JP4779309B2 - Catalyst mixer and catalyst mixing method - Google Patents

Catalyst mixer and catalyst mixing method Download PDF

Info

Publication number
JP4779309B2
JP4779309B2 JP2004159538A JP2004159538A JP4779309B2 JP 4779309 B2 JP4779309 B2 JP 4779309B2 JP 2004159538 A JP2004159538 A JP 2004159538A JP 2004159538 A JP2004159538 A JP 2004159538A JP 4779309 B2 JP4779309 B2 JP 4779309B2
Authority
JP
Japan
Prior art keywords
catalyst
packing
mixer
inert
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004159538A
Other languages
Japanese (ja)
Other versions
JP2005334811A (en
Inventor
成康 嘉糠
力 勅使河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004159538A priority Critical patent/JP4779309B2/en
Priority to PCT/JP2004/013465 priority patent/WO2005115617A1/en
Priority to CN 200480000364 priority patent/CN1697686A/en
Publication of JP2005334811A publication Critical patent/JP2005334811A/en
Application granted granted Critical
Publication of JP4779309B2 publication Critical patent/JP4779309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Description

本発明は、触媒混合に関し、特に固定床多管式反応器を用いた気相接触酸化反応に使用される複合酸化物触媒と不活性充填物との混合方法、並びに混合された複合酸化物触媒と不活性充填物の小分け包装体に関する。 The present invention relates to a catalyst mixture, was engaged mixed particular mixed-method the composite oxide catalyst and the inert filler used in the gas-phase catalytic oxidation reaction using a fixed bed multitubular reactor, as well composite The present invention relates to a small package of an oxide catalyst and an inert packing.

酸化触媒を用いてプロピレンからアクロレイン又はメタアクロレインを製造する場合に、触媒を不活性充填物で希釈することは知られている。例えば特許文献1には、反応ガスの導通量を危険のない範囲で高めて収率の向上を図ったり、過度の酸化や局部的過熱(ホットスポット)を防止するために、活性触媒を不活性材料(不活性充填物)を用いて希釈し、触媒の活性を低下させることが記載されている。   When producing acrolein or metaacrolein from propylene using an oxidation catalyst, it is known to dilute the catalyst with an inert packing. For example, Patent Document 1 discloses that an active catalyst is deactivated in order to improve the yield by increasing the amount of reaction gas conducted in a dangerous range or to prevent excessive oxidation and local overheating (hot spot). It is described to dilute with material (inert packing) to reduce the activity of the catalyst.

しかしながら、このような従来技術により触媒と不活性充填物を混合し希釈して用いる場合、それなりに効果は得られるものの、その効果は触媒と不活性充填物の混合状態に依存するため、必ずしも満足いくものではなかった。すなわち、触媒と不活性充填物とを所定の容量比率で均一に混合されないことにより、ホットスポットの抑制効果が満足に得られないという問題があった。その結果、ホットスポットに起因する問題を充分に解決するためのより効果的な方法が求められている。特許文献1には、このような問題の解決に役立つ、触媒を不活性材料で希釈する際の混合方法および混合状態について何ら記載されていない。
特公昭53−30688号公報
However, when the catalyst and the inert packing are mixed and diluted by such a conventional technique, although an effect can be obtained as it is, the effect depends on the mixed state of the catalyst and the inert packing, and is not always satisfactory. It wasn't going. That is, there is a problem that the effect of suppressing hot spots cannot be obtained satisfactorily because the catalyst and the inert filler are not uniformly mixed at a predetermined volume ratio. As a result, there is a need for a more effective method for sufficiently solving problems caused by hot spots. Patent Document 1 does not describe anything about a mixing method and a mixing state when diluting a catalyst with an inert material, which is useful for solving such a problem.
Japanese Patent Publication No.53-30688

本発明は、上記のような従来技術に鑑み、固定床多管式反応器を用いた気相接触酸化反応においてホットスポットに起因する問題を解決する、より効果的な手段を提供することにある。   In view of the prior art as described above, it is an object of the present invention to provide a more effective means for solving problems caused by hot spots in a gas phase catalytic oxidation reaction using a fixed bed multitubular reactor. .

本発明者等は、上記課題を解決するために、触媒と不活性充填物との混合方法について検討した結果、ホッパー内部を混合する触媒と不活性充填物との容量比率に合わせて隔壁で区画し、このホッパーと無撹拌式混合機とを組み合わせた触媒混合機で触媒と不活性充填物とを混合することにより、所望の容量比率で容易に混合できることを見出し、以下の発明を得たものである。   In order to solve the above problems, the present inventors have studied a mixing method of the catalyst and the inert packing, and as a result, the partition inside the hopper is divided by partition walls in accordance with the volume ratio of the catalyst and the inert packing. And found that the catalyst and the inert filler can be mixed easily in a desired volume ratio by mixing the catalyst and the inert filler in a catalyst mixer in which this hopper and an unstirred mixer are combined. It is.

本発明は、ホッパーの下方に無撹拌式混合機を配置した触媒混合機を用いて複数種類の充填物を混合する方法であって、前記複数種類の充填物が、固定床多管式反応器を用いた気相接触酸化反応に使用される複合酸化物触媒および不活性充填物であり、該複数種類の充填物を区分けして収容するためにホッパー内を隔壁で複数に区画し、各区画の水平方向の断面積比率を各充填物の容量比率とほぼ等しくし、前記の複合酸化物触媒および不活性充填物を、固定床多管式反応器の反応管1本あたりに充填する所定量、または、反応管1本に複数の反応帯に分割して充填する各反応帯の所定量に小分けて混合し袋詰めし、かつ小分けされた複合酸化物触媒および不活性充填物を8分割したときの複合酸化物触媒と不活性充填物の容積比において、複合酸化物触媒の容積比の変動係数が10%以下であることを特徴とする触媒混合方法を提供する。 The present invention is a method of mixing a plurality of types of packing using a catalyst mixer in which an unstirred mixer is disposed below a hopper, wherein the plurality of types of packing are fixed bed multitubular reactors. A composite oxide catalyst and an inert packing used in a gas phase catalytic oxidation reaction using a hopper, in order to divide and accommodate the plural types of packing, the hopper is partitioned into a plurality of partitions, The horizontal cross-sectional area ratio is substantially equal to the volume ratio of each packing, and the above-mentioned composite oxide catalyst and inert packing are charged in a predetermined amount per reaction tube of a fixed bed multitubular reactor. Alternatively, the reaction mixture is divided into a plurality of reaction zones and packed into a plurality of reaction zones, and each reaction zone is divided into a predetermined amount, mixed and packaged, and the divided composite oxide catalyst and the inert packing are divided into 8 portions. When the volume ratio of the composite oxide catalyst to the inert packing, Variation coefficient of the volume ratio of coupling oxide catalyst to provide a catalyst mixture wherein 10% or less.

本発明の方法によれば、複合酸化物触媒と不活性充填物とを所定の容量比率で混合できるので、固定床多管式反応器を用いた気相接触酸化反応においてホットスポットを充分に抑制することができる。これにより、触媒性能を安定して維持することができ、酸化反応生成物、例えばプロピレンからアクロレインおよび/またはアクリル酸を安定して、かつ高収率で製造することができる。   According to the method of the present invention, the composite oxide catalyst and the inert packing can be mixed at a predetermined volume ratio, so that hot spots are sufficiently suppressed in a gas phase catalytic oxidation reaction using a fixed bed multitubular reactor. can do. Thereby, the catalyst performance can be stably maintained, and acrolein and / or acrylic acid can be stably produced in a high yield from an oxidation reaction product such as propylene.

本発明は、触媒と触媒以外の他のものとを触媒混合機で混合することを特徴とし、例えば固定床多管式反応器を用いた気相接触酸化反応において使用する複合酸化物触媒(以下、触媒ということもある)と不活性充填物とを触媒混合機で混合するものであるが、本発明は触媒と不活性充填物に限定されない。   The present invention is characterized in that a catalyst and a catalyst other than the catalyst are mixed in a catalyst mixer. For example, a composite oxide catalyst (hereinafter referred to as a composite oxide catalyst used in a gas phase catalytic oxidation reaction using a fixed bed multitubular reactor). In some cases, the catalyst is mixed with the inert filler by a catalyst mixer, but the present invention is not limited to the catalyst and the inert filler.

以下に、本発明について図面を参照して具体的に説明する。しかし、図面は発明の一例であり、本発明は図面およびその説明に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to the drawings. However, the drawings are examples of the invention, and the present invention is not limited to the drawings and the description thereof.

本発明で使用する触媒混合機を図1に基づいて説明する。
図1に示すように、発明で使用する触媒混合機はホッパー2の下方に無撹拌式混合機4を配置している。ホッパー2は、反応管1本あたりに充填する所定量、または、反応管1本あたり複数の反応帯に分割して充填する各反応帯の所定量の触媒および不活性充填物を受け入れる容量を持ち、底部はダンバ−3によって開閉可能になっている。ホッパー2の内部には複数種類の充填物、例えば触媒と不活性充填物とを実質的に区分して収容できるように隔壁1が直立して設置されている。本例は触媒と不活性充填物とを区分けするために一つの隔壁1を設けているが、隔壁1の数は充填物の種類数により増加できる。この場合、隔壁1は位置調整可能にすなわち可動式に設けるのが好ましい。この位置調整は、例えば図示はしないが、隔壁1を差し込みできる凹部や溝をホッパー2の内壁や上端部に一定の間隔で設けておき、隔壁1をこれらの凹部や溝に差し変えて調整する方法、または隔壁1をホッパー2内において横方向に移動できるように設け、所定の位置でホッパー2の上端部にねじやフック等により係止する方法などにより可能である。しかし。隔壁1の位置調整手段は、隔壁をホッパー内の所定の位置に保持できればよく、これらの方法に限定されない。
The catalyst mixer used in the present invention will be described with reference to FIG.
As shown in FIG. 1, the catalyst mixer used in the invention has an unstirred mixer 4 disposed below a hopper 2. The hopper 2 has a capacity for receiving a predetermined amount to be filled per reaction tube, or a predetermined amount of catalyst and inert packing in each reaction zone to be divided and packed into a plurality of reaction zones per reaction tube. The bottom part can be opened and closed by a damper-3. Inside the hopper 2, a partition wall 1 is installed upright so that a plurality of kinds of fillers, for example, a catalyst and an inert filler can be substantially divided and accommodated. In this example, one partition wall 1 is provided to separate the catalyst and the inert packing, but the number of partition walls 1 can be increased depending on the number of types of packing. In this case, the partition wall 1 is preferably provided so that its position can be adjusted, that is, movable. For example, although not shown, the position adjustment is performed by providing recesses and grooves into which the partition walls 1 can be inserted at regular intervals on the inner wall and upper end of the hopper 2 and replacing the partition walls 1 with these recesses and grooves. It is possible to use a method or a method in which the partition wall 1 is provided so as to be movable in the lateral direction in the hopper 2 and is locked to the upper end portion of the hopper 2 with a screw or a hook at a predetermined position. However. The position adjusting means for the partition wall 1 is not limited to these methods as long as the partition wall can be held at a predetermined position in the hopper.

隔壁1により区分けされるホッパー2内部の各区画の水平方向の断面積比率は、隔壁1の位置を変更することにより調整することができる。そして、隔壁1の位置を調整することにより、各区画の水平方向の断面積比率、好ましくは少なくともホッパー2の出口における水平方向の断面積比率を複数種類の充填物それぞれの容積比率と同じにすることができる。このように断面積比率と容積比率とが同じになっているため、触媒および不活性充填物を対応した区画に収容することにより、充填層高が揃った状態で触媒および不活性充填物をホッパー2内部に仕込むことができる。   The cross-sectional area ratio in the horizontal direction of each section inside the hopper 2 divided by the partition wall 1 can be adjusted by changing the position of the partition wall 1. Then, by adjusting the position of the partition wall 1, the horizontal sectional area ratio of each section, preferably at least the horizontal sectional area ratio at the outlet of the hopper 2 is made equal to the volume ratio of each of the plurality of types of fillers. be able to. Since the cross-sectional area ratio and the volume ratio are the same in this way, the catalyst and the inert filler are placed in the corresponding compartment by accommodating the catalyst and the inert filler in the corresponding compartment. 2 can be charged inside.

隔壁1の面積は、複数種類の充填物を実質的に区分できればよく限定されないが、ホッパー内に投入される充填物の垂直方向断面の60%以上が好ましく、より好ましくは80%以上、最も好ましくは95%以上である。隔壁1の面積が60%より小さいと、隔壁1による区分けが不充分になり、複数種類の充填物を所定の容量比率で実質的に均一に混合することができなくなるために、本発明の効果が充分に得られないことがある。   The area of the partition wall 1 is not particularly limited as long as a plurality of types of fillers can be substantially divided, but is preferably 60% or more, more preferably 80% or more, most preferably, of the vertical cross section of the filler charged into the hopper. Is 95% or more. When the area of the partition wall 1 is smaller than 60%, the partitioning by the partition wall 1 is insufficient, and a plurality of kinds of fillers cannot be mixed substantially uniformly at a predetermined volume ratio. May not be sufficiently obtained.

次に、無撹拌式混合機4を図2に基づいて説明する。この無撹拌式混合機4としては、JIS−Z−8840(p14)に示される無撹拌式の混合機を用いることができる。図2はかかる無撹拌式の混合機を概略的に示したもので、例えば、上端に投入口5を有する円筒状のハウジング6の内部にエレメント7を複数個配置したスタティックミキサーを用いることができる。上記ハウジング6の内径は、触媒および不活性充填物がハウジング内でブリッジングを生じない大きさにする。通常、触媒および不活性充填物は数mm〜数十mmの粒子径を持っているので、該内径は好ましく70mm以上、さらに好ましくはは100〜300mmである。内径が70mmより小さいハウジングではブリッジングを多発することがある。また内径を300mmより大きくすると、部材に要する材料が多くなり経済的に不利である。なお、ハウジング6の長さは、エレメント7によって変わることもあるが、内径の2〜20倍程度が好ましい。   Next, the non-stirring mixer 4 will be described with reference to FIG. As this unstirred mixer 4, the unstirred mixer shown by JIS-Z-8840 (p14) can be used. FIG. 2 schematically shows such an unstirred mixer. For example, a static mixer in which a plurality of elements 7 are arranged inside a cylindrical housing 6 having an inlet 5 at the upper end can be used. . The inner diameter of the housing 6 is set such that the catalyst and the inert packing do not cause bridging in the housing. Usually, since the catalyst and the inert packing have a particle diameter of several mm to several tens mm, the inner diameter is preferably 70 mm or more, more preferably 100 to 300 mm. Bridging may occur frequently in a housing having an inner diameter of less than 70 mm. On the other hand, if the inner diameter is larger than 300 mm, the material required for the member increases, which is economically disadvantageous. The length of the housing 6 may vary depending on the element 7, but is preferably about 2 to 20 times the inner diameter.

上記ハウジング6の内部に配置するエレメント7は、数mm〜数十mmの粒子径を持つ触媒および不活性充填物を通過させる形状、例えば、らせん状エレメントを用いることができる。このらせん状エレメントは、通常2〜20個をハウジング6内に段接して使用するが、単体に形成してもよい。混合する触媒と不活性充填物は、ホッパー2のダンパー3を開口して無撹拌式混合機4の投入口5に供給され、ハウジング6内をらせん状エレメント7に沿って落下する間に混合される。この場合、触媒と不活性充填物は隔壁1で区画されたホッパー2内にそれぞれの混合容量比率に合わせて区分けされているので、投入口5に一定の比率で供給できる。このようならせん状エレメントによる混合方法は、触媒と不活性充填物とを攪拌しないで混合するので、触媒粒子を破壊させずに混合するのに有効である。   The element 7 disposed inside the housing 6 may be a shape that allows a catalyst having a particle diameter of several mm to several tens mm and an inert filler to pass therethrough, for example, a spiral element. Usually, 2 to 20 spiral elements are used while being stepped in the housing 6, but may be formed as a single element. The catalyst to be mixed and the inert packing are supplied to the inlet 5 of the non-stirring mixer 4 by opening the damper 3 of the hopper 2 and mixed while dropping in the housing 6 along the spiral element 7. The In this case, since the catalyst and the inert packing are divided in the hopper 2 partitioned by the partition wall 1 according to the mixing volume ratio, they can be supplied to the charging port 5 at a constant ratio. Such a mixing method using a spiral element is effective for mixing the catalyst and the inert packing without destroying the catalyst particles because the catalyst and the inert packing are mixed without stirring.

本発明において触媒と不活性充填物の混合状態は、混合された触媒と不活性充填物の反応管1本あたりに充填する所定量(以下、反応管1本あたりの触媒と不活性充填物を「小分け包装体」という)を、±15容積%のバラツキの範囲内で便宜的に8等分に分割し、分割されたそれぞれの触媒と不活性充填物の容積比を求めたときの、触媒の容積比の変動係数にて評価される。ここで、変動係数は、n個のデーターの平均値をx、標準偏差をsとするとき、(s/x×100)にて表した値である。この変動計数が大きいことは、触媒の混合割合のバラツキが大きいことを意味する。   In the present invention, the mixed state of the catalyst and the inert packing means that a predetermined amount of the mixed catalyst and the inert packing filled in one reaction tube (hereinafter referred to as a catalyst and an inert packing per reaction tube). Catalyst is divided into 8 equal parts within a range of variation of ± 15% by volume for convenience and the volume ratio of each divided catalyst to the inert packing is determined. It is evaluated by the coefficient of variation of the volume ratio. Here, the variation coefficient is a value represented by (s / x × 100), where x is an average value of n pieces of data and s is a standard deviation. A large variation count means that the variation in the mixing ratio of the catalyst is large.

本発明において、この触媒の容積比の変動係数は、10%以下であり、8%以下であればより好ましい。この変動計数が10%より大きいと、触媒の不均一性により気相接触酸化反応におけるホットスポットの抑制効果が不充分となり、酸化反応生成物、例えばポロピレンからアクロレインおよび/またはアクリル酸を製造するときの収率が低下するので、好ましくない。 In the present invention, the variation coefficient of the volume ratio of the catalyst is 10% or less , and more preferably 8% or less. When this variation count is larger than 10%, the effect of suppressing hot spots in the gas phase catalytic oxidation reaction becomes insufficient due to the heterogeneity of the catalyst, and when acrolein and / or acrylic acid is produced from an oxidation reaction product such as propylene. This is not preferable because the yield of is reduced.

なお、小分け包装体の内容物を等分する方法として、例えば図3および図4に示す分割機を用いることができる。図3は受器8を円形に配列したタイプ、図4は直列に配列したタイプである。受器8の中に、8等分量の内容積の計量容器9を設置し、小分け包装体の内容物を計量容器9に投入する。計量容器9が満たされたところで、回転軸10、又は滑車11を可動し、引き続き次の受器8に設置された計量容器9に投入する。これを繰り返すことにより、小分け包装体の内容物を8個の受器8もしくは計量容器9に等分割することができる。   In addition, as a method of equally dividing the contents of the subdivided package, for example, a divider shown in FIGS. 3 and 4 can be used. 3 is a type in which the receivers 8 are arranged in a circle, and FIG. 4 is a type in which the receivers 8 are arranged in series. A measuring container 9 having an internal volume of 8 equal parts is installed in the receiver 8, and the contents of the small package are put into the measuring container 9. When the measuring container 9 is filled, the rotating shaft 10 or the pulley 11 is moved, and subsequently put into the measuring container 9 installed in the next receiver 8. By repeating this, the contents of the small package can be equally divided into eight receivers 8 or weighing containers 9.

また、本発明における充填物の容積の計量は、メスシリンダー等の容積測定器を用いて計量することができる。また、嵩密度で換算して電子天秤等の重量測定器を用いて計量することもできるし、市販の自動重量測定器を用いることもできる。   In addition, the volume of the packing in the present invention can be measured using a volume measuring device such as a graduated cylinder. Moreover, it can also measure using weight measuring instruments, such as an electronic balance, in terms of a bulk density, and a commercially available automatic weight measuring instrument can also be used.

本発明で使用する不活性充填物は、反応で余計な副反応を引き起こさない材料であればよく、例えば、アルミナ、ジルコニア、チタニア、マグネシア、シリカ等の高温処理した酸化物やステアタイト、ムライト、炭化珪素、窒化珪素などの高温焼結材料等を用いることができる。   The inert filler used in the present invention may be a material that does not cause an excessive side reaction in the reaction, for example, oxide, steatite, mullite, high-temperature treated oxide such as alumina, zirconia, titania, magnesia, silica, etc. A high-temperature sintered material such as silicon carbide or silicon nitride can be used.

また、本発明で使用する代表的な触媒は、固定床多管式反応器を用いた気相接触酸化反応に使用される複合酸化物触媒である。具体的にはプロピレンからアクロレイン又はメタアクロレインを製造する気相接触酸化反応に使用される触媒が挙げられる。該複合酸化物触媒の好ましい態様としては、下記一般式(1)で示される触媒が例示される。
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(但し、XはNa,K,Rb,CsおよびTlのいずれか少なくとも一種を示し、YはB,P,AsおよびWのいずれか少なくとも一種を示し、ZはMg、Ca、Zn、CeおよびSmのいずれか少なくとも一種を示す。Qはハロゲンを示し、また、a〜kおよびmはそれぞれの元素の原子比を表わし、a=12とするとき、b=0.5〜7、c=0〜10、d=0〜10、c+d=1〜10、e=0.05〜3、f=0.0005〜3、g=0〜3、h=0〜1、i=0〜0.5、j=0〜48、の範囲にあり、またkは他の元素の酸化状態を満足させる値である。)
A typical catalyst used in the present invention is a composite oxide catalyst used in a gas phase catalytic oxidation reaction using a fixed bed multitubular reactor. Specific examples include a catalyst used in a gas phase catalytic oxidation reaction for producing acrolein or metaacrolein from propylene. A preferred embodiment of the composite oxide catalyst is exemplified by a catalyst represented by the following general formula (1).
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(However, X represents at least one of Na, K, Rb, Cs and Tl, Y represents at least one of B, P, As and W, and Z represents Mg, Ca, Zn, Ce and Sm. Q represents halogen, and a to k and m represent atomic ratios of the respective elements, and when a = 12, b = 0.5 to 7, c = 0 to 10, d = 0 to 10, c + d = 1 to 10, e = 0.05 to 3, f = 0.005 to 3, g = 0 to 3, h = 0 to 1, i = 0 to 0.5, j is in the range of 0 to 48, and k is a value that satisfies the oxidation state of other elements.)

なお、上記において、モリブデン(Mo)、ビスマス(Bi)、ケイ素(Si)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)、サマリウム(Sm)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、タリウム(Tl)、ホウ素(B)、リン(P)、ヒ素(As)、タングステン(W)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)の各元素は、それぞれカッコ内の元素記号を用いて表記した。一般式(1)で表されるモリブデン−ビスマス系複合酸化物触媒それ自体は公知であり、公知の方法により調製することができる。   In the above, molybdenum (Mo), bismuth (Bi), silicon (Si), cobalt (Co), nickel (Ni), iron (Fe), magnesium (Mg), calcium (Ca), zinc (Zn), Cerium (Ce), samarium (Sm), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), boron (B), phosphorus (P), arsenic (As), Each element of tungsten (W), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) was expressed using element symbols in parentheses. The molybdenum-bismuth complex oxide catalyst represented by the general formula (1) is known per se and can be prepared by a known method.

本発明で使用する他の代表的な触媒は、不飽和アルデヒドを気相接触酸化反応させて対応する不飽和カルボン酸を製造する反応に用いられる、モリブデンを主体とする以下の一般式(2)を有する複合酸化物触媒である。
MoaVbCucXdYeZfOg (2)
(式中、Xは、W及びNbからなる群から選ばれる少なくとも1種の元素であり、Yは、Fe、Co、Ni、及びBiからなる群から選ばれる少なくとも1種の元素であり、ZはTi、Zr,Ce、Cr、Mn及びSbからなる群より選ばれた少なくとも1種の元素を示す。a,b、c,d,e、f及びgは各元素の原子比を表わし、a=12のとき、b=1〜12、c=0〜6、d=0〜12、e=0〜100、f=0〜100、gは前記各成分の原子価を満足するのに必要な酸素原子数である。)
Another typical catalyst used in the present invention is represented by the following general formula (2) mainly composed of molybdenum, which is used in a reaction for producing a corresponding unsaturated carboxylic acid by subjecting an unsaturated aldehyde to a gas phase catalytic oxidation reaction. It is a complex oxide catalyst having
MoaVbCucXdYeZfOg (2)
(Wherein X is at least one element selected from the group consisting of W and Nb, Y is at least one element selected from the group consisting of Fe, Co, Ni, and Bi; Represents at least one element selected from the group consisting of Ti, Zr, Ce, Cr, Mn and Sb, wherein a, b, c, d, e, f and g represent the atomic ratio of each element; = 12, b = 1 to 12, c = 0 to 6, d = 0 to 12, e = 0 to 100, f = 0 to 100, g is necessary to satisfy the valence of each component. (The number of oxygen atoms.)

本発明で使用する触媒の調製方法は、焼成条件を除き、特に制限はなく、通常、各元素成分を含有する供給源化合物の所要量を水性媒体中に適宜溶解あるいは分散し、加熱撹拌した後、蒸発乾固、乾燥、粉砕し、得られた粉体を押出し成型、造粒成型、打錠成型などの方法により成型し、成型体が得られる。触媒の形状、大きさなどについても特に制限はなく、公知の形状、大きさなどから適宜選ぶことができる。例えば、形状についていえば、球状、円柱状、リング状などのいずれでもよい。この際、触媒の強度、粉化度を改善する効果があるとして一般に知られているガラス繊維などの無機繊維、各種ウィスカーなどを添加してもよい。また、触媒物性を再現よく制御するために、硝酸アンモニウム、セルロース、デンプン、ポリビニルアルコール、ステアリン酸など一般に粉体結合剤として知られている添加物を使用することもできる。   The method for preparing the catalyst used in the present invention is not particularly limited except for the firing conditions. Usually, after the required amount of the source compound containing each element component is appropriately dissolved or dispersed in an aqueous medium and heated and stirred. The powder obtained by evaporating, drying, drying and pulverizing is molded by a method such as extrusion molding, granulation molding, tableting molding or the like to obtain a molded body. There is no restriction | limiting in particular also about the shape of a catalyst, a magnitude | size, etc., It can select suitably from a well-known shape, magnitude | size, etc. For example, the shape may be any of a spherical shape, a cylindrical shape, a ring shape, and the like. At this time, inorganic fibers such as glass fibers that are generally known to have an effect of improving the strength and degree of pulverization of the catalyst, and various whiskers may be added. In order to control the physical properties of the catalyst with good reproducibility, additives generally known as powder binders such as ammonium nitrate, cellulose, starch, polyvinyl alcohol and stearic acid can also be used.

本発明においては、一般式(I)で表される複合酸化物をそれ自体単独で使用することができるが、アルミナ、シリカ、シリカ−アルミナ、シリコンカーバイド、酸化チタン、酸化マグネシウム、アルミニウムスポンジ、シリカ−チタニアなど一般に不活性担体として知られている担体に担持して使用してもよい。この際もまた、触媒の強度などを改善するために前記の無機繊維などを添加しても、あるいは触媒物性を再現よく制御するために前記の硝酸アンモニウムなどの添加剤を使用することもできる。   In the present invention, the composite oxide represented by the general formula (I) can be used alone, but alumina, silica, silica-alumina, silicon carbide, titanium oxide, magnesium oxide, aluminum sponge, silica -It may be supported on a carrier generally known as an inert carrier such as titania. At this time, the inorganic fiber or the like may be added to improve the strength of the catalyst, or the additive such as ammonium nitrate may be used to control the physical properties of the catalyst with good reproducibility.

これら成型体あるいは担持体である触媒を、雰囲気ガス流通下に300〜650℃の温度で1〜20時間程度焼成することにより複合酸化物触媒を調製する。   The composite oxide catalyst is prepared by calcining the catalyst as the molded body or the support body at a temperature of 300 to 650 ° C. for about 1 to 20 hours under an atmosphere gas flow.

上記Mo−Bi−Fe系複合酸化物触媒を用いる気相接触酸化反応は、具体的には、プロピレンの気相接触酸化であり、アクロレインおよびアクリル酸を製造する際に一般に用いられている方法によって行うことができる。例えば、プロピレン1〜15容量%、分子状酸素3〜30容量%、水蒸気0〜60容量%、窒素、炭酸ガスなどの不活性ガス20〜80容量%などからなる混合ガスを上記各反応管の触媒層に250〜450℃、0.01〜1MPaの加圧下、空間速度(SV)300〜5000hr-1で導入すればよい。   The gas-phase catalytic oxidation reaction using the Mo-Bi-Fe-based composite oxide catalyst is specifically a gas-phase catalytic oxidation of propylene by a method generally used in producing acrolein and acrylic acid. It can be carried out. For example, a mixed gas composed of 1 to 15% by volume of propylene, 3 to 30% by volume of molecular oxygen, 0 to 60% by volume of water vapor, 20 to 80% by volume of inert gas such as nitrogen and carbon dioxide, etc. What is necessary is just to introduce | transduce into a catalyst layer under the space velocity (SV) 300-5000hr <-1> under the pressurization of 250-450 degreeC and 0.01-1 MPa.

以下に実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

また、以下の説明において転化率、収率の定義は、次の通りである。
転化率(モル%)=(反応したプロピレンのモル数/供給したプロピレンのモル数)
×100
収率(モル%)=(生成したアクロレインおよびアクリル酸のモル数/供給したプロ
ピレンのモル数)×100
In the following description, the definitions of conversion and yield are as follows.
Conversion (mol%) = (number of moles of reacted propylene / number of moles of supplied propylene)
× 100
Yield (mol%) = (moles of acrolein and acrylic acid produced / pro fed
Number of moles of pyrene) x 100

(実施例1)
気相接触酸化反応によりプロピレンを原料にアクロレインやアクリル酸を製造する触媒として、Mo:Bi:Ni:Co:Fe:Na:B:K:Si=12:5:2:3:0.5:0.1:0.2:0.1:24、の原子比を有する複合酸化物の触媒粉末を調製した。この粉末100重量部にグラファイト(成型助剤)2重量部を添加し、外径5mm、内径2mm、高さ4mmのリング状に打錠成型した後、空気流通下500℃で6時間、焼成して触媒とした。
Example 1
Mo: Bi: Ni: Co: Fe: Na: B: K: Si = 12: 5: 2: 3: 0.5: As a catalyst for producing acrolein or acrylic acid from propylene by a gas phase catalytic oxidation reaction A composite oxide catalyst powder having an atomic ratio of 0.1: 0.2: 0.1: 24 was prepared. After adding 2 parts by weight of graphite (molding aid) to 100 parts by weight of this powder and molding it into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a height of 4 mm, it is fired at 500 ° C. for 6 hours under air flow. Catalyst.

次いで、前記触媒と不活性充填物(直径約5mmのアルミナボール)を図1に示した触媒混合機を用いて混合し、小分け袋詰めを行った。先ず、触媒500mlと不活性充填物500mlを混合し、小分け袋詰めを行った。ホッパー2の下方に無撹拌式混合機4を配置し、無撹拌式混合機4の下方出口にはポリエチレン製袋(厚さ0.08mm×横180mm×縦270mm)をセットした。ホッパー2の内容積が1:1になるように隔壁1の位置を調節した。隔壁1により2つに区分けされた一方の区画に触媒500mlを、他方の区画に不活性充填物500mlを投入した。次いでダンパー3を開にして触媒と不活性充填物を無撹拌式混合機に投入した。無撹拌式混合機4の下方出口より排出される触媒と不活性充填物の混合物をポリエチレン製袋にて受け止め、脱気した後、シールヒートして小分け包装体とした。同じ操作を6回繰り返して、小分け包装体を6個作成し、それぞれ小分け包装体A−1〜A−6とした。
小分け包装体A−1〜A−5の触媒と不活性充填物の混合状態を評価した結果を表1に示す。
Next, the catalyst and the inert packing (alumina balls having a diameter of about 5 mm) were mixed using the catalyst mixer shown in FIG. First, 500 ml of the catalyst and 500 ml of the inert packing were mixed and packed in small bags. An unstirred mixer 4 was placed below the hopper 2, and a polyethylene bag (thickness 0.08 mm × width 180 mm × length 270 mm) was set at the lower outlet of the unstirred mixer 4. The position of the partition wall 1 was adjusted so that the internal volume of the hopper 2 was 1: 1. 500 ml of the catalyst was charged into one section divided into two by the partition wall 1, and 500 ml of inert filler was charged into the other section. Next, the damper 3 was opened, and the catalyst and the inert filler were put into an unstirred mixer. The mixture of the catalyst and the inert filler discharged from the lower outlet of the non-stirring mixer 4 was received by a polyethylene bag, degassed, and then heat-sealed to obtain a small package. The same operation was repeated 6 times to prepare six subpackages, which were designated as subpackages A-1 to A-6, respectively.
Table 1 shows the results of evaluating the mixed state of the catalyst and the inert packing in the subpackages A-1 to A-5.

次いで、熱伝対を設置した直径27mmのステンレス製反応管の原料ガス入口側に、上記小分け包装体A−6に小分けした触媒と不活性充填物の混合物を充填し、原料ガス出口側に前記触媒1000mlを充填した。   Subsequently, the mixture of the catalyst and the inert packing subdivided into the above-mentioned subdivided package A-6 is filled in the raw material gas inlet side of a stainless steel reaction tube having a diameter of 27 mm provided with a thermocouple, and the above-mentioned raw material gas outlet side is filled with the above-mentioned mixture. 1000 ml of catalyst was charged.

次いで、触媒性能を確認するため、ガス空間速度1000hr−1(0℃基準)、入口ゲージ圧100kPa、反応温度310℃の条件下、プロピレン8.5%、空気68%、水蒸気15%、窒素8.5%の混合ガスを流通させ、プロピレンの酸化を行った。反応成績は、プロピレン転化率98.8%、アクリル酸とアクロレインの合計収率は92.6%であった。反応触媒層の最高温度は383℃であった。   Next, in order to confirm the catalyst performance, propylene 8.5%, air 68%, water vapor 15%, nitrogen 8 under conditions of a gas space velocity of 1000 hr-1 (0 ° C. reference), an inlet gauge pressure of 100 kPa, and a reaction temperature of 310 ° C. Propylene was oxidized by passing a 5% mixed gas. As for the reaction results, the propylene conversion rate was 98.8%, and the total yield of acrylic acid and acrolein was 92.6%. The maximum temperature of the reaction catalyst layer was 383 ° C.

(比較例1)
図1に示した触媒混合機の隔壁1を取り外し、実施例1と同じ触媒と不活性充填物を用いて次の方法により小分け袋詰めを行った。
先ず、触媒500mlと不活性充填物500mlとを混合し、その小分け袋詰めを行った。ホッパー2の下方に無撹拌式混合機4を配置し、無撹拌式混合機4の下方出口にポリエチレン製袋(厚さ0.08mm×横180mm×縦270mm)をセットした。次いで触媒500mlをホッパー2に投入し、続いて不活性充填物500mlをホッパーに投入した。次いでダンパー3を開にして触媒と不活性充填物を無撹拌式混合機4に投入した。無撹拌式混合機4の下方出口より排出される触媒と不活性充填物の混合物をポリエチレン製袋にて受け止め、脱気した後、シールヒートして小分け包装体とした。同じ操作を6回繰り返して、小分け包装体を6個作成し、それぞれ小分け包装体B−1〜B−6とした。
小分け包装体B−1〜B−5の触媒と不活性充填物の混合状態を評価した結果を表2に示す。
(Comparative Example 1)
The partition wall 1 of the catalyst mixer shown in FIG. 1 was removed, and the same catalyst and inert packing as in Example 1 were used, and small bags were packed by the following method.
First, 500 ml of the catalyst and 500 ml of the inert packing were mixed and packed in small portions. An unstirred mixer 4 was placed below the hopper 2, and a polyethylene bag (thickness 0.08 mm × width 180 mm × length 270 mm) was set at the lower outlet of the unstirred mixer 4. Next, 500 ml of the catalyst was put into the hopper 2, and then 500 ml of the inert filler was put into the hopper. Next, the damper 3 was opened, and the catalyst and the inert filler were put into the non-stirring mixer 4. The mixture of the catalyst and the inert filler discharged from the lower outlet of the non-stirring mixer 4 was received by a polyethylene bag, degassed, and then heat-sealed to obtain a small package. The same operation was repeated 6 times to prepare six subpackages, which were designated as subpackages B-1 to B-6, respectively.
Table 2 shows the results of evaluating the mixed state of the catalyst and the inert packing in the subpackages B-1 to B-5.

一方、熱伝対を設置した直径27mmのステンレス製反応管の原料ガス入口側に上記小分け包装体B−6の成形触媒と不活性充填物の混合物を充填し、原料ガス出口側に前記触媒1000mlを充填した。   On the other hand, a mixture of the forming catalyst and the inert packing of the above-mentioned subdivided package B-6 is filled on the raw material gas inlet side of a stainless steel reaction tube having a diameter of 27 mm provided with a thermocouple, and 1000 ml of the catalyst is placed on the raw material gas outlet side. Filled.

次いで、触媒性能を確認するため、ガス空間速度1000hr−1(0℃基準)、入口ゲージ圧100kPa、反応温度310℃の条件下、プロピレン8.5%、空気68%、水蒸気15%、窒素8.5%の混合ガスを流通させ、プロピレンの酸化を行った。反応成績は、プロピレン転化率98.6%、アクリル酸とアクロレインの合計収率は91.1%であった。反応触媒層の最高温度は410℃であった。   Next, in order to confirm the catalyst performance, propylene 8.5%, air 68%, water vapor 15%, nitrogen 8 under conditions of a gas space velocity of 1000 hr-1 (0 ° C. reference), an inlet gauge pressure of 100 kPa, and a reaction temperature of 310 ° C. Propylene was oxidized by passing a 5% mixed gas. As for the reaction results, the propylene conversion rate was 98.6%, and the total yield of acrylic acid and acrolein was 91.1%. The maximum temperature of the reaction catalyst layer was 410 ° C.

Figure 0004779309
Figure 0004779309

Figure 0004779309
Figure 0004779309

本発明は、触媒と不活性充填物とを所定の容量比率で混合し、固定床多管式反応器を用いた気相接触酸化反応におけるホットスポットの抑制効果が得られるので、プロピレンからアクロレイン又はメタアクロレインを製造する場合の触媒と不活性充填物との混合に適用でき、高収率を図ることができる。   In the present invention, a catalyst and an inert packing are mixed at a predetermined volume ratio, and an effect of suppressing hot spots in a gas phase catalytic oxidation reaction using a fixed bed multitubular reactor is obtained. It can be applied to the mixing of the catalyst and the inert packing when producing metaacrolein, and a high yield can be achieved.

本発明で使用する触媒混合機の正面図。The front view of the catalyst mixer used by this invention. 図1の無撹拌式混合機の概略図。The schematic of the non-stirring mixer of FIG. 円形配列タイプの分割機の説明図。Explanatory drawing of a circular array type divider. 直列配列タイプの分割機の説明図。Explanatory drawing of the dividing device of a serial arrangement type.

符号の説明Explanation of symbols

1 隔壁
2 ホッパー
3 ダンパー
4 無撹拌式混合機
5 投入口
6 ハウジング
7 エレメント
8 受器
9 計量容器
10 回転軸
11 滑車
DESCRIPTION OF SYMBOLS 1 Bulkhead 2 Hopper 3 Damper 4 Unstirred mixer 5 Input port 6 Housing 7 Element 8 Receiver 9 Measuring container 10 Rotating shaft 11 Pulley

Claims (2)

ホッパーの下方に無撹拌式混合機を配置した触媒混合機を用いて複数種類の充填物を混合する方法であって、前記複数種類の充填物が、固定床多管式反応器を用いた気相接触酸化反応に使用される複合酸化物触媒および不活性充填物であり、該複数種類の充填物を区分けして収容するためにホッパー内を隔壁で複数に区画し、各区画の水平方向の断面積比率を各充填物の容量比率とほぼ等しくし、前記の複合酸化物触媒および不活性充填物を、固定床多管式反応器の反応管1本あたりに充填する所定量、または、反応管1本に複数の反応帯に分割して充填する各反応帯の所定量に小分けて混合し袋詰めし、かつ小分けされた複合酸化物触媒および不活性充填物を8分割したときの複合酸化物触媒と不活性充填物の容積比において、複合酸化物触媒の容積比の変動係数が10%以下であることを特徴とする触媒混合方法。 A method of mixing a plurality of types of packing using a catalyst mixer in which an unstirred mixer is disposed below a hopper, wherein the plurality of types of packing are gasses using a fixed-bed multitubular reactor. A composite oxide catalyst used for a phase catalytic oxidation reaction and an inert packing, and the hopper is partitioned into a plurality of partitions in order to divide and accommodate the plurality of types of packing, and the horizontal direction of each partition The cross-sectional area ratio is made substantially equal to the volume ratio of each packing, and the above-mentioned composite oxide catalyst and the inert packing are charged in a predetermined amount per reaction tube of a fixed bed multitubular reactor or reaction Combined into a predetermined amount of each reaction zone to be divided into a plurality of reaction zones and packed in one tube, mixed and packaged, and the composite oxide catalyst and the inert packing when divided into 8 parts are combined. Composite oxide in the volume ratio of product catalyst to inert packing Catalyst mixture wherein the variation coefficient of the volume ratio of the medium is 10% or less. 請求項の触媒混合方法によって小分け袋詰めされてなる小分け包装体。 A small package packaged in small bags by the catalyst mixing method of claim 1 .
JP2004159538A 2004-05-28 2004-05-28 Catalyst mixer and catalyst mixing method Active JP4779309B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004159538A JP4779309B2 (en) 2004-05-28 2004-05-28 Catalyst mixer and catalyst mixing method
PCT/JP2004/013465 WO2005115617A1 (en) 2004-05-28 2004-09-15 Catalyst mixer and catalyst mixing method
CN 200480000364 CN1697686A (en) 2004-05-28 2004-09-15 Catalyst mixer and catalyst mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159538A JP4779309B2 (en) 2004-05-28 2004-05-28 Catalyst mixer and catalyst mixing method

Publications (2)

Publication Number Publication Date
JP2005334811A JP2005334811A (en) 2005-12-08
JP4779309B2 true JP4779309B2 (en) 2011-09-28

Family

ID=35350094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159538A Active JP4779309B2 (en) 2004-05-28 2004-05-28 Catalyst mixer and catalyst mixing method

Country Status (3)

Country Link
JP (1) JP4779309B2 (en)
CN (1) CN1697686A (en)
WO (1) WO2005115617A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887764B2 (en) * 2007-09-18 2011-02-15 Jernberg Gary R Mixer with a catalytic surface
WO2010072706A1 (en) * 2008-12-22 2010-07-01 Shell Internationale Research Maatschappij B.V. Process and reactor system for the preparation of an olefinic product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531460Y2 (en) * 1992-07-10 1997-04-02 株式会社名機製作所 Raw material supply device for injection molding machine
JPH0620019U (en) * 1992-08-18 1994-03-15 有限会社中村製作所 Material mixing hopper
JP2003171340A (en) * 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp Method for producing acrylic acid
JP2004049992A (en) * 2002-07-17 2004-02-19 Nobuhide Maeda Volatile organic compound reducing material and use thereof

Also Published As

Publication number Publication date
CN1697686A (en) 2005-11-16
WO2005115617A1 (en) 2005-12-08
JP2005334811A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
CN100551528C (en) The preparation method of the preparation method of multi-metal-oxide catalyst, unsaturated aldehyde and/or carboxylic acid and belt calciner
CN101678353B (en) Method for loading a reactor with a fixed catalyst bed which comprises at least annular-shaped catalyst bodies k
EP1074538B1 (en) Process for producing acrolein and acrylic acid
CN100448522C (en) Fixed bed reactor for gas-phase catalytic oxidation and processes for producing acrolein or acrylic acid
US11285462B2 (en) Catalyst
JP5628930B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
CN105899480B (en) For gas phase oxidation of olefins to obtain the hollow cylindrical molded catalyst body of the mechanical stability of unsaturated aldehyde and/or unsaturated carboxylic acid
RU2349576C2 (en) Method of prolonged heterogeneous catalysed partial oxidation of propene to acrolein in gaseous phase
EP2295136A1 (en) Method of packing solid particulate substance into fixed-bed multitubular reactor
CN105899481A (en) Process for preparing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4779309B2 (en) Catalyst mixer and catalyst mixing method
JP7352692B2 (en) Method for producing unsaturated nitrile
KR102000899B1 (en) Method for producing unsaturated nitrile
JP5618800B2 (en) FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR
JP5628936B2 (en) Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst
US20080014127A1 (en) Pilot test method for multitubular reactor
KR101218128B1 (en) / process for producting methacrolein and/or methacrylic acid
EP2363203B1 (en) Method of reaction using heat-exchange type reactor
JP5037830B2 (en) Method for producing molybdenum-containing solid shaped catalyst
JP6427723B1 (en) Method for producing unsaturated nitrile
US11628425B2 (en) Catalyst and catalyst group
CN109311805B (en) Method for producing unsaturated nitrile
US20230219070A1 (en) Catalyst and catalyst group
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2016055271A (en) Method for producing monolithic type spherical catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350