JP5012264B2 - Capsule transport speed detector - Google Patents

Capsule transport speed detector Download PDF

Info

Publication number
JP5012264B2
JP5012264B2 JP2007178275A JP2007178275A JP5012264B2 JP 5012264 B2 JP5012264 B2 JP 5012264B2 JP 2007178275 A JP2007178275 A JP 2007178275A JP 2007178275 A JP2007178275 A JP 2007178275A JP 5012264 B2 JP5012264 B2 JP 5012264B2
Authority
JP
Japan
Prior art keywords
capsule
speed
position detection
transport
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007178275A
Other languages
Japanese (ja)
Other versions
JP2009014594A (en
Inventor
康生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2007178275A priority Critical patent/JP5012264B2/en
Publication of JP2009014594A publication Critical patent/JP2009014594A/en
Application granted granted Critical
Publication of JP5012264B2 publication Critical patent/JP5012264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カプセル輸送システムにおけるカプセルの輸送速度検出装置に係り、特に位置検出センサによるカプセル検出を基にした輸送速度検出に関する。   The present invention relates to a capsule transport speed detection device in a capsule transport system, and more particularly to transport speed detection based on capsule detection by a position detection sensor.

カプセル輸送システムは、輸送起点と終点に設けられた「積み込み」、「荷下ろし」の各ステーション間にパイプライン(エア輸送チューブ)を敷設し、この中にブロワ等で空気流を作り、積み込み側から荷を積載したカプセル(通常は複数連結)を一定の短い時間間隔で次々とパイプランに送り込み、空気流により走行するカプセルで部材を輸送する。   In the capsule transport system, pipelines (air transport tubes) are laid between the “loading” and “unloading” stations provided at the transport start and end points, and an air flow is created in this with a blower, etc. The capsules loaded with a load (usually a plurality of linked ones) are sent to the pipeline one after another at regular short time intervals, and the members are transported by capsules that run by airflow.

図3は、カプセル輸送システムの構成例を示す。輸送起点になる輸送部材の積込み側は、輸送部材(加工部品、伝票など)をマテリアルハンドリング装置1で一定量だけ取り出し、これをカプセルローダ2によってカプセル(筒状容器)内に積載する。輸送部材を積載した積載カプセルはエア輸送チューブによって荷卸し側に輸送する。   FIG. 3 shows a configuration example of the capsule transportation system. On the loading side of the transportation member serving as the transportation starting point, a certain amount of the transportation member (processed part, slip, etc.) is taken out by the material handling device 1 and loaded into a capsule (tubular container) by the capsule loader 2. The loaded capsule loaded with the transport member is transported to the unloading side by an air transport tube.

エア輸送チューブは、積込み側のブロワ3によって積載カプセルの後方からエア圧を加えることで積載カプセルをエア輸送チューブ内に走行させ、輸送終点になる荷卸し側のダンパ4によってエア輸送チューブ内のエア圧を下げることで積載カプセルを減速し、カプセルアンローダ5の所定位置に停止させる。   The air transport tube is configured such that air pressure is applied from behind the loaded capsule by the loading side blower 3 to cause the loaded capsule to travel into the air transport tube, and the unloading side damper 4 serving as a transport end point causes the air in the air transport tube to move. By lowering the pressure, the loaded capsule is decelerated and stopped at a predetermined position of the capsule unloader 5.

カプセルアンローダ5に移送された積載カプセルからはマテリアルハンドリング装置6によって輸送部材を取り出す。輸送部材が取り出された空カプセルは、荷卸し側のブロワ7によってエア輸送チューブ内を走行させ、積込み側のダンパ8によって空カプセルを減速させ、カプセルローダ2位置に停止させる。   The transporting member is taken out from the loaded capsule transferred to the capsule unloader 5 by the material handling device 6. The empty capsule from which the transport member has been taken out travels in the air transport tube by the unloading side blower 7, decelerates the empty capsule by the loading side damper 8, and stops at the capsule loader 2 position.

積込み側の制御装置9はマテリアルハンドリング装置1とカプセルローダ2とブロワ3およびダンパ8に必要な電気的および機械的な制御をコンピュータ制御で行う。同様に、荷卸し側の制御装置10は、マテリアルハンドリング装置6とカプセルアンローダ5とブロワ7およびダンパ4に必要な電気的および機械的な制御をコンピュータ制御で行う。   The loading-side control device 9 performs electrical and mechanical control necessary for the material handling device 1, the capsule loader 2, the blower 3, and the damper 8 by computer control. Similarly, the control device 10 on the unloading side performs electrical and mechanical control necessary for the material handling device 6, the capsule unloader 5, the blower 7, and the damper 4 by computer control.

これら制御装置9または10は、積載カプセルまたは空カプセルの輸送速度制御も行う。この輸送速度制御は、カプセル自体に何ら動力機構が無く、エア輸送チューブ中のカプセルの輸送方向に沿って、数多く配列した位置検出センサ11,12位置を通過するカプセルを検出し、この位置検出を基にしてダンパ4,8での圧力制御し、カプセルを減速し、所定位置に停止させる。この制御には、センサ11,12によるカプセル位置の把握、前カプセルもしくは停止位置までの距離演算、カプセル速度の算出及び減速制御を行う。   These control devices 9 or 10 also control the transport speed of the loaded capsule or empty capsule. In this transport speed control, there is no power mechanism in the capsule itself, and capsules passing through a number of position detection sensors 11 and 12 arranged along the transport direction of the capsule in the air transport tube are detected, and this position detection is performed. Based on the pressure control by the dampers 4 and 8, the capsule is decelerated and stopped at a predetermined position. In this control, the capsule position is grasped by the sensors 11 and 12, the distance to the previous capsule or the stop position is calculated, the capsule speed is calculated, and the deceleration control is performed.

これらの輸送速度制御には高速な制御を行う制御装置9,10が必要であるが、カプセルの輸送方向に配列された位置検出センサ11,12が予定通り動作しないと、大きな制御ずれを引き起こし、輸送不良もしくは設備損傷を引き起こすものとなる。とりわけ、カプセル速度演算においては通常輸送速度〜停止位置制御までのダンパ圧力制御を行うため、カプセルの速度検出は重要なものといえる。   These transport speed controls require the control devices 9 and 10 that perform high-speed control. However, if the position detection sensors 11 and 12 arranged in the capsule transport direction do not operate as planned, a large control deviation occurs. It causes transportation failure or equipment damage. In particular, in the capsule speed calculation, the damper pressure control from the normal transport speed to the stop position control is performed, so it can be said that the capsule speed detection is important.

従来、カプセルの輸送速度検出には、その位置を複数個所で検出する各位置検出センサの検出間隔時間を基に速度計算を行っている。すなわち、速度Vはセンサ間隔Lと検出間隔時間Tから、V=L/Tで求める(例えば、特許文献1参照)。
特開平8−2674号公報
Conventionally, the speed of capsule transport is detected based on the detection interval time of each position detection sensor that detects the position at a plurality of locations. That is, the speed V is obtained from the sensor interval L and the detection interval time T by V = L / T (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 8-2674

前記のように、カプセルを検出する各位置検出センサの検出間隔時間を基にカプセルの速度計算を行う場合、図4に示すタイミングで速度計算がなされる。2つの位置検出センサAとセンサBを配列し、それぞれの位置検出センサA、BでカプセルC1、C2を順次検出する場合、カプセルC1、C2に対する位置検出センサA,Bの検出間隔時間T1、T2を基に速度V1、V2を求める。このとき、カプセルの輸送速度と位置検出センサの検出間隔時間は下記の表に示すようになる。   As described above, when the capsule velocity is calculated based on the detection interval time of each position detection sensor that detects the capsule, the velocity is calculated at the timing shown in FIG. When two position detection sensors A and B are arranged and the capsules C1 and C2 are sequentially detected by the position detection sensors A and B, the detection interval times T1 and T2 of the position detection sensors A and B with respect to the capsules C1 and C2 are detected. The speeds V1 and V2 are obtained based on the above. At this time, the transport speed of the capsule and the detection interval time of the position detection sensor are as shown in the following table.

Figure 0005012264
Figure 0005012264

ここで、カプセルの輸送速度は前カプセル位置(停止位置)との距離とエア圧力の制御テーブルにより規定される。一方、位置検出センサは停止位置前に相当数が配置されているが、カプセル間隔が同一の場合、カプセルが高速度の場合(通常走行時)は、位置検出センサの検出間隔時間T1が短いため、停止の始まりにおけるダンパ制御(速度制御)の問題はない。しかし、カプセルが低速度の場合は、カプセルの検出間隔時間が遅くなる(センサ動作間隔時間T2が長くなる)ため、前記の式V=L/Tの演算精度が下がり、粗いダンパ制御となってカプセルの停止位置精度も悪くなる。   Here, the transport speed of the capsule is defined by the distance from the previous capsule position (stop position) and the air pressure control table. On the other hand, a considerable number of position detection sensors are arranged before the stop position. However, when the capsule interval is the same, or when the capsule is at a high speed (during normal travel), the detection interval time T1 of the position detection sensor is short. There is no problem of damper control (speed control) at the beginning of the stop. However, when the capsule is at a low speed, the capsule detection interval time is delayed (the sensor operation interval time T2 is increased), so that the calculation accuracy of the above equation V = L / T is lowered and coarse damper control is performed. The capsule stop position accuracy also deteriorates.

このような課題を解消するため、停止位置付近にさらに数多くの位置検出センサを設け、速度検出値を基にした減速度制御を行うことになるが、これでは位置検出センサ数が多いものとなりメンテナンス工数の増加にもなる。   In order to solve such problems, more position detection sensors are provided near the stop position and deceleration control based on the speed detection value is performed. However, this increases the number of position detection sensors, and maintenance is performed. It also increases man-hours.

上記の位置検出センサの検出間隔時間を基にしたカプセル速度検出では、速度変化中(高速→低速)の場合には、実速度より速い速度検出結果が得られやすく、停止位置精度が悪くなる。また、カプセル速度が低下し過ぎた場合(カプセルが異常速度の場合)、最終停止位置での停止制御に際して、カプセル速度を現在速度から加速しなければならない場合が有り、この停止位置付近での加速制御は停止時の急制動につながるおそれがあり、安定した輸送が確保できない。   In capsule speed detection based on the detection interval time of the position detection sensor, when the speed is changing (high speed → low speed), a speed detection result faster than the actual speed is easily obtained, and the stop position accuracy is deteriorated. In addition, when the capsule speed is too low (when the capsule is at an abnormal speed), the capsule speed may need to be accelerated from the current speed during stop control at the final stop position, and acceleration near this stop position may occur. Control may lead to sudden braking when stopped, and stable transportation cannot be ensured.

本発明の目的は、少数の位置検出センサを使って広範囲のカプセル速度を精度よく検出し、カプセルの高精度速度制御を可能にしたカプセルの輸送速度検出装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a capsule transport speed detection device that can accurately detect a wide range of capsule speeds using a small number of position detection sensors and enables high-precision speed control of the capsules.

本発明は、前記の課題を解決するため、カプセルの輸送速度が高速の場合には互いに離間した少なくとも2台の位置検出センサによる検出間隔時間を基に速度検出し、低速の場合には1台の位置検出センサの位置を通過するカプセルの通過時間を基にカプセル速度を検出するようにしたもので、以下の構成を特徴とする。   In order to solve the above problems, the present invention detects the speed based on the detection interval time of at least two position detection sensors separated from each other when the transport speed of the capsule is high, and one when the speed is low. The capsule speed is detected on the basis of the passage time of the capsule passing through the position of the position detection sensor, and has the following configuration.

(1)カプセル輸送パイプライン中のカプセルの輸送方向に沿って、少なくとも2台の位置検出センサを配置し、各位置検出センサの位置を通過するカプセルの検出によってカプセルの輸送速度を検出するカプセルの輸送速度検出装置であって、
前記の2台の位置検出センサのうち、前位置の位置検出センサは、カプセルの検出と、カプセルの通過時間を基にカプセル速度を検出できる速度検出機能付き位置検出センサとし、
カプセル速度が高速範囲か低速範囲のいずれの範囲にあるかを判定するものとして設定された設定速度と、前記速度検出機能付き位置検出センサにより検出されたカプセル速度と、を比較してカプセル速度が低速範囲か高速範囲であるかを判定し、カプセル速度が低速範囲の場合は前記速度検出機能付き位置検出センサにおけるカプセルの通過時間を基にカプセル速度を検出し、カプセル速度が高速範囲の場合は2台の位置検出センサのカプセル検出間隔時間を基にカプセル速度を検出する制御手段を備えたことを特徴とする。
(1) A capsule having at least two position detection sensors arranged in the capsule transport pipeline along the transport direction of the capsule, and detecting the transport speed of the capsule by detecting the capsule passing through the position of each position detection sensor. A transport speed detector,
Of the two position detection sensors, the position detection sensor at the front position is a position detection sensor with a speed detection function capable of detecting the capsule speed based on the capsule detection and the capsule passage time.
The capsule speed is determined by comparing the set speed set to determine whether the capsule speed is in the high speed range or the low speed range with the capsule speed detected by the position detection sensor with the speed detection function. Determine whether it is in the low speed range or the high speed range. If the capsule speed is in the low speed range, the capsule speed is detected based on the capsule passage time in the position detection sensor with the speed detection function. If the capsule speed is in the high speed range, Control means for detecting the capsule speed based on the capsule detection interval time of the two position detection sensors is provided.

(2)前記速度検出機能付き位置検出センサは、ストライカを装着し、このストライカの受圧板面積変化を基にカプセル速度を検出する構成にしたことを特徴とする。   (2) The position detection sensor with a speed detection function is characterized in that a striker is attached and the capsule speed is detected based on a change in the pressure receiving plate area of the striker.

(3)前記速度検出機能付き位置検出センサは、2台の位置検出センサを近接配置し、両センサのカプセル検出間隔時間を基にカプセル速度を検出する構成にしたことを特徴とする。   (3) The position detection sensor with a speed detection function is characterized in that two position detection sensors are arranged close to each other and the capsule speed is detected based on the capsule detection interval time of both sensors.

以上のとおり、本発明によれば、カプセルの輸送速度が高速の場合には互いに離間した少なくとも2台の位置検出センサによる検出間隔時間を基に速度検出し、低速の場合には1台の位置検出センサの位置を通過するカプセルの通過時間を基にカプセル速度を検出するようにしたため、少数の位置検出センサを使って広範囲のカプセル速度を精度よく検出し、カプセルの高精度速度制御が可能になる。   As described above, according to the present invention, when the transport speed of the capsule is high, the speed is detected based on the detection interval time between at least two position detection sensors separated from each other. Capsule speed is detected based on the passage time of the capsule that passes through the position of the detection sensor, so a wide range of capsule speeds can be accurately detected using a small number of position detection sensors, enabling high-precision speed control of the capsule. Become.

図1は、本発明の実施形態を示すカプセルの輸送速度検出とダンパ制御の制御手順を示す。この制御手順は図3における制御装置9または10に搭載するコンピュータのソフトウェアとして構成される。   FIG. 1 shows a control procedure of capsule transport speed detection and damper control according to an embodiment of the present invention. This control procedure is configured as computer software installed in the control device 9 or 10 in FIG.

また、本実施形態では、説明を簡単にするために、カプセルの輸送速度が高速の場合は2台の位置検出センサ間の検出間隔時間による速度検出と速度制御を行い、輸送速度が低速の場合は前位置の1台の位置検出センサによる速度検出と速度制御を行う例で説明する。   In this embodiment, for ease of explanation, when the transport speed of the capsule is high, speed detection and speed control are performed based on the detection interval time between the two position detection sensors, and the transport speed is low. Will be described using an example in which speed detection and speed control are performed by a single position detection sensor at the front position.

カプセルの輸送方向で前位置になる位置検出センサにはストライカを装着したものを使用し、そのカプセル通過時間を基にカプセル速度を検出可能にした速度検出機能付き位置検出センサとする。ストライカは、位置検出センサの被検出部材のことであり、カプセルがストライカ直下を通過するときの受圧板面積変化を基にカプセル速度を1つの位置検出センサで検出可能なものである。例えば、図2に示すように、ストライカの直下にカプセル先端が達したときから受圧面積が増加を始め、カプセルがストライカの全面に亘って位置するときには受圧面積が最大で一定値になり、カプセルの最後尾が受圧板の直下を抜けるときから受圧面積が減少を始める。この受圧面積変化の信号を波形整形でパルス化し、このON/OFF時間(カプセル通過時間)Tsとストライカの長さ(カプセルの輸送方向の長さ)からカプセルの輸送速度を検出することができる。   A position detection sensor equipped with a striker is used as a position detection sensor at the front position in the transport direction of the capsule, and a position detection sensor with a speed detection function capable of detecting the capsule speed based on the capsule passage time. The striker is a member to be detected of the position detection sensor, and the capsule speed can be detected by one position detection sensor based on the pressure plate area change when the capsule passes directly under the striker. For example, as shown in FIG. 2, the pressure receiving area starts to increase when the capsule tip reaches just below the striker, and when the capsule is located over the entire surface of the striker, the pressure receiving area becomes a maximum and constant value. The pressure receiving area starts to decrease when the last tail passes directly under the pressure receiving plate. The pressure change area signal is pulsed by waveform shaping, and the capsule transport speed can be detected from the ON / OFF time (capsule passage time) Ts and the length of the striker (length in the capsule transport direction).

図1において、ストライカを装着した前位置の位置検出センサがその位置にカプセルが位置したことを検出したとき、その時刻t1を記憶し(S1)、さらにストライカの受圧面積変化を基にカプセル速度Vaを算出し(S2)、このカプセル速度Vaが設定速度Vs以下か否かをチェックする(S3)。設定速度Vsは、カプセル速度が高速範囲と低速範囲のいずれの範囲にあるかを判定するものとして予め設定しておく。   In FIG. 1, when the position detection sensor at the previous position where the striker is mounted detects that the capsule is located at that position, the time t1 is stored (S1), and the capsule speed Va is further based on the change in the pressure receiving area of the striker. Is calculated (S2), and it is checked whether the capsule speed Va is equal to or lower than the set speed Vs (S3). The set speed Vs is set in advance to determine whether the capsule speed is in the high speed range or the low speed range.

カプセル速度Vaが設定速度Vs以下の低速範囲になる場合、速度Vaを基にしてダンパの圧制御を行い、カプセルの減速制御と停止制御を行う(S4)。逆に、カプセル速度Vaが設定速度Vsよりも高い高速範囲になる場合、前位置の位置検出センサよりも下流の位置(ダンパ側に近い位置)に離間して設けられた後位置の位置検出センサがカプセルを検出したときの時刻t2を記憶し(S5)、この時刻t2と先に記憶した時刻t1との偏差(検出間隔時間:t2−t1)で両位置検出センサの間隔Lを除算することでカプセルの速度Vbを算出し(S6)、この速度Vbを基にしてダンパの圧制御を行い、カプセルの減速制御と停止制御を行う(S7)。   When the capsule speed Va falls within the low speed range below the set speed Vs, the damper pressure is controlled based on the speed Va, and the capsule deceleration control and stop control are performed (S4). On the other hand, when the capsule speed Va is in a high speed range higher than the set speed Vs, the position detection sensor at the rear position provided apart from the position detection sensor at the downstream position (position close to the damper side). Stores the time t2 when the capsule is detected (S5), and divides the interval L between the two position detection sensors by the deviation (detection interval time: t2-t1) between this time t2 and the previously stored time t1. Then, the capsule speed Vb is calculated (S6), the damper pressure control is performed based on the speed Vb, and the capsule deceleration control and stop control are performed (S7).

以上の制御手順によれば、カプセル速度検出と速度制御には前位置と後位置の2台の位置検出センサによって低速から高速までの広い速度範囲で、高い精度の速度検出と速度制御ができる。   According to the above control procedure, capsule speed detection and speed control can be performed with high accuracy speed control and speed control in a wide speed range from low speed to high speed by using two position detection sensors at the front position and the rear position.

また、カプセル速度が設定速度Vs以下の低速の場合は、ストライカを装着した前位置の位置検出センサの位置をカプセルが通過するときにその速度を検出して早期のダンパ制御ができ、しかもストライカ直下を通過するカプセル走行時間が比較的長いことから、速度検出精度を高めて高精度のダンパ制御ができる。   Also, when the capsule speed is lower than the set speed Vs, when the capsule passes through the position of the position detection sensor at the previous position where the striker is mounted, the speed is detected and early damper control can be performed. Since the capsule traveling time passing through is relatively long, the speed detection accuracy can be increased and highly accurate damper control can be performed.

また、カプセルが位置検出センサを通過中に速度変化を起こした場合にも、カプセルが低速にあるため、その速度変化は極めて小さく、速度検出精度およびダンパ制御精度への影響は少なくなる。   Further, even when the capsule undergoes a speed change while passing through the position detection sensor, since the capsule is at a low speed, the speed change is extremely small, and the influence on the speed detection accuracy and the damper control accuracy is reduced.

また、カプセル速度が低下し過ぎた場合(カプセルが異常速度の場合)、前位置の位置検出センサで早期に検出することができ、この異常検出により最終停止位置での停止制御に時間的に十分な余裕をもって行うことができ、安定した制御ができる。   In addition, when the capsule speed is too low (when the capsule is at an abnormal speed), it can be detected early by the position detection sensor at the previous position, and this abnormality detection is sufficient in time for stop control at the final stop position. It can be performed with a sufficient margin and stable control can be performed.

下記の表は、カプセル速度と位置検出センサ位置をカプセルが通過する時間を示す。この例では、ストライカの長さ20cmとし、カプセルが低速度(設定速度Vsを0.6m/secとする)の場合、低速度範囲では前位置の位置検出センサにより速度検出を行うことで、速度検出を速くかつ高い精度で得ることができる。又、カプセルが高速度(0.6m/secよりも高い速度)範囲では従来方式と同様にして、2台の位置検出センサによる速度検出によってカプセル速度を精度よく検出できる。   The table below shows the capsule speed and the time that the capsule passes through the position detection sensor position. In this example, when the length of the striker is 20 cm and the capsule is at a low speed (the set speed Vs is 0.6 m / sec), the speed is detected by the position detection sensor at the previous position in the low speed range. Detection can be obtained quickly and with high accuracy. Also, when the capsule is at a high speed (speed higher than 0.6 m / sec), the capsule speed can be detected with high accuracy by speed detection by two position detection sensors in the same manner as in the conventional method.

Figure 0005012264
Figure 0005012264

なお、実施形態では、前位置の位置検出センサにはストライカを装着したものを使用して、カプセルが前位置の位置検出センサの位置を通過するときに速度も検出する場合を示すが、これと同等の機能をもつ位置検出センサに置換できる。例えば、前位置の位置検出センサとして、2台の位置検出センサを近接配置し、両センサのカプセル検出間隔時間を基にカプセル速度Vaを算出する。このときの位置検出センサは、光学式やレーザ方式などの非接触センサとすることができる。   In the embodiment, a case where a striker is used as the position detection sensor at the front position and the speed is also detected when the capsule passes the position of the position detection sensor at the front position is shown. It can be replaced with a position detection sensor with an equivalent function. For example, two position detection sensors are arranged close to each other as the position detection sensor at the previous position, and the capsule speed Va is calculated based on the capsule detection interval time of both sensors. The position detection sensor at this time can be a non-contact sensor such as an optical type or a laser type.

また、実施形態では、前位置の位置検出センサを速度検出機能付きセンサとする場合を示すが、このセンサを後位置の位置検出センサとして同等の作用効果を得ることができる。   Moreover, although the case where the position detection sensor of the front position is a sensor with a speed detection function is shown in the embodiment, this sensor can be used as the position detection sensor of the rear position to obtain the same operation effect.

カプセルの輸送速度検出とダンパ制御の制御手順図。The control procedure figure of the transport speed detection and damper control of a capsule. ストライカによる速度検出波形図。Speed detection waveform diagram by striker. カプセル輸送システムの構成例。The structural example of a capsule transport system. カプセル検出間隔時間による速度検出タイムチャート。Speed detection time chart based on capsule detection interval time.

符号の説明Explanation of symbols

1、6 マテリアルハンドリング装置
2 カプセルローダ
3、7 ブロワ
4、8 ダンパ
5 カプセルアンローダ
9,10 制御装置
11,12 位置検出センサ
1, 6 Material handling device 2 Capsule loader 3, 7 Blower 4, 8 Damper 5 Capsule unloader 9, 10 Control device 11, 12 Position detection sensor

Claims (3)

カプセル輸送パイプライン中のカプセルの輸送方向に沿って、少なくとも2台の位置検出センサを配置し、各位置検出センサの位置を通過するカプセルの検出によってカプセルの輸送速度を検出するカプセルの輸送速度検出装置であって、
前記の2台の位置検出センサのうち、前位置の位置検出センサは、カプセルの検出と、カプセルの通過時間を基にカプセル速度を検出できる速度検出機能付き位置検出センサとし、
カプセル速度が高速範囲か低速範囲のいずれの範囲にあるかを判定するものとして設定された設定速度と、前記速度検出機能付き位置検出センサにより検出されたカプセル速度と、を比較してカプセル速度が低速範囲か高速範囲であるかを判定し、カプセル速度が低速範囲の場合は前記速度検出機能付き位置検出センサにおけるカプセルの通過時間を基にカプセル速度を検出し、カプセル速度が高速範囲の場合は2台の位置検出センサのカプセル検出間隔時間を基にカプセル速度を検出する制御手段を備えたことを特徴とするカプセルの輸送速度検出装置。
Capsule transport speed detection in which at least two position detection sensors are arranged along the transport direction of the capsule in the capsule transport pipeline, and the transport speed of the capsule is detected by detecting the capsule passing through the position of each position detection sensor. A device,
Of the two position detection sensors, the position detection sensor at the front position is a position detection sensor with a speed detection function capable of detecting the capsule speed based on the capsule detection and the capsule passage time.
The capsule speed is determined by comparing the set speed set to determine whether the capsule speed is in the high speed range or the low speed range with the capsule speed detected by the position detection sensor with the speed detection function. Determine whether it is in the low speed range or the high speed range. If the capsule speed is in the low speed range, the capsule speed is detected based on the capsule passage time in the position detection sensor with the speed detection function. If the capsule speed is in the high speed range, A capsule transportation speed detection device comprising a control means for detecting a capsule speed based on a capsule detection interval time of two position detection sensors.
前記速度検出機能付き位置検出センサは、ストライカを装着し、このストライカの受圧板面積変化を基にカプセル速度を検出する構成にしたことを特徴とする請求項1に記載のカプセルの輸送速度検出装置。   2. The capsule transport speed detection device according to claim 1, wherein the position detection sensor with a speed detection function is configured to attach a striker and detect a capsule speed based on a pressure receiving plate area change of the striker. . 前記速度検出機能付き位置検出センサは、2台の位置検出センサを近接配置し、両センサのカプセル検出間隔時間を基にカプセル速度を検出する構成にしたことを特徴とする請求項1に記載のカプセルの輸送速度検出装置。   2. The position detection sensor with a speed detection function is configured such that two position detection sensors are arranged close to each other and a capsule speed is detected based on a capsule detection interval time of both sensors. Capsule transport speed detector.
JP2007178275A 2007-07-06 2007-07-06 Capsule transport speed detector Active JP5012264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007178275A JP5012264B2 (en) 2007-07-06 2007-07-06 Capsule transport speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178275A JP5012264B2 (en) 2007-07-06 2007-07-06 Capsule transport speed detector

Publications (2)

Publication Number Publication Date
JP2009014594A JP2009014594A (en) 2009-01-22
JP5012264B2 true JP5012264B2 (en) 2012-08-29

Family

ID=40355664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178275A Active JP5012264B2 (en) 2007-07-06 2007-07-06 Capsule transport speed detector

Country Status (1)

Country Link
JP (1) JP5012264B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614788B2 (en) * 2015-04-10 2019-12-04 日立オートモティブシステムズ株式会社 Rotational speed measuring device, transmission control system, and program
JP7305166B2 (en) * 2019-07-24 2023-07-10 株式会社ジェッター Paper sheet conveying device and paper sheet conveying method
CN116382221B (en) * 2023-05-30 2023-08-11 深圳市亚能电力技术有限公司 Conveying control method, conveying control device and conveying system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177792U (en) * 1974-12-16 1976-06-19
JPS6047172B2 (en) * 1978-03-17 1985-10-19 住友金属工業株式会社 Method for controlling the stop position of transferred objects in pipe transportation
JPH01172756A (en) * 1987-12-28 1989-07-07 Aisin Aw Co Ltd Correlation type speedometer used in both of high and low speed regions
JPH11116051A (en) * 1997-10-09 1999-04-27 Nkk Corp Capsule transportation method and device

Also Published As

Publication number Publication date
JP2009014594A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5598543B2 (en) Transfer device and transfer method
JP5012264B2 (en) Capsule transport speed detector
EP4005967A1 (en) Apparatus and method for distribution article placement detection, robot, distribution device, and controller
US8500373B1 (en) Pneumatic delivery system with braking
US20190308852A1 (en) Method and system for avoiding collisions in cranes
US20200262400A1 (en) Method and device for determining braking-related actual values of a rail vehicle for carrying out a deceleration-controlled braking with a central sensor system
US11904915B2 (en) Article transport facility
KR102088061B1 (en) Method and device for monitoring the movement of several vehicles in a terminal of a cable lift, in particular of a chair lift or a cabin lift
JP2005012853A (en) Idling slip correction processing unit
JP2010067144A (en) Conveyance system and collision prevention system
JP5440144B2 (en) Sorting device
CN204453641U (en) Segmented vehicle dragging system and vehicle inspection system
CN104528305B (en) Segmented vehicle dragging system and vehicle inspection system
JP2015224126A (en) Fixing position stopping method, system and program for steel material
KR102316936B1 (en) Vehicle and method of controlling velocity of vehicle
JP7078756B2 (en) Train control system and train control method
JP2015093618A (en) Wind detection apparatus for movable body
JP2017126286A (en) Mobile body, mobile body system, and method of calculating correction coefficient for mobile body
JP2022181514A (en) Drive control device of vehicle, drive control method of vehicle, drive system of vehicle, and vehicle
JP2016095543A5 (en)
US9452895B2 (en) Density-based carriage control system for accumulator and method for controlling an accumulator
US20230234787A1 (en) Article Transport Facility
JP3174244U (en) Belt conveyor presence detection system
JP6233594B2 (en) Coil winding deviation correction work necessity judgment method
US20230302647A1 (en) Robot control apparatus, robot control system, and robot control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150