control means for stopping filling of the catalyst into the reaction tube based on the detection signal output from the photoelectric sensor.
(3) Stop filling the reaction tube with the catalyst when the amount of light received by the photoelectric sensor reflected downward from the photoelectric sensor is reflected by the surface of the catalyst and returns to the light receiving unit exceeds a threshold value. The catalyst charging method according to any one of (1) and (2), comprising a control means for controlling the catalyst .

本発明によれば、工業的規模で使用する固定床多管式反応器の各反応管に触媒を充填するにあたり、触媒の重量を予め測ることなく、触媒充填後の各反応管における触媒層高さを所定の高さに設定することができ、より簡便に上記触媒を充填することができる。その結果、圧力損失のばらつきが良好に抑制され、かつ各反応管の触媒の分布状態が同一になりやすいため、反応管ごとに反応状態が異なるのを防止でき、反応管に対する温度調整の容易化が図れ、各反応管内の触媒を寿命に達するまで使い切れるようにして触媒に要するコストを低廉化することができるという効果がある。
また、上記(4)に記載のように、反応管内の光電センサを保護管で覆い、且つこの保護管内に上方から空気、不活性ガス、またはこれらの混合ガスを送るようにすると、触媒充填時に反応管に舞い上がる粉塵により、光電センサの検出光および受光部の感度が低下することを防ぐことができるため、安定した触媒の充填作業を長期間にわたり行うことができるという効果がある。
According to the present invention, when filling a catalyst in each reaction tube of a fixed-bed multitubular reactor used on an industrial scale, the catalyst layer height in each reaction tube after filling the catalyst is not measured without measuring the weight of the catalyst in advance. The height can be set to a predetermined height, and the catalyst can be filled more easily. As a result, variations in pressure loss are well suppressed, and the catalyst distribution in each reaction tube is likely to be the same, preventing reaction states from differing from one reaction tube to another and facilitating temperature adjustment for the reaction tubes. Therefore, there is an effect that the cost required for the catalyst can be reduced by using the catalyst in each reaction tube until it reaches the end of its life.
Further, as described in (4) above, when the photoelectric sensor in the reaction tube is covered with a protective tube and air, an inert gas, or a mixed gas thereof is sent into the protective tube from above, The dust rising in the reaction tube can prevent the detection light of the photoelectric sensor and the sensitivity of the light receiving unit from being lowered, so that there is an effect that a stable catalyst filling operation can be performed over a long period of time.

本発明の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of this invention. 本発明における保護管の一例を示す断面図である。It is sectional drawing which shows an example of the protective tube in this invention.

以下、図を用いて本発明を詳細に説明する。図1は、本発明の一実施形態を示す説明図である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

図示するように、本発明の触媒充填方法は、固定床多管式反応器の筒状の反応管10の内部に上方から拡散反射型の光電センサ1が挿入もしくは設置され、同じく上方から固体状の触媒3がベルトコンベア4にて搬送され、反応管10の下方に落下して充填される。触媒3が、設定された触媒の充填高さに到達した時、前記光電センサ1が触媒の充填高さを検出し、触媒の充填を停止させるものである。   As shown in the figure, in the catalyst filling method of the present invention, a diffuse reflection type photoelectric sensor 1 is inserted or installed from above into a cylindrical reaction tube 10 of a fixed bed multitubular reactor, and is also solid from above. The catalyst 3 is conveyed by the belt conveyor 4 and dropped below the reaction tube 10 to be filled. When the catalyst 3 reaches the set catalyst filling height, the photoelectric sensor 1 detects the catalyst filling height and stops the catalyst filling.

本発明における光電センサ1とは、可視光線、赤外線などの光を光源とし、これを検出部(投光部)から信号光として発射し、検出物体から反射する光を受光部で検出する、いわゆる拡散反射型の光電センサをいう。   The photoelectric sensor 1 in the present invention uses light such as visible light and infrared light as a light source, emits this as signal light from a detection unit (light projecting unit), and detects light reflected from a detection object by a light receiving unit. A diffuse reflection photoelectric sensor.

このような光電センサ1を用いることにより、触媒に接触せずに検出が行なえるため、触媒もセンサ自体も傷めることがない。また、触媒への表面反射によって検出するため、触媒の充填高さを正確に検出できるという利点がある。さらに、センサ1は寿命が長くメンテナンスの必要が殆んどないという利点もある。   By using such a photoelectric sensor 1, detection can be performed without contacting the catalyst, so that neither the catalyst nor the sensor itself is damaged. Moreover, since it detects by the surface reflection to a catalyst, there exists an advantage that the filling height of a catalyst can be detected correctly. Further, the sensor 1 has an advantage that it has a long life and requires little maintenance.

触媒の充填方法としては、上記光電センサ1を反応管10の下方向に検出部および受光部を向けて反応管10の所定の高さまで挿入した後、触媒3の充填を開始し、光電センサ1が充填された触媒3の充填高さを検出し、触媒3があらかじめ設けた充填高さまで到達した時に、触媒充填を停止させるものである。   As a method for filling the catalyst, the photoelectric sensor 1 is inserted to a predetermined height of the reaction tube 10 with the detection unit and the light receiving unit facing downward in the reaction tube 10, and then filling of the catalyst 3 is started. The filling height of the catalyst 3 filled with is detected, and when the catalyst 3 reaches the filling height provided in advance, the filling of the catalyst is stopped.

光電センサ1においては、このセンサ1から投光した検出光が検出物(触媒)の表面で反射してセンサ1の受光部に戻ってくる光量(受光量)は数値化される。この数値は受光量の増減により増減し、センサ1と検出物との距離を検出できる。すなわち、センサ1と検出物の距離が遠いときは、受光量が少ないため、小さな数値で示され、センサ1と検出物の距離が近づくにつれ、受光部に戻ってくる光量が増加するので、数値はしだいに大きくなる。受光量の数値に対するセンサ1と検出物との実際の距離の関係を予め測定しておくことで、受光量の数値からセンサ1と検出物との距離を検出することができる。そして、センサ1の受光量の数値にしきい値を設定することで、触媒の充填において、触媒の充填高さを調整することができる。すなわち、センサ1の挿入位置(L1)を定め、目標とする触媒の充填高さにおける触媒とセンサ1との距離からセンサ1の受光量の数値にしきい値を設定した後に、触媒の充填を開始し、センサ1の受光量の数値により触媒の充填高さを検出し、触媒の充填高さが設定値に到達したときに、触媒の充填を停止させることで、触媒の充填高さを調整することができる。しきい値は触媒の充填高さに応じて任意に設定することができる。   In the photoelectric sensor 1, the amount of light (amount of received light) that the detection light projected from the sensor 1 reflects on the surface of the detection object (catalyst) and returns to the light receiving portion of the sensor 1 is quantified. This numerical value increases / decreases by increasing / decreasing the amount of received light, and the distance between the sensor 1 and the detected object can be detected. That is, when the distance between the sensor 1 and the detected object is long, the amount of received light is small, and therefore, a small numerical value is shown. It grows gradually. By measuring in advance the relationship of the actual distance between the sensor 1 and the detected object with respect to the numerical value of the received light amount, the distance between the sensor 1 and the detected object can be detected from the numerical value of the received light amount. Then, by setting a threshold value for the numerical value of the amount of light received by the sensor 1, the catalyst filling height can be adjusted in the catalyst filling. That is, the insertion position (L1) of the sensor 1 is determined, and after the threshold value is set to the numerical value of the received light amount of the sensor 1 from the distance between the catalyst and the sensor 1 at the target catalyst filling height, the filling of the catalyst is started. Then, the filling height of the catalyst is detected by the numerical value of the amount of light received by the sensor 1, and when the filling height of the catalyst reaches a set value, the filling height of the catalyst is adjusted by stopping the filling of the catalyst. be able to. The threshold value can be arbitrarily set according to the filling height of the catalyst.

光電センサ1において、前記した触媒3の充填高さに応じて、所定のしきい値を超えると、光電センサ1から信号を出力させることができる。この信号によって、例えば、ライトの点滅や警告音を発することにより、作業者に触媒の充填完了を知らせて、手動にて触媒の充填を停止させてもよいし、光電センサ1から制御手段を経て、触媒3を搬送するベルトコンベア4に停止信号を送り、充填を停止させるようにしてもよい。   In the photoelectric sensor 1, a signal can be output from the photoelectric sensor 1 when a predetermined threshold value is exceeded according to the filling height of the catalyst 3 described above. By this signal, for example, a blinking light or a warning sound may be sent to notify the operator of the completion of catalyst filling, and the catalyst filling may be stopped manually or from the photoelectric sensor 1 via the control means. Alternatively, a stop signal may be sent to the belt conveyor 4 that conveys the catalyst 3 to stop the filling.

光電センサ1と検出物の間の検出距離とは、光電センサ1の検出部を検出物へと近づけていき、検出した時、すなわち受光量が増加し始めた時の距離を示すものである。
検出物として、標準検出物を用いた場合の光電センサ1による検出距離は、通常、90〜1000mm、好ましくは100〜500mm、さらに好ましくは100〜300mmであるのがよい。標準検出物としては、例えば白画用紙を用いることができる。
The detection distance between the photoelectric sensor 1 and the detection object indicates a distance when the detection unit of the photoelectric sensor 1 is brought close to the detection object and detected, that is, when the amount of received light starts to increase.
When the standard detection object is used as the detection object, the detection distance by the photoelectric sensor 1 is usually 90 to 1000 mm, preferably 100 to 500 mm, and more preferably 100 to 300 mm. For example, white paper can be used as the standard detection object.

上記した拡散反射型の光電センサ1としては、例えばオムロン(株)製の光ファイバ形の光電センサ(E32シリーズ)や、(株)キーエンス社製の光電センサ(PS/PZシリーズ)等を適宜選択して使用すればよい。なお、光電センサ1はアンプ内蔵型、アンプ分離型のどちらでもよい。   As the above-described diffuse reflection type photoelectric sensor 1, for example, an optical fiber type photoelectric sensor (E32 series) manufactured by OMRON Corporation or a photoelectric sensor (PS / PZ series) manufactured by Keyence Corporation is appropriately selected. And use it. The photoelectric sensor 1 may be either an amplifier built-in type or an amplifier separated type.

(反応管)
本発明で使用する反応管10は、工業的に使用される一般的な固定床多管式のものであり、通常、数千〜数万本の反応管を有するものである。かかる反応管の外径は、通常10〜60mm程度であり、反応管の肉厚は、通常1〜5mm程度であり、反応管の長さは、通常0.3〜10m程度である。
(Reaction tube)
The reaction tube 10 used in the present invention is a general fixed-bed multi-tube type used industrially, and usually has several thousand to several tens of thousands of reaction tubes. The outer diameter of the reaction tube is usually about 10 to 60 mm, the thickness of the reaction tube is usually about 1 to 5 mm, and the length of the reaction tube is usually about 0.3 to 10 m.

(触媒)
本発明において上記反応管10に充填される触媒は、固定床多管式反応器を使用して行われる反応の触媒であれば特に制限はない。例えば、不飽和アルデヒド及び不飽和カルボン酸製造用触媒、不飽和カルボン酸製造用触媒、不飽和ニトリル製造用触媒、及び水素化処理触媒、塩素製造用触媒等が挙げられる。中でも、不飽和アルデヒド及び不飽和カルボン酸製造用触媒や不飽和カルボン酸製造用触媒が好ましい。前記不飽和アルデヒド及び不飽和カルボン酸製造用触媒としては、例えば、プロピレンを分子状酸素により気相接触酸化してアクロレイン及びアクリル酸を製造するための触媒や、イソブチレンやターシャリーブチルアルコールを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を製造するための触媒等が挙げられる。前記不飽和カルボン酸製造用触媒としては、例えば、プロパンを分子状酸素により気相接触酸化してアクリル酸を製造するための触媒や、アクロレインを分子状酸素により気相接触酸化してアクリル酸を製造するための触媒や、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するための触媒等が挙げられる。前記不飽和ニトリル製造用触媒としては、例えば、プロピレン又はプロパンを分子状酸素とアンモニアにより気相接触アンモ酸化してアクリロニトリルを製造するための触媒や、イソブチレンやターシャリーブチルアルコールを分子状酸素とアンモニアにより気相接触アンモ酸化してメタクリロニトリルを製造するための触媒等が挙げられる。前記水素化処理触媒としては、例えば、石油留分中に含まれる硫黄化合物及び/又は窒素化合物を水素と反応させ、製品中の硫黄化合物及び/又は窒素化合物を除去又は低濃度化する触媒及び/又は重質油の軽質化のための水素化分解触媒等が挙げられる。前記塩素製造用触媒としては、例えば、塩化水素および酸素から塩素を製造するための触媒等が挙げられる。
触媒3の形状については、特に制限はなく、例えば、円柱状、球状、リング状等に成形されていてもよい。また、上記触媒のかさ密度は、通常0.8〜1.5g/mlであり、好ましくは0.8〜1.3g/mlであるのがよい。
(catalyst)
In the present invention, the catalyst filled in the reaction tube 10 is not particularly limited as long as it is a catalyst for a reaction performed using a fixed bed multitubular reactor. Examples include catalysts for producing unsaturated aldehydes and unsaturated carboxylic acids, catalysts for producing unsaturated carboxylic acids, catalysts for producing unsaturated nitriles, hydrotreating catalysts, catalysts for producing chlorine, and the like. Among these, unsaturated aldehydes and unsaturated carboxylic acid production catalysts and unsaturated carboxylic acid production catalysts are preferred. Examples of the unsaturated aldehyde and unsaturated carboxylic acid production catalyst include, for example, a catalyst for producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen, and isobutylene and tertiary butyl alcohol in molecular form. Examples include a catalyst for producing methacrolein and methacrylic acid by gas phase catalytic oxidation with oxygen. Examples of the unsaturated carboxylic acid production catalyst include a catalyst for producing acrylic acid by vapor-phase catalytic oxidation of propane with molecular oxygen, and an acrylic acid obtained by vapor-phase catalytic oxidation of acrolein with molecular oxygen. Examples thereof include a catalyst for production and a catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen. Examples of the unsaturated nitrile production catalyst include a catalyst for producing acrylonitrile by vapor phase catalytic ammoxidation of propylene or propane with molecular oxygen and ammonia, and isobutylene and tertiary butyl alcohol with molecular oxygen and ammonia. And a catalyst for producing methacrylonitrile by gas phase catalytic ammoxidation. Examples of the hydrotreating catalyst include a catalyst for reacting a sulfur compound and / or nitrogen compound contained in a petroleum fraction with hydrogen to remove or reduce the concentration of the sulfur compound and / or nitrogen compound in the product. Alternatively, a hydrocracking catalyst for lightening heavy oil can be used. Examples of the catalyst for producing chlorine include a catalyst for producing chlorine from hydrogen chloride and oxygen.
There is no restriction | limiting in particular about the shape of the catalyst 3, For example, you may shape | mold in cylindrical shape, spherical shape, ring shape, etc. The bulk density of the catalyst is usually 0.8 to 1.5 g / ml, preferably 0.8 to 1.3 g / ml.

(触媒の搬送手段)
図1において、本発明では、ベルコトコンベア4で触媒3を搬送し、反応管10の上方から落下させて充填する方法をとっているが、特に制限されず、例えば、搬送レーンに振動を与えて触媒を搬送する装置や、リフトやクレーン等の装置でも代替は可能であるし、また、人の手で行ってもよい。その中でも、ベルトコンベア4を備えた装置や搬送レーンに振動を与えて触媒を搬送する装置を使用する方法が、各反応管10への触媒充填における充填速度を制御しやすいという点で好ましい。固定床多管式反応器のそれぞれの反応管への触媒充填における充填速度が一定になるように各反応管に触媒を充填し、光電センサ1により各反応管の触媒充填高さを均一に設定する。このように、反応管ごとの充填速度が一定になるように触媒を充填し、触媒充填高さを均一に設定することで、触媒充填後の各反応管における圧力損失のばらつきを良好に抑制することができる。
ベルコトコンベア4を備えた装置や、搬送レーンに振動を与えて触媒を搬送する装置による触媒充填では、充填速度は、通常5〜60g/秒、好ましくは5〜40g/秒である。
(Catalyst conveying means)
In FIG. 1, the present invention adopts a method in which the catalyst 3 is transported by the Velcot conveyor 4 and dropped from the upper side of the reaction tube 10 to be filled, but there is no particular limitation. For example, vibration is applied to the transport lane. An apparatus such as a device for transporting the catalyst, a device such as a lift or a crane can be substituted, or may be performed manually. Among these, a method using an apparatus provided with the belt conveyor 4 or an apparatus that conveys the catalyst by applying vibration to the conveyance lane is preferable in terms of easy control of the filling speed in the catalyst filling into each reaction tube 10. Each reaction tube is filled with a catalyst so that the filling rate of the catalyst in each reaction tube of the fixed bed multitubular reactor is constant, and the height of catalyst filling in each reaction tube is set uniformly by the photoelectric sensor 1. To do. In this way, by filling the catalyst so that the filling speed of each reaction tube is constant and setting the catalyst filling height uniformly, variation in pressure loss in each reaction tube after filling the catalyst is well suppressed. be able to.
In the catalyst filling by the apparatus provided with the Berkoto conveyor 4 or the apparatus for conveying the catalyst by applying vibration to the transportation lane, the filling speed is usually 5 to 60 g / second, preferably 5 to 40 g / second.

(光電センサの保護管)
図2に示すように、光電センサ1は、必要に応じて、保護管5に挿入して使用してもよい。そして、保護管5の内側と光電センサ1の外側の間隙には、乾燥空気、不活性ガス、またはこれらの混合ガスが保護管5の側面から分岐した管6から保護管5の下方、すなわち光電センサ1に向かって送られている。不活性ガスとしては、窒素、ヘリウム、アルゴン等が挙げられる。光電センサ1は、反応管5の中央に挿入してもよく、反応管5の壁近くに挿入してもよい。 保護管5の形状としては、特に制限はされない。
保護管5の材質は、特に制限されず、例えばステンレス管、プラスチック管、アルミニウム管、ゴム管等が挙げられる。また、保護管5の寸法も、特に制限されないが、その内径は乾燥空気、不活性ガス、またはこれらの混合ガスが流通する程度に上記間隙を有し、かつ、その外径は触媒の充填を阻害しないよう、反応管の内径に対して小さいものが好ましい。
(Photoelectric sensor protection tube)
As shown in FIG. 2, the photoelectric sensor 1 may be inserted into the protective tube 5 and used as necessary. In the gap between the inside of the protective tube 5 and the outside of the photoelectric sensor 1, dry air, inert gas, or a mixed gas thereof branches from the tube 6 branched from the side surface of the protective tube 5, below the protective tube 5, that is, photoelectric. It is sent toward the sensor 1. Examples of the inert gas include nitrogen, helium, and argon. The photoelectric sensor 1 may be inserted in the center of the reaction tube 5 or near the wall of the reaction tube 5. The shape of the protective tube 5 is not particularly limited.
The material of the protective tube 5 is not particularly limited, and examples thereof include a stainless steel tube, a plastic tube, an aluminum tube, and a rubber tube. Also, the dimensions of the protective tube 5 are not particularly limited, but the inner diameter has the above-mentioned gap to the extent that dry air, inert gas, or a mixed gas thereof circulates, and the outer diameter is filled with the catalyst. In order not to inhibit, a smaller one than the inner diameter of the reaction tube is preferable.

触媒3の反応管10内への落下距離が長いと、反応管10内部は粉塵の多い環境となる。
前記した保護管5は、光電センサ1を内包した状態で、反応管10に挿入または設置され、触媒3の充填時に起こる粉塵から光電センサ1を保護管5が保護し、光電センサ1の精度を守ると同時に、長期に渡りメンテナンスフリーで光電センサ1を使用することが可能になる。
When the falling distance of the catalyst 3 into the reaction tube 10 is long, the inside of the reaction tube 10 becomes an environment with much dust.
The protective tube 5 described above is inserted or installed in the reaction tube 10 in a state where the photoelectric sensor 1 is included, and the protective tube 5 protects the photoelectric sensor 1 from dust that occurs when the catalyst 3 is filled. At the same time, the photoelectric sensor 1 can be used without maintenance for a long time.

なお、特に限定はされないが、検出光および受光部の精度を保つため、光電センサ1は反応管10に接触させないで反応管10の上方から挿入するのがよい。   Although not particularly limited, the photoelectric sensor 1 is preferably inserted from above the reaction tube 10 without contacting the reaction tube 10 in order to maintain the accuracy of the detection light and the light receiving unit.

以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

(参考例)
<触媒の製造>
触媒として、特開2004−188231号公報に記載の方法に基づいて、リン、モリブデン及びバナジウムを含むケギン型へテロポリ酸の酸性塩(直径5mm、高さ5mmの円柱状の押出成形品)を計20回製造した。これらを製造ロットごとに、触媒のかさ密度を測定したところ、かさ密度の平均値は1.15g/ml、最大値は1.20g/ml、最小値は1.09g/mlであった。
なお、かさ密度は以下の方法にて測定した。すなわち、触媒を約190ml秤量し、このときの重量をW(g)とした。次いで、秤量した触媒を内径31mm、容積200mlのガラス製メスシリンダーに充填した後、該メスシリンダーを厚さ2.5mmのゴム製マット上で20mmの高さから40回タッピングして、触媒の充填体積を0.5mlの精度で読み取り、これをV(ml)とした。かさ密度(g/ml)は、W(g)をV(ml)で除することにより算出した。
(Reference example)
<Manufacture of catalyst>
As a catalyst, based on the method described in JP-A No. 2004-188231, an acid salt of a Keggin type heteropolyacid containing phosphorus, molybdenum and vanadium (a cylindrical extruded product having a diameter of 5 mm and a height of 5 mm) was measured. Produced 20 times. When the bulk density of the catalyst was measured for each production lot, the average bulk density was 1.15 g / ml, the maximum value was 1.20 g / ml, and the minimum value was 1.09 g / ml.
The bulk density was measured by the following method. That is, about 190 ml of the catalyst was weighed, and the weight at this time was defined as W (g). Next, after filling the weighed catalyst into a glass graduated cylinder having an inner diameter of 31 mm and a volume of 200 ml, the graduated cylinder was tapped 40 times from a height of 20 mm on a rubber mat with a thickness of 2.5 mm to fill the catalyst. The volume was read with an accuracy of 0.5 ml and this was taken as V (ml). The bulk density (g / ml) was calculated by dividing W (g) by V (ml).

(実施例1)
しきい値を3000とした拡散反射型の光電センサ1としてE32-D32L(オムロン(株)製、反射形:特殊ビームタイプ、白画用紙を標準検出物とした時の標準モードにおける検出距離=150mm)、アンプユニットとしてE3X-DA-21S(オムロン(株)製)を用い、標準モード、しきい値3000にて、触媒の充填試験を行った。その他の条件は以下の通りである。
なお、実施例で用いる光電センサ1は、高速モード、標準モード、高精度モードの3つで測定が行うことができる。この時、光入力の断続から、制御出力が動作または復帰するまでの遅れ時間を、応答時間と呼ぶ。応答時間はそれぞれのモードで異なり、高速モードでは250μs、標準モードでは1ms、高精度モードでは4msとなる。
反応管長さ=1m
反応管内径=25mmφ
センサ挿入長(L1)=300mm
なお、光電センサはステンレス鋼(SUS304)の保護管5(外径8mm、内径6mm)に挿入され、光電センサと保護管の内壁との間隙には、保護管の上部から光電センサの先端の検出部に向かって乾燥空気を一定流量で吹き込んだ。
そして、触媒を20g/sの速度のベルトコンベア4で反応管10の上方から落下させて触媒充填を実施し、しきい値を超えて光電センサ1から出力された停止信号でベルトコンベア4からの触媒供給が停止した時の距離L2、および光電センサと触媒の距離(L2−L1)を測定した。表1に結果を示す。
Example 1
E32-D32L as a diffuse reflection photoelectric sensor 1 with a threshold value of 3000 (Omron Co., Ltd., reflection type: special beam type, detection distance in standard mode when white paper is a standard detection object = 150 mm) Using E3X-DA-21S (manufactured by OMRON Corporation) as an amplifier unit, a catalyst filling test was performed in a standard mode and a threshold value of 3000. Other conditions are as follows.
In addition, the photoelectric sensor 1 used in the embodiment can perform measurement in three modes: a high speed mode, a standard mode, and a high accuracy mode. At this time, the delay time from when the optical input is interrupted until the control output operates or recovers is called response time. The response time differs in each mode, and is 250 μs in the high speed mode, 1 ms in the standard mode, and 4 ms in the high accuracy mode.
Reaction tube length = 1m
Reaction tube inner diameter = 25mmφ
Sensor insertion length (L1) = 300mm
The photoelectric sensor is inserted into a protection tube 5 (outer diameter 8 mm, inner diameter 6 mm) made of stainless steel (SUS304), and the photoelectric sensor tip is detected from the upper part of the protection tube in the gap between the photoelectric sensor and the inner wall of the protection tube. Dry air was blown toward the part at a constant flow rate.
Then, the catalyst is dropped from above the reaction tube 10 by the belt conveyor 4 at a speed of 20 g / s, and the catalyst is filled. The stop signal output from the photoelectric sensor 1 exceeding the threshold value is output from the belt conveyor 4. The distance L2 when the catalyst supply was stopped and the distance (L2-L1) between the photoelectric sensor and the catalyst were measured. Table 1 shows the results.

(実施例2)
光電センサとしてE32-D22L(オムロン(株)製、反射形:特殊ビームタイプ、白画用紙を標準検出物とした時の標準モードにおける検出距離=130mm)を用いた以外は、実施例1と同じ条件にて触媒充填を行った。
(Example 2)
The same conditions as Example 1 except that E32-D22L (Omron Co., Ltd., reflection type: special beam type, detection distance in standard mode when white paper is used as a standard detection object = 130 mm) was used as a photoelectric sensor. The catalyst was charged at.

(実施例3)
光電センサとしてE32-D12R(オムロン(株)製、反射形:標準タイプ、白画用紙を標準検出物とした時の標準モードにおける検出距離=170mm)を用いた以外は、実施例1と同じ条件にて触媒充填を行った。
(Example 3)
The same conditions as in Example 1 were used except that E32-D12R (manufactured by OMRON Corporation, reflection type: standard type, detection distance in standard mode when white paper was used as a standard detection object = 170 mm) was used as the photoelectric sensor. The catalyst was charged.

(比較例1)
光電センサとしてE32−D22(オムロン(株)製、反射形:標準タイプ、白画用紙を標準検出物とした時の標準モードにおける検出距離=80mm)を用いた以外は、実施例1と同じ条件にて触媒充填を行った。
(Comparative Example 1)
The same conditions as in Example 1 were used except that E32-D22 (Omron Co., Ltd., reflection type: standard type, detection distance in standard mode when white paper was used as a standard detection object = 80 mm) was used as the photoelectric sensor. The catalyst was charged.

(比較例2)
光電センサとしてE32−D32(オムロン(株)製、反射形:特殊ビームタイプ、白画用紙を標準検出物とした時の標準モードにおける検出距離=75mm)を用いた以外は、実施例1と同じ条件にて触媒充填を行った。
(Comparative Example 2)
The same conditions as in Example 1 except that E32-D32 (Omron Co., Ltd., reflection type: special beam type, detection distance in standard mode when white paper is used as a standard detection object = 75 mm) was used as the photoelectric sensor. The catalyst was charged at.

これらの試験結果を表1に示す。

Figure 0005358498
表1から明らかなように、実施例1〜3では、触媒に光電センサが埋もれることなく、正確に反応管の所定の高さまで触媒を充填することができた。これに対して、比較例1,2では、センサがしきい値を検出できず埋まってしまった。 The test results are shown in Table 1.
Figure 0005358498
As is clear from Table 1, in Examples 1 to 3, the catalyst could be accurately filled up to a predetermined height of the reaction tube without the photoelectric sensor being buried in the catalyst. On the other hand, in Comparative Examples 1 and 2, the sensor could not detect the threshold value and was buried.

(実施例4)
以下の条件とした以外は実施例1と同様にして触媒充填を行った。
光電センサ:E32-D12R(前出)(白画用紙を標準検出物とした時の高精度モードにおける検出距離=300mm)
モード:高精度モ−ド
しきい値:3000
充填は手充填で1粒ずつ行ったところ、センサの先端から10mm(L2-L1)の位置でしきい値を超えた。
Example 4
The catalyst was charged in the same manner as in Example 1 except that the following conditions were used.
Photoelectric sensor: E32-D12R (supra) (detection distance in high-accuracy mode when white paper is used as standard detection object = 300 mm)
Mode: High-precision mode threshold: 3000
When filling was performed one by one by hand, the threshold value was exceeded at a position 10 mm (L2-L1) from the tip of the sensor.

(実施例5)
以下の形状を有するシリカ・アルミナ触媒(岩尾磁器工業(株)製のシリカ・アルミナ多孔質セラミックスの成形体)を使用し、以下の条件とした以外は、実施例1と同様にして、触媒充填を行った。
(1)球状成形体(直径6.35mm)
(2)リング状成形体(外径6.5mm、内径3.5mm、長さ6.4mm)
光電センサ:E32-D12R(前出)
モード:標準モ−ド
しきい値:3000
充填は手充填で1粒ずつ行った。
その結果、(1)の触媒は、センサの先端から10mm(L2−L1)の位置でしきい値を超えた。(2)の触媒は、センサの先端から8mm(L2−L1)の位置でしきい値を超えた。
なお、以上の実施例では、ベルトコンベア4として単一レーンのベルトコンベアを使用した。また、保護管内への乾燥空気の流量は3L/分とした。
(Example 5)
The catalyst-filling was carried out in the same manner as in Example 1 except that a silica-alumina catalyst having the following shape (molded product of silica-alumina porous ceramics manufactured by Iwao Porcelain Co., Ltd.) was used and the following conditions were used. Went.
(1) Spherical shaped body (diameter 6.35 mm)
(2) Ring-shaped molded body (outer diameter 6.5 mm, inner diameter 3.5 mm, length 6.4 mm)
Photoelectric sensor: E32-D12R (supra)
Mode: Standard mode Threshold: 3000
The filling was performed by hand filling one by one.
As a result, the catalyst of (1) exceeded the threshold at a position 10 mm (L2-L1) from the tip of the sensor. The catalyst of (2) exceeded the threshold at a position 8 mm (L2-L1) from the tip of the sensor.
In the above embodiment, a single-lane belt conveyor is used as the belt conveyor 4. The flow rate of dry air into the protective tube was 3 L / min.

1:光電センサ、2:信号、3:触媒、4:ベルトコンベア、5:保護管、6:分岐管、10:反応管 1: photoelectric sensor, 2: signal, 3: catalyst, 4: belt conveyor, 5: protective tube, 6: branch tube, 10: reaction tube

Claims (3)

反応管の上方から固体状の触媒を反応管に充填する方法であって、
白画用紙を標準検出物として、90〜1000mmの範囲の検出距離を有し、且つ保護管で覆われた拡散反射型の光電センサを反応管内に挿入した状態で触媒を充填し、前記光電センサが触媒の充填高さを検出し、触媒の充填高さが設定値に到達した時、触媒の充填を停止させ、且つ前記保護管内に上方から空気、不活性ガス、またはこれらの混合ガスを送ることを特徴とする触媒の充填方法。
A method of filling a reaction tube with a solid catalyst from above the reaction tube,
The White paper as a standard detected object, have a detection distance range of 90~1000Mm, the catalyst was filled in and the state in which the photoelectric sensor of the diffuse reflection type which is covered with a protective tube inserted into the reaction tube, said photoelectric sensor detecting the filling height of the catalyst, when the filling height of the catalyst has reached the set value, the filling of the catalyst is stopped, that and sending the air from above the protective tube, an inert gas or a mixed gas thereof, A catalyst filling method characterized by the above.
前記光電センサから出力された検出信号により、反応管への触媒の充填を停止させる制御手段を有する請求項1に記載の触媒の充填方法。   The catalyst filling method according to claim 1, further comprising control means for stopping filling of the catalyst into the reaction tube based on a detection signal output from the photoelectric sensor. 前記光電センサから下向きに照射された検出光が充填された触媒の表面で反射して受光部に戻る受光量の大きさがしきい値を超えた時、反応管への触媒の充填を停止させる制御手段を有する請求項1または2に記載の触媒の充填方法。   Control means for stopping the filling of the catalyst into the reaction tube when the magnitude of the amount of light received by the detection light irradiated downward from the photoelectric sensor is reflected on the surface of the catalyst and returned to the light receiving unit exceeds a threshold value The catalyst filling method according to claim 1 or 2, wherein
JP2010069126A 2010-03-25 2010-03-25 Catalyst filling method Expired - Fee Related JP5358498B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010069126A JP5358498B2 (en) 2010-03-25 2010-03-25 Catalyst filling method
SG2011019437A SG174701A1 (en) 2010-03-25 2011-03-17 Method for packing catalyst
KR1020110026386A KR101814801B1 (en) 2010-03-25 2011-03-24 Method for packing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069126A JP5358498B2 (en) 2010-03-25 2010-03-25 Catalyst filling method

Publications (2)

Publication Number Publication Date
JP2011200772A JP2011200772A (en) 2011-10-13
JP5358498B2 true JP5358498B2 (en) 2013-12-04

Family

ID=44878085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069126A Expired - Fee Related JP5358498B2 (en) 2010-03-25 2010-03-25 Catalyst filling method

Country Status (3)

Country Link
JP (1) JP5358498B2 (en)
KR (1) KR101814801B1 (en)
SG (1) SG174701A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590352B2 (en) 2016-03-03 2020-03-17 Exxonmobil Research And Engineering Company Abnormal temperature detection for fixed bed reactors
US10493417B2 (en) * 2017-04-20 2019-12-03 Tubemaster, Inc. Method for loading pellets
US20220236241A1 (en) * 2019-07-09 2022-07-28 Nippon Shokubai Co., Ltd. Distance measuring device and method for measuring distance
CN114682170B (en) * 2020-12-31 2023-04-07 中国石油化工股份有限公司 Catalyst filling device and filling method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118430A (en) * 1984-07-03 1986-01-27 Idemitsu Kosan Co Ltd Packing method of catalyst and packing apparatus of catalyst
JP2941152B2 (en) * 1993-08-27 1999-08-25 出光エンジニアリング株式会社 Method and apparatus for inspecting catalyst surface shape
JP3001791B2 (en) * 1994-01-12 2000-01-24 株式会社ジャパンエナジー Particle filling monitoring method and device
JPH10162699A (en) * 1996-11-28 1998-06-19 Omron Corp Reflection type photoelectric sensor
JP3722621B2 (en) * 1998-05-29 2005-11-30 住友化学株式会社 Catalyst filling machine
FR2923816B1 (en) * 2007-11-15 2010-04-23 Total France DEVICE AND METHOD FOR LOADING SOLID PARTICLES IN AN ENCLOSURE

Also Published As

Publication number Publication date
KR101814801B1 (en) 2018-01-04
JP2011200772A (en) 2011-10-13
SG174701A1 (en) 2011-10-28
KR20110107763A (en) 2011-10-04

Similar Documents

Publication Publication Date Title
JP5358498B2 (en) Catalyst filling method
JP5150709B2 (en) Catalyst filling machine and catalyst filling method using the same
WO2021052264A1 (en) Apparatus and method for distribution article placement detection, robot, distribution device, and controller
JP3318629B2 (en) Liquid suction / discharge device and method
CN108140598B (en) Blowing-out device, blowing-out stocker and blowing-out method
US10610905B2 (en) Purge device, purge stocker, and cleaning method
CN107399674B (en) The control method and control device of trolley crane
JP2006142297A (en) Method and machine for packing catalyst
JP5326218B2 (en) Catalyst filling method
EP3998449B1 (en) Distance-measuring device and distance-measuring method
CN105965311A (en) Sizing and blanking equipment of square steel pipe
JP4781256B2 (en) Filling amount inspection apparatus and method
JP2005195459A (en) Monitor for product conveyance
CN114951009A (en) Package supply method, four-section supply system, equipment and storage medium
JP5012264B2 (en) Capsule transport speed detector
JP5828751B2 (en) Combination scale
JP7105043B2 (en) Container supply unit and automatic analyzer
JP6422764B2 (en) Catalyst filling method
JP2009082865A (en) Method for packing catalyst for unsaturated aldehyde production or catalyst for unsaturated carboxylic acid production
JP5149555B2 (en) Article inspection and sorting system and sorting apparatus
KR102321643B1 (en) Apparatus for transporting boxes to deliver drugs and a system for delivering drugs
JP2007086913A (en) Conveyance truck traveling control method and traveling control system
JP5845978B2 (en) COIL CONVEYING DEVICE AND COIL CONVEYING METHOD
JP4899972B2 (en) How to identify a badly packed reaction tube
JP6174573B2 (en) Method for testing structure and selection method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees