JP2007086913A - Conveyance truck traveling control method and traveling control system - Google Patents

Conveyance truck traveling control method and traveling control system Download PDF

Info

Publication number
JP2007086913A
JP2007086913A JP2005272474A JP2005272474A JP2007086913A JP 2007086913 A JP2007086913 A JP 2007086913A JP 2005272474 A JP2005272474 A JP 2005272474A JP 2005272474 A JP2005272474 A JP 2005272474A JP 2007086913 A JP2007086913 A JP 2007086913A
Authority
JP
Japan
Prior art keywords
transport
carriage
conveyance
speed
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005272474A
Other languages
Japanese (ja)
Other versions
JP4241701B2 (en
Inventor
Shuichi Nibu
修一 丹生
Daiki Kato
大樹 加藤
Toshihito Shimozu
利仁 下津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005272474A priority Critical patent/JP4241701B2/en
Publication of JP2007086913A publication Critical patent/JP2007086913A/en
Application granted granted Critical
Publication of JP4241701B2 publication Critical patent/JP4241701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conveyance truck traveling control method which consecutively controls the traveling of conveyance trucks so that the inter-vehicle distance of the conveyance trucks becomes an optimum value fpr avoiding the collision of the trucks to improve conveyance efficiency. <P>SOLUTION: The conveyance speed of a subsequent conveyance truck is limited to the speed which is computed from a prescribed expression. According to this, a vehicle distance at each time between a preceding conveyance truck and a subsequent conveyance truck is optimized, and the conveyance distance interval at the time of conveyance is shortened, to improve the conveyance efficiency. Furthermore, a conveyance distance interval is reduced, thereby more conveyance trucks can simultaneously travel in a conveyance path of a fixed distance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,種々の搬送物を搬送する搬送台車の走行制御方法及び走行制御システムに関し,特に,搬送台車の車間距離を制御する搬送台車の走行制御方法及び走行制御システムに関する。   The present invention relates to a travel control method and a travel control system for a transport carriage that transports various transport objects, and more particularly to a travel control method and a travel control system for a transport carriage that control the inter-vehicle distance of the transport cart.

工場又は倉庫等において,製品又は原材料等の種々の搬送物を搬送するために搬送台車がよく用いられる。このような搬送台車は,その制御が重要である。特に,複数の搬送台車が同一の搬送路上を同じ向きに走行する場合,搬送台車同士が衝突しないように,搬送台車の車間距離を制御することが非常に重要である。搬送台車の車間距離を制御するための従来公知の制御方法としては,例えば,以下で説明する閉塞区間制御方法及び初期車間制御方法等があげられる。   In a factory or a warehouse, a transport cart is often used to transport various transport items such as products or raw materials. Such a transport cart is important to control. In particular, when a plurality of transport carts travel in the same direction on the same transport path, it is very important to control the distance between the transport carts so that the transport carts do not collide with each other. Examples of conventionally known control methods for controlling the inter-vehicle distance of the transport carriage include a closed section control method and an initial inter-vehicle control method described below.

閉塞区間制御方法は,例えば特許文献1等に記載されている方法であり,ゾーン制御方法とも呼ばれる。この閉塞区間制御方法では,複数の搬送台車が同じ向きに進行する搬送路を複数の閉塞区間(ゾーン)に分割する。分割した各閉塞区間には,複数の台車が同時に入らないように設定する。また,連続して走行する2台の台車において,先行台車が存在する閉塞区間の隣の閉塞区間に後行台車が入ると,この後行台車が減速/停止するように設定する。後行台車の減速/停止処理中に先行台車が次の閉塞区間に進行すると,後行台車は再び走行を開始するように設定される。   The closed section control method is a method described in Patent Document 1, for example, and is also called a zone control method. In this closed section control method, a transport path in which a plurality of transport carriages travel in the same direction is divided into a plurality of closed sections (zones). It is set so that multiple carts do not enter the divided block sections at the same time. In addition, in the two trolleys that travel in succession, when the trailing carriage enters the blockage section adjacent to the blockage section where the preceding carriage exists, the subsequent carriage is set to decelerate / stop. If the preceding carriage advances to the next closed section during the deceleration / stop processing of the trailing carriage, the trailing carriage is set to start running again.

初期車間制御方法は,タイマー等を用いて車間距離を制御する方法である。以下,図1及び図2を用いて説明する。図1は,初期車間制御方法の手順を示す図であり,図2は,先行台車1及び後行台車2の速度変化を,時間を横軸,速度を縦軸にとった座標上に示した図である。初期状態では,図1(a)に示すように,先行台車1及び後行台車2が短い車間距離で停止している。この状態から,図1(b)に示すように,先行台車1は,走行を開始する。   The initial inter-vehicle distance control method is a method for controlling the inter-vehicle distance using a timer or the like. This will be described below with reference to FIGS. FIG. 1 is a diagram showing the procedure of the initial inter-vehicle control method, and FIG. 2 shows the speed change of the leading carriage 1 and the trailing carriage 2 on the coordinate with time on the horizontal axis and speed on the vertical axis. FIG. In the initial state, as shown in FIG. 1A, the leading carriage 1 and the trailing carriage 2 are stopped at a short inter-vehicle distance. From this state, as shown in FIG. 1 (b), the preceding carriage 1 starts traveling.

図2のデータ3で示されるように,先行台車1は,走行開始後,最高速度VMAXに達するまで一定の加減速レートで加速する。最高速度VMAX到達後は,等速走行し,目的地が近づくと,一定の加減速レートで減速し,最終的には停止する。先行台車1の走行を開始してからの時間は,タイマー等で計測され,所定時間TTIMER経過後に,図1(c)で示すように,後行台車2が走行を開始する。図2のデータ4で示されるように,所定時間TTIMER後に走行を開始した後行台車2は,先行台車1と全く同じ速度変化をする。従って,先行台車1及び後行台車2が走行を開始してからしばらくすると,図1(d)で示すように,両台車とも最高速度VMAXで走行する状態になる。この時の2台の車間距離が,図1(d)に示すLMAXである。所定時間TTIMERは,この車間距離Lが,先行台車1がトラブル等で急停車した場合に,後行台車2が減速停止して衝突を回避し得る値になるように設定される。
特開平10−338132号公報
As shown by data 3 in FIG. 2, the preceding carriage 1 accelerates at a constant acceleration / deceleration rate until the maximum speed V MAX is reached after the start of traveling. After reaching the maximum speed V MAX, the vehicle travels at a constant speed. When the destination approaches, the vehicle decelerates at a constant acceleration / deceleration rate and finally stops. The time from the start of traveling of the preceding carriage 1 is measured by a timer or the like, and after the predetermined time TTIMER has elapsed, the trailing carriage 2 starts to travel as shown in FIG. As shown by data 4 in FIG. 2, the trailing carriage 2 that starts traveling after a predetermined time T TIMER changes in the same speed as the preceding carriage 1. Therefore, after a while after the preceding carriage 1 and the trailing carriage 2 start running, both carriages run at the maximum speed V MAX as shown in FIG. 1 (d). The distance between the two vehicles at this time is L MAX shown in FIG. The predetermined time TTIMER is set so that the inter-vehicle distance L becomes a value at which the trailing carriage 2 can decelerate and stop to avoid a collision when the preceding carriage 1 stops suddenly due to a trouble or the like.
JP 10-338132 A

しかしながら,上記の閉塞区間制御方法では,設定される閉塞区間の長さが数m程度なので,車間距離をきめ細かく管理できず,車間距離が必要以上に大きく設定されてしまう。また,先行台車の速度が低速で,車間距離を小さく設定可能な場合であっても車間距離が大きく設定されてしまう。   However, in the above-described blockage section control method, since the length of the blockage section to be set is about several meters, the inter-vehicle distance cannot be managed finely, and the inter-vehicle distance is set to be larger than necessary. Even if the speed of the preceding carriage is low and the inter-vehicle distance can be set small, the inter-vehicle distance is set large.

また,上記の初期車間制御方法では,同一の速度変化をする先行台車及び後行台車の走行開始時間を所定時間ずらしているだけであり,時々刻々と変化する台車の車間距離の最適化は不可能である。即ち,初期車間制御方法を用いた場合,車間距離がほとんどの時間で必要以上に大きく設定されてしまう。   In the above initial inter-vehicle control method, the travel start times of the preceding and subsequent vehicles that change at the same speed are only shifted by a predetermined time, and optimization of the inter-vehicle distance of the vehicle that changes from time to time is not possible. Is possible. That is, when the initial inter-vehicle distance control method is used, the inter-vehicle distance is set larger than necessary in most of the time.

従って,上記の閉塞区間制御方法又は初期車間制御方法等を用いて搬送台車を制御する場合,先行台車と後行台車との車間距離が必要以上に大きく設定されて,搬送する際の搬送間隔が長くなるので,搬送効率の低下を生じてしまう。   Therefore, when controlling the transport carriage using the above-described closed section control method or initial inter-vehicle control method, the inter-vehicle distance between the preceding carriage and the following carriage is set to be larger than necessary, and the conveyance interval when transporting is set. Since it becomes longer, the conveyance efficiency is lowered.

本発明は上記課題に鑑みてなされたものであり,搬送台車の車間距離が衝突を回避し得る最適値になるように搬送台車の走行を連続的に制御することによって,搬送効率を向上させる搬送台車の走行制御方法及び走行制御システムを提供することをその目的とする。   The present invention has been made in view of the above problems, and is a transport that improves transport efficiency by continuously controlling the travel of the transport carriage so that the inter-vehicle distance of the transport carriage becomes an optimum value that can avoid a collision. It is an object of the present invention to provide a traveling control method and a traveling control system for a cart.

上記課題を解決するために,本発明によれば,複数の搬送台車が同一の搬送路上を走行する際の搬送台車の走行制御方法であって,前記複数の搬送台車の中の任意の先行搬送台車と同じ向きに該先行搬送台車の直後を走行する後行搬送台車の走行速度(V)が,下記式(1)を満足するように制御されることを特徴とする搬送台車の走行制御方法。
≦(−dt+√((dt)+2×(L+V /(2×α)−dL)/α))×α・・・・式(1)
[但し,L:先行搬送台車と後行搬送台車の車間距離,V:先行搬送台車速度,V:後行搬送台車速度,α:先行搬送台車加減速レート,α:後行搬送台車加減速レート,dt:制御遅れ,dL:搬送台車位置検出誤差]
In order to solve the above problems, according to the present invention, there is provided a travel control method for a transport carriage when a plurality of transport carriages travel on the same transport path, wherein any preceding transport in the plurality of transport carriages is performed. Travel control of a transport cart, wherein the travel speed (V 2 ) of a subsequent transport cart that travels immediately after the preceding transport cart in the same direction as the cart is controlled to satisfy the following formula (1): Method.
V 2 ≦ (−dt + √ ((dt) 2 + 2 × (L + V 1 2 / (2 × α 1 ) −dL) / α 2 )) × α 2 ... Formula (1)
[However, L: distance between the preceding conveyance carriage and the following conveyance carriage, V 1 : preceding conveyance carriage speed, V 2 : subsequent conveyance carriage speed, α 1 : preceding conveyance carriage acceleration / deceleration rate, α 2 : subsequent conveyance. Cart acceleration / deceleration rate, dt: control delay, dL: transport cart position detection error]

また,上記課題を解決するために,本発明によれば,複数の搬送台車が同一の搬送路上を走行する際の搬送台車の走行制御システムであって,前記搬送台車の各々に設けられ,各搬送台車の位置を検出する位置検出器と,前記搬送台車の各々に設けられ,前記検出された位置を信号送信する送信装置と,
前記信号送信された位置を受信する受信装置と,
前記搬送台車の各々に対して目標走行位置を決定する第1のコントローラと,
前記受信装置及び前記第1のコントローラに接続され,前記受信装置から受信し蓄積した走行位置実績及び前記第1のコントローラから受信した目標走行位置に基づいて前記搬送台車に設定すべき速度(VSET)を決定し,前記搬送台車が後行搬送台車である場合の下記式(2)から制限速度(VLIMIT)を算出し,前記搬送台車の速度が前記設定すべき速度(VSET)及び前記制限速度(VLIMIT)のうちの小さい方の値になるように,前記搬送台車を制御する第2のコントローラとを有することを特徴とする走行制御システムが提供される。
LIMIT=(−dt+√((dt)+2×(L+V /(2×α)−dL)/α))×α・・・・式(2)
[但し,L:先行搬送台車と後行搬送台車の車間距離,V:先行搬送台車速度,V:後行搬送台車速度,α:先行搬送台車加減速レート,α:後行搬送台車加減速レート,dt:制御遅れ,dL:搬送台車位置検出誤差]
In order to solve the above problems, according to the present invention, there is provided a travel control system for a transport cart when a plurality of transport carts travel on the same transport path, provided in each of the transport carts, A position detector for detecting the position of the transport carriage, a transmission device provided in each of the transport carriages for transmitting the detected position,
A receiving device for receiving the signal-transmitted position;
A first controller for determining a target travel position for each of the transport carriages;
A speed (V SET) that is connected to the receiving device and the first controller, and is to be set to the transport carriage based on the travel position results received and accumulated from the receiver and the target travel position received from the first controller. ) Is calculated, a speed limit (V LIMIT ) is calculated from the following formula (2) when the transport carriage is a subsequent transport carriage, and the speed of the transport carriage is set to the speed to be set (V SET ) and the A travel control system is provided that includes a second controller that controls the transport carriage so as to have a smaller value of the speed limit (V LIMIT ).
V LIMIT = (− dt + √ ((dt) 2 + 2 × (L + V 1 2 / (2 × α 1 ) −dL) / α 2 )) × α 2 ... Formula (2)
[However, L: distance between the preceding conveyance carriage and the following conveyance carriage, V 1 : preceding conveyance carriage speed, V 2 : subsequent conveyance carriage speed, α 1 : preceding conveyance carriage acceleration / deceleration rate, α 2 : subsequent conveyance. Cart acceleration / deceleration rate, dt: control delay, dL: transport cart position detection error]

本発明によれば,搬送台車の車間距離が衝突を回避し得る最適値になるように搬送台車の走行を連続的に制御することによって,搬送効率の向上が可能になる。   According to the present invention, it is possible to improve transport efficiency by continuously controlling the travel of the transport carriage so that the distance between the transport carriages becomes an optimum value that can avoid a collision.

以下,図面を参照しながら,本発明の好適な実施形態について説明をする。なお,本明細書及び図面において,実質的に同一の機能構成を有する要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図3は,本発明を実施する走行制御システム5の構成を示す構成図である。図3に示すように,本発明によって制御される搬送台車6,7が,同一の搬送路としての走行レール8上を同じ向きに走行している。本発明の走行制御システム5は,搬送台車6,7の各々に設けられた位置検出器9,10及び光信号送信装置11,12と,搬送台車6,7から無線送信された信号を受信する光信号受信装置13,14と,光信号受信装置13,14及び第1の制御コントローラとしての上位制御コントローラ15に接続され,これらから受信する情報に基づいて搬送台車の走行制御指令を出す第2の制御コントローラとしての搬送台車制御コントローラ16と,搬送台車制御コントローラ16に接続され,その走行制御指令に従って搬送台6,7を駆動させる搬送台車駆動装置17,18とで構成される。   FIG. 3 is a block diagram showing the configuration of the traveling control system 5 for implementing the present invention. As shown in FIG. 3, the transport carts 6 and 7 controlled by the present invention travel in the same direction on the travel rail 8 as the same transport path. The traveling control system 5 according to the present invention receives position detectors 9 and 10 and optical signal transmitters 11 and 12 provided on the transport carts 6 and 7 and signals wirelessly transmitted from the transport carts 6 and 7, respectively. The optical signal receivers 13 and 14 are connected to the optical signal receivers 13 and 14 and the host controller 15 as the first controller, and a second control command for the transporting carriage is issued based on information received therefrom. A transporting carriage control controller 16 serving as a control controller of the transporting carriage, and transporting carriage drive devices 17 and 18 which are connected to the transporting carriage control controller 16 and drive the transporting bases 6 and 7 in accordance with the travel control command.

図3に示す搬送台車6,7は,走行レール8上を同じ向きに走行する2台以上の搬送台車のうち,前後に隣合って走行する2台の搬送台車を代表的に示したものである。従って,先行搬送台車6の前及び後行搬送台車7の後にはそれぞれ他の1又は2以上の搬送台車が存在し得るが,先行搬送台車6と後行搬送台車7との間には,他の搬送台車は存在しない。上述したように,搬送台車6,7は,自分の走行位置を検出する例えばアブソコーダ等の位置検出器9,10と,検出された走行位置の信号を無線送信する光信号送信装置11,12とを各々有している。   Transport carts 6 and 7 shown in FIG. 3 representatively represent two transport carts that run adjacent to each other among two or more transport carts that travel on the traveling rail 8 in the same direction. is there. Accordingly, there may be one or more other transport carts in front of the preceding transport cart 6 and after the subsequent transport cart 7, but there are other transport carts between the preceding transport cart 6 and the subsequent transport cart 7. There is no transport cart. As described above, the transport carts 6 and 7 include, for example, position detectors 9 and 10 such as an ABSOCODER that detect their travel positions, and optical signal transmission apparatuses 11 and 12 that wirelessly transmit signals of the detected travel positions. Respectively.

光信号受信装置13,14は,搬送台車6,7に設けられた位置検出器9,10から無線送信された走行位置信号を受信する受信装置である。この光信号受信装置13,14で受信された走行位置信号は,搬送台車を制御するように搬送台車制御コントローラ16に送信される。   The optical signal receivers 13 and 14 are receivers that receive the traveling position signals wirelessly transmitted from the position detectors 9 and 10 provided on the transport carts 6 and 7. The travel position signals received by the optical signal receivers 13 and 14 are transmitted to the transport cart controller 16 so as to control the transport cart.

上位制御コントローラ15は,搬送台車制御コントローラ16に各搬送台車の搬送先等の指令を送信する制御コントローラである。   The host controller 15 is a control controller that transmits a command such as a transport destination of each transport cart to the transport cart controller 16.

搬送台車制御コントローラ16は,上位制御コントローラ15から送信された搬送先に搬送台車を到達させるように,搬送台車を制御して走行させる制御コントローラである。具体的に説明すると,搬送台車制御コントローラ16は,後行搬送台車6をその搬送先に到達させるまでの間,以下のようにして後行搬送台車の走行を制御し続ける。まず,搬送台車制御コントローラ16は,光信号受信装置13,14から連続的に送信される搬送台車6及び7の走行位置信号等を用いて解析を行う。次に,その解析結果に基づいて,後行搬送台車7の走行を制御するように,搬送台車駆動装置18に走行制御指令を送信する。この実施の形態では,搬送台車7が搬送台車6の後を走行する後行搬送台車であるので,解析結果に基づく衝突防止のための走行制御指令は,後行搬送台車7を駆動させる搬送台車駆動装置18に送信される。しかしながら,搬送台車6が後行搬送台車として処理される際には,搬送台車6を駆動させる搬送台車駆動装置17に対して走行制御指令が送信されてよい。   The transport cart controller 16 is a control controller that controls the transport cart to travel so that the transport cart reaches the transport destination transmitted from the host controller 15. More specifically, the transport carriage controller 16 continues to control the travel of the subsequent transport carriage as follows until the subsequent transport carriage 6 reaches its destination. First, the transport cart controller 16 performs analysis using the travel position signals of the transport carts 6 and 7 continuously transmitted from the optical signal receivers 13 and 14. Next, based on the analysis result, a travel control command is transmitted to the transport carriage drive device 18 so as to control the travel of the subsequent transport carriage 7. In this embodiment, since the transport carriage 7 is a follower transport carriage that travels behind the transport carriage 6, the travel control command for preventing collision based on the analysis result is a transport carriage that drives the follower transport carriage 7. It is transmitted to the driving device 18. However, when the transport cart 6 is processed as a subsequent transport cart, a travel control command may be transmitted to the transport cart driving device 17 that drives the transport cart 6.

搬送台車駆動装置17,18は,搬送台制御コントローラ16から送信された設定速度等の走行制御指令に基づいて,各々,搬送台車6,7を駆動し,走行させる。   The transport cart driving devices 17 and 18 drive and transport the transport carts 6 and 7, respectively, based on a travel control command such as a set speed transmitted from the transport platform control controller 16.

次に,以上のように構成された走行制御システム5において,後行搬送台車7を走行を制御する方法について図3〜図5を用いて説明する。図3に示されるように,走行レール8上を2台の連続する搬送台車6及び搬送台車7が同じ向きに走行している。ここで,先行搬送台車6及び後行搬送台車7に対して図4(a)で示される瞬間を考える。図4(a)の瞬間,先行搬送台車6は,走行を開始した走行位置原点Oから距離Lの走行位置Lを速度Vで通過する。また,この瞬間に,後行搬送台車7は,走行を開始した走行位置原点Oから距離Lの走行位置Lを速度Vで通過する。なお,図4に示されるように,先行搬送台車6の走行位置は,後行搬送台車側の端部の位置を基準にしており,後行搬送台車7の走行位置は,先行搬送台車側の端部の位置を基準にしている。従って,この瞬間の先行搬送台車6と後行搬送台車7との車間距離Lは,L及びLからL=L−Lになる。 Next, in the travel control system 5 configured as described above, a method for controlling the travel of the trailing transport carriage 7 will be described with reference to FIGS. As shown in FIG. 3, two continuous transport carts 6 and 7 are traveling in the same direction on the travel rail 8. Here, consider the moment shown in FIG. 4A with respect to the preceding conveyance carriage 6 and the subsequent conveyance carriage 7. Figure 4 moment (a), prior conveying carriage 6 passes through the traveling position L 1 of the distance L 1 at a speed V 1 from the traveling position origin O which starts to travel. Further, at this moment, the trailing transport carriage 7 passes through the travel position L 2 of the distance L 2 at a velocity V 2 from the travel position origin O which starts to travel. As shown in FIG. 4, the travel position of the preceding transport carriage 6 is based on the position of the end on the subsequent transport carriage side, and the travel position of the subsequent transport carriage 7 is on the preceding transport carriage side. The position of the end is used as a reference. Accordingly, the inter-vehicle distance L between the preceding conveyance carriage 6 and the subsequent conveyance carriage 7 at this moment becomes L = L 1 −L 2 from L 1 and L 2 .

図4(a)の瞬間の先行搬送台車6の走行位置Lは,位置検出器9によって検出され,光信号送信装置11によって,走行位置信号として光信号受信装置13に光送信される。同様に,図4(a)の瞬間の後行搬送台車7の走行位置Lは,位置検出器10によって検出され,光信号送信装置12によって,走行位置信号として光信号受信装置14に光送信される。 The traveling position L 1 of the preceding transport carriage 6 at the moment of FIG. 4A is detected by the position detector 9 and optically transmitted to the optical signal receiving apparatus 13 as a traveling position signal by the optical signal transmitting apparatus 11. Similarly, the traveling position L 2 of the row conveyance carriage 7 after the moment of Fig. 4 (a), detected by the position detector 10, the optical signal transmitter 12, an optical transmitter to an optical signal receiving apparatus 14 as the driving position signal Is done.

光信号受信装置13,14によって受信された搬送台車6,7の走行位置L,Lの情報は,光信号受信装置13,14に接続された搬送台車制御コントローラ16に送信される。搬送台車制御コントローラ16は,搬送台車6,7の走行位置の情報を連続的に受信し,走行位置実績として蓄積する。また,搬送台制御コントローラ16は,上位制御コントローラ15から受信する後行搬送台車7の搬送先の指令に基づいて後行搬送台車7の目標走行位置を予め決定している。この目標走行位置及び走行位置実績に基づいて,搬送台車制御コントローラ16によって,後行搬送台車7に設定すべき走行速度VSETが決定される。 Information on the travel positions L 1 and L 2 of the transport carts 6 and 7 received by the optical signal receivers 13 and 14 is transmitted to the transport cart controller 16 connected to the optical signal receivers 13 and 14. The transport cart controller 16 continuously receives the travel position information of the transport carts 6 and 7 and stores it as travel position results. Further, the transport table controller 16 predetermines the target travel position of the subsequent transport cart 7 based on the transport destination command of the subsequent transport cart 7 received from the host controller 15. Based on this target travel position and travel position results, the transport carriage controller 16 determines a travel speed V SET to be set for the subsequent transport carriage 7.

また,搬送台車制御コントローラ16は,連続的に受信した速度指令値又は速度測定値を使用することで,図4(a)の瞬間の搬送台車6,7の各々の速度V,Vを算出する。さらに,搬送台車制御コントローラ16は,搬送台車6,7の走行位置L,L,速度V,V及び車間距離L等の情報を解析し,この解析結果に基づいて,VSETが満たすべき制限速度VLIMITを算出する。以下で,この制限速度VLIMITを算出するための式を具体的に説明する。 Further, the transport carriage controller 16 uses the speed command value or the speed measurement value received continuously to obtain the speeds V 1 and V 2 of the transport carriages 6 and 7 at the moment in FIG. calculate. Further, the transport carriage controller 16 analyzes information such as the travel positions L 1 and L 2 , the speeds V 1 and V 2, and the inter-vehicle distance L of the transport carriages 6 and 7, and V SET is calculated based on the analysis result. A speed limit V LIMIT to be satisfied is calculated. Hereinafter, an equation for calculating the speed limit V LIMIT will be specifically described.

まず,速度Vで走行する図4(a)に示す先行搬送台車6が,例えばトラブル等で所定の加減速レートαで減速し,最終的に図4(b)に示すように停止する場合を想定する。本実施の形態では,加減速レートαは,先行搬送台車6が搬送物を積載して走行するときの慣性力に対するブレーキトルクの量によって決定される値として,例えば搬送台車制御コントローラ16に設定されている。図5(a)は,この時の先行搬送台車6の速度変化を,時間を横軸,速度を縦軸にとった座標上に示した図である。先行搬送台車6が速度Vから加減速レートαで減速し,停止するまでに費やす移動距離LS1は,図5(a)の斜線で塗りつぶされた三角形OPQの面積と等しくなる。即ち,LS1=OP×OQ×1/2である。ここで,αは時間OQ経過後に速度Vを0にする加減速レートであるので,OQ×α=Vが成立し,OQ=V/αである。また,OP=Vである。従って,
S1=V×(V/α)×1/2=V /(2α)・・・・・式(3)
となる。
First, the preceding conveying carriage 6 shown in FIG. 4 (a) to travel at a speed V 1 is, for example decelerated at a predetermined deceleration rate alpha 1 in troubles, finally stopped as shown in FIG. 4 (b) Assume a case. In the present embodiment, acceleration and deceleration rate alpha 1 is set as a value that is determined by the amount of brake torque to inertia force when the preceding conveying carriage 6 travels to load the conveyed object, for example a transport carriage controller 16 Has been. FIG. 5 (a) is a diagram showing the speed change of the preceding transport carriage 6 at this time on coordinates with time on the horizontal axis and speed on the vertical axis. Preceding conveying carriage 6 is decelerated by deceleration rate alpha 1 from the speed V 1, the moving distance L S1 spend until the stop is equal to the area of the triangle OPQ was filled with oblique lines in FIG. 5 (a). That is, L S1 = OP × OQ × 1/2. Here, since α 1 is an acceleration / deceleration rate at which the speed V 1 is set to 0 after the time OQ has elapsed, OQ × α 1 = V 1 is established, and OQ = V 1 / α 1 . In addition, it is OP = V 1. Therefore,
L S1 = V 1 × (V 1 / α 1 ) × 1/2 = V 1 2 / (2α 1 ) (3)
It becomes.

上述したように,トラブル等で先行搬送台車6が減速して停止すると,その直後を速度Vで走行する図4(a)に示す後行搬送台車7は,衝突防止するための制御によって,所定の加減速レートα2で減速されて停止する。本実施の形態では,加減速レートαは,後行搬送台車7が減速される際にスリップを生じさせない値として,例えば搬送台車駆動装置18内に設定されている。図5(b)は,その際の後行搬送台車7の速度変化を,時間を横軸,速度を縦軸にとった座標上に示した図である。後行搬送台車7は,先行搬送台車6が減速/停止を開始(図5(b)の点R)してから,それに反応して,実際の停止動作を開始(図5(b)の点S)するので,その間に,走行位置信号の伝送遅れ,制御コントローラの制御遅れ,モータの動作遅れ等に起因する制御遅れdt(図5(b)の区間RS)が存在する。本実施の形態では,制御遅れdtの値は,光信号送受信装置11,12,13,14の遅れ,シーケンサ(図示せず)の制御周期,位置検出器9,10の遅れ,及び搬送台車7を駆動させるモータ(図示せず)のすべり(即ち,速度基準どおりに追従していない分の遅れ)等の要因に基づいて算出されている。従って,図5(b)に示すように,先行搬送台車6が減速/停止を開始してから制御遅れdtの間,後行搬送台車7は,速度Vで走行を続け,dt経過後に加減速レートα2で減速が開始される。先行搬送台車6が減速/停止を開始してから,後行搬送台車7が減速して停止するまでに費やす移動距離LS2は,図5(b)の斜線で塗りつぶされた台形ORSTの面積と等しくなる。即ち,LS2=OR×OU+US×UT×1/2である。ここで,αは時間UT経過後に速度Vを0にする加減速レートであるので,UT×α=Vが成立し,UT=V/αである。また,OR=US=V,OU=dtである。従って,
S2=V×dt+V×(V/α)×1/2
=V /(2α)+dtV・・・・式(4)
となる。
As described above, when the preceding conveying carriage 6 in trouble or the like to slow down and stop, the line conveying carriage 7 after shown in FIG. 4 (a) that travels immediately at the speed V 2 is the control for preventing collision, Decelerated at a predetermined acceleration / deceleration rate α2 and stopped. In the present embodiment, acceleration and deceleration rate alpha 2, as a value that does not cause a slip when the trailing transport carriage 7 is decelerated, for example, it is set to the transport carriage driving device 18. FIG. 5B is a diagram showing the speed change of the trailing transport carriage 7 at that time on the coordinates with time taken on the horizontal axis and speed taken on the vertical axis. The trailing conveyance carriage 7 starts the actual stop operation in response to the preceding conveyance carriage 6 starting to decelerate / stop (point R in FIG. 5B) (point of FIG. 5B). S), there is a control delay dt (section RS in FIG. 5B) due to a transmission delay of the travel position signal, a control delay of the controller, a motor operation delay, and the like. In the present embodiment, the value of the control delay dt is the delay of the optical signal transmission / reception devices 11, 12, 13, and 14, the control period of the sequencer (not shown), the delay of the position detectors 9 and 10, and the transport carriage 7 This is calculated based on factors such as slipping of a motor (not shown) that drives the motor (that is, a delay that does not follow the speed reference). Accordingly, as shown in FIG. 5 (b), during the control delay dt preceding conveying carriage 6 from the start of the deceleration / stop, trailing transport carriage 7, continues to travel at the speed V 2, pressurizing after dt has elapsed Deceleration is started at the deceleration rate α2. The movement distance L S2 that is spent from the start of the preceding conveyance carriage 6 to the deceleration / stop and the deceleration of the subsequent conveyance carriage 7 to the stop is represented by the area of the trapezoid ORST painted with diagonal lines in FIG. Will be equal. That is, L S2 = OR × OU + US × UT × 1/2. Here, since α 2 is an acceleration / deceleration rate at which the speed V 2 is set to 0 after the time UT has elapsed, UT × α 2 = V 2 is established, and UT = V 2 / α 2 . Further, OR = US = V 2 and OU = dt. Therefore,
L S2 = V 2 × dt + V 2 × (V 2 / α 2 ) × 1/2
= V 2 2 / (2α 2 ) + dtV 2 ... Formula (4)
It becomes.

先行搬送台車6と後行搬送台車7とが衝突しない条件は,先行搬送台車6が減速を開始した瞬間の車間距離L(図4(a)参照)に,先行搬送台車6が停止するまでに費やす移動距離LS1を加算した距離が,後行搬送台車7が停止するまでに費やす移動距離LS2より小さくならないことである。即ち,
S2<L+LS1・・・・・・・・・・・・・・・・・・・・・式(5)
である。式(5)を変形すると,LS2−LS1<Lとなる。また,搬送台車6,7走行位置は,例えばアブソコーダ等の位置検出器9,10で測定されるが,測定の際に車輪が走行レール8上をスリップする等して誤差が発生し得る。そこで,この誤差を考慮して,搬送台車位置検出誤差dLを式(5)に加えて修正すると,
S2−LS1+dL≦L・・・・・・・・・・・・・・・・・・式(6)
となる。なお,本実施の形態では,搬送台車位置検出誤差dLの値は,走行実験結果等に基づいて経験的に算出されている。
The condition that the preceding conveying cart 6 and the following conveying cart 7 do not collide is that the preceding conveying cart 6 stops at the inter-vehicle distance L (see FIG. 4A) at the moment when the preceding conveying cart 6 starts decelerating. This is that the distance obtained by adding the travel distance L S1 to be spent is not smaller than the travel distance L S2 to be spent until the trailing transport carriage 7 stops. That is,
L S2 <L + L S1・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Formula (5)
It is. When formula (5) is transformed, L S2 −L S1 <L. Further, the traveling positions of the transport carriages 6 and 7 are measured by position detectors 9 and 10 such as an ABSOCODER, for example, but errors may occur due to the wheels slipping on the traveling rail 8 during the measurement. Therefore, when this error is taken into consideration and the carriage position detection error dL is corrected by adding to the equation (5),
L S2 −L S1 + dL ≦ L (6)
It becomes. In the present embodiment, the value of the conveyance carriage position detection error dL is calculated empirically based on a traveling experiment result or the like.

式(3)のLS1及び式(4)のLS2を式(6)に代入すると,
/(2α)+dtV−V /(2α)+dL≦L・・・式(7)
となる。式(7)をVに関して解くと,
≦(−dt+√((dt)+2×(L+V /(2×α)−dL)/α))×α・・・・式(1)
[但し,L:先行搬送台車と後行搬送台車の車間距離,V:先行搬送台車速度,V:後行搬送台車速度,α:先行搬送台車加減速レート,α:後行搬送台車加減速レート,dt:制御遅れ,dL:搬送台車位置検出誤差]
が得られる。即ち,上式(1)が,衝突を回避し得る車間距離を確保するために,後行搬送台車7の走行速度(V)が満たすべき式である。従って,以下の式(2)のように,式(1)の右辺が,上述した制限速度VLIMITになる。
LIMIT=(−dt+√((dt)+2×(L+V /(2×α)−dL)/α))×α・・・・式(2)
[但し,L:先行搬送台車と後行搬送台車の車間距離,V:先行搬送台車速度,V:後行搬送台車速度,α:先行搬送台車加減速レート,α:後行搬送台車加減速レート,dt:制御遅れ,dL:搬送台車位置検出誤差]
Substituting L S1 in equation (3) and L S2 in equation (4) into equation (6),
V 2 2 / (2α 2 ) + dtV 2 −V 1 2 / (2α 1 ) + dL ≦ L (7)
It becomes. Solving the equation (7) with respect to V 2,
V 2 ≦ (−dt + √ ((dt) 2 + 2 × (L + V 1 2 / (2 × α 1 ) −dL) / α 2 )) × α 2 ... Formula (1)
[However, L: distance between the preceding conveyance carriage and the following conveyance carriage, V 1 : preceding conveyance carriage speed, V 2 : subsequent conveyance carriage speed, α 1 : preceding conveyance carriage acceleration / deceleration rate, α 2 : subsequent conveyance. Cart acceleration / deceleration rate, dt: control delay, dL: transport cart position detection error]
Is obtained. That is, the above equation (1) is an equation that the traveling speed (V 2 ) of the trailing conveyance carriage 7 should satisfy in order to ensure a vehicle-to-vehicle distance that can avoid collision. Therefore, as shown in the following formula (2), the right side of the formula (1) is the speed limit V LIMIT described above.
V LIMIT = (− dt + √ ((dt) 2 + 2 × (L + V 1 2 / (2 × α 1 ) −dL) / α 2 )) × α 2 ... Formula (2)
[However, L: distance between the preceding conveyance carriage and the following conveyance carriage, V 1 : preceding conveyance carriage speed, V 2 : subsequent conveyance carriage speed, α 1 : preceding conveyance carriage acceleration / deceleration rate, α 2 : subsequent conveyance. Cart acceleration / deceleration rate, dt: control delay, dL: transport cart position detection error]

搬送台車制御コントローラ16は,搬送台車6,7の走行位置L,L,速度V,V及び車間距離L等の情報を用いて制限速度VLIMIT(即ち,式(2)の右辺の値)を計算する。算出された制限速度VLIMITとVSETとを比較し,値の小さい方を後行搬送台車7に設定する走行速度として選択し,搬送台車駆動装置13に走行制御指令を送信する。搬送台車駆動装置18は,この走行制御指令に従って後行搬送台車7が選択された走行速度になるように駆動させる。 The transport cart controller 16 uses the information such as the travel positions L 1 and L 2 , the speeds V 1 and V 2 and the inter-vehicle distance L of the transport carts 6 and 7 to limit the speed limit V LIMIT (that is, the right side of Expression (2)). Value). The calculated speed limit V LIMIT and V SET are compared, the smaller value is selected as the travel speed to be set in the trailing transport carriage 7, and a travel control command is transmitted to the transport carriage drive device 13. The transport cart drive device 18 drives the trailing transport cart 7 to the selected travel speed in accordance with the travel control command.

以上の実施の形態では,走行レール8上を同じ向きに走行する2台の搬送台車6,7において,先行搬送台車6と同じ向きにその直後を走行する後行搬送台車7の走行速度(V)が,式(2)を満足するように制御するようにしたので,各時間における搬送台車の車間距離が最適化され,搬送の際の搬送距離間隔が短縮されて搬送効率が向上される。また搬送距離間隔が短縮されることで,搬送時間間隔も短縮され得る。さらに,搬送距離間隔が短縮されることで,一定の長さの搬送路内により多くの搬送台車を同時に走行させることが可能になる。 In the above embodiment, in the two transport carts 6 and 7 traveling in the same direction on the travel rail 8, the travel speed (V) of the subsequent transport cart 7 traveling immediately after in the same direction as the preceding transport cart 6. 2 ) is controlled so as to satisfy the formula (2), so that the inter-vehicle distance of the transport carriage at each time is optimized, and the transport distance interval at the time of transport is shortened to improve the transport efficiency. . Further, the conveyance time interval can be shortened by shortening the conveyance distance interval. Furthermore, since the conveyance distance interval is shortened, more conveyance carts can be simultaneously driven in a conveyance path having a certain length.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例又は修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to the example which concerns. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

上述した実施形態においては,前後に隣合って走行する2台の搬送台車の関係について説明したが,前後に隣合って走行する搬送台車の台数は3台以上であってもよい。   In the above-described embodiment, the relationship between two transport carts that travel adjacent to each other in the front-rear direction has been described. However, the number of transport carts that travel adjacent to each other in the front-rear direction may be three or more.

また,上述した実施形態においては,搬送路として走行レールが用いられる場合で説明されたが,搬送路は,その他の手段で搬送台車に軌道を提供する搬送路であってもよいし,軌道が設けられていない搬送路であってもよい。   In the above-described embodiment, the traveling rail is used as the transport path. However, the transport path may be a transport path that provides a track to the transport carriage by other means. The conveyance path which is not provided may be sufficient.

また,上述した実施形態においては,位置検出器として回転式のアブソコーダ等があげられたが,回転式エンコーダだけでなく,リニアエンコーダ等のその他の種類の位置検出器が用いられてもよい。   In the above-described embodiment, a rotary absolute coder or the like is used as the position detector. However, not only a rotary encoder but also other types of position detectors such as a linear encoder may be used.

図6及び図7は,本発明による走行制御方法と,初期車間制御方法とをシミュレーションにより比較した結果を示す。図6は,搬送台車の速度変化を,時間を横軸,速度を縦軸にとった座標上に示した図である。連続する2台の搬送台車が初期車間制御方法に従って走行制御された場合の先行搬送台車及び後行搬送台車の速度変化が各々,細線A及びBで示されている。これに対して,後行搬送台車のみを本発明の走行制御方法を用いて制御した場合のシミュレーション結果が太線Cで示されている。なお,太線Cに示されるシミュレーション結果は,先行搬送台車加減速レートを1.5m/s,後行搬送台車加減速レートを0.35m/s(無負荷時0.4m/s),制御遅れを0.7sec,搬送台車位置検出誤差を0.3mに設定して算出した。また,この場合の先行搬送台車は,初期車間制御方法の場合と全く同一の速度変化をすると仮定している。後行搬送台車の搬送時間が,初期車間制御方法に従って制御された場合が44秒であるのに対して,本発明の制御方法で制御された場合は41秒となり,非常に短縮された結果が得られている。 6 and 7 show the results of a simulation comparison between the traveling control method according to the present invention and the initial inter-vehicle distance control method. FIG. 6 is a diagram showing the speed change of the transport carriage on coordinates with the horizontal axis representing time and the vertical axis representing speed. The speed changes of the preceding conveyance carriage and the subsequent conveyance carriage when two continuous conveyance carriages are travel-controlled according to the initial inter-vehicle distance control method are indicated by thin lines A and B, respectively. On the other hand, the thick line C shows the simulation result when only the trailing carriage is controlled using the traveling control method of the present invention. The simulation results indicated by the thick line C show that the acceleration / deceleration rate of the preceding conveyance carriage is 1.5 m / s 2 and the acceleration / deceleration rate of the trailing conveyance carriage is 0.35 m / s 2 (0.4 m / s 2 at no load). The calculation was performed with the control delay set to 0.7 sec and the carriage position detection error set to 0.3 m. In this case, it is assumed that the preceding transport carriage has the same speed change as that in the initial inter-vehicle distance control method. The transport time of the trailing transport carriage is 44 seconds when controlled according to the initial inter-vehicle control method, whereas it is 41 seconds when controlled by the control method of the present invention, and the result is greatly shortened. Has been obtained.

図7は,図6の2台の搬送台車の車間距離を,時間を横軸,車間距離を縦軸にとって座標上に示した図である。細線Dで示されているのが,初期車間制御方法に従って2台の搬送台車が走行制御された場合の車間距離の時間変化である。これに対して,太線Eで示されているのが,後行搬送台車のみが本発明の走行制御方法に従って制御された場合の車間距離の時間変化である。初期車間制御方法の場合の車間距離は,最大25.5mである。これに対して,本発明の走行制御方法によって制御された場合の車間距離は,最大14m程度であり,全ての時間において,初期車間制御方法で制御された場合の値を下回っている。   FIG. 7 is a diagram showing the inter-vehicle distance of the two transport carts of FIG. 6 on the coordinates with time as the horizontal axis and inter-vehicle distance as the vertical axis. A thin line D indicates a time change in the inter-vehicle distance when two transport carts are travel-controlled according to the initial inter-vehicle control method. On the other hand, what is indicated by a thick line E is a time change of the inter-vehicle distance when only the trailing carriage is controlled according to the traveling control method of the present invention. The maximum inter-vehicle distance in the case of the initial inter-vehicle control method is 25.5 m. On the other hand, the inter-vehicle distance when controlled by the traveling control method of the present invention is about 14 m at the maximum, and is lower than the value when controlled by the initial inter-vehicle control method at all times.

本発明によれば,同一搬送路上を走行する複数の搬送台車の搬送効率を向上させることが可能である。   According to the present invention, it is possible to improve the conveyance efficiency of a plurality of conveyance carts traveling on the same conveyance path.

初期車間制御方法の手順を説明する図である。It is a figure explaining the procedure of the initial inter-vehicle distance control method. 初期車間制御方法の手順を説明する図である。It is a figure explaining the procedure of the initial inter-vehicle distance control method. 本発明を実施する走行制御システムの構成を示す構成図である。It is a block diagram which shows the structure of the traveling control system which implements this invention. 本発明の走行制御方法を説明する説明図である。It is explanatory drawing explaining the traveling control method of this invention. 本発明の走行制御方法を説明する説明図である。It is explanatory drawing explaining the traveling control method of this invention. 従来式の初期車間制御方法と本発明による走行制御方法とを比較したシミュレーション結果を示す図である。It is a figure which shows the simulation result which compared the conventional type initial distance control method and the traveling control method by this invention. 従来式の初期車間制御方法と本発明による走行制御方法とを比較したシミュレーション結果を示す図である。It is a figure which shows the simulation result which compared the conventional type initial distance control method and the traveling control method by this invention.

符号の説明Explanation of symbols

5 走行制御システム
6 先行搬送台車
8 走行レール
9,10 位置検出器
11,12 光信号送信装置
13,14 光信号受信装置
15 上位制御コントローラ
16 搬送台車制御コントローラ
17,18 搬送台車駆動装置
DESCRIPTION OF SYMBOLS 5 Traveling control system 6 Leading conveyance trolley 8 Traveling rail 9,10 Position detector 11,12 Optical signal transmission device 13,14 Optical signal receiving device 15 Host controller 16 Conveyance cart control controller 17,18 Conveyance cart drive device

Claims (2)

複数の搬送台車が同一の搬送路上を走行する際の搬送台車の走行制御方法であって,
前記複数の搬送台車の中の任意の先行搬送台車と同じ向きに該先行搬送台車の直後を走行する後行搬送台車の走行速度(V)が,下記式(1)を満足するように制御されることを特徴とする搬送台車の走行制御方法。
≦(−dt+√((dt)+2×(L+V /(2×α)−dL)/α))×α・・・・式(1)
[但し,L:先行搬送台車と後行搬送台車の車間距離,V:先行搬送台車速度,V:後行搬送台車速度,α:先行搬送台車加減速レート,α:後行搬送台車加減速レート,dt:制御遅れ,dL:搬送台車位置検出誤差]
A traveling control method for a transport cart when a plurality of transport carts travel on the same transport path,
Control is performed so that the traveling speed (V 2 ) of the succeeding transport cart that travels immediately after the preceding transport cart in the same direction as an arbitrary preceding transport cart among the plurality of transport carts satisfies the following expression (1). A traveling control method for a transport carriage, characterized in that:
V 2 ≦ (−dt + √ ((dt) 2 + 2 × (L + V 1 2 / (2 × α 1 ) −dL) / α 2 )) × α 2 ... Formula (1)
[However, L: distance between the preceding conveyance carriage and the following conveyance carriage, V 1 : preceding conveyance carriage speed, V 2 : subsequent conveyance carriage speed, α 1 : preceding conveyance carriage acceleration / deceleration rate, α 2 : subsequent conveyance. Cart acceleration / deceleration rate, dt: control delay, dL: transport cart position detection error]
複数の搬送台車が同一の搬送路上を走行する際の搬送台車の走行制御システムであって,
前記搬送台車の各々に設けられ,各搬送台車の位置を検出する位置検出器と,
前記搬送台車の各々に設けられ,前記検出された位置を信号送信する送信装置と,
前記信号送信された位置を受信する受信装置と,
前記搬送台車の各々に対して目標走行位置を決定する第1のコントローラと,
前記受信装置及び前記第1のコントローラに接続され,前記受信装置から受信し蓄積した走行位置実績及び前記第1のコントローラから受信した目標走行位置に基づいて前記搬送台車に設定すべき速度(VSET)を決定し,前記搬送台車が後行搬送台車である場合の下記式(2)から制限速度(VLIMIT)を算出し,前記搬送台車の速度が前記設定すべき速度(VSET)及び前記制限速度(VLIMIT)のうちの小さい方の値になるように,前記搬送台車を制御する第2のコントローラとを有することを特徴とする走行制御システム。
LIMIT=(−dt+√((dt)+2×(L+V /(2×α)−dL)/α))×α・・・・式(2)
[但し,L:先行搬送台車と後行搬送台車の車間距離,V:先行搬送台車速度,V:後行搬送台車速度,α:先行搬送台車加減速レート,α:後行搬送台車加減速レート,dt:制御遅れ,dL:搬送台車位置検出誤差]
A transport control system for a transport cart when a plurality of transport carts travel on the same transport path,
A position detector provided on each of the transport carriages for detecting the position of each transport carriage;
A transmission device provided in each of the transport carriages for transmitting a signal of the detected position;
A receiving device for receiving the signal-transmitted position;
A first controller for determining a target travel position for each of the transport carriages;
A speed (V SET) that is connected to the receiving device and the first controller, and is to be set to the transport carriage based on the travel position results received and accumulated from the receiver and the target travel position received from the first controller. ) Is calculated, a speed limit (V LIMIT ) is calculated from the following formula (2) when the transport carriage is a subsequent transport carriage, and the speed of the transport carriage is set to the speed to be set (V SET ) and the A travel control system comprising: a second controller that controls the transport carriage so as to be a smaller value of the speed limit (V LIMIT ).
V LIMIT = (− dt + √ ((dt) 2 + 2 × (L + V 1 2 / (2 × α 1 ) −dL) / α 2 )) × α 2 ... Formula (2)
[However, L: distance between the preceding conveyance carriage and the following conveyance carriage, V 1 : preceding conveyance carriage speed, V 2 : subsequent conveyance carriage speed, α 1 : preceding conveyance carriage acceleration / deceleration rate, α 2 : subsequent conveyance. Cart acceleration / deceleration rate, dt: control delay, dL: transport cart position detection error]
JP2005272474A 2005-09-20 2005-09-20 Travel control method and travel control system for transport cart Active JP4241701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272474A JP4241701B2 (en) 2005-09-20 2005-09-20 Travel control method and travel control system for transport cart

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272474A JP4241701B2 (en) 2005-09-20 2005-09-20 Travel control method and travel control system for transport cart

Publications (2)

Publication Number Publication Date
JP2007086913A true JP2007086913A (en) 2007-04-05
JP4241701B2 JP4241701B2 (en) 2009-03-18

Family

ID=37973863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272474A Active JP4241701B2 (en) 2005-09-20 2005-09-20 Travel control method and travel control system for transport cart

Country Status (1)

Country Link
JP (1) JP4241701B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187239A (en) * 2008-02-06 2009-08-20 Murata Mach Ltd Moving body system
JP2018167705A (en) * 2017-03-30 2018-11-01 東日本旅客鉄道株式会社 Vehicle travel simulator and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JOP20190160A1 (en) 2017-06-14 2019-06-25 Grow Solutions Tech Llc Industrial cart and system with means for communicating with an industrial cart

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187239A (en) * 2008-02-06 2009-08-20 Murata Mach Ltd Moving body system
JP2018167705A (en) * 2017-03-30 2018-11-01 東日本旅客鉄道株式会社 Vehicle travel simulator and program

Also Published As

Publication number Publication date
JP4241701B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
TWI493309B (en) Walking control system and control method of running
TWI539254B (en) Vehicle system and vehicle control method
KR20180123628A (en) Article transport vehicle
US8825205B2 (en) Method for controlling movement of travelling carriers
JP6717121B2 (en) Goods transport facility
US7240622B2 (en) Travel control method for travel vehicle
CA2673394A1 (en) Method of controlling a rail transport system for conveying bulk materials
JP4241701B2 (en) Travel control method and travel control system for transport cart
JPH11305837A (en) Device for preventing collision of automatically guided vehicle
KR20180088961A (en) Automatic guided carrier vehicle
JP4471118B2 (en) Goods transport equipment
JP4399739B2 (en) Conveyor cart system
JP3671798B2 (en) Load handling equipment
JP3366923B2 (en) Truck traveling speed control method in separation zone of transfer device
JP2001216023A (en) Method for controlling baggage carrying facility
JP4003494B2 (en) Transport system
WO2021246008A1 (en) Article transport facility
JP2005321881A (en) System for controlling traveling of railway type truck
JP2005266936A (en) Travel controller for article carrier vehicle
JPH04139506A (en) Drive control method for railed cart
JPH0550004B2 (en)
JP2004099194A (en) Traveling device for traveling body
JP4403504B2 (en) Article conveying device
JP2006062840A (en) Article carrying device
KR100522991B1 (en) Transport system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4241701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350