JP3001791B2 - Particle filling monitoring method and device - Google Patents

Particle filling monitoring method and device

Info

Publication number
JP3001791B2
JP3001791B2 JP7015574A JP1557495A JP3001791B2 JP 3001791 B2 JP3001791 B2 JP 3001791B2 JP 7015574 A JP7015574 A JP 7015574A JP 1557495 A JP1557495 A JP 1557495A JP 3001791 B2 JP3001791 B2 JP 3001791B2
Authority
JP
Japan
Prior art keywords
filling
laser beam
deposition surface
scanning
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7015574A
Other languages
Japanese (ja)
Other versions
JPH07242337A (en
Inventor
一成 納屋
秀一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP7015574A priority Critical patent/JP3001791B2/en
Publication of JPH07242337A publication Critical patent/JPH07242337A/en
Application granted granted Critical
Publication of JP3001791B2 publication Critical patent/JP3001791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、容器内への粒子充填の
監視方法及びその装置に関するものであり、各種材料の
合成・分解のための容器内への粒子充填の監視方法及び
その装置に関するものである。特には、石油精製のため
の反応容器内に散布された触媒の堆積面の凹凸状態をリ
アルタイムで監視するべくレーザ光を使用しての三角法
により測定し、また堆積面の分布が一定となるように散
布状態を修正する触媒充填監視方法及びその装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring the filling of particles in a container, and to a method and an apparatus for monitoring the filling of particles in a container for synthesizing and decomposing various materials. Things. In particular, the reaction of the irregularity of the deposition surface of the sprayed catalyst measured Ri by the trigonometric <br/> of using a laser beam to be monitored in real time into the container, also deposition surface for oil refining Distribution so that the distribution of
The present invention relates to a method and an apparatus for monitoring a catalyst filling for correcting a cloth state .

【0002】[0002]

【従来の技術】容器内への粒子の充填状態を監視する必
要があることが多い。例えば、各種材料の合成・分解の
ために触媒が使用される。石油工業においては、触媒を
使用して重質軽油を原料としオクタン価の高いガソリン
にする方法や多量の水素の存在下で触媒を使用して脱硫
と分解とを同時に行わせる方法等触媒を使用することが
多い。触媒としては、接触分解法では、例えば固体の酸
性シリカ、アルミナ粒子、ゼオライト粒子等が使用され
る。一般的には、これら触媒は、巾:0.5〜3mmそ
して長さ:3〜10mmの粒子である。こうした場合、
反応容器に触媒粒子が充填されるが、触媒粒子の充填状
態が操業の効率を左右するので、均一な充填を達成する
目的で反応容器中央上方部に充填装置を設置し、充填装
置から触媒粒子を円錐状に落下せしめる散布充填が行わ
れている。
2. Description of the Related Art It is often necessary to monitor the state of filling of particles in a container. For example, a catalyst is used for synthesizing and decomposing various materials. In the petroleum industry, use catalysts such as a method of using heavy gas oil as a raw material to make gasoline with a high octane number using a catalyst, and a method of simultaneously performing desulfurization and cracking using a catalyst in the presence of a large amount of hydrogen. Often. As the catalyst, in the catalytic cracking method, for example, solid acidic silica, alumina particles, zeolite particles and the like are used. Generally, these catalysts are particles having a width of 0.5 to 3 mm and a length of 3 to 10 mm. In these cases,
The reaction vessel is filled with catalyst particles.However, the state of filling the catalyst particles affects the efficiency of operation, so a filling device is installed in the upper center of the reaction vessel to achieve uniform filling. Is spray-filled so as to fall the cone.

【0003】しかし、散布充填を行っても、触媒粒子堆
積面は凹凸状に波打ち、平坦な堆積面は得られない。凹
凸状態が規定の水準を超えると、操業効率が低下するの
で充填装置に備えられた散布パラメータを制御するなど
して凹凸を修正するようにしなければならない。従来、
散布された粒子の堆積面の凹凸状態の測定は、反応容器
が深いため容易ではなく、充填装置設置面より巻き尺で
適宜の測定点を選んで実測により測定していた。測定は
例えば間隔30分に1回そして測定点数12点として実
施された。そのため、測定に時間を取りしかも大まか
で、更には測定精度は悪く、±50mmとなりまた堆積
面分布は最大400mmにもなった。充填操作を測定の
たびに停止せねばならず、充填操作効率が悪かった。
[0003] However, even when spray filling is performed, the catalyst particle deposition surface is wavy in an uneven shape, and a flat deposition surface cannot be obtained. If the unevenness exceeds a prescribed level, the operating efficiency is reduced. Therefore, it is necessary to correct the unevenness by controlling the spraying parameters provided in the filling device. Conventionally,
It was not easy to measure the unevenness of the deposited surface of the scattered particles because the depth of the reaction vessel was deep, and an appropriate measurement point was selected with a tape measure from the installation surface of the filling device and measured by actual measurement. The measurement was performed, for example, once every 30 minutes and with 12 measurement points. For this reason, the measurement took a long time and was rough, and the measurement accuracy was poor, and the distribution was ± 50 mm, and the distribution of the deposition surface was 400 mm at the maximum. The filling operation had to be stopped for each measurement, and the filling operation efficiency was poor.

【0004】[0004]

【発明が解決しようとする課題】従って、容器内に散布
される粒子の堆積面を均一にするために、それに先立っ
て堆積面の凹凸状態をリアルタイムで一層精確に監視・
測定する技術の開発が要望されている。例えば、触媒の
充填では堆積面凹凸状態の±20mmの測定精度が要求
される。
Therefore, in order to make the deposition surface of the particles sprayed in the container uniform, the unevenness of the deposition surface is monitored more accurately in real time prior to that.
There is a need for the development of measurement techniques. For example, when the catalyst is filled, a measurement accuracy of ± 20 mm in the uneven state of the deposition surface is required.

【0005】[0005]

【課題を解決するための手段】本発明者らは、粒子の充
填中という困難な環境の下で課題解決に向けて、レーザ
光で容器内の粒子堆積面を走査しながら、一定の間隔で
操作点からの反射光を検知して三角法により堆積高さを
測定する方式を想到し、その実現可能性に向けて検討の
結果、レーザ光のビーム径を粒子の断面積以上で、3c
m以下とし走査点を左右前後に移動しながら走査するこ
とにより堆積面の凹凸をリアルタイムで測定することに
成功した。かくして、本発明は、容器内に粒子を充填
ながらレーザ光で堆積面を走査点を左右前後に移動しな
がら走査し、反射光を検知しそして測定時の特定の走査
点の位置、レーザ光出射位置及びレーザ光検知位置から
三角法により堆積高さを測定し、特には測定した堆積高
さをリアルタイム表示し、その際レーザ光のビーム径を
粒子の断面積以上で且つ3cm以下とすることを特徴と
する粒子充填監視方法並びに粒子を充填する容器に粒子
充填高さより上方の水準に取付けられる、レーザ光で粒
子堆積面を走査点を左右前後に移動しながら走査するた
め粒子の断面積以上で且つ3cm以下としたレーザ光ビ
ーム径を有するレーザ光の発生及び走査装置及び走査点
からのレーザ反射光を検出する撮像装置と、測定時の特
定の前記走査点の位置、前記レーザ光発生及び走査装置
の位置及び前記撮像装置の位置から三角法により走査点
の深さを計算する計算装置と、堆積面深さ分布を含むデ
ータを表示する表示装置、特にはリアルタイム表示装置
とを備える粒子充填監視装置を提供する。また、特にそ
の粒子が触媒である粒子充填監視方法及び粒子充填監視
装置をも提供する。更には、本発明は、容器内に石油設
備用触媒を充填しながらレーザ光で堆積面を走査点を左
右前後に移動しながら走査し、反射光を検知しそして測
定時の特定の走査点の位置、レーザ光出射位置及びレー
ザ光検知位置から三角法により堆積高さを測定して測定
した堆積高さをリアルタィム表示し、その際レーザ光の
ビーム径を粒子の断面積以上で且つ3cm以下とし、そ
して堆積面の分布が一定となるように充填装置からの散
布状態を修正することを特徴とする石油設備用触媒充填
監視方法。並びに石油設備用触媒を充填する容器に粒子
充填高さより上方の水準に取付けられる、レーザ光で粒
子堆積面を走査点を左 右前後に移動しながら走査するた
め粒子の断面積以上で且つ3cm以下としたレーザ光ビ
ーム径を有するレーザ光の発生及び走査装置と、走査点
からのレーザ反射光を検出する撮像装置と、測定時の特
定の前記走査点の位置、前記レーザ光発生及び走査装置
の位置及び前記撮像装置の位置から三角法により走査点
の深さを計算する計算装置と、堆積面深さ分布を含むデ
ータをリアルタイム表示する表示装置と、堆積面の分布
が一定となるように散布状態を修正するべく散布用のス
リットの開度及び回転円盤の回転数を調整することので
きる充填装置とを備える石油設備用触媒充填監視装置を
も提供する。
Means for Solving the Problems The present inventors have developed a method for filling particles.
In order to solve the problem in a difficult environment during loading, the reflected light from the operating point is detected at regular intervals while scanning the particle deposition surface in the container with laser light, and the deposition height is determined by triangulation. As a result of studying the feasibility of the measurement method and the feasibility of the method, the laser beam diameter was set to 3c
m or less and scan while moving the scanning point back and forth
As a result, the roughness of the deposition surface was successfully measured in real time. Thus, the present invention provides particles filled into the container
While Do moving the deposition surface in longitudinal and lateral scanning point with a laser beam
Was reluctant scanning, it detects the reflected light and the position of the particular scan point at the time of measurement, measuring the pile height by trigonometry from the laser light emitting position, and laser light detecting position, the deposition height of particular measured
Is displayed in real time, mounted above the level than the particle fill level in a container to fill the particle packing monitoring method and particles characterized by its time and 3cm below the diameter of the laser beam in the above cross-sectional area of the particles A laser beam having a laser beam diameter not less than the cross-sectional area of the particles and not more than 3 cm for scanning the particle deposition surface with the laser light while moving the scanning point back and forth from side to side and from the scanning device and from the scanning point. An imaging device that detects laser reflected light, and a calculation device that calculates the depth of a scanning point by trigonometry from the position of the specific scanning point at the time of measurement, the position of the laser beam generation and scanning device, and the position of the imaging device And a display device for displaying data including a deposition surface depth distribution, in particular, a real-time display device . The present invention also provides a particle filling monitoring method and a particle filling monitoring device in which the particles are catalysts. Further, the present invention provides a method for installing oil in a container.
Scan the deposition surface with laser light to the left while filling the catalyst.
Scan while moving back and forth to the right to detect reflected light and measure
The position of the specific scanning point, the laser beam emission position and the
Measure the deposition height by triangulation from the light detection position
The deposited height is displayed in real time,
The beam diameter should be greater than or equal to the cross-sectional area of the particles and less than or equal to 3 cm.
From the filling device so that the distribution of the deposition surface is constant.
Catalyst filling for petroleum equipment characterized by modifying the cloth condition
Monitoring method. And particles in a container for filling petroleum equipment catalysts
Mounted at a level above the filling height.
They were scanned while moving the child deposition surface scanning points around the left right
Laser beam with a cross-sectional area of not less than 3 cm
For generating and scanning a laser beam having a beam diameter and a scanning point
An imaging device that detects laser reflected light from the
Fixed position of the scanning point, laser beam generation and scanning device
Scanning point by trigonometry from the position of
Calculation device for calculating the depth of sedimentation, and data
Display device that displays data in real time, and distribution of deposition surface
To adjust the spraying condition so that the
By adjusting the lit opening and the rotating speed of the rotating disk
A catalyst filling monitoring device for petroleum equipment equipped with a
Also provide.

【0006】[0006]

【作用】容器への粒子の充填に際してレーザ光で粒子堆
積面を走査し、反射光を検知し、所定の測定間隔で所要
の測定点数において各走査点の堆積深さを三角法で測定
し、堆積面の高さ分布、中心を通る任意の断面トレンド
等を含む堆積面情報をリアルタイムで表示する。
When the particles are filled in the container, the particle deposition surface is scanned with a laser beam, the reflected light is detected, and the deposition depth of each scanning point is measured at a predetermined number of measurement points at a predetermined measurement interval by a triangular method. Deposition surface information including the height distribution of the deposition surface, an arbitrary cross-sectional trend passing through the center, and the like is displayed in real time.

【0007】[0007]

【実施例】以下、実施例として触媒粒子を反応容器内へ
充填する場合について説明する。図1(a)は、反応容
器1において上方部中央に設置された充填装置3から触
媒粒子Cを円錐状に散布充填している様相と、形成され
た凹凸状に波打った触媒粒子の堆積面Sの状態を図示す
ると共に、充填装置とほぼ同じ高さ水準で反応容器壁に
取付けられた粒子充填監視装置としてのレーザ発生及び
走査装置5と撮像装置9とを示す。レーザ発生及び走査
装置5は走査レーザビーム6を発生する。撮像装置9は
所定視野内でレーザ反射光を検知する。更に、測定時の
特定の走査点の位置、レーザ光発生及び走査装置の位置
及び撮像装置の位置から三角法により走査点における堆
積面の深さを計算する計算装置としてのコンピュータ1
1及び堆積面深さ分布を含むデータを表示する装置とし
てのCRT13が、反応容器外部の適宜の位置の監視室
内に設置され、レーザ発生及び走査装置と撮像装置とに
信号線15で接続されている。図1(b)は、充填装置
3、レーザ発生及び走査装置5及び撮像装置9の水準か
ら下方に堆積面Sを見た断面図であり、走査レーザビー
ム6による堆積面Sの走査の様相を示す。走査レーザビ
ーム6により堆積面を一端から他端まで左右に走査しな
がら、一定間隔で走査点の反射光を検出することにより
堆積面の監視が行われる。
[Embodiment] A case where catalyst particles are filled in a reaction vessel will be described below as an embodiment. FIG. 1A shows a state in which catalyst particles C are scattered and filled in a conical shape from a filling device 3 installed in the center of an upper portion in a reaction vessel 1, and the formed undulating and undulating catalyst particles are deposited. The state of the surface S is illustrated, and a laser generation and scanning device 5 and an imaging device 9 as a particle filling monitoring device mounted on the reaction vessel wall at substantially the same level as the filling device are shown. The laser generation and scanning device 5 generates a scanning laser beam 6. The imaging device 9 detects the laser reflected light within a predetermined visual field. Further, a computer 1 as a calculating device for calculating the depth of the deposition surface at the scanning point by trigonometry from the position of a specific scanning point at the time of measurement, the position of the laser beam generation and scanning device, and the position of the imaging device.
1 and a CRT 13 as a device for displaying data including a deposition surface depth distribution are installed in a monitoring room at an appropriate position outside the reaction vessel, and are connected to a laser generation / scanning device and an imaging device by a signal line 15. I have. FIG. 1B is a cross-sectional view of the deposition surface S viewed from below the level of the filling device 3, the laser generation and scanning device 5, and the imaging device 9, and shows how the scanning laser beam 6 scans the deposition surface S. Show. Monitoring of the deposition surface is performed by detecting reflected light at scanning points at regular intervals while scanning the deposition surface from one end to the other with the scanning laser beam 6 from side to side.

【0008】図2は、レーザ発生及び走査装置5及び撮
像装置7の容器壁への取付け様相を示す。レーザ発生及
び走査装置5は、例えばHe−Neレーザ、半導体レー
ザのような適宜のレーザ源7とレーザ光を堆積面を走査
するように左右前後に走査するレーザスキャナ8とから
構成される。プリズムのような光学的手段の傾きを順次
変更することによりレーザビームの出射方向を変更する
ことができる。レーザ源7及びレーザスキャナ8は触媒
粒子充填中触媒のダストが発生するため防塵対策として
エアーライン16に接続される防塵カバー17内部及び
その直下にそれぞれ配置されそして防塵用エアーがエア
ーライン16から防塵カバー17を通して常時吹き出さ
れる。防塵カバー17は適宜の固定金具18により反応
容器壁に取付けられる。撮像装置9は代表的にはCCD
カメラ10であり、同じくエアーライン16に接続され
る防塵カバー19内部に配置され、固定金具20により
反応容器壁に取付けられる。これらは中央に充填装置
(図示省略)を支持するトレイ上に支持される。
FIG. 2 shows how the laser generating and scanning device 5 and the image pickup device 7 are attached to the container wall. The laser generation and scanning device 5 is composed of an appropriate laser source 7 such as a He-Ne laser or a semiconductor laser, and a laser scanner 8 that scans the laser light back and forth and right and left so as to scan the deposition surface. The emission direction of the laser beam can be changed by sequentially changing the inclination of optical means such as a prism. The laser source 7 and the laser scanner 8 are arranged inside the dustproof cover 17 connected to the air line 16 and directly below the dustproof cover 17 as dustproof measures because dust of the catalyst is generated during the filling of the catalyst particles. It is always blown out through the cover 17. The dust cover 17 is attached to the wall of the reaction vessel by an appropriate fixture 18. The imaging device 9 is typically a CCD
The camera 10 is disposed inside a dust-proof cover 19 also connected to the air line 16, and attached to the reaction vessel wall by a fixing bracket 20. These are supported on a tray that supports a filling device (not shown) at the center.

【0009】カメラの視野は、反応容器の内径、カメラ
の焦点距離、堆積面までの距離に依存し、例えば焦点距
離f=12mm撮像レンズの場合、回収画像縦方向(4
00ピクセル)の視野は堆積面距離:−10mでは3m
となりそして堆積面距離:−5mでは1.5mとなり、
全時間域で反応容器内部全景が監視できない状況が存在
しうる。そうした場合には、複数のカメラ、場合によっ
ては複数のレーザ発生及び走査装置が使用されうる。例
えば、焦点距離9mm撮像レンズを使用する場合、4カ
メラ×2レーザ方式、3カメラ×1レーザ方式等が考慮
されうる。図3は4カメラ×2レーザ方式を示したもの
である。−5mの視野及び−10mの視野が点線で示さ
れている。4カメラ×2レーザ方式の方が3カメラ×1
レーザ方式よりもカメラ〜レーザ間隔を広くとれ、広範
囲、高精度の測定が可能となる。
The field of view of the camera depends on the inner diameter of the reaction vessel, the focal length of the camera, and the distance to the deposition surface. For example, in the case of an imaging lens with a focal length f = 12 mm, the vertical direction of the collected image (4
The visual field of (00 pixels) is 3 m at a deposition surface distance of -10 m.
And the deposition surface distance: 1.5 m at -5 m,
There may be situations where the entire view inside the reaction vessel cannot be monitored over the entire time range. In such a case, multiple cameras and possibly multiple laser generating and scanning devices may be used. For example, when a 9 mm focal length imaging lens is used, a 4 camera × 2 laser system, a 3 camera × 1 laser system, or the like can be considered. FIG. 3 shows a 4 camera × 2 laser system. The -5 m field and the -10 m field are indicated by dotted lines. 4 cameras x 2 laser method is 3 cameras x 1
The camera-to-laser distance can be wider than in the laser method, and a wide range and high-precision measurement can be performed.

【0010】レーザビームの走査による堆積面の測定に
おいては、レーザビームが容器底部の堆積面に確実に届
く必要がある。即ち、容器空間を落下する触媒粒子によ
ってレーザビームが遮断されることのないようにしなけ
ればならない。触媒粒子の大きさを例えば1.27mm
直径×3mm長さ、2.12mm直径×5mm長さ、充
填量を例えば600mm/時間、そして充填容器から堆
積面最下層までの距離を例えば10mとし、触媒粒子の
最密充填を仮定して粒子粒子の存在確率を試算したとこ
ろ、直径の小さいレーザビームでは数秒に1回程度レー
ザビームが触媒粒子に遮断されることが判明した。レー
ザビーム径を触媒粒子の断面積以上、好ましくは10倍
以上とすることによりレーザビームの走査による堆積面
の測定が可能であることが確認された。レーザビームの
上限は、必要とする測定精度(数cm以下)とレーザ走
査点スポットの輝度から決定されるべきであり、本発明
目的には通常の反応容器で2〜3cmが上限である。例
えば精度5cmの達成にはレーザビームの直径の上限は
3cmである。ここで、触媒粒子の断面積は、粒子の最
大投影面積(粒子に平行光を照射した時にできる影の面
積の最大値)である。
In measuring a deposition surface by scanning with a laser beam, it is necessary that the laser beam surely reaches the deposition surface at the bottom of the container. That is, it is necessary to prevent the laser beam from being interrupted by the catalyst particles falling in the container space. The size of the catalyst particles is, for example, 1.27 mm
Diameter x 3 mm length, 2.12 mm diameter x 5 mm length, filling amount is, for example, 600 mm / hour, and distance from the filling container to the lowermost layer of the deposition surface is, for example, 10 m. As a result of a trial calculation of the particle existence probability, it was found that the laser beam was interrupted by the catalyst particles about once every several seconds with a laser beam having a small diameter. It was confirmed that by setting the laser beam diameter to be equal to or more than the cross-sectional area of the catalyst particles, and preferably 10 times or more, it is possible to measure the deposition surface by scanning with the laser beam. The upper limit of the laser beam should be determined from the required measurement accuracy (several cm or less) and the brightness of the spot of the laser scanning point. For the purpose of the present invention, the upper limit is usually 2 to 3 cm in a normal reaction vessel. For example, to achieve an accuracy of 5 cm, the upper limit of the diameter of the laser beam is 3 cm. Here, the cross-sectional area of the catalyst particles is the maximum projected area of the particles (the maximum value of the area of the shadow formed when the particles are irradiated with parallel light).

【0011】レーザスキャナの制御及び撮像装置からの
画像処理及び三角測量計算は専用のコンピュータにより
処理を行う。処理データは、磁気ディスク、光磁気ディ
スク等のストレージマシンに保存すると共に、CRT画
面上にリアルタイム表示される。CRT画面には様々の
充填情報が表示されうる。図4は、一例としての堆積面
モニタの基本画面構成図である。堆積面の分布状態、選
択された特定の断面の堆積面表示等がリアルタイム表示
される。
The control of the laser scanner, the image processing from the imaging device, and the triangulation calculation are performed by a dedicated computer. The processed data is stored in a storage machine such as a magnetic disk or a magneto-optical disk and is displayed on a CRT screen in real time. Various filling information can be displayed on the CRT screen. FIG. 4 is a basic screen configuration diagram of a deposition surface monitor as an example. The distribution state of the deposition surface, the display of the deposition surface of the selected specific cross section, and the like are displayed in real time.

【0012】こうして得られた堆積面分布情報により、
堆積面の分布が一定となるように充填装置からの散布状
態が修正される。図5は充填装置3の例を示し、(a)
はその側面図そして(b)は底面スリットを示す。装置
の側面には4か所の側面スリット21が設けられており
そして底面22には(b)に示す下部スリット23が設
けられている。底面には回転円盤24が取付けられてい
る。側面スリットには空圧式の開閉扉が設けられる。得
られた堆積面情報に基づいて、側面及び下部スリットの
開度及び回転円盤の回転数を調整することにより散布状
態を制御することができる。
According to the obtained information on the distribution of the deposited surface,
The state of distribution from the filling device is corrected so that the distribution of the deposition surface is constant. FIG. 5 shows an example of the filling device 3, and (a)
Shows a side view thereof, and (b) shows a bottom slit. The side surface of the device is provided with four side slits 21 and the bottom surface 22 is provided with a lower slit 23 shown in FIG. A rotating disk 24 is attached to the bottom surface. A pneumatic opening and closing door is provided in the side slit. The spraying state can be controlled by adjusting the degree of opening of the side and lower slits and the number of rotations of the rotating disk based on the obtained accumulated surface information.

【0013】(例)直径約3mそして高さ約18mの鋼
製円筒容器に容器上端より約5mに充填装置を固定し、
直径0.5〜1.5mmそして長さ3〜5mmの円筒状
セラミックス触媒粒子(断面積:0.0152cm2
0.0783cm2 )を堆積速度約1m/時間で空間的
に散布し、堆積面をレーザビームにより走査しそして堆
積面の凹凸状態を測定した。測定点数は約100点と
し、測定間隔は約30秒に1回とした。測定は、He−
NeレーザビームスキャンとCCDカメラによる堆積面
の三角測量によった。レーザビームは5mWのHe−N
eレーザを使用した。レーザビーム径は10mmであっ
た。カメラは、焦点距離12mmの1/2インチ36万
画素モノクロCCDカメラを使用した(最低被写体照
度:0.2Lux)。640×400ピクセル画像処理
装置を使用した。堆積面までの距離10mにおいて±1
7mmの測定精度が得られそして堆積面までの距離5m
において±10mmの測定精度が得られた。CRT上に
最新測定面分布、中心を通る任意の線上の断面トレンド
(最新のもの並びに5、10、15及び20分前のも
の)、平均値の表示/任意の点(1点)の数値表示、並
びに任意の点(複数)の任意の時間範囲の数値表示を同
一画面に表示した。図4はそうした表示の一例である。
(Example) A filling device is fixed to a steel cylindrical container having a diameter of about 3 m and a height of about 18 m at a distance of about 5 m from the upper end of the container.
Cylindrical ceramic catalyst particles having a diameter of 0.5 to 1.5 mm and a length of 3 to 5 mm (cross-sectional area: 0.0152 cm 2-
0.0783 cm 2 ) was spatially sprayed at a deposition rate of about 1 m / hour, the deposition surface was scanned with a laser beam, and the unevenness of the deposition surface was measured. The number of measurement points was about 100, and the measurement interval was about once every 30 seconds. The measurement was performed using He-
Ne laser beam scanning and triangulation of the deposition surface with a CCD camera were used. Laser beam is 5mW He-N
An e-laser was used. The laser beam diameter was 10 mm. The camera used was a 1/2 inch 360,000 pixel monochrome CCD camera with a focal length of 12 mm (minimum subject illuminance: 0.2 Lux). A 640 × 400 pixel image processor was used. ± 1 at a distance of 10 m to the deposition surface
Measurement accuracy of 7 mm is obtained and the distance to the deposition surface is 5 m
, A measurement accuracy of ± 10 mm was obtained. The latest measured surface distribution on the CRT, the cross-sectional trend on any line passing through the center (latest and 5, 10, 15 and 20 minutes ago), average value display / numerical display of any point (one point) , And numerical display of an arbitrary point (plural) in an arbitrary time range are displayed on the same screen. FIG. 4 is an example of such a display.

【0014】以上、実施例では、反応容器への触媒粒子
の充填監視について説明したが、本発明は、上記実施例
に限られるものではなく、貯蔵サイロへの穀粒の充填監
視などのその他の粒子の容器への充填監視に広く応用で
きる。また、粒子については、特に限定されないが、粒
子の充填制御が難しく充填監視の必要性の高い、等方性
でない粒子、例えばアスペクト比(長径/短径)が2以
上の粒子が好ましい対象とされる。
In the embodiments described above, the monitoring of the filling of the reaction vessel with the catalyst particles has been described. However, the present invention is not limited to the above-described embodiments, and may be applied to other monitoring such as the monitoring of the filling of the storage silos with the grains. It can be widely applied to monitoring filling of particles into containers. In addition, the particles are not particularly limited, but non-isotropic particles, which are difficult to control for filling the particles and require high monitoring of the filling, such as particles having an aspect ratio (major axis / minor axis) of 2 or more are preferable. You.

【0015】[0015]

【発明の効果】レーザ光で容器内の粒子堆積面を走査
し、反射光を検知して三角法により堆積高さを測定する
という新たな方式により、容器内に散布される粒子の堆
積面の凹凸状態をリアルタイムで±20mmの測定精度
において監視・測定することに成功した。
According to the new method of scanning the particle accumulation surface in the container with laser light, detecting reflected light and measuring the accumulation height by triangulation, the accumulation surface of the particles dispersed in the container is measured. The state of the unevenness was monitored and measured in real time with a measurement accuracy of ± 20 mm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は、反応容器において充填装置から
粒子を散布充填し、堆積面の状態を測定し、それを表示
する本発明の装置の配置状態を示し、そして図1(b)
は走査レーザビームによる堆積面の走査の様相を示す説
明図である。
FIG. 1 (a) shows the arrangement of the apparatus of the present invention for spraying and filling particles from a filling apparatus in a reaction vessel, measuring the state of a deposition surface, displaying it, and FIG. )
FIG. 4 is an explanatory diagram showing a state of scanning a deposition surface by a scanning laser beam.

【図2】レーザ発生及び走査装置並びに撮像装置の容器
壁への取付け様相を示す説明図である。
FIG. 2 is an explanatory view showing how a laser generation and scanning device and an imaging device are attached to a container wall.

【図3】4カメラ×2レーザ方式のレーザ及びカメラ配
置例を示し、−5mの視野及び−10mの視野を点線で
示す。
FIG. 3 shows an example of a laser and camera arrangement of a 4 camera × 2 laser system, and a -5 m field of view and a -10 m field of view are indicated by dotted lines.

【図4】堆積面モニタの基本画面構成図である。FIG. 4 is a basic screen configuration diagram of a deposition surface monitor.

【図5】充填装置例を示し、(a)は側面図そして
(b)は底面スリットを示す。
FIG. 5 shows an example of a filling device, wherein (a) shows a side view and (b) shows a bottom slit.

【符号の説明】[Explanation of symbols]

C 触媒粒子 S 触媒粒子堆積面 1 反応容器 3 充填装置 5 レーザ発生及び走査装置 6 走査レーザビーム 7 レーザ源 8 レーザスキャナ 9 撮像装置 10 カメラ 11 コンピュータ 13 CRT 15 信号線 16 エアーライン 17、19 防塵カバー 18、20 固定金具 21 側面スリット 22 底面 23 下部スリット 24 回転円盤 C Catalyst particles S Catalyst particle deposition surface 1 Reaction vessel 3 Filling device 5 Laser generation and scanning device 6 Scanning laser beam 7 Laser source 8 Laser scanner 9 Imaging device 10 Camera 11 Computer 13 CRT 15 Signal line 16 Air line 17, 19 Dustproof cover 18, 20 Fixing bracket 21 Side slit 22 Bottom 23 Lower slit 24 Rotating disk

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B65G 65/30 - 65/48 B01J 8/02 G01C 3/06 G01F 23/28 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B65G 65/30-65/48 B01J 8/02 G01C 3/06 G01F 23/28

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容器内に粒子を充填しながらレーザ光で
堆積面を走査点を左右前後に移動しながら走査し、反射
光を検知しそして測定時の特定の走査点の位置、レーザ
光出射位置及びレーザ光検知位置から三角法により堆積
高さを測定し、その際レーザ光のビーム径を粒子の断面
積以上で且つ3cm以下とすることを特徴とする粒子充
填監視方法。
1. A laser beam is used to scan a deposition surface while moving a scanning point back and forth and back and forth while filling particles in a container, to detect reflected light, to determine the position of a specific scanning point during measurement, and to emit laser light. A particle filling monitoring method, comprising: measuring a deposition height from a position and a laser light detection position by a trigonometric method, and setting a beam diameter of the laser light to be equal to or larger than a cross-sectional area of a particle and equal to or smaller than 3 cm .
【請求項2】 測定した堆積高さをリアルタイム表示す
る請求項1記載の粒子充填監視方法。
2. The real-time display of the measured deposition height.
The method for monitoring particle filling according to claim 1.
【請求項3】 上記粒子が触媒であることを特徴とする
請求項1乃至2記載の粒子充填監視方法。
3. A particle packing monitoring method according to claim 1 or 2, wherein the said particles are catalyst.
【請求項4】 粒子を充填する容器に粒子充填高さより
上方の水準に取付けられる、レーザ光で粒子堆積面を
査点を左右前後に移動しながら走査するため粒子の断面
積以上で且つ3cm以下としたレーザ光ビーム径を有す
るレーザ光の発生及び走査装置及び走査点からのレーザ
反射光を検出する撮像装置と、測定時の特定の前記走査
点の位置、前記レーザ光発生及び走査装置の位置及び前
記撮像装置の位置から三角法により走査点の深さを計算
する計算装置と、堆積面深さ分布を含むデータを表示す
る表示装置とを備える粒子充填監視装置。
4. A laser beam, which is mounted on a container for filling particles at a level higher than a particle filling height, runs on a particle deposition surface.
A scanning device for generating a laser beam having a laser beam diameter of not less than 3 cm and not more than 3 cm in order to scan while moving the inspection point back and forth , and an imaging device for detecting laser reflected light from the scanning point; A calculation device for calculating the depth of a scanning point by trigonometry from the position of the specific scanning point at the time of measurement, the position of the laser beam generation and scanning device, and the position of the imaging device, and a deposition surface depth distribution A particle filling monitoring device comprising: a display device for displaying data.
【請求項5】 表示装置がリアルタイム表示装置である
請求項4記載の粒子充填監視装置。
5. The display device is a real-time display device.
The particle filling monitoring device according to claim 4.
【請求項6】 上記粒子が触媒であることを特徴とする
請求項4乃至5記載の粒子充填監視装置。
6. The particle filling monitoring device according to claim 4 , wherein the particles are catalysts.
【請求項7】 容器内に石油設備用触媒を充填しながら
レーザ光で堆積面を走査点を左右前後に移動しながら走
査し、反射光を検知しそして測定時の特定の走査点の位
置、レーザ光出射位置及びレーザ光検知位置から三角法
により堆積高さを測定して測定した堆積高さをリアルタ
イム表示し、その際レーザ光のビーム径を粒子の断面積
以上で且つ3cm以下とし、そして堆積面の分布が一定
となるように充填装置からの散布状態を修正することを
特徴とする石油設備用触媒充填監視方法。
7. Filling a container with a catalyst for petroleum equipment
Runs on the deposition surface with laser light while moving the scanning point right and left and back and forth
Scan, detect reflected light, and locate a particular scanning point during the measurement.
From the position, laser beam emission position and laser beam detection position
The height of the sediment is measured by
In this case, the beam diameter of the laser beam is
Not less than 3 cm and the distribution of the deposition surface is constant
To correct the spraying condition from the filling device so that
Characteristic catalyst filling monitoring method for petroleum facilities.
【請求項8】 石油設備用触媒を充填する容器に粒子充
填高さより上方の 水準に取付けられる、レーザ光で粒子
堆積面を走査点を左右前後に移動しながら走査するため
粒子の断面積以上で且つ3cm以下としたレーザ光ビー
ム径を有するレーザ光の発生及び走査装置と、走査点か
らのレーザ反射光を検出する撮像装置と、測定時の特定
の前記走査点の位置、前記レーザ光発生及び走査装置の
位置及び前記撮像装置の位置から三角法により走査点の
深さを計算する計算装置と、堆積面深さ分布を含むデー
タをリアルタイム表示する表示装置と、堆積面の分布が
一定となるように散布状態を修正するべく散布用のスリ
ットの開度及び回転円盤の回転数を調整することのでき
る充填装置とを備える石油設備用触媒充填監視装置。
8. A container filled with a catalyst for petroleum equipment, which is filled with particles.
Particles with laser light, mounted at a level above the filling height
To scan the deposition surface while moving the scanning point left, right, front and back
Laser beam with a cross-sectional area of not less than 3 cm
Laser beam generating and scanning device with
Imaging device that detects the reflected laser light from the
Position of the scanning point of the laser light generation and scanning device
From the position and the position of the imaging device,
A calculator for calculating the depth and data including the sedimentation surface depth distribution
The display device that displays the data in real time and the distribution of the deposition surface
To correct the spraying condition so that it is constant,
It is possible to adjust the opening of the slot and the rotating speed of the rotating disk.
A catalyst filling monitoring device for petroleum equipment, comprising:
JP7015574A 1994-01-12 1995-01-06 Particle filling monitoring method and device Expired - Lifetime JP3001791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7015574A JP3001791B2 (en) 1994-01-12 1995-01-06 Particle filling monitoring method and device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-13096 1994-01-12
JP1309694 1994-01-12
JP7015574A JP3001791B2 (en) 1994-01-12 1995-01-06 Particle filling monitoring method and device

Publications (2)

Publication Number Publication Date
JPH07242337A JPH07242337A (en) 1995-09-19
JP3001791B2 true JP3001791B2 (en) 2000-01-24

Family

ID=26348828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7015574A Expired - Lifetime JP3001791B2 (en) 1994-01-12 1995-01-06 Particle filling monitoring method and device

Country Status (1)

Country Link
JP (1) JP3001791B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731994A (en) * 1995-02-16 1998-03-24 Japan Energy Corporation Method of packing particles into vessels and apparatus therefor
JP5358498B2 (en) * 2010-03-25 2013-12-04 住友化学株式会社 Catalyst filling method
JP5150709B2 (en) * 2010-11-11 2013-02-27 住友化学株式会社 Catalyst filling machine and catalyst filling method using the same
CN107357195A (en) * 2017-06-15 2017-11-17 江南大学 A kind of low-power consumption grain feelings measuring system based on STM32
JP2019089584A (en) * 2017-11-15 2019-06-13 住友金属鉱山株式会社 Supply method of powder to powder supply device and powder supply device
AU2019206456B2 (en) * 2018-01-11 2021-10-07 Shell Internationale Research Maatschappij B.V. Wireless monitoring and profiling of reactor conditions using plurality of sensor-enabled RFID tags and multiple transceivers
EP3791363A1 (en) * 2018-05-09 2021-03-17 trinamiX GmbH Method and devices for determining a filling level in at least one storage unit
CN113566705A (en) * 2021-07-30 2021-10-29 中南粮油食品科学研究院有限公司 Grain bin internal visualization system based on Internet of things and monitoring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637305U (en) * 1986-06-30 1988-01-19
JPH03237311A (en) * 1990-02-14 1991-10-23 Mitsubishi Electric Corp Inage input device
JPH0769157B2 (en) * 1990-09-03 1995-07-26 株式会社間組 Storage amount measurement method

Also Published As

Publication number Publication date
JPH07242337A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
EP0727250B1 (en) Method of packing particles into vessels
US4653109A (en) Image analysis system and method
JP3001791B2 (en) Particle filling monitoring method and device
US7289876B2 (en) Container crane, and method of determining and correcting a misalignment between a load-carrying frame and a transport vehicle
US8217831B2 (en) System for determining relief on a granule filling surface in a petrochemical reactor
JP3604542B2 (en) Apparatus and method for detecting plate-like object and partition in container
JP2939179B2 (en) Particle filling monitoring method
JPS6310764B2 (en)
JP3265724B2 (en) Charged particle beam equipment
JP2939178B2 (en) Method for smoothing particle filling surface in particle filling device
JPH05272949A (en) Method for evaluating glass plate surface
JP2003315267A (en) Method for monitoring dust
JPH07128214A (en) Coke grain size measuring method
JP3059692B2 (en) Liquid level measurement and monitoring method for liquid substances
JP4411373B2 (en) Surface inspection apparatus and method
JP2750794B2 (en) Wafer surface defect detection method and quality evaluation device
JPH0769157B2 (en) Storage amount measurement method
JPH10185515A (en) Coil position detector
JP4176899B2 (en) Scanning position measuring method and apparatus in scanning optical system
JP2000298054A (en) Method and device for measuring liquid level
EP0281695A1 (en) Image analysis system and method
JPH10185519A (en) Coil locator
JPH01182281A (en) Silo
JP2000337844A5 (en)
JPH10148579A (en) High temperature region detecting device in refuse pit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term