JP5037830B2 - Method for producing molybdenum-containing solid shaped catalyst - Google Patents

Method for producing molybdenum-containing solid shaped catalyst Download PDF

Info

Publication number
JP5037830B2
JP5037830B2 JP2006036027A JP2006036027A JP5037830B2 JP 5037830 B2 JP5037830 B2 JP 5037830B2 JP 2006036027 A JP2006036027 A JP 2006036027A JP 2006036027 A JP2006036027 A JP 2006036027A JP 5037830 B2 JP5037830 B2 JP 5037830B2
Authority
JP
Japan
Prior art keywords
catalyst
precursor
molding
molded
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006036027A
Other languages
Japanese (ja)
Other versions
JP2006255689A (en
Inventor
友基 福井
啓幸 内藤
奉正 辰已
智道 日野
晴基 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006036027A priority Critical patent/JP5037830B2/en
Publication of JP2006255689A publication Critical patent/JP2006255689A/en
Application granted granted Critical
Publication of JP5037830B2 publication Critical patent/JP5037830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、気相酸化反応により不飽和カルボン酸を製造する場合等に使用されるモリブデン含有固体成形触媒(以下、単に「成形触媒」ともいう。)の製造方法、この方法で製造される成形触媒、およびこの成形触媒を用いた不飽和カルボン酸の製造方法に関する。   The present invention relates to a method for producing a molybdenum-containing solid molding catalyst (hereinafter, also simply referred to as “molding catalyst”) used when producing an unsaturated carboxylic acid by a gas phase oxidation reaction, and molding produced by this method. The present invention relates to a catalyst and a method for producing an unsaturated carboxylic acid using the shaped catalyst.

不飽和カルボン酸の製造方法として、成形触媒を充填した固定床管型反応器を用いて不飽和アルデヒドを分子状酸素で気相接触酸化する方法が知られている。この方法には、反応管にモリブデン元素を含む触媒の前駆体(以下、単に「前駆体」ともいう。)を成形した成形品(以下、単に「成形品」ともいう。)を落下充填した後に焼成する方法(充填後焼成)、前駆体の成形品を焼成した成形触媒を落下充填する方法(焼成後充填)等がある。充填後焼成では、反応管に成形品を落下充填する際の物理的衝撃により成形品の粉化や崩壊が起こることがある。成形品の粉化や崩壊が著しいと実質的な触媒充填量の減少や圧力損失の増大のために予定した運転条件で反応を実施できないことがある。また焼成後充填でも、焼成工程に至るまでの成形品の取扱操作において、成形品の粉化や崩壊が起こることがある。また、前駆体を焼成したものを成形して触媒を製造する場合もあるが、この方法で得られた成形触媒を反応管に充填する場合にも、成形触媒の粉化や崩壊の問題がある。   As a method for producing an unsaturated carboxylic acid, a method is known in which an unsaturated aldehyde is vapor-phase catalytically oxidized with molecular oxygen using a fixed bed tube reactor filled with a forming catalyst. In this method, after dropping and filling a molded product (hereinafter also simply referred to as “molded product”) obtained by molding a precursor of a catalyst containing molybdenum element (hereinafter also simply referred to as “precursor”) into a reaction tube. There are a method of firing (firing after firing), a method of dropping and filling a shaped catalyst obtained by firing a molded article of a precursor (filling after firing), and the like. In firing after filling, the molded product may be pulverized or collapsed by physical impact when the molded product is dropped and filled into the reaction tube. If the molded product is significantly pulverized or disintegrated, the reaction may not be carried out under the expected operating conditions due to a substantial decrease in catalyst loading and an increase in pressure loss. In addition, even after filling after firing, in the handling operation of the molded product up to the firing process, the molded product may be pulverized or collapsed. In some cases, a catalyst is produced by molding a precursor that has been calcined. However, there is a problem of pulverization or disintegration of the molded catalyst even when the molded catalyst obtained by this method is filled in a reaction tube. .

そのため、成形触媒または成形品が粉化したり崩壊したりするのを抑制するために、触媒または前駆体を成形する圧力を調節したり、機械的強度を向上する効果を有する各種の添加剤を触媒または前駆体に添加して成形したりする等して成形触媒または成形品の機械的強度を高める方法が知られている。   Therefore, in order to prevent the molded catalyst or molded product from being pulverized or disintegrated, various additives having the effect of adjusting the pressure for molding the catalyst or precursor or improving the mechanical strength are catalyzed. Alternatively, a method of increasing the mechanical strength of a molded catalyst or a molded product by adding it to a precursor and molding is known.

一方、前駆体の製造方法としては、例えば、触媒の原料を含む溶液又はスラリー(以下、「原料液」ともいう。)を乾燥する方法等が挙げられる。例えば、特許文献1および2には蒸発乾固法、噴霧乾燥法、ドラム乾燥法等の乾燥方法が開示されている。   On the other hand, examples of the method for producing the precursor include a method of drying a solution or slurry containing a catalyst raw material (hereinafter also referred to as “raw material liquid”). For example, Patent Documents 1 and 2 disclose drying methods such as evaporation to dryness, spray drying, and drum drying.

また、触媒または前駆体の成形方法としては、例えば、打錠成型法等の乾燥した触媒前駆体を成形する乾式成形法、押出成形法等の液体を含む触媒前駆体を成形する湿式成形法等が挙げられる。例えば、特許文献1には打錠成型、プレス成形、押出成形、造粒成形、担持成形等の成形方法が、特許文献2には押出成形法が開示されている。
特開平11−226412号公報 特開2003−93882号公報
The catalyst or precursor molding method includes, for example, a dry molding method for molding a dried catalyst precursor such as a tableting molding method, a wet molding method for molding a catalyst precursor containing a liquid such as an extrusion molding method, etc. Is mentioned. For example, Patent Literature 1 discloses a molding method such as tableting, press molding, extrusion molding, granulation molding, and support molding, and Patent Literature 2 discloses an extrusion molding method.
JP-A-11-226212 JP 2003-93882 A

従来の触媒または前駆体を製造する工程(触媒または前駆体製造工程)とこれを成形する工程(成形工程)を含む触媒の製造方法では、これらの各工程間あるいは工程内において触媒および/または触媒前駆体を輸送する際に、ベルトコンベヤやバケットコンベヤ等を用いると、前駆体が飛散したり、装置のデッドスペースに前駆体が溜まり、回収できないことがあった。そこで本願発明者らは配管を用いた空気輸送により前駆体を輸送したところ、前駆体の飛散等は殆どなくなったが、成形品の強度が低下するという問題が発生することがあった。また、成形触媒を使用したときに目的物の収率が低くなるという問題が発生することもあった。   In a conventional method for producing a catalyst including a step of producing a catalyst or precursor (catalyst or precursor production step) and a step of shaping the catalyst (precursor step), a catalyst and / or a catalyst is used between or within each of these steps. When the precursor is transported, if a belt conveyor, a bucket conveyor, or the like is used, the precursor may be scattered or the precursor may be collected in a dead space of the apparatus and may not be recovered. Therefore, when the present inventors transported the precursor by pneumatic transportation using a pipe, the scattering of the precursor almost disappeared, but there was a problem that the strength of the molded product was lowered. In addition, there is a problem that the yield of the target product is lowered when the molded catalyst is used.

本発明は、空気輸送した前駆体を成形する工程を含む触媒の製造方法において、前駆体の成形品または成形触媒の強度を高める方法、および/または目的物の収率が高い成形触媒を製造する方法を提供することを目的とする。   The present invention provides a catalyst production method including a step of molding a pneumatically transported precursor, and a method for increasing the strength of a molded article of a precursor or a molded catalyst and / or a molded catalyst having a high yield of a target product. It aims to provide a method.

また、本発明は目的物の収率が高い成形触媒、および収率の高い不飽和カルボン酸の製造方法を提供することを目的とする。   Another object of the present invention is to provide a molded catalyst having a high yield of the target product and a method for producing an unsaturated carboxylic acid having a high yield.

本発明は、モリブデン元素を含む触媒および/または触媒前駆体を0.5〜25m/s(NTP)の線速度の輸送用気体で空気輸送する空気輸送工程と、空気輸送工程より後においてモリブデン元素を含む触媒および/または触媒前駆体を成形する成形工程とを含むモリブデン含有固体成形触媒の製造方法である。   The present invention relates to an air transport step of pneumatically transporting a catalyst and / or catalyst precursor containing molybdenum element with a transport gas having a linear velocity of 0.5 to 25 m / s (NTP), and an elemental molybdenum after the air transport step. And a forming step of forming a catalyst precursor and / or a catalyst precursor.

また、本発明は、空気輸送されたモリブデン元素を含む触媒および/または触媒前駆体の安息角が60°以下である前記の製造方法である。   Further, the present invention is the above production method, wherein the repose angle of the catalyst and / or catalyst precursor containing molybdenum element that is pneumatically transported is 60 ° or less.

また、本発明は、空気輸送を行う配管が、内表面粗度25S以下の金属製配管であることを特徴とする前記の製造方法である。   Moreover, this invention is the said manufacturing method characterized by the piping which performs pneumatic transport being metal piping with an inner surface roughness of 25S or less.

また、本発明は、空気輸送を行う配管が、内表面粗度25S以下で、かつ表面抵抗係数が1015Ω/□以下の樹脂製配管であることを特徴とする前記の製造方法である。 The present invention is also the above-described manufacturing method, characterized in that the pipe for carrying air is a resin pipe having an inner surface roughness of 25 S or less and a surface resistance coefficient of 10 15 Ω / □ or less.

また、本発明は、成形工程のおいて、触媒および/または触媒前駆体に式(1)で表される混合度Mが0.8〜0.99の範囲となるように添加剤を混合することを特徴とする前記の製造方法である。
Further, in the present invention, in the molding step, an additive is mixed with the catalyst and / or catalyst precursor so that the degree of mixing M represented by the formula (1) is in the range of 0.8 to 0.99. It is the said manufacturing method characterized by the above-mentioned.

また、本発明は、前記方法で製造されたモリブデン含有固体成形触媒である。   Moreover, this invention is a molybdenum containing solid shaping | molding catalyst manufactured by the said method.

更に、本発明は、前記モリブデン含有固体成形触媒の存在下で不飽和アルデヒドを分子状酸素で気相接触酸化する不飽和カルボン酸の製造方法である。   Furthermore, the present invention is a method for producing an unsaturated carboxylic acid in which an unsaturated aldehyde is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of the molybdenum-containing solid forming catalyst.

本発明によれば、モリブデン元素を含む触媒および/または触媒前駆体を空気輸送する空気輸送工程と、空気輸送工程より後においてモリブデン元素を含む触媒および/または触媒前駆体を成形する成形工程とを含む成形触媒の製造方法において、成形触媒または前駆体の成形品の強度を高めることができる。また、目的物の収率が高い成形触媒を製造することができる。   According to the present invention, the pneumatic transport step of pneumatically transporting the catalyst and / or catalyst precursor containing molybdenum element, and the molding step of molding the catalyst and / or catalyst precursor containing molybdenum element after the pneumatic transport step are performed. In the manufacturing method of the shaping | molding catalyst containing, the intensity | strength of the shaping | molding catalyst or precursor molded article can be raised. In addition, a molded catalyst having a high yield of the target product can be produced.

本発明の成形触媒を用いると、不飽和カルボン酸を高い収率で製造することができる。   When the shaped catalyst of the present invention is used, an unsaturated carboxylic acid can be produced in a high yield.

本発明は、例えば、不飽和アルデヒドを分子状酸素で気相接触酸化して不飽和カルボン酸を製造する反応等に使用できるモリブデン含有固体成形触媒の製造方法に関するものである。不飽和アルデヒドとは炭素骨格に炭素−炭素間二重結合とホルミル基を含む有機化合物であり、例えばアクロレイン、メタクロレイン等のα,β−不飽和アルデヒドが挙げられる。不飽和カルボン酸とは炭素骨格に炭素−炭素間二重結合とカルボキシ基を含む有機化合物であり、例えばアクロレインから製造されるアクリル酸、メタクロレインから製造されるメタクリル酸等のα,β−不飽和カルボン酸が挙げられる。   The present invention relates to a method for producing a molybdenum-containing solid molded catalyst that can be used, for example, in a reaction for producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen. An unsaturated aldehyde is an organic compound containing a carbon-carbon double bond and a formyl group in the carbon skeleton, and examples thereof include α, β-unsaturated aldehydes such as acrolein and methacrolein. An unsaturated carboxylic acid is an organic compound containing a carbon-carbon double bond and a carboxy group in the carbon skeleton. For example, an α, β-unsaturated acid such as acrylic acid produced from acrolein or methacrylic acid produced from methacrolein. Saturated carboxylic acid is mentioned.

また本発明は、オレフィンまたは第三級アルコールを分子状酸素で気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を製造する反応に使用できるモリブデン含有固体成形触媒の製造方法にも適用できる。ここでオレフィンとしては、例えばプロピレン、イソブチレン等が挙げられる。第三級アルコールとしては、例えば第三級ブチルアルコール等が挙げられる。この反応では、プロピレンからはアクロレインとアクリル酸が、イソブチレンおよび/または第三級ブチルアルコールからはメタクロレインとメタクリル酸が製造できる。   The present invention can also be applied to a method for producing a molybdenum-containing solid shaped catalyst that can be used in a reaction for producing an unsaturated aldehyde and an unsaturated carboxylic acid by vapor-phase catalytic oxidation of olefin or tertiary alcohol with molecular oxygen. Examples of olefins include propylene and isobutylene. As tertiary alcohol, tertiary butyl alcohol etc. are mentioned, for example. In this reaction, acrolein and acrylic acid can be produced from propylene, and methacrolein and methacrylic acid can be produced from isobutylene and / or tertiary butyl alcohol.

例えば、アクロレインを分子状酸素で気相接触酸化してアクリル酸を製造する際に用いられる触媒としては、次の式(2)で表される組成のものが好適である。   For example, a catalyst having a composition represented by the following formula (2) is suitable as a catalyst used for producing acrylic acid by vapor-phase catalytic oxidation of acrolein with molecular oxygen.

Mo (2)
式(2)において、Mo、VおよびOはそれぞれモリブデン、バナジウムおよび酸素を示し、Aは鉄、コバルト、クロム、アルミニウムおよびストロンチウムからなる群より選ばれた少なくとも一種の元素を示し、Xはゲルマニウム、ホウ素、ヒ素、セレン、銀、ケイ素、ナトリウム、テルル、リチウム、アンチモン、リン、カリウム、およびバリウムからなる群より選ばれた少なくとも1種の元素を示し、Yは、マグネシウム、チタン、マンガン、銅、亜鉛、ジルコニウム、ニオブ、タングステン、タンタル、カルシウム、スズおよびビスマスからなる群より選ばれた少なくとも1種の元素を示す。a、b、c、d、eおよびfは各元素の原子比を表し、a=12のときb=0.01〜6、c=0〜5、d=0〜10、e=0〜5であり、fは前記各元素の原子価を満足するのに必要な酸素の原子比である。
Mo a V b A c X d Y e O f (2)
In the formula (2), Mo, V and O each represent molybdenum, vanadium and oxygen, A represents at least one element selected from the group consisting of iron, cobalt, chromium, aluminum and strontium, X represents germanium, Represents at least one element selected from the group consisting of boron, arsenic, selenium, silver, silicon, sodium, tellurium, lithium, antimony, phosphorus, potassium, and barium; Y represents magnesium, titanium, manganese, copper, It represents at least one element selected from the group consisting of zinc, zirconium, niobium, tungsten, tantalum, calcium, tin and bismuth. a, b, c, d, e, and f represent atomic ratios of the respective elements. When a = 12, b = 0.01 to 6, c = 0 to 5, d = 0 to 10, e = 0 to 5 And f is the atomic ratio of oxygen necessary to satisfy the valence of each element.

また、メタクロレインを分子状酸素で気相接触酸化してメタクリル酸を製造する際に用いられる触媒としては、次の式(3)で表される組成のものが好適である。   Moreover, as a catalyst used when producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst having a composition represented by the following formula (3) is preferable.

MoCu (3)
式(3)において、P、Mo、V、CuおよびOはそれぞれリン、モリブデン、バナジウム、銅および酸素を示し、Xはアンチモン、ビスマス、ヒ素、ゲルマニウム、ジルコニウム、テルル、セレン、ケイ素、タングステン、ホウ素および銀からなる群より選ばれた少なくとも1種の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、マンガン、コバルト、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種の元素を示し、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を示し、a、b、c、d、e、f、gおよびhは各元素の原子比を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比である。
P a Mo b V c Cu d X e Y f Z g O h (3)
In formula (3), P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, selenium, silicon, tungsten, boron And at least one element selected from the group consisting of silver and Y is at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, manganese, cobalt, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and a, b, c, d, e, f, g and h are atomic ratios of the respective elements. And when b = 12, a = 0.5-3, c = 0.01-3, d = 0-2, e = 0-3, f = 0-3, g Is 0.01 to 3, h is an atomic ratio of oxygen required to satisfy the valence of each element.

成形触媒は、まず触媒または前駆体を製造する工程と、触媒または前駆体を成形する工程を経て製造される。その中で空気輸送は、触媒または前駆体を成形するまでの段階で離れた場所まで触媒および/または触媒前駆体を輸送する際に実施される。   The formed catalyst is first manufactured through a step of manufacturing a catalyst or a precursor and a step of forming the catalyst or precursor. Among them, pneumatic transportation is carried out when the catalyst and / or catalyst precursor is transported to a remote location at a stage until the catalyst or precursor is formed.

前駆体の好ましい製造方法としては、次の方法が例示できる。まず触媒の原料となる化合物を液体に溶解又は懸濁させて原料液を調製する。原料液の調製方法は特に限定されず、例えば、沈殿法、酸化物混合法等の公知の方法が挙げられる。原料液の調製に使用する液体としては、例えば、水、エチルアルコール、アセトン等が挙げられるが、なかでも水が好ましい。   The following method can be illustrated as a preferable manufacturing method of a precursor. First, a compound as a raw material for the catalyst is dissolved or suspended in a liquid to prepare a raw material liquid. The method for preparing the raw material liquid is not particularly limited, and examples thereof include known methods such as a precipitation method and an oxide mixing method. Examples of the liquid used for preparing the raw material liquid include water, ethyl alcohol, acetone and the like, and water is particularly preferable.

モリブデン元素の原料化合物としては、例えば、三酸化モリブデン等の酸化モリブデン類、パラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム等のモリブデン酸アンモニウム類等が挙げられる。モリブデン以外の元素の原料化合物としては、各元素の、例えば、酸化物、硝酸塩、炭酸塩、アンモニウム塩、ハロゲン化物等が挙げられる。具体的には、バナジウム元素の原料化合物としては、メタバナジン酸アンモニウム、五酸化バナジウム、蓚酸バナジル等、リン元素の原料化合物としては、リン酸、五酸化リン、リン酸アンモニウム等、銅元素の原料化合物としては、硝酸銅、水酸化銅、塩化銅等が例示できる。   Examples of the molybdenum element material compound include molybdenum oxides such as molybdenum trioxide, and ammonium molybdates such as ammonium paramolybdate and ammonium dimolybdate. Examples of raw material compounds of elements other than molybdenum include oxides, nitrates, carbonates, ammonium salts, halides and the like of each element. Specifically, as a raw material compound of vanadium element, ammonium metavanadate, vanadium pentoxide, vanadyl oxalate, etc., and as a raw material compound of phosphorus element, phosphoric acid, phosphorus pentoxide, ammonium phosphate, etc., raw material compound of copper element Examples thereof include copper nitrate, copper hydroxide, and copper chloride.

次に得られた原料液を乾燥して前駆体を製造する。乾燥方法は特に限定されず、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等の方法が挙げられる。この際に使用する乾燥機の機種や乾燥温度等の条件は特に限定されず、所望する乾燥物の形状や大きさにより適宜選択することができる。しかしながら、安息角の小さな前駆体が得られ易いことから、噴霧乾燥法、ドラム乾燥法が好ましい。得られる乾燥物が塊状である場合は粉砕して粉体状にすることが好ましい。乾燥物には焼成(熱処理)等の処理を施してもよい。熱処理して得られる十分な触媒活性を有するものをここでは触媒と呼ぶことにする。なお、焼成の条件については後述する。   Next, the obtained raw material liquid is dried to produce a precursor. The drying method is not particularly limited, and examples thereof include methods such as evaporation to dryness, spray drying, drum drying, and airflow drying. Conditions such as the model of the dryer used at this time and the drying temperature are not particularly limited, and can be appropriately selected depending on the desired shape and size of the dried product. However, since a precursor having a small angle of repose is easily obtained, the spray drying method and the drum drying method are preferable. When the obtained dried product is a lump, it is preferably pulverized into a powder. The dried product may be subjected to a treatment such as firing (heat treatment). What has sufficient catalytic activity obtained by heat treatment will be referred to herein as a catalyst. The firing conditions will be described later.

このようにして得られる触媒または前駆体は、空気輸送の際に必要な流動性を有していれば、その大きさ等の形状について特に制限はないが、粉体状であることが好ましい。ここで前駆体とは触媒活性を有さないものだけでなく、部分的に触媒活性を有しているものも含むものとする。以下、触媒と前駆体をまとめて「前駆体等」ということがある。   The catalyst or precursor thus obtained is not particularly limited as long as it has the fluidity necessary for pneumatic transportation, but is preferably in the form of powder. Here, the precursor includes not only those having no catalytic activity but also those having a partial catalytic activity. Hereinafter, the catalyst and the precursor may be collectively referred to as “precursor etc.”.

本発明では、前駆体等を空気輸送する空気輸送工程を含む。前駆体等は、空気輸送したことにより流動性が変化する場合がある。輸送後の前駆体等の安息角(以下、単に安息角ともいう。)は60°以下であり、好ましくは55°以下である。安息角は小さいほど成形性が良くなり安定した製造ができる。また、安息角は小さいほど触媒の比表面積や細孔分布といった物性の制御が容易になるので、成形触媒に反応原料の転化率および/または目的物の選択率が高くなる物性を付与することができる。安息角の大きさは、輸送前の前駆体等の安息角、輸送時の気体の線速度等により調節できる。具体的には、輸送前の前駆体等の安息角が小さくなり易い噴霧乾燥法やドラム乾燥法等の乾燥方法を選択したり、乾燥装置の温度条件を調節したりする、輸送時の気体の線速度を小さくする等の方法で安息角を小さくすることができる。ここで「安息角」とは流動性の指標で、次の方法により測定されるものである。すなわち、測定対象の前駆体等を漏斗の穴から水平な板の上に静かに注入堆積させ形成される円錐体の母線と水平面のなす角度を安息角として測定する。   The present invention includes an air transportation step for pneumatically transporting the precursor and the like. The fluidity of the precursor and the like may change due to pneumatic transportation. The angle of repose (hereinafter also simply referred to as the angle of repose) of the precursor or the like after transportation is 60 ° or less, preferably 55 ° or less. The smaller the angle of repose, the better the moldability and the more stable production. In addition, the smaller the angle of repose, the easier it is to control the physical properties such as the specific surface area and pore distribution of the catalyst. it can. The size of the angle of repose can be adjusted by the angle of repose of the precursor before transportation, the linear velocity of the gas during transportation, and the like. Specifically, select a drying method such as a spray drying method or a drum drying method that tends to reduce the angle of repose of the precursor before transportation, etc., or adjust the temperature conditions of the drying device. The angle of repose can be reduced by a method such as reducing the linear velocity. Here, the “angle of repose” is an indicator of fluidity and is measured by the following method. That is, the angle formed between the generatrix of the cone formed by gently injecting and depositing the precursor to be measured from the hole of the funnel on the horizontal plate and the horizontal plane is measured as the angle of repose.

空気輸送の方法は特に限定されず、公知の方法が利用できる。空気輸送とは、輸送元と輸送先とを配管で接続し、その内部を流れる気体、すなわち輸送用気体により粉粒体を輸送する技術である。また、空気輸送と言っても輸送用気体は空気に限定されない。輸送用気体としては、例えば、空気(大気)、窒素、ヘリウム等が挙げられる。輸送用気体には、窒素、ヘリウム、アンモニアガス等の前駆体等への影響が少ないガスが含まれていてもよい。空気輸送の方法としては、例えば、減圧空気輸送、加圧空気輸送、加圧高濃度空気輸送等の方法が挙げられる。   The method of pneumatic transportation is not particularly limited, and a known method can be used. Pneumatic transportation is a technique in which a transportation source and a transportation destination are connected by piping, and a granular material is transported by a gas flowing through the inside, that is, a transportation gas. Moreover, even if it says pneumatic transport, the gas for transport is not limited to air. Examples of the transport gas include air (atmosphere), nitrogen, and helium. The transport gas may contain a gas that has little influence on precursors such as nitrogen, helium, and ammonia gas. Examples of the pneumatic transportation method include reduced-pressure pneumatic transportation, pressurized pneumatic transportation, pressurized high-concentration pneumatic transportation, and the like.

空気輸送を実施する箇所は、例えば、原料液を噴霧乾燥する際の乾燥機内での前駆体等の輸送時、原料液を乾燥および/または焼成して得られた前駆体等を保持する容器あるいは成形機までの輸送時等である。   The place where the pneumatic transportation is performed is, for example, a container for holding a precursor obtained by drying and / or firing the raw material liquid at the time of transporting the precursor or the like in a dryer when the raw material liquid is spray-dried, or When transporting to a molding machine.

空気輸送は輸送用気体の線速度が0.5〜25m/s(NTP)の範囲で実施する。線速度は空気輸送された前駆体等の安息角が好ましくは60°以下、より好ましくは55°以下、特に好ましくは52°以下となるような条件で実施する。線速度は1〜20m/s(NTP)の範囲が好ましく、1.5〜15m/s(NTP)の範囲がより好ましく、1.5〜12m/s(NTP)の範囲が特に好ましい。線速度がこの範囲を下回ると、輸送不能となったり、配管に詰まりが生じて効率が悪くなることがある。また、線速度がこの範囲を上回ると輸送後の流動性が悪くなる、すなわち安息角が大きくなることがある。線速度が高い場合に流動性が悪くなる原因は、衝撃により前駆体が壊れて微粉化が進むためと推測される。   Pneumatic transportation is carried out in the range where the linear velocity of the transportation gas is 0.5 to 25 m / s (NTP). The linear velocity is carried out under such a condition that the repose angle of the pneumatically transported precursor or the like is preferably 60 ° or less, more preferably 55 ° or less, and particularly preferably 52 ° or less. The linear velocity is preferably in the range of 1 to 20 m / s (NTP), more preferably in the range of 1.5 to 15 m / s (NTP), and particularly preferably in the range of 1.5 to 12 m / s (NTP). If the linear velocity is below this range, transportation may become impossible or the piping may become clogged, resulting in poor efficiency. On the other hand, if the linear velocity exceeds this range, the fluidity after transportation may deteriorate, that is, the angle of repose may increase. The reason why the fluidity deteriorates when the linear velocity is high is presumed to be that the precursor is broken by impact and the pulverization proceeds.

空気輸送に用いる配管の内径、長さ、材質等については特に限定されない。しかし、内径は大きいほど輸送能力が大きくなり、小さいほど必要な動力が小さくなることから、両者のバランスを考慮して2cm〜30cmが好ましく、2cm〜20cmがより好ましい。長さは輸送元と輸送先の位置関係で決まるが、長いほど必要な動力が大きくなることから、0.5m〜50mの範囲が好ましく、1m〜30mの範囲が特に好ましい。   The inner diameter, length, material, etc. of the pipe used for pneumatic transportation are not particularly limited. However, the larger the inner diameter is, the greater the transportation capacity is, and the smaller the smaller the necessary power, the more preferably 2 to 30 cm, and more preferably 2 to 20 cm in consideration of the balance between the two. The length is determined by the positional relationship between the transportation source and the transportation destination. However, the longer the length, the greater the required power. Therefore, the range of 0.5 to 50 m is preferable, and the range of 1 to 30 m is particularly preferable.

配管の内表面粗度は、大きいと摩擦抵抗が高くなり、安定に輸送するためにより高い線速度にする必要がある。このため、空気輸送された前駆体等の安息角を小さくするためには、25S以下であることが好ましく、6.3S以下であることがより好ましい。なお、本発明において内表面粗度とは、JIS B 0601:2001に記載の輪郭曲線の最大高さ(Rz)を意味する。   When the inner surface roughness of the pipe is large, the frictional resistance becomes high, and it is necessary to make the linear velocity higher for stable transportation. For this reason, in order to reduce the angle of repose of the precursor or the like that is pneumatically transported, it is preferably 25S or less, and more preferably 6.3S or less. In the present invention, the inner surface roughness means the maximum height (Rz) of the contour curve described in JIS B 0601: 2001.

配管の材質は、例えば、ステンレス等の金属、樹脂等の汎用のものを用いることができる。強度が高く、帯電し難いこと等の理由によりで金属製であることが好ましく、質量、価格、内表面粗度を満たした配管の得やすさの面で樹脂製が好ましい。樹脂製の場合、内面の表面抵抗率が高いと、配管の帯電により輸送抵抗が増加し、安定な輸送を行うためにより高い線速度とする必要が生じるため、1015Ω/□以下であることが好ましく、1014Ω/□以下であることがより好ましく、1012Ω/□以下であることが更に好ましい。なお、より低い表面抵抗率を得るため、表面処理や練り込みによる改質を行った樹脂を用いても構わない。表面抵抗率はJIS K 6911に準拠した方法で測定できる。また、水平配管部での前駆体等の滞留を防止するため、配管にバイブレーターを設置し、振動を与えても良い。 As the material of the pipe, for example, a general-purpose material such as a metal such as stainless steel or a resin can be used. It is preferably made of metal for reasons such as high strength and difficulty in being charged, and resin is preferred in terms of mass, price, and ease of obtaining piping satisfying the inner surface roughness. In the case of resin, if the surface resistivity of the inner surface is high, the transport resistance will increase due to the charging of the pipe, and it will be necessary to achieve a higher linear velocity for stable transport, so it must be 10 15 Ω / □ or less. Is preferably 10 14 Ω / □ or less, and more preferably 10 12 Ω / □ or less. In order to obtain a lower surface resistivity, a resin subjected to surface treatment or modification by kneading may be used. The surface resistivity can be measured by a method based on JIS K 6911. Moreover, in order to prevent a precursor etc. from staying in the horizontal piping section, a vibrator may be installed in the piping to give vibration.

本発明では、空気輸送工程より後においてモリブデン前駆体等を成形する成形工程を含む。成形工程では輸送された前駆体等に何ら処理することなく成形することが好ましい。しかし、輸送後に分級、粉砕、整粒、熱処理(焼成)、予備成形等の処理をしたものを成形してもよい。この場合、輸送直後と前駆体等の物性が変化することがある。前駆体等の成形方法は特に限定されず、公知の成形方法が利用できる。成形方法としては、例えば、打錠成型、プレス成型、造粒成形、湿式押出成形等の方法が挙げられる。本発明は、前駆体の流動性の影響を受け易い打錠成型、造粒成形の場合に好適であり、打錠成型の場合が最も好適である。成形品の形状としては、例えば、円柱状、リング状、球状等が挙げられる。   The present invention includes a molding step for molding the molybdenum precursor and the like after the pneumatic transportation step. In the molding step, it is preferable to mold the transported precursor or the like without any treatment. However, it may be molded after transportation, such as classification, pulverization, sizing, heat treatment (firing), or preforming. In this case, the physical properties of the precursor and the like may change immediately after transportation. A molding method for the precursor and the like is not particularly limited, and a known molding method can be used. Examples of the molding method include tableting molding, press molding, granulation molding, and wet extrusion molding. The present invention is suitable for tableting molding and granulation molding which are easily affected by the fluidity of the precursor, and most preferably for tableting molding. Examples of the shape of the molded product include a columnar shape, a ring shape, and a spherical shape.

成形に際しては、公知の添加剤、例えば、グラファイト、タルク等を添加してもよい。これらを前駆体等に混合する装置は、特に限定されず、公知の装置が使用できる。例えば、水平円筒型、V型、二重円錐型、揺動回転型、短軸リボン型、複軸パドル型、回転鋤型、二重遊星攪拌型、円錐スクリュー型、拘束攪拌型、回転円盤型、ロータ付回転容器型、攪拌付回転容器型、高速楕円ロータ型、気流攪拌型、重力無攪拌型等の混合装置が挙げられる。これらの装置を用いて混合を行う場合、装置ごとの特性に合わせ混合条件を決定することができるが、混合後の混合物の安息角が好ましくは60°以下、より好ましくは55°以下となる条件とする。この条件を満たすため、下記式(1)で表される混合物の混合度Mが0.8〜0.99の範囲となるように前駆体等に添加剤を混合することが好ましい。混合度Mは、大きいほど添加剤の効果が発揮されて反応成績が向上し、小さいほど前駆体等の微粉化が少なくなるので安息角が小さくなる。
In molding, known additives such as graphite and talc may be added. The apparatus which mixes these with a precursor etc. is not specifically limited, A well-known apparatus can be used. For example, horizontal cylinder type, V type, double cone type, swing rotation type, short axis ribbon type, double axis paddle type, rotary saddle type, double planetary agitation type, conical screw type, constrained agitation type, rotary disk type And a mixing device such as a rotating vessel type with a rotor, a rotating vessel type with stirring, a high-speed elliptical rotor type, an airflow stirring type, and a gravity non-stirring type. When mixing using these devices, the mixing conditions can be determined according to the characteristics of each device, but the repose angle of the mixture after mixing is preferably 60 ° or less, more preferably 55 ° or less. And In order to satisfy this condition, it is preferable to add an additive to the precursor or the like so that the mixing degree M of the mixture represented by the following formula (1) is in the range of 0.8 to 0.99. As the degree of mixing M is larger, the effect of the additive is exerted and the reaction results are improved, and as the degree of mixing is smaller, the angle of repose becomes smaller because the pulverization of the precursor and the like is reduced.

混合度Mを求める際に、Nは15〜20程度、nは250以上であることが好ましい。 When obtaining the degree of mixing M, N is preferably about 15 to 20, and n is preferably 250 or more.

また、Mは直接粒子の個数を数える方法、光電変換形プローブを用いて粉体表面の色調変化を測定する方法等により求めることもできる。   M can also be obtained by a method of directly counting the number of particles, a method of measuring a color tone change on the powder surface using a photoelectric conversion probe, or the like.

また、混合物を保持した後に成形する場合の保持条件は特に限定されないが、温度0〜50℃、特に20〜30℃、相対湿度10〜70%、特に40〜50%の環境で保持すると良好な成形性が維持される。また、保持時間に関しても特に限定されないが、良好な成形が実施できることから0.5〜500時間が好ましく、特に1〜48時間が好ましい。   In addition, the holding conditions in the case of molding after holding the mixture are not particularly limited, but it is good to hold in an environment of temperature 0 to 50 ° C., particularly 20 to 30 ° C., relative humidity 10 to 70%, particularly 40 to 50%. Formability is maintained. The holding time is not particularly limited, but is preferably 0.5 to 500 hours, and particularly preferably 1 to 48 hours because good molding can be performed.

前駆体を成形して得られた成形品は熱処理、いわゆる焼成を行って触媒活性を付与して成形触媒とする。また、前駆体を熱処理した触媒を成形して得られた成形品は、適宜熱処理を行えばよいが、熱処理を実施する方が好ましい。前記式(3)で表される組成の触媒を製造する場合等、焼成後の前駆体の成形性が焼成前に比べて悪い場合には前駆体を成形して得られた成形品を焼成することが好ましい。   A molded product obtained by molding the precursor is subjected to heat treatment, so-called calcination, to impart catalytic activity to obtain a molded catalyst. Further, a molded product obtained by molding a catalyst obtained by heat-treating the precursor may be appropriately heat-treated, but it is preferable to perform the heat-treatment. In the case of producing a catalyst having the composition represented by the formula (3) or the like, if the moldability of the precursor after firing is worse than that before firing, the molded product obtained by molding the precursor is fired. It is preferable.

前駆体等または前駆体等の成形品の焼成の方法は特に限定されず、公知の処理方法および条件を適用することができる。最適な条件は、用いる原料化合物、触媒の組成、調製方法等によって異なるが、均一に焼成するには空気等の酸素含有ガス流通下または不活性ガス流通下で行うことが好ましい。前記式(2)および(3)で表される組成の成形触媒を製造する場合、焼成温度は製造する触媒の活性と熱安定性を考慮して200〜500℃が好ましく、300〜450℃がより好ましい。焼成時間は製造する成形触媒の活性を考慮して0.5時間以上が好ましく、1〜40時間がより好ましい。ここで、不活性ガスとは、触媒の反応活性を低下させない気体のことをいい、例えば、窒素、炭酸ガス、ヘリウム、アルゴン等の気体が挙げられる。   A method for firing a precursor or the like or a molded article such as the precursor is not particularly limited, and known processing methods and conditions can be applied. Optimum conditions vary depending on the raw material compound used, the composition of the catalyst, the preparation method, and the like, but it is preferable to carry out under uniform conditions such as air-containing oxygen-containing gas or inert gas. When producing a molded catalyst having the composition represented by the above formulas (2) and (3), the calcination temperature is preferably 200 to 500 ° C., considering the activity and thermal stability of the catalyst to be produced, and preferably 300 to 450 ° C. More preferred. The calcination time is preferably 0.5 hours or more, more preferably 1 to 40 hours in consideration of the activity of the formed catalyst to be produced. Here, the inert gas refers to a gas that does not reduce the reaction activity of the catalyst, and examples thereof include gases such as nitrogen, carbon dioxide, helium, and argon.

焼成に使用する加熱装置としては、成形前の前駆体を焼成する場合には、例えば、箱型加熱装置、ロータリーキルン等の装置を用いることができる。成形品を焼成する場合は、例えば、管型反応器等の目的物を製造する際に使用する反応器、流通式管型焼成炉、箱型加熱装置等の装置を用いることができる。前記式(3)で表される組成の成形触媒の場合等、焼成した成形品は機械的強度が低く反応器に充填する際に破壊することがある成形触媒の場合には、前駆体の成形品を反応器に充填した後、その中で焼成することが好ましい。   As a heating apparatus used for baking, when baking the precursor before shaping | molding, apparatuses, such as a box-type heating apparatus and a rotary kiln, can be used, for example. In the case of firing the molded article, for example, a reactor, a flow-type tubular firing furnace, a box-type heating device, or the like used when producing a target product such as a tubular reactor can be used. In the case of a molded catalyst having a low mechanical strength and may be destroyed when filled into a reactor, such as in the case of a molded catalyst having the composition represented by the formula (3), the precursor is molded. Preferably, the product is charged into the reactor and then fired therein.

次に成形触媒を用いて反応を行う方法を説明する。使用できる反応は、例えば、前述した気相接触酸化反応、液相接触酸化反応等であるが、モリブデン含有固体成形触媒を使用できる反応であれば特に限定されない。反応形式は気相反応および液相反応のいずれでもよい。しかし、本発明の方法は気相接触酸化反応用の成形触媒を製造するのに好適である。特に、不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸製造するための成形触媒の製造に適している。   Next, a method for performing the reaction using the molded catalyst will be described. The reaction that can be used is, for example, the above-described gas phase catalytic oxidation reaction, liquid phase catalytic oxidation reaction, or the like, but is not particularly limited as long as the reaction can use a molybdenum-containing solid molded catalyst. The reaction format may be either a gas phase reaction or a liquid phase reaction. However, the process of the present invention is suitable for producing shaped catalysts for gas phase catalytic oxidation reactions. In particular, it is suitable for the production of a shaped catalyst for producing unsaturated carboxylic acids by gas phase catalytic oxidation of unsaturated aldehydes with molecular oxygen.

反応に使用する反応器の形式は特に限定されないが、例えば、固定床管型反応器、流動床型反応器、オートクレーブ反応器等が挙げられる。前記式(2)および式(3)の組成の成形触媒を使用する気相接触酸化反応の場合は、固定床管型反応器が好ましく、固定床多管式反応器が特に好ましい。固定床管型反応器において、触媒層は成形触媒のみの無希釈層でも、不活性担体を含んだ希釈層でもよく、触媒層の数は単一層でも複数の層から成る混合層であってもよい。固定床管型反応器を用いて反応を実施する際の諸条件は、反応の種類により異なることから一概に言えないが、それぞれの反応における公知の条件が適用できる。   The type of the reactor used for the reaction is not particularly limited, and examples thereof include a fixed bed tube reactor, a fluidized bed reactor, and an autoclave reactor. In the case of a gas phase catalytic oxidation reaction using a molded catalyst having the composition of the above formulas (2) and (3), a fixed bed tubular reactor is preferable, and a fixed bed multitubular reactor is particularly preferable. In a fixed bed tubular reactor, the catalyst layer may be an undiluted layer containing only the formed catalyst or a diluted layer containing an inert carrier, and the number of catalyst layers may be a single layer or a mixed layer composed of a plurality of layers. Good. Various conditions for carrying out the reaction using a fixed bed tubular reactor vary depending on the type of reaction and cannot be generally stated, but known conditions for each reaction can be applied.

以下に式(2)の組成の成形触媒を用いてアクロレインからアクリル酸への気相接触酸化反応を行う場合と、式(3)の組成の成形触媒を用いてメタクロレインからメタクリル酸への気相接触酸化反応を行う場合を例にとって反応の諸条件について説明する。   In the following, a gas phase catalytic oxidation reaction from acrolein to acrylic acid is performed using a molding catalyst having the composition of formula (2), and a gas from methacrolein to methacrylic acid is used using a molding catalyst having the composition of formula (3). The conditions of the reaction will be described taking the case of performing the phase catalytic oxidation reaction as an example.

アクロレインからアクリル酸への気相接触酸化反応を行う場合、アクロレインと分子状酸素とを含む原料ガスを成形触媒に接触させる。原料ガス中のアクロレインの濃度は1〜20容量%が好ましく、原料ガス中のアクロレインと分子状酸素のモル比は1:0.3〜1:4が好ましい。原料ガスには水蒸気を1〜45容量%の濃度で加えることが好ましい。原料ガスの残余は窒素、炭酸ガス等の不活性ガス、一酸化炭素等のリサイクルガス(反応ガスから目的物等を除去した後のガスで原料ガス源として使用したガス)の成分、および空気(大気)やアクロレイン等に含まれている微量成分等で構成される。分子状酸素源としては、例えば、空気(大気)、純酸素等が使用できる。反応圧力は大気圧から5気圧が好ましく、反応温度は200〜430℃が好ましく、接触時間は1.5〜15秒が好ましい。   When performing a gas phase catalytic oxidation reaction from acrolein to acrylic acid, a raw material gas containing acrolein and molecular oxygen is brought into contact with the formed catalyst. The concentration of acrolein in the raw material gas is preferably 1 to 20% by volume, and the molar ratio of acrolein to molecular oxygen in the raw material gas is preferably 1: 0.3 to 1: 4. It is preferable to add water vapor to the source gas at a concentration of 1 to 45% by volume. The remainder of the raw material gas is an inert gas such as nitrogen or carbon dioxide, a component of a recycle gas such as carbon monoxide (a gas used as a raw material gas source after removing the target substance from the reaction gas), and air ( Air) and acrolein. As the molecular oxygen source, for example, air (atmosphere), pure oxygen, or the like can be used. The reaction pressure is preferably from atmospheric pressure to 5 atmospheres, the reaction temperature is preferably from 200 to 430 ° C., and the contact time is preferably from 1.5 to 15 seconds.

メタクロレインからメタクリル酸への気相接触酸化反応を行う場合、メタクロレインと分子状酸素とを含む原料ガスを成形触媒に接触させる。原料ガス中のメタクロレインの濃度は1〜20容量%が好ましく、原料ガス中のメタクロレインと分子状酸素のモル比は1:0.3〜1:4が好ましい。原料ガスには水蒸気を1〜45容量%の濃度で加えることが好ましい。原料ガスの残余は窒素、炭酸ガス等の不活性ガス、一酸化炭素等のリサイクルガス(反応ガスから目的物等を除去した後のガスで原料ガス源として使用したガス)の成分、および空気(大気)やメタクロレイン等に含まれている微量成分等で構成される。分子状酸素源としては、例えば、空気(大気)、純酸素等が使用できる。反応圧力は大気圧から5気圧が好ましく、反応温度は200〜430℃が好ましく、接触時間は1.5〜15秒が好ましい。   When performing a gas phase catalytic oxidation reaction from methacrolein to methacrylic acid, a raw material gas containing methacrolein and molecular oxygen is brought into contact with the formed catalyst. The concentration of methacrolein in the raw material gas is preferably 1 to 20% by volume, and the molar ratio of methacrolein to molecular oxygen in the raw material gas is preferably 1: 0.3 to 1: 4. It is preferable to add water vapor to the source gas at a concentration of 1 to 45% by volume. The remainder of the raw material gas is an inert gas such as nitrogen or carbon dioxide, a component of a recycle gas such as carbon monoxide (a gas used as a raw material gas source after removing the target substance from the reaction gas), and air ( Air) and methacrolein, etc. As the molecular oxygen source, for example, air (atmosphere), pure oxygen, or the like can be used. The reaction pressure is preferably from atmospheric pressure to 5 atmospheres, the reaction temperature is preferably from 200 to 430 ° C., and the contact time is preferably from 1.5 to 15 seconds.

以下、本発明を実施例および比較例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部である。原料ガスおよび生成物の分析はガスクロマトグラフィーを用いて行った。なお、不飽和アルデヒドの反応率、生成する不飽和カルボン酸の選択率、および、単流収率は以下のように定義される。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these Examples. The “parts” in the following examples and comparative examples are parts by mass. Analysis of the raw material gas and the product was performed using gas chromatography. In addition, the reaction rate of unsaturated aldehyde, the selectivity of the unsaturated carboxylic acid to produce | generate, and a single flow yield are defined as follows.

不飽和アルデヒドの反応率(%)=(B/A)×100
不飽和カルボン酸の選択率(%)=(C/B)×100
不飽和カルボン酸の単流収率(%)=(C/A)×100
ここで、Aは供給した不飽和アルデヒドのモル数、Bは反応した不飽和アルデヒドのモル数、Cは生成した不飽和カルボン酸のモル数である。
Reaction rate of unsaturated aldehyde (%) = (B / A) × 100
Selectivity of unsaturated carboxylic acid (%) = (C / B) × 100
Single yield of unsaturated carboxylic acid (%) = (C / A) × 100
Here, A is the number of moles of unsaturated aldehyde supplied, B is the number of moles of reacted unsaturated aldehyde, and C is the number of moles of unsaturated carboxylic acid produced.

流動性の指標である安息角はマルチテスターMT−1001型(株式会社セイシン企業社製)を用いて測定した。   The angle of repose, which is an index of fluidity, was measured using a multi-tester MT-1001 type (manufactured by Seishin Enterprise Co., Ltd.).

機械的強度の指標である落下粉化率は次のように算出した。すなわち長手方向が鉛直になるように設置され、下側開口部がステンレス製の板で閉止された内径2.75cm、長さ6mのステンレス製円筒の上側開口部から触媒100gを落下させて円筒内に充填し、下側開口部から回収した触媒のうち、目開き1mmのふるいを通過しなかったものの質量がXgであったとき、落下粉化率は次式により算出した。   The falling powder rate, which is an index of mechanical strength, was calculated as follows. That is, the catalyst 100 g is dropped from the upper opening of a stainless steel cylinder having an inner diameter of 2.75 cm and a length of 6 m, which is installed so that the longitudinal direction is vertical and the lower opening is closed by a stainless steel plate. When the mass of the catalyst recovered from the lower opening and not passing through the sieve having an opening of 1 mm was Xg, the falling powder rate was calculated by the following equation.

落下粉化率(質量%)={(100−X)/100}×100
[実施例1]
(触媒調製)
純水150部に、パラモリブデン酸アンモニウム100部、五酸化バナジウム2.58部、硝酸第二銅4.56部を順次添加し、60℃で溶解後、85質量%リン酸水溶液5.44部を添加し60℃で30分攪拌保持した。得られたスラリーに、攪拌しながら、純水25部に重炭酸セシウム9.15部を溶解した溶液、三酸化アンチモン2.53部、純水5部に硝酸銀0.80部を溶解した溶液、を順次添加してスラリー状の原料液を製造した。
Falling powder rate (mass%) = {(100−X) / 100} × 100
[Example 1]
(Catalyst preparation)
100 parts of ammonium paramolybdate, 2.58 parts of vanadium pentoxide and 4.56 parts of cupric nitrate are sequentially added to 150 parts of pure water, dissolved at 60 ° C., and then 5.44 parts of 85% by weight aqueous phosphoric acid solution. Was added and stirred at 60 ° C. for 30 minutes. While stirring the resulting slurry, a solution of 9.15 parts of cesium bicarbonate dissolved in 25 parts of pure water, 2.53 parts of antimony trioxide, and a solution of 0.80 parts of silver nitrate dissolved in 5 parts of pure water, Were sequentially added to produce a slurry-like raw material liquid.

この原料液を表面温度300℃のドラム乾燥機で乾燥して粉体状の前駆体を製造した。この前駆体を内径15cm、長さ5mのステンレス製配管(内表面粗度6.3S)を使用して線速度10m/s(NTP)で減圧空気輸送した。輸送用気体としては空気(大気)を使用した。輸送後の前駆体の安息角は50°であった。   This raw material liquid was dried with a drum dryer having a surface temperature of 300 ° C. to produce a powdery precursor. This precursor was pneumatically transported under reduced pressure at a linear velocity of 10 m / s (NTP) using a stainless steel pipe (inner surface roughness 6.3S) having an inner diameter of 15 cm and a length of 5 m. Air (atmosphere) was used as the transport gas. The angle of repose of the precursor after transportation was 50 °.

この前駆体100部にグラファイト3部を添加した後、短軸リボン型混合機で混合度Mが0.98となるまで混合を行った。混合度Mは式(1)により算出した。このときのNは15、nは300であった。得られた混合物の安息角は51°であった。その後、混合物を打錠成型機で外径5mm、内径2mm、長さ5mmのリング状に成型した。得られた成形品の落下粉化率は1.8質量%であった。   After adding 3 parts of graphite to 100 parts of this precursor, mixing was performed with a short-axis ribbon mixer until the degree of mixing M became 0.98. The degree of mixing M was calculated by the formula (1). At this time, N was 15 and n was 300. The repose angle of the obtained mixture was 51 °. Thereafter, the mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm with a tableting molding machine. The resulting molded product had a falling powder rate of 1.8% by mass.

この成形品を流通管型焼成装置を用いて空気流通下、380℃にて12時間焼成して成形触媒を製造した。成形触媒の酸素以外の組成は、P1.0Mo120.6Sb0.2Cu0.4Cs1.0Ag0.1であった。 This molded product was calcined at 380 ° C. for 12 hours under air flow using a flow tube type calcining device to produce a molded catalyst. Composition other than oxygen forming catalyst was P 1.0 Mo 12 V 0.6 Sb 0.2 Cu 0.4 Cs 1.0 Ag 0.1.

(メタクリル酸の製造)
この成形触媒10gを内径14mmの鉛直に設置した1本のステンレス製反応管に無希釈の単一層で充填し、メタクロレイン5体積%、酸素10体積%、水蒸気30体積%および窒素55体積%の原料ガスを用い、大気圧下、接触時間3.6秒、反応温度290℃で反応させた。その結果を表1に示した。
(Production of methacrylic acid)
10 g of this shaped catalyst was packed in a single stainless steel reaction tube vertically arranged with an inner diameter of 14 mm in an undiluted single layer, and 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, and 55% by volume of nitrogen. The reaction was performed using a source gas at atmospheric pressure, a contact time of 3.6 seconds, and a reaction temperature of 290 ° C. The results are shown in Table 1.

[実施例2〜4、比較例1および2]
空気輸送の線速度を変更した点以外は、実施例1と同様にして成形触媒を製造し、メタクリル酸の製造を行った。その結果を表1に示した。
[Examples 2 to 4, Comparative Examples 1 and 2]
Except for changing the linear velocity of pneumatic transportation, a molded catalyst was produced in the same manner as in Example 1, and methacrylic acid was produced. The results are shown in Table 1.

[実施例5]
(触媒調製)
純水400部に三酸化モリブデン100部、85質量%リン酸水溶液8.0部、五酸化バナジウム4.2部、酸化銅0.9部、酸化鉄0.2部を加え、還流下で5時間攪拌した。この液を50℃まで冷却した後、29重量%アンモニア水37.4部を滴下し、15分間攪拌した。次に硝酸セシウム10.2部を純水30部に溶解した溶液を滴下し、15分間攪拌してスラリー状の原料液を製造した。
[Example 5]
(Catalyst preparation)
To 400 parts of pure water, 100 parts of molybdenum trioxide, 8.0 parts of 85 mass% phosphoric acid aqueous solution, 4.2 parts of vanadium pentoxide, 0.9 parts of copper oxide, and 0.2 parts of iron oxide are added, and 5 parts under reflux. Stir for hours. After cooling this solution to 50 ° C., 37.4 parts of 29 wt% aqueous ammonia was added dropwise and stirred for 15 minutes. Next, a solution obtained by dissolving 10.2 parts of cesium nitrate in 30 parts of pure water was dropped, and stirred for 15 minutes to produce a slurry-like raw material liquid.

この原料液を入口温度300℃、出口温度120℃、並行流式の噴霧乾燥機で乾燥して粉体状の前駆体を製造した。この前駆体を内径15cm、長さ5mのステンレス製配管(内表面粗度6.3S)を使用して線速度10m/s(NTP)で加圧空気輸送した。輸送用気体としては空気(大気)を使用した。輸送後の前駆体の安息角は52°であった。   This raw material liquid was dried with a parallel flow spray dryer at an inlet temperature of 300 ° C. and an outlet temperature of 120 ° C. to produce a powdery precursor. This precursor was conveyed by pressurized air at a linear velocity of 10 m / s (NTP) using a stainless steel pipe (inner surface roughness 6.3S) having an inner diameter of 15 cm and a length of 5 m. Air (atmosphere) was used as the transport gas. The angle of repose of the precursor after transportation was 52 °.

この前駆体100部にグラファイト3部を添加した後、短軸リボン型混合機で混合度Mが0.98となるまで混合を行った。混合度Mは式(1)により算出した。このときのNは15、nは300であった。得られた混合物の安息角は53°であった。その後、混合物打錠成型機で外径5mm、内径2mm、長さ5mmのリング状に成型した。得られた成形品の落下粉化率は1.7質量%であった。   After adding 3 parts of graphite to 100 parts of this precursor, mixing was performed with a short-axis ribbon mixer until the degree of mixing M became 0.98. The degree of mixing M was calculated by the formula (1). At this time, N was 15 and n was 300. The angle of repose of the obtained mixture was 53 °. Thereafter, the mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a mixture tableting machine. The resulting molded product had a falling powder rate of 1.7% by mass.

(メタクリル酸の製造)
この成形品11.5gを実施例1のメタクリル酸の製造で使用したものと同じステンレス製反応管に無希釈の単一層で充填し、空気流通下、380℃にて12時間焼成して成形触媒を製造した。成形触媒の酸素以外の組成は、P1.2Mo120.8Cu0.2Fe0.05Cs0.9であった。この反応管に充填された成形触媒10gを用いて、実施例1と同様の条件でメタクリル酸の製造を行った。その結果を表1に示した。
(Production of methacrylic acid)
11.5 g of this molded product was filled in the same stainless steel reaction tube as used in the production of methacrylic acid of Example 1 with an undiluted single layer, and calcined at 380 ° C. for 12 hours under air flow to form a molded catalyst. Manufactured. The composition of the molded catalyst other than oxygen was P 1.2 Mo 12 V 0.8 Cu 0.2 Fe 0.05 Cs 0.9 . Using 10 g of the molded catalyst filled in the reaction tube, methacrylic acid was produced under the same conditions as in Example 1. The results are shown in Table 1.

[実施例6および7、比較例3および4]
空気輸送の線速度を変更した点以外は、実施例5と同様にして成形触媒を製造し、メタクリル酸の製造を行った。その結果を表1に示した。
[Examples 6 and 7, Comparative Examples 3 and 4]
A molded catalyst was produced in the same manner as in Example 5 except that the linear velocity of pneumatic transportation was changed, and methacrylic acid was produced. The results are shown in Table 1.

[実施例8]
(触媒調製)
純水800部に三酸化モリブデン100部、五酸化バナジウム3.1部、85質量%リン酸水溶液6.7部を加え、還流下で6時間攪拌した。これに酢酸銅2.4部を加え、さらに還流下で3時間攪拌した。この液を40℃まで冷却し、重炭酸セシウム13.5部を純水100部に溶解した溶液を滴下し、さらに40℃で炭酸アンモニウム5.6部を純水100部に溶解した溶液を滴下し、15分間攪拌してスラリー状の原料液を製造した。
[Example 8]
(Catalyst preparation)
To 800 parts of pure water, 100 parts of molybdenum trioxide, 3.1 parts of vanadium pentoxide, and 6.7 parts of 85 mass% phosphoric acid aqueous solution were added, and stirred for 6 hours under reflux. To this, 2.4 parts of copper acetate was added, and the mixture was further stirred under reflux for 3 hours. The solution was cooled to 40 ° C., a solution of 13.5 parts of cesium bicarbonate dissolved in 100 parts of pure water was added dropwise, and a solution of 5.6 parts of ammonium carbonate dissolved in 100 parts of pure water was further added dropwise at 40 ° C. And stirred for 15 minutes to produce a slurry-like raw material liquid.

この原料液を入口温度300℃、出口温度120℃、並行流式の噴霧乾燥機で乾燥して粉体状の前駆体を製造した。この前駆体を内径15cm、長さ5mのステンレス製配管(内表面粗度6.3S)を使用して線速度10m/s(NTP)で加圧空気輸送した。輸送用気体としては空気(大気)を使用した。輸送後の前駆体の安息角は51°であった。   This raw material liquid was dried with a parallel flow spray dryer at an inlet temperature of 300 ° C. and an outlet temperature of 120 ° C. to produce a powdery precursor. This precursor was conveyed by pressurized air at a linear velocity of 10 m / s (NTP) using a stainless steel pipe (inner surface roughness 6.3S) having an inner diameter of 15 cm and a length of 5 m. Air (atmosphere) was used as the transport gas. The angle of repose of the precursor after transportation was 51 °.

この前駆体100部にグラファイト3部を添加した後、短軸リボン型混合機で混合度Mが0.98となるまで混合を行った。混合度Mは式(1)により算出した。このときのNは15、nは300であった。得られた混合物の安息角は52°であった。その後、混合物を打錠成型機で外径5mm、内径2mm、長さ5mmのリング状に成型した。得られた成形品の落下粉化率は1.9質量%であった。   After adding 3 parts of graphite to 100 parts of this precursor, mixing was performed with a short-axis ribbon mixer until the degree of mixing M became 0.98. The degree of mixing M was calculated by the formula (1). At this time, N was 15 and n was 300. The angle of repose of the obtained mixture was 52 °. Thereafter, the mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm with a tableting molding machine. The resulting molded product had a falling powdering rate of 1.9% by mass.

(メタクリル酸の製造)
この成形品11.5gを実施例1のメタクリル酸の製造で使用したものと同じステンレス製反応管に無希釈の単一層で充填し、空気流通下、380℃にて12時間焼成して成形触媒を製造した。成形触媒の酸素以外の組成は、PMo120.6Cu0.2Cs1.2であった。この反応管に充填された成形触媒10gを用いて、実施例1と同様の条件でメタクリル酸の製造を行った。その結果を表1に示した。
(Production of methacrylic acid)
11.5 g of this molded product was filled in the same stainless steel reaction tube as used in the production of methacrylic acid of Example 1 with an undiluted single layer, and calcined at 380 ° C. for 12 hours under air flow to form a molded catalyst. Manufactured. The composition of the molded catalyst other than oxygen was P 1 Mo 12 V 0.6 Cu 0.2 Cs 1.2 . Using 10 g of the molded catalyst filled in the reaction tube, methacrylic acid was produced under the same conditions as in Example 1. The results are shown in Table 1.

[実施例9および10、比較例5および6]
空気輸送の線速度を変更した点以外は、実施例8と同様にして成形触媒を製造し、メタクリル酸の製造を行った。その結果を表1に示した。
[Examples 9 and 10, Comparative Examples 5 and 6]
A molded catalyst was produced in the same manner as in Example 8 except that the linear velocity of pneumatic transportation was changed, and methacrylic acid was produced. The results are shown in Table 1.

[実施例11]
(触媒調製)
純水1000部にパラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム20.4部を溶解した。これに硝酸第二鉄9.6部を純水150部に溶解した溶液を加えた。さらにこれに硝酸コバルト6.9部を純水200部に溶解した溶液、硝酸銀0.6部を純水50部に溶解した溶液および硝酸バリウム2.5部を純水100部に溶解した溶液を順次加えた。次に式NaO・2SiO・2.2HOで表される水ガラス4.5部を純水30部に溶解した溶液を加え、更に20質量%シリカゾル50.9部を加えた後、90℃に昇温し、そのまま10分間攪拌してスラリー状の原料液を製造した。
[Example 11]
(Catalyst preparation)
100 parts of ammonium paramolybdate and 20.4 parts of ammonium metavanadate were dissolved in 1000 parts of pure water. A solution prepared by dissolving 9.6 parts of ferric nitrate in 150 parts of pure water was added thereto. Furthermore, a solution in which 6.9 parts of cobalt nitrate was dissolved in 200 parts of pure water, a solution in which 0.6 part of silver nitrate was dissolved in 50 parts of pure water, and a solution in which 2.5 parts of barium nitrate were dissolved in 100 parts of pure water were added. Added sequentially. Then a solution of water glass and 4.5 parts of the formula Na 2 O · 2SiO 2 · 2.2H 2 O in 30 parts of pure water, was further added 20 wt% silica sol 50.9 parts The mixture was heated to 90 ° C. and stirred as it was for 10 minutes to produce a slurry raw material liquid.

この原料液を入口温度300℃、出口温度120℃、並行流式の噴霧乾燥機で乾燥して粉体状の前駆体を製造した。この前駆体を内径15cm、長さ5mのステンレス製配管(内表面粗度6.3S)を使用して線速度10m/s(NTP)で減圧空気輸送した。輸送用気体としては空気(大気)を使用した。輸送後の前駆体の安息角は49°であった。   This raw material liquid was dried with a parallel flow spray dryer at an inlet temperature of 300 ° C. and an outlet temperature of 120 ° C. to produce a powdery precursor. This precursor was pneumatically transported under reduced pressure at a linear velocity of 10 m / s (NTP) using a stainless steel pipe (inner surface roughness 6.3S) having an inner diameter of 15 cm and a length of 5 m. Air (atmosphere) was used as the transport gas. The angle of repose of the precursor after transportation was 49 °.

この前駆体100部にグラファイト3部を添加した後、短軸リボン型混合機で混合度Mが0.98となるまで混合を行った。混合度Mは式(1)により算出した。このときのNは15、nは300であった。得られた混合物の安息角は51°であった。その後、混合物を打錠成型機で外径5mm、内径2mm、長さ5mmのリング状に成型した。得られた成形品の落下粉化率は1.5質量%であった。   After adding 3 parts of graphite to 100 parts of this precursor, mixing was performed with a short-axis ribbon mixer until the degree of mixing M became 0.98. The degree of mixing M was calculated by the formula (1). At this time, N was 15 and n was 300. The repose angle of the obtained mixture was 51 °. Thereafter, the mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm with a tableting molding machine. The resulting molded product had a falling powder rate of 1.5% by mass.

この成形品を流通管型焼成装置を用いて空気流通下、380℃にて5時間焼成して成形触媒を製造した。成形触媒の酸素以外の組成は、Mo123.7Fe0.5Si4.5Na0.8Co0.5Ag0.08Ba0.2であった。 This molded product was calcined at 380 ° C. for 5 hours under an air flow using a flow tube type calciner to produce a molded catalyst. Composition other than oxygen shaped catalyst was Mo 12 V 3.7 Fe 0.5 Si 4.5 Na 0.8 Co 0.5 Ag 0.08 Ba 0.2.

(アクリル酸の製造)
この成形触媒10gを実施例1のメタクリル酸の製造で使用したものと同じステンレス製反応管に無希釈の単一層で充填し、アクロレイン5体積%、酸素10体積%、水蒸気30体積%および窒素55体積%の原料ガスを用い、大気圧下、接触時間3.6秒、反応温度275℃で反応させた。その結果を表2に示した。
(Manufacture of acrylic acid)
10 g of this shaped catalyst was packed in the same stainless steel reaction tube as used in the production of methacrylic acid of Example 1 in an undiluted single layer, and 5 volume% acrolein, 10 volume% oxygen, 30 volume% steam, and 55% nitrogen. The reaction was performed at a reaction temperature of 275 ° C. under a contact time of 3.6 seconds under atmospheric pressure using a volume% of source gas. The results are shown in Table 2.

[実施例12および13、比較例7および8]
空気輸送の線速度を変更した点以外は、実施例11と同様にして成形触媒を製造し、アクリル酸の製造を行った。その結果を表2に示した。
[Examples 12 and 13, Comparative Examples 7 and 8]
A molded catalyst was produced in the same manner as in Example 11 except that the linear velocity of pneumatic transportation was changed, and acrylic acid was produced. The results are shown in Table 2.

[実施例14]
前駆体の空気輸送に、ステンレス製配管(内表面粗度50S)を用いたこと以外は、実施例2と同様にして成形触媒を製造した。その結果を表1に示した。
[Example 14]
A molded catalyst was produced in the same manner as in Example 2 except that stainless steel piping (inner surface roughness 50S) was used for pneumatic transportation of the precursor. The results are shown in Table 1.

[実施例15]
前駆体の空気輸送に、硬質塩ビ製配管(内表面粗度1.6S、表面抵抗率1012Ω/□)を用いること以外は、実施例1と同様にして成形触媒を製造し、メタクリル酸の製造を行った。その結果を表1に示した。
[Example 15]
A molded catalyst was produced in the same manner as in Example 1 except that a rigid PVC pipe (inner surface roughness 1.6S, surface resistivity 10 12 Ω / □) was used for pneumatic transportation of the precursor, and methacrylic acid was produced. Was manufactured. The results are shown in Table 1.

[実施例16]
前駆体の空気輸送に、硬質塩ビ製配管(内表面粗度1.6S、表面抵抗率1012Ω/□)を用いること以外は、実施例5と同様にして成形触媒を製造し、メタクリル酸の製造を行った。その結果を表1に示した。
[Example 16]
A molded catalyst was produced in the same manner as in Example 5 except that a rigid PVC pipe (inner surface roughness 1.6S, surface resistivity 10 12 Ω / □) was used for pneumatic transportation of the precursor, and methacrylic acid was produced. Was manufactured. The results are shown in Table 1.

[実施例17]
前駆体の空気輸送に、硬質塩ビ製配管(内表面粗度1.6S、表面抵抗率1012Ω/□)を用いること以外は、実施例8と同様にして成形触媒を製造し、メタクリル酸の製造を行った。その結果を表1に示した。
[Example 17]
A molded catalyst was produced in the same manner as in Example 8 except that a rigid PVC pipe (inner surface roughness 1.6S, surface resistivity 10 12 Ω / □) was used for pneumatic transportation of the precursor, and methacrylic acid was produced. Was manufactured. The results are shown in Table 1.

[実施例18]
前駆体の空気輸送に、メタクリル樹脂製配管(内表面粗度1.6S、表面抵抗率1010Ω/□)を用いること以外は、実施例1と同様にして成形触媒を製造し、メタクリル酸の製造を行った。その結果を表1に示した。
[Example 18]
A molded catalyst was produced in the same manner as in Example 1 except that a pipe made of methacrylic resin (inner surface roughness 1.6S, surface resistivity 10 10 Ω / □) was used for pneumatic transportation of the precursor, and methacrylic acid was produced. Was manufactured. The results are shown in Table 1.

[実施例19]
前駆体の空気輸送に、ABS樹脂製配管(内表面粗度1.6S、表面抵抗率1015Ω/□)を用いること以外は、実施例1と同様にして成形触媒を製造し、メタクリル酸の製造を行った。その結果を表1に示した。
[Example 19]
A molded catalyst was produced in the same manner as in Example 1 except that an ABS resin pipe (inner surface roughness 1.6 S, surface resistivity 10 15 Ω / □) was used for pneumatic transportation of the precursor, and methacrylic acid was produced. Was manufactured. The results are shown in Table 1.

[実施例20]
前駆体の空気輸送に、硬質塩ビ製配管(内表面粗度1.6S、表面抵抗率1012Ω/□)を用いること以外は、実施例11と同様にして成形触媒を製造した。その結果を表2に示した。
[Example 20]
A molded catalyst was produced in the same manner as in Example 11 except that a rigid PVC pipe (inner surface roughness 1.6 S, surface resistivity 10 12 Ω / □) was used for pneumatic transportation of the precursor. The results are shown in Table 2.

[実施例21]
前駆体の空気輸送に、硬質塩ビ製配管(内表面粗度1.6S、表面抵抗率1016Ω/□)を用いること以外は、実施例2と同様にして成形触媒を製造した。その結果を表1に示した。
[Example 21]
A molded catalyst was produced in the same manner as in Example 2 except that a rigid PVC pipe (inner surface roughness 1.6 S, surface resistivity 10 16 Ω / □) was used for pneumatic transportation of the precursor. The results are shown in Table 1.

[実施例22]
添加剤の混合度を0.6とする以外は、実施例1と同様にして成形触媒を製造した。その結果を表1に示した。
[Example 22]
A molded catalyst was produced in the same manner as in Example 1 except that the mixing degree of the additive was 0.6. The results are shown in Table 1.

[実施例23]
添加剤の混合度を0.998とする以外は、実施例1と同様にして成形触媒を製造した。その結果を表1に示した。
[Example 23]
A molded catalyst was produced in the same manner as in Example 1 except that the mixing degree of the additive was 0.998. The results are shown in Table 1.

Claims (5)

モリブデン元素を含む触媒および/または触媒前駆体を0.5〜25m/s(NTP)の線速度の輸送用気体で空気輸送する空気輸送工程と、空気輸送工程より後においてモリブデン元素を含む触媒および/または触媒前駆体を成形する成形工程とを含み、かつ、空気輸送されたモリブデン元素を含む触媒および/または触媒前駆体の安息角が60°以下であるモリブデン含有固体成形触媒の製造方法。 An air transportation step of pneumatically transporting a catalyst and / or a catalyst precursor containing elemental molybdenum with a gas having a linear velocity of 0.5 to 25 m / s (NTP), a catalyst containing elemental molybdenum after the air transportation step, and / or look including a forming step of forming a catalyst precursor, and air transport process for the preparation of catalysts and / or molybdenum containing solid shaped catalysts angle of repose of the catalyst precursor is 60 ° or less including elemental molybdenum. 空気輸送を行う配管が、内表面粗度25S以下の金属製配管であることを特徴とする請求項に記載の製造方法。 The manufacturing method according to claim 1 , wherein the pipe that performs pneumatic transportation is a metal pipe having an inner surface roughness of 25 S or less. 空気輸送を行う配管が、内表面粗度25S以下で、かつ表面抵抗率1015Ω/□以下の樹脂製配管であることを特徴とする請求項に記載の製造方法。 The manufacturing method according to claim 1 , wherein the pipe that performs pneumatic transportation is a resin pipe having an inner surface roughness of 25 S or less and a surface resistivity of 10 15 Ω / □ or less. 成形工程において、式(1)で表される混合度Mが0.8〜0.99の範囲となるように触媒および/または触媒前駆体に添加剤を混合することを特徴とする請求項1〜のいずれかに記載の製造方法。
The additive is mixed with the catalyst and / or catalyst precursor so that the degree of mixing M represented by the formula (1) is in the range of 0.8 to 0.99 in the molding step. The manufacturing method in any one of -3 .
モリブデン元素を含む触媒および/または触媒前駆体が、(メタ)アクロレインを分子状酸素で気相接触酸化して(メタ)アクリル酸を製造する際に用いられる触媒および/または触媒前駆体である請求項1〜4のいずれかに記載の製造方法。The catalyst and / or catalyst precursor containing elemental molybdenum is a catalyst and / or catalyst precursor used in the production of (meth) acrylic acid by vapor phase catalytic oxidation of (meth) acrolein with molecular oxygen. Item 5. The production method according to any one of Items 1 to 4.
JP2006036027A 2005-02-15 2006-02-14 Method for producing molybdenum-containing solid shaped catalyst Active JP5037830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036027A JP5037830B2 (en) 2005-02-15 2006-02-14 Method for producing molybdenum-containing solid shaped catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005038219 2005-02-15
JP2005038219 2005-02-15
JP2006036027A JP5037830B2 (en) 2005-02-15 2006-02-14 Method for producing molybdenum-containing solid shaped catalyst

Publications (2)

Publication Number Publication Date
JP2006255689A JP2006255689A (en) 2006-09-28
JP5037830B2 true JP5037830B2 (en) 2012-10-03

Family

ID=37095470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036027A Active JP5037830B2 (en) 2005-02-15 2006-02-14 Method for producing molybdenum-containing solid shaped catalyst

Country Status (1)

Country Link
JP (1) JP5037830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201401A (en) * 2009-03-06 2010-09-16 Sumitomo Chemical Co Ltd Method for manufacturing extrusion catalyst molding
JP5570142B2 (en) * 2009-05-26 2014-08-13 日本化薬株式会社 Method for producing methacrylic acid production catalyst and method for producing methacrylic acid
CN105665020B (en) * 2009-11-30 2019-09-06 日本化药株式会社 Methacrylate manufactures the manufacturing method of catalyst and the manufacturing method of methacrylate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261301A (en) * 1992-03-18 1993-10-12 Mitsubishi Kasei Corp Manufacture of fluidized bed catalyst
JP2000007721A (en) * 1998-06-25 2000-01-11 Mitsubishi Chemicals Corp Method for transporting solid catalyst for olefin polymerization
JP2003290666A (en) * 2002-04-02 2003-10-14 Mitsubishi Chemicals Corp Manufacturing method for molded catalyst
JP2006218395A (en) * 2005-02-10 2006-08-24 Daiyanitorikkusu Kk Method and apparatus for producing fluidized bed catalyst

Also Published As

Publication number Publication date
JP2006255689A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
KR101821023B1 (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
US7132384B2 (en) Process for producing composite oxide catalyst
JP5628930B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP2016539936A (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5037830B2 (en) Method for producing molybdenum-containing solid shaped catalyst
JP5628936B2 (en) Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2004002209A (en) Method for producing unsaturated aldehyde
JP3260185B2 (en) Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JP4285084B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2005169311A (en) Production method for complex oxide catalyst
JP5451271B2 (en) Method for producing unsaturated aldehyde or unsaturated carboxylic acid
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JPH0236296B2 (en)
JP7480671B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7480672B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468292B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468291B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7375638B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7468290B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7375639B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7347282B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7347283B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP4301484B2 (en) Method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5037830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250