WO2005115617A1 - Catalyst mixer and catalyst mixing method - Google Patents

Catalyst mixer and catalyst mixing method Download PDF

Info

Publication number
WO2005115617A1
WO2005115617A1 PCT/JP2004/013465 JP2004013465W WO2005115617A1 WO 2005115617 A1 WO2005115617 A1 WO 2005115617A1 JP 2004013465 W JP2004013465 W JP 2004013465W WO 2005115617 A1 WO2005115617 A1 WO 2005115617A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
mixer
hopper
inert filler
packing
Prior art date
Application number
PCT/JP2004/013465
Other languages
French (fr)
Japanese (ja)
Inventor
Nariyasu Kanuka
Isao Teshigahara
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2005115617A1 publication Critical patent/WO2005115617A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Definitions

  • the present invention relates to catalyst mixing, and in particular, to a mixer for mixing a composite oxide catalyst used for a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor with an inert filler, and a mixer.
  • the present invention relates to a mixing method and a divided package of a mixed composite oxide catalyst and an inert filler.
  • Patent Document 1 discloses that the active catalyst is deactivated in order to improve the yield by increasing the flow rate of the reaction gas within a danger-free range and to prevent excessive oxidation and local overheating (hot spots). It is described to dilute with a material (inert packing) to reduce the activity of the catalyst.
  • Patent Document 1 describes a mixing method and a mixed state when diluting a catalyst with an inert material, which are useful for solving such a problem.
  • Patent Document 1 Japanese Patent Publication No. 53-30688
  • the present invention has been made in view of the prior art as described above, and provides a more effective means for solving the problems caused by hot spots in a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor. To provide.
  • the present inventors have studied a method of mixing a catalyst and an inert filler in order to solve the above-mentioned problem. As a result, the inventors have adjusted the volume ratio of the catalyst and the inert filler to be mixed inside the hopper according to the volume ratio. It was found that the desired volume ratio can be easily mixed by mixing the catalyst and the inert filler with a catalyst mixer that combines this hopper and a non-stirring mixer. Was obtained.
  • the present invention provides a catalyst mixer in which a non-stirring mixer is arranged below a hopper, the catalyst mixer having a partition inside the hopper capable of substantially dividing an internal volume.
  • a preferred embodiment of the present invention provides a catalyst mixer in which the partition wall is provided upright in a hopper so as to be adjustable in position.
  • the present invention is a method for mixing a plurality of types of packing using a catalyst mixer in which a non-stirring type mixer is arranged below a hopper, wherein the plurality of types of packing are separated and accommodated.
  • the present invention provides a catalyst mixing method in which the inside of a hopper is divided into a plurality of sections by partition walls, and a horizontal sectional area ratio of each section is substantially equal to a volume ratio of each packing.
  • the present invention provides the above catalyst mixing method, wherein the plurality of types of packings are a composite oxide catalyst and an inert packing used for a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor. I will provide a.
  • a predetermined amount of the composite oxide catalyst and the inert packing to be filled per reaction tube of a fixed-bed multitubular reactor, or a plurality of the mixed oxide catalyst and the inert packing are filled in one reaction tube.
  • the present invention provides a catalyst mixing method in which a predetermined amount of each reaction zone to be divided and filled into the reaction zones is mixed and bagged.
  • the composite oxide catalyst and the inert filler are divided into eight parts and the volume ratio of the composite oxide catalyst to the inert filler is reduced.
  • the present invention provides a catalyst mixing method wherein the coefficient of variation of the volume ratio of the catalyst is 10% or less.
  • the composite oxide catalyst and the inert filler are mixed at a predetermined volume ratio. Since mixing can be performed, hot spots can be sufficiently suppressed in the gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor filled with the mixture. As a result, the catalyst performance can be maintained stably, and acrolein and Z or acrylic acid can be stably produced at a high yield from an oxidation reaction product such as propylene.
  • FIG. 1 is a front view of a catalyst mixer according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the non-stirring mixer of FIG. 1.
  • FIG. 3 is an explanatory view of a circular system lj type splitter.
  • FIG. 4 is an explanatory view of a series-structured lj type splitter.
  • the present invention is characterized in that a composite oxide catalyst and another component other than the composite oxide catalyst are mixed by a catalyst mixer, and for example, gas phase catalytic oxidation using a fixed-bed multitubular reactor.
  • a catalyst mixer gas phase catalytic oxidation using a fixed-bed multitubular reactor.
  • the composite oxide catalyst used in the reaction hereinafter sometimes simply referred to as a catalyst
  • an inert filler are mixed by a catalyst mixer
  • the present invention is limited to the catalyst and the inert filler. What?
  • the catalyst mixer of the invention has a non-stirring mixer 4 below a hopper 2.
  • the hopper 2 has a capacity to receive a predetermined amount to be filled per reaction tube, or a predetermined amount of catalyst and inert packing in each reaction zone to be divided into a plurality of reaction zones per reaction tube.
  • the bottom is openable and closable by dambar-3.
  • a partition 1 is installed upright so that a plurality of types of packing, for example, a catalyst and an inert packing can be accommodated in a substantially separated manner.
  • one partition 1 is provided to separate the catalyst and the inert packing, but the number of the partition 1 can be increased by the number of types of the packing.
  • the partition wall 1 is provided so as to be adjustable in position, that is, movable.
  • position adjustment for example, although not shown, concave portions and grooves into which the partition wall 1 can be inserted are provided at regular intervals on the inner wall and the upper end of the hopper 2, and the partition wall 1 is replaced with these concave portions and grooves.
  • the position adjusting means of the partition 1 is not limited to these methods as long as the partition can be held at a predetermined position in the hopper.
  • the horizontal sectional area ratio of each section inside the hopper 2 divided by the partition 1 can be adjusted by changing the position of the partition 1.
  • the horizontal cross-sectional area ratio of each section preferably at least the horizontal cross-sectional area ratio at the outlet of the hopper 2 is made the same as the volume ratio of each of the plural types of packing materials.
  • the ability to do S Since the cross-sectional area ratio and the volume ratio are thus the same, the catalyst and the inert filler are accommodated in the corresponding compartments, so that the catalyst and the inert filler are packed at the same height of the packed bed. Can be charged inside the hopper 2.
  • the area of the partition 1 is not particularly limited as long as a plurality of types of packing can be substantially divided, but is preferably 60% or more, more preferably 80% or more, of the vertical section of the packing charged into the hopper. ° / ⁇ or more, most preferably 95. / 0 or more. If the area of the partition wall 1 is smaller than 60 ° / ⁇ , the partitioning by the partition wall 1 becomes insufficient, and it becomes impossible to substantially uniformly mix a plurality of types of packing materials at a predetermined volume ratio. That the effect of There is power s .
  • a non-stirring mixer shown in JIS_Z_8840 (pl4) can be used.
  • Fig. 2 schematically shows a powerful non-stirring mixer, for example, using a static mixer in which a plurality of elements 7 are arranged inside a cylindrical housing 6 having an inlet 5 at the upper end. Let's do it.
  • the inner diameter of the housing 6 is set so that the catalyst and the inert filler do not cause bridging in the housing.
  • the inner diameter is preferably 70 mm or more, more preferably 100 to 300 mm.
  • the length of the housing 6 may vary depending on the element 7, but is preferably about 2 to 20 times the inner diameter.
  • the element 7 disposed inside the housing 6 may have a shape that allows passage of a catalyst and an inert filler having a particle diameter of several mm to several tens of mm, for example, a spiral element.
  • a catalyst and an inert filler having a particle diameter of several mm to several tens of mm for example, a spiral element.
  • 2 to 20 helical elements are used stepwise in the housing 6, but may be integrally formed.
  • the catalyst and the inert filler to be mixed are supplied to the inlet 5 of the non-stirring mixer 4 by opening the damper 3 of the hopper 2 and mixed while falling along the spiral element 7 in the housing 6. Is done.
  • the catalyst and the inert filler are separated in the hopper 2 divided by the partition 1 in accordance with the respective mixing volume ratios, the catalyst and the inert filler can be supplied to the inlet 5 at a constant ratio.
  • Such a mixing method using a helical element mixes the catalyst and the inert packing without stirring, and is effective for mixing without destroying the catalyst particles.
  • the mixed state of the catalyst and the inert filler is determined by a predetermined amount of the mixed catalyst and the inert filler to be filled per reaction tube (hereinafter, the catalyst and the inert gas per one reaction tube are mixed).
  • the active packing is referred to as a “subdivided package”), which is conveniently divided into eight equal parts within the range of ⁇ 15% by volume, and the volume ratio of each of the divided catalyst and the inert packing is determined. At this time, it is evaluated by the coefficient of variation of the catalyst capacity ratio.
  • the coefficient of variation is a value represented by (s / x X 100) where x is the average value of n data and s is the standard deviation. This variometer A large number means that the mixing ratio of the catalyst varies widely.
  • the coefficient of variation of the catalyst volume ratio is preferably 10% or less, more preferably 8% or less. If the variation coefficient is greater than 10%, the effect of suppressing hot spots in the gas-phase catalytic oxidation reaction becomes insufficient due to the heterogeneity of the catalyst, and when producing acrolein and / or acrylic acid from oxidation reaction products, for example, propylene. This is not preferable because the yield of the compound decreases.
  • a divider shown in Figs. 3 and 4 can be used as a method of equally dividing the contents of the subdivided package.
  • Fig. 3 shows a type in which receivers 8 are arranged in a circle
  • Fig. 4 shows a type in which receivers 8 are arranged in series.
  • a measuring container 9 having an inner volume of 8 equal parts is placed in a receiver 8, and the contents of the subdivided package are put into the measuring container 9.
  • the rotating shaft 10 or the pulley 11 is moved, and subsequently, the weighing container 9 is set in the next receiver 8.
  • the contents of the subdivided package can be equally divided into eight receivers 8 or measuring containers 9.
  • the volume of the packing in the present invention can be measured using a volume measuring device such as a measuring cylinder.
  • the weight can be measured using a weighing device such as an electronic balance in terms of the bulk density, or a commercially available automatic weighing device can be used.
  • the inert filler used in the present invention may be any material that does not cause an unnecessary side reaction in the reaction.
  • high-temperature-treated oxides such as anoremina, zirconia, titania, magnesia, and silica may be used.
  • High-temperature sintering materials such as tight, mullite, silicon carbide, and silicon nitride can be used.
  • a typical catalyst used in the present invention is a composite oxide catalyst used for a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor.
  • a catalyst used in a gas phase catalytic oxidation reaction for producing propylene perchlorein and acrylic acid can be mentioned.
  • Preferred embodiments of the composite oxide catalyst include a catalyst represented by the following formula (1).
  • Mo molybdenum
  • Bi bismuth
  • Co konorelate
  • Ni nickel
  • Fe iron
  • Si silicon
  • O oxygen
  • X any of Na, K, Rb, Cs, and T1.
  • At least one Y indicates at least one of B, P, As and W
  • Z indicates at least one of Mg, Ca, Zn, Ce and Sm.
  • Q represents a halogen atom
  • ak represents the atom i of each element
  • a 12
  • the elements (P), arsenic (As), tungsten (W), fluorine (F), chlorine (C1), bromine (Br), and iodine (I) are represented using the element symbols in Kakko. did.
  • the molybdenum-bismuth composite oxide catalyst represented by the formula (1) itself is known and can be prepared by a known method.
  • Another representative catalyst used in the present invention is a molybdenum-based formula below, which is used in a reaction for producing a corresponding unsaturated carboxylic acid by subjecting an unsaturated aldehyde to a gas phase catalytic oxidation reaction.
  • Mo molybdenum
  • V vanadium
  • Cu copper
  • O oxygen
  • X at least one element selected from the group force of W and Nb force
  • Y Fe
  • Co Group power consisting of Ni
  • Bi is at least one element selected from the group consisting of: Ti, Zr, Ce, Cr, Mn
  • Sb at least one element selected from the group consisting of: a, b , C, d, e, f, and g represent the atom it of each element.
  • a 12
  • g is the number of oxygen atoms required to satisfy the oxidation state of other elements.
  • the method for preparing the catalyst used in the present invention is not particularly limited except for the calcination conditions.
  • the required amount of the source compound containing each elemental component is appropriately dissolved or dispersed in an aqueous medium, and heated and stirred. After that, the mixture is evaporated to dryness, dried, and pulverized, and the obtained powder is molded by a method such as extrusion molding, granulation molding, tablet molding, or the like, to obtain a molded body.
  • the shape and size of the catalyst are not particularly limited, and can be appropriately selected from known shapes and sizes. For example, regarding the shape, any of a spherical shape, a cylindrical shape, a ring shape, and the like may be used.
  • inorganic fibers such as glass fibers and various whiskers which are generally known to have an effect of improving the strength and the degree of powdering of the catalyst may be added.
  • additives generally known as powder binders such as ammonium nitrate, cellulose, starch, polybutyl alcohol, and stearic acid can be used.
  • the complex oxide represented by the above formula (1) can be used by itself.
  • the compound can be used alone, such as phenol, silica, silica monoalumina, silicon carbide, titanium oxide, magnesium oxide, and aluminum sponge. It may be used by being supported on a carrier generally known as an inert carrier such as silica-titania.
  • the above-mentioned inorganic fibers or the like may be added to improve the strength of the catalyst, or the above-mentioned additives such as ammonium nitrate may be used to control the physical properties of the catalyst with good reproducibility.
  • the composite oxide catalyst is prepared by calcining the catalyst, which is a molded body or a support, at a temperature of 300 to 650 ° C. for about 120 hours in a flowing atmosphere gas.
  • the gas-phase catalytic oxidation reaction using the Mo-Bi-Fe-based composite oxide catalyst is, specifically, a gas-phase catalytic oxidation of propylene, which is generally used when producing acrolein and acrylic acid. You can do that by For example, a mixed gas consisting of 1 to 15% by volume of propylene, 3 to 30% by volume of molecular oxygen, 0 to 60% by volume of steam, and 20 to 80% by volume of an inert gas such as nitrogen and carbon dioxide gas is supplied to each of the above reaction tubes. It may be introduced into the catalyst layer at 250-450 ° C, 0.01-IMPa under pressure and space velocity (SV) 300-5000hr- 1 .
  • SV space velocity
  • a composite oxide catalyst powder having an atomic ratio (excluding O) of 4 was prepared. To 100 parts by weight of this powder was added 2 parts by weight of graphite (molding aid), and the mixture was tableted into a ring having an outer diameter of 5 mm, an inner diameter of 2 mm, and a height of 4 mm. And calcined to obtain a catalyst.
  • the catalyst and the inert filler (alumina balls having a diameter of about 5 mm) were mixed using the catalyst mixer shown in FIG.
  • 500 ml of the catalyst and 500 ml of the inert filler were mixed and packed in small bags.
  • a non-stirring mixer 4 was placed below the hopper 2, and a polyethylene bag (0.08 mm thick ⁇ 180 mm wide ⁇ 270 mm long) was set at the lower outlet of the non-stirring mixer 4.
  • the position of partition 1 was adjusted so that the internal volume of hopper 2 was 1: 1.
  • 500 ml of the catalyst was charged into one of the two sections divided by the partition 1, and 500 ml of the inert filler was charged into the other section.
  • the damper 3 was opened, and the catalyst and the inert filler were charged into the non-stirring mixer.
  • the mixture of the catalyst and the inert filler discharged from the lower outlet of the non-stirring mixer 4 was received by a polyethylene bag, degassed, and sealed and heated to obtain a small package.
  • the same operation was repeated six times to produce six subdivided packages, each of which was designated subdivided package A-11-A-6.
  • Table 1 shows the results of evaluating the mixed state of the catalyst and the inert filler of the subdivided packages A-11-A-5.
  • the mixture of the catalyst and the inert filler divided into the above-mentioned subdivided packages A-6 is filled into the raw material gas inlet side of a stainless steel reaction tube having a diameter of 27 mm provided with a thermocouple.
  • the outlet side was charged with 1000 ml of the catalyst.
  • the partition wall 1 of the catalyst mixer shown in FIG. 1 was removed, and the same catalyst and the inert filler as in Example 1 were used to pack small portions according to the following method.
  • 500 ml of the catalyst and 500 ml of the inert filler were mixed, and the mixture was packaged in small portions.
  • a non-stirring mixer 4 was placed below the hopper 2, and a polyethylene bag (0.08mm thick x 180mm wide x 270mm long) was set at the lower outlet of the non-stirring mixer 4.
  • 500 ml of the catalyst was charged into the hopper 2, and subsequently 500 ml of the inert filler was charged into the hopper.
  • Table 2 shows the results of evaluating the mixed state of the catalyst and the inert filler of the subdivided packages B-1-1 and B-5.
  • the mixture of the molding catalyst and the inert filler of the above-mentioned subdivided package B-6 is filled into the raw material gas inlet side of a 27 mm diameter stainless steel reaction tube provided with a thermocouple, and the raw material gas outlet side was charged with 1000 ml of the catalyst.
  • the present invention enables the catalyst and the inert filler to be mixed at a predetermined volume ratio, and provides a fixed-bed multitubular reactor. Since the effect of suppressing hot spots in the gas phase catalytic oxidation reaction using a reactor can be obtained, mixing of a catalyst with an inert filler in the case of producing acrolein and acrylic acid from oxidation reaction products such as propylene And a high yield can be achieved.

Abstract

A catalyst mixing method capable of solving problems resulting from hot spots in a gaseous phase catalytic oxidation reaction using a fixed bed multiple tube type reactor, wherein a composite oxide catalyst and an inert filler used for the gaseous phase catalytic oxidation reaction using the fixed bed multiple tube type reactor are mixed with each other by using a catalyst mixer in which a nonagitation type mixer (4) is arranged under a hopper (2). To store, in a classified state, the composite oxide catalyst and the inert filler used for the gaseous phase catalytic oxidation reaction using the fixed bed multiple tube type reactor, the inside of the hopper (2) is divided into two compartments by a partition wall (1), and the ratio of the cross section of one compartment to that of the other in the horizontal direction is made approximately equal to the ratio of the volume of the composite oxide catalyst to that of the inert filler.

Description

明 細 書  Specification
触媒混合機及び触媒混合方法  Catalyst mixer and catalyst mixing method
技術分野  Technical field
[0001] 本発明は、触媒混合に関し、特に固定床多管式反応器を用いた気相接触酸化反 応に使用される複合酸化物触媒と不活性充填物とを混合するための混合機及び混 合方法、並びに混合された複合酸化物触媒と不活性充填物の小分け包装体に関す る。  The present invention relates to catalyst mixing, and in particular, to a mixer for mixing a composite oxide catalyst used for a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor with an inert filler, and a mixer. The present invention relates to a mixing method and a divided package of a mixed composite oxide catalyst and an inert filler.
背景技術  Background art
[0002] 酸化触媒を用いて、例えば、プロピレンからァクロレイン及びアクリル酸を製造する 場合などにおいて、触媒を不活性充填物で希釈することは従来から知られている。 例えば特許文献 1には、反応ガスの導通量を危険のない範囲で高めて収率の向上 を図ったり、過度の酸化や局部的過熱 (ホットスポット)を防止するために、活性触媒 を不活性材料 (不活性充填物)を用いて希釈し、触媒の活性を低下させることが記載 されている。  [0002] In the case of producing acrolein and acrylic acid from propylene using an oxidation catalyst, for example, it is conventionally known to dilute the catalyst with an inert filler. For example, Patent Document 1 discloses that the active catalyst is deactivated in order to improve the yield by increasing the flow rate of the reaction gas within a danger-free range and to prevent excessive oxidation and local overheating (hot spots). It is described to dilute with a material (inert packing) to reduce the activity of the catalyst.
[0003] し力 ながら、このような従来技術により触媒と不活性充填物を混合し希釈して用い る場合、それなりに効果は得られるものの、その効果は触媒と不活性充填物の混合 状態に依存するため、必ずしも満足レ、くものではなかった。すなわち、触媒と不活性 充填物とを所定の容量比率で均一に混合されないことにより、ホットスポットの抑制効 果が満足に得られないという問題があった。その結果、ホットスポットに起因する問題 を充分に解決するためのより効果的な方法が求められている。特許文献 1には、この ような問題の解決に役立つ、触媒を不活性材料で希釈する際の混合方法及び混合 状態にっレ、て何ら記載されてレ、なレ、。  [0003] However, when the catalyst and the inert filler are mixed and diluted according to such a conventional technique and used, the effect can be obtained to some extent, but the effect depends on the mixed state of the catalyst and the inert filler. It was not always satisfactory because it depends. That is, there is a problem that the effect of suppressing hot spots cannot be obtained satisfactorily because the catalyst and the inert filler are not uniformly mixed at a predetermined volume ratio. As a result, there is a need for more effective methods to adequately resolve the problems caused by hot spots. Patent Document 1 describes a mixing method and a mixed state when diluting a catalyst with an inert material, which are useful for solving such a problem.
特許文献 1:特公昭 53 - 30688号公報  Patent Document 1: Japanese Patent Publication No. 53-30688
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、上記のような従来技術に鑑み、固定床多管式反応器を用いた気相接触 酸化反応においてホットスポットに起因する問題を解決する、より効果的な手段を提 供することにある。 The present invention has been made in view of the prior art as described above, and provides a more effective means for solving the problems caused by hot spots in a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor. To provide.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者等は、上記課題を解決するために、触媒と不活性充填物との混合方法に ついて検討した結果、ホッパー内部を混合する触媒と不活性充填物との容量比率に 合わせて隔壁で区画し、このホッパーと無撹拌式混合機とを組み合わせた触媒混合 機で触媒と不活性充填物とを混合することにより、所望の容量比率で容易に混合で きることを見出し、以下の発明を得たものである。  [0005] The present inventors have studied a method of mixing a catalyst and an inert filler in order to solve the above-mentioned problem. As a result, the inventors have adjusted the volume ratio of the catalyst and the inert filler to be mixed inside the hopper according to the volume ratio. It was found that the desired volume ratio can be easily mixed by mixing the catalyst and the inert filler with a catalyst mixer that combines this hopper and a non-stirring mixer. Was obtained.
[0006] 本発明は、ホッパーの下方に無撹拌式混合機を配置した触媒混合機であって、ホ ッパー内部に実質的に内容積を区分けできる隔壁を具備する触媒混合機を提供す る。  [0006] The present invention provides a catalyst mixer in which a non-stirring mixer is arranged below a hopper, the catalyst mixer having a partition inside the hopper capable of substantially dividing an internal volume.
[0007] また本発明の好ましい実施形態は、前記隔壁がホッパー内に直立して位置調整可 能に設けられている触媒混合機を提供する。  Further, a preferred embodiment of the present invention provides a catalyst mixer in which the partition wall is provided upright in a hopper so as to be adjustable in position.
[0008] 本発明は、ホッパーの下方に無撹拌式混合機を配置した触媒混合機を用いて複 数種類の充填物を混合する方法であって、該複数種類の充填物を区分けして収容 するためにホッパー内を隔壁で複数に区画し、各区画の水平方向の断面積比率を 各充填物の容量比率とほぼ等しくする触媒混合方法を提供する。  [0008] The present invention is a method for mixing a plurality of types of packing using a catalyst mixer in which a non-stirring type mixer is arranged below a hopper, wherein the plurality of types of packing are separated and accommodated. For this purpose, the present invention provides a catalyst mixing method in which the inside of a hopper is divided into a plurality of sections by partition walls, and a horizontal sectional area ratio of each section is substantially equal to a volume ratio of each packing.
[0009] 本発明は、前記複数種類の充填物が、固定床多管式反応器を用いた気相接触酸 化反応に使用される複合酸化物触媒及び不活性充填物である上記触媒混合方法を 提供する。  [0009] The present invention provides the above catalyst mixing method, wherein the plurality of types of packings are a composite oxide catalyst and an inert packing used for a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor. I will provide a.
[0010] 本発明の好ましい実施形態は前記の複合酸化物触媒及び不活性充填物を、固定 床多管式反応器の反応管 1本あたりに充填する所定量、または、反応管 1本に複数 の反応帯に分割して充填する各反応帯の所定量に小分けて混合し袋詰めする触媒 混合方法を提供する。  [0010] In a preferred embodiment of the present invention, a predetermined amount of the composite oxide catalyst and the inert packing to be filled per reaction tube of a fixed-bed multitubular reactor, or a plurality of the mixed oxide catalyst and the inert packing are filled in one reaction tube. The present invention provides a catalyst mixing method in which a predetermined amount of each reaction zone to be divided and filled into the reaction zones is mixed and bagged.
[0011] また、本発明の好ましい実施形態は、小分けされた複合酸化物触媒及び不活性充 填物を 8分割したときの複合酸化物触媒と不活性充填物の容量比において、複合酸 化物触媒の容量比の変動係数が 10%以下である触媒混合方法を提供する。  [0011] In a preferred embodiment of the present invention, the composite oxide catalyst and the inert filler are divided into eight parts and the volume ratio of the composite oxide catalyst to the inert filler is reduced. The present invention provides a catalyst mixing method wherein the coefficient of variation of the volume ratio of the catalyst is 10% or less.
発明の効果  The invention's effect
[0012] 本発明の方法によれば、複合酸化物触媒と不活性充填物とを所定の容量比率で 混合できるので、これを充填した固定床多管式反応器による気相接触酸化反応にお レ、てホットスポットを充分に抑制することができる。これにより、触媒性能を安定して維 持することができ、酸化反応生成物、例えばプロピレンからァクロレイン及び Zまたは アクリル酸を安定して、かつ高収率で製造することができる。 According to the method of the present invention, the composite oxide catalyst and the inert filler are mixed at a predetermined volume ratio. Since mixing can be performed, hot spots can be sufficiently suppressed in the gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor filled with the mixture. As a result, the catalyst performance can be maintained stably, and acrolein and Z or acrylic acid can be stably produced at a high yield from an oxidation reaction product such as propylene.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の実施例である触媒混合機の正面図。  FIG. 1 is a front view of a catalyst mixer according to an embodiment of the present invention.
[図 2]図 1の無撹拌式混合機の概略図。  FIG. 2 is a schematic diagram of the non-stirring mixer of FIG. 1.
[図 3]円形配歹 ljタイプの分割機の説明図。  FIG. 3 is an explanatory view of a circular system lj type splitter.
[図 4]直列配歹 ljタイプの分割機の説明図。  FIG. 4 is an explanatory view of a series-structured lj type splitter.
符号の説明  Explanation of symbols
[0014] 1 隔壁 [0014] 1 partition wall
2 ホッノ一  2 Honoichi
3 ダンパー  3 Damper
4 無撹拌式混合機  4 Mixer without stirring
5 投入口  5 Input port
6 ハウジング  6 Housing
7 エレメント  7 elements
8 受器  8 Receiver
9 計量容器  9 Weighing container
10 回転軸  10 Rotary axis
11 滑車  11 pulley
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明は、複合酸化物触媒と該複合酸化物触媒以外の他のものとを触媒混合機 で混合することを特徴とし、例えば固定床多管式反応器を用いた気相接触酸化反応 において使用する複合酸化物触媒 (以下、単に、触媒ということもある)と不活性充填 物とを触媒混合機で混合するものであるが、本発明は触媒と不活性充填物に限定さ れなレヽ。 [0015] The present invention is characterized in that a composite oxide catalyst and another component other than the composite oxide catalyst are mixed by a catalyst mixer, and for example, gas phase catalytic oxidation using a fixed-bed multitubular reactor. Although the composite oxide catalyst used in the reaction (hereinafter sometimes simply referred to as a catalyst) and an inert filler are mixed by a catalyst mixer, the present invention is limited to the catalyst and the inert filler. What?
[0016] 以下に、本発明について図面を参照して具体的に説明する。しかし、図面は発明 の一例であり、本発明は図面及びその説明に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to the drawings. But the drawing is an invention The present invention is not limited to the drawings and the description thereof.
[0017] 本発明における触媒混合機を図 1に基づレ、て説明する。  [0017] The catalyst mixer according to the present invention will be described with reference to FIG.
図 1に示すように、発明の触媒混合機はホッパー 2の下方に無撹拌式混合機 4を配 置している。ホッパー 2は、反応管 1本あたりに充填する所定量、または、反応管 1本 あたり複数の反応帯に分割して充填する各反応帯の所定量の触媒及び不活性充填 物を受け入れる容量を持ち、底部はダンバ- 3によって開閉可能になっている。ホッ パー 2の内部には複数種類の充填物、例えば触媒と不活性充填物とを実質的に区 分して収容できるように隔壁 1が直立して設置されている。本例は触媒と不活性充填 物とを区分けするために一つの隔壁 1を設けているが、隔壁 1の数は充填物の種類 数により増加できる。この場合、隔壁 1は位置調整可能にすなわち可動式に設けるの が好ましい。この位置調整は、例えば図示はしないが、隔壁 1を差し込みできる凹部 や溝をホッパー 2の内壁や上端部に一定の間隔で設けておき、隔壁 1をこれらの凹 部や溝に差し変えて調整する方法、または隔壁 1をホッパー 2内において横方向に 移動できるように設け、所定の位置でホッパー 2の上端部にねじやフック等により係止 する方法などにより可能である。しかし。隔壁 1の位置調整手段は、隔壁をホッパー 内の所定の位置に保持できればよぐこれらの方法に限定されない。  As shown in FIG. 1, the catalyst mixer of the invention has a non-stirring mixer 4 below a hopper 2. The hopper 2 has a capacity to receive a predetermined amount to be filled per reaction tube, or a predetermined amount of catalyst and inert packing in each reaction zone to be divided into a plurality of reaction zones per reaction tube. The bottom is openable and closable by dambar-3. Inside the hopper 2, a partition 1 is installed upright so that a plurality of types of packing, for example, a catalyst and an inert packing can be accommodated in a substantially separated manner. In this example, one partition 1 is provided to separate the catalyst and the inert packing, but the number of the partition 1 can be increased by the number of types of the packing. In this case, it is preferable that the partition wall 1 is provided so as to be adjustable in position, that is, movable. For this position adjustment, for example, although not shown, concave portions and grooves into which the partition wall 1 can be inserted are provided at regular intervals on the inner wall and the upper end of the hopper 2, and the partition wall 1 is replaced with these concave portions and grooves. Or a method in which the partition wall 1 is provided so as to be able to move in the hopper 2 in the lateral direction, and is fixed to a top end of the hopper 2 at a predetermined position by a screw or a hook. However. The position adjusting means of the partition 1 is not limited to these methods as long as the partition can be held at a predetermined position in the hopper.
[0018] 隔壁 1により区分けされるホッパー 2内部の各区画の水平方向の断面積比率は、隔 壁 1の位置を変更することにより調整することができる。そして、隔壁 1の位置を調整 することにより、各区画の水平方向の断面積比率、好ましくは少なくともホッパー 2の 出口における水平方向の断面積比率を複数種類の充填物それぞれの容量比率と同 じにすること力 Sできる。このように断面積比率と容量比率とが同じになっているため、 触媒及び不活性充填物を対応した区画に収容することにより、充填層高が揃った状 態で触媒及び不活性充填物をホッパー 2内部に仕込むことができる。  The horizontal sectional area ratio of each section inside the hopper 2 divided by the partition 1 can be adjusted by changing the position of the partition 1. By adjusting the position of the partition 1, the horizontal cross-sectional area ratio of each section, preferably at least the horizontal cross-sectional area ratio at the outlet of the hopper 2, is made the same as the volume ratio of each of the plural types of packing materials. The ability to do S. Since the cross-sectional area ratio and the volume ratio are thus the same, the catalyst and the inert filler are accommodated in the corresponding compartments, so that the catalyst and the inert filler are packed at the same height of the packed bed. Can be charged inside the hopper 2.
[0019] 隔壁 1の面積は、複数種類の充填物を実質的に区分できればよく限定されないが 、ホッパー内に投入される充填物の垂直方向断面の 60 %以上が好まし より好まし くは 80 °/ο以上、最も好ましくは 95。/0以上である。隔壁 1の面積が 60 °/οより小さいと、 隔壁 1による区分けが不充分になり、複数種類の充填物を所定の容量比率で実質的 に均一に混合することができなくなるために、本発明の効果が充分に得られないこと 力 sある。 [0019] The area of the partition 1 is not particularly limited as long as a plurality of types of packing can be substantially divided, but is preferably 60% or more, more preferably 80% or more, of the vertical section of the packing charged into the hopper. ° / ο or more, most preferably 95. / 0 or more. If the area of the partition wall 1 is smaller than 60 ° / ο, the partitioning by the partition wall 1 becomes insufficient, and it becomes impossible to substantially uniformly mix a plurality of types of packing materials at a predetermined volume ratio. That the effect of There is power s .
[0020] 次に、無撹拌式混合機 4を図 2に基づいて説明する。この無撹拌式混合機 4として は、 JIS_Z_8840 (pl4)に示される無撹拌式の混合機を用いることができる。図 2は 力かる無撹拌式の混合機を概略的に示したもので、例えば、上端に投入口 5を有す る円筒状のハウジング 6の内部にエレメント 7を複数個配置したスタティックミキサーを 用レ、ることができる。上記ハウジング 6の内径は、触媒及び不活性充填物がハウジン グ内でブリッジングを生じない大きさにする。通常、触媒及び不活性充填物は数 mm 一数十 mmの粒子径を持っているので、該内径は好ましく 70mm以上、さらに好まし くはは 100— 300mmである。内径が 70mmより小さいハウジングではブリッジングを 多発することがある。また内径を 300mmより大きくすると、部材に要する材料が多く なり経済的に不利である。なお、ハウジング 6の長さは、エレメント 7によって変わること もあるが、内径の 2— 20倍程度が好ましい。  Next, the non-stirring mixer 4 will be described with reference to FIG. As the non-stirring mixer 4, a non-stirring mixer shown in JIS_Z_8840 (pl4) can be used. Fig. 2 schematically shows a powerful non-stirring mixer, for example, using a static mixer in which a plurality of elements 7 are arranged inside a cylindrical housing 6 having an inlet 5 at the upper end. Let's do it. The inner diameter of the housing 6 is set so that the catalyst and the inert filler do not cause bridging in the housing. Usually, since the catalyst and the inert packing have a particle size of several mm to several tens of mm, the inner diameter is preferably 70 mm or more, more preferably 100 to 300 mm. Bridging may occur frequently in a housing with an inner diameter smaller than 70 mm. If the inner diameter is larger than 300 mm, the material required for the members increases, which is economically disadvantageous. The length of the housing 6 may vary depending on the element 7, but is preferably about 2 to 20 times the inner diameter.
[0021] 上記ハウジング 6の内部に配置するエレメント 7は、数 mm—数十 mmの粒子径を持 つ触媒及び不活性充填物を通過させる形状、例えば、らせん状エレメントを用いるこ とができる。このらせん状エレメントは、通常 2— 20個をハウジング 6内に段接して使 用するが、一体的に形成してもよい。混合する触媒と不活性充填物は、ホッパー 2の ダンパー 3を開口して無撹拌式混合機 4の投入口 5に供給され、ハウジング 6内をら せん状エレメント 7に沿って落下する間に混合される。この場合、触媒と不活性充填 物は隔壁 1で区画されたホッパー 2内にそれぞれの混合容量比率に合わせて区分け されているので、投入口 5に一定の比率で供給できる。このようならせん状エレメント による混合方法は、触媒と不活性充填物とを攪拌しないで混合するので、触媒粒子 を破壊させずに混合するのに有効である。  The element 7 disposed inside the housing 6 may have a shape that allows passage of a catalyst and an inert filler having a particle diameter of several mm to several tens of mm, for example, a spiral element. Usually, 2 to 20 helical elements are used stepwise in the housing 6, but may be integrally formed. The catalyst and the inert filler to be mixed are supplied to the inlet 5 of the non-stirring mixer 4 by opening the damper 3 of the hopper 2 and mixed while falling along the spiral element 7 in the housing 6. Is done. In this case, since the catalyst and the inert filler are separated in the hopper 2 divided by the partition 1 in accordance with the respective mixing volume ratios, the catalyst and the inert filler can be supplied to the inlet 5 at a constant ratio. Such a mixing method using a helical element mixes the catalyst and the inert packing without stirring, and is effective for mixing without destroying the catalyst particles.
[0022] 本発明において触媒と不活性充填物の混合状態は、混合された触媒と不活性充 填物の反応管 1本あたりに充填する所定量 (以下、反応管 1本あたりの触媒と不活性 充填物を「小分け包装体」という)を、 ± 15容量%のバラツキの範囲内で便宜的に 8 等分に分割し、分割されたそれぞれの触媒と不活性充填物の容積比を求めたときの 、触媒の容量比の変動係数にて評価される。ここで、変動係数は、 n個のデーターの 平均値を x、標準偏差を sとするとき、 (s/x X 100)にて表した値である。この変動計 数が大きいことは、触媒の混合割合のバラツキが大きいことを意味する。 [0022] In the present invention, the mixed state of the catalyst and the inert filler is determined by a predetermined amount of the mixed catalyst and the inert filler to be filled per reaction tube (hereinafter, the catalyst and the inert gas per one reaction tube are mixed). The active packing is referred to as a “subdivided package”), which is conveniently divided into eight equal parts within the range of ± 15% by volume, and the volume ratio of each of the divided catalyst and the inert packing is determined. At this time, it is evaluated by the coefficient of variation of the catalyst capacity ratio. Here, the coefficient of variation is a value represented by (s / x X 100) where x is the average value of n data and s is the standard deviation. This variometer A large number means that the mixing ratio of the catalyst varies widely.
[0023] 本発明において、この触媒の容量比の変動係数は、 10%以下が好ましぐ 8%以 下であればより好ましい。この変動計数が 10%より大きいと、触媒の不均一性により 気相接触酸化反応におけるホットスポットの抑制効果が不充分となり、酸化反応生成 物、例えばプロピレンからァクロレイン及び/またはアクリル酸を製造するときの収率 が低下するので、好ましくない。  In the present invention, the coefficient of variation of the catalyst volume ratio is preferably 10% or less, more preferably 8% or less. If the variation coefficient is greater than 10%, the effect of suppressing hot spots in the gas-phase catalytic oxidation reaction becomes insufficient due to the heterogeneity of the catalyst, and when producing acrolein and / or acrylic acid from oxidation reaction products, for example, propylene. This is not preferable because the yield of the compound decreases.
[0024] なお、小分け包装体の内容物を等分する方法として、例えば図 3及び図 4に示す分 割機を用いることができる。図 3は受器 8を円形に配列したタイプ、図 4は直列に配列 したタイプである。受器 8の中に、 8等分量の内容積の計量容器 9を設置し、小分け 包装体の内容物を計量容器 9に投入する。計量容器 9が満たされたところで、回転軸 10、又は滑車 11を可動し、引き続き次の受器 8に設置された計量容器 9に投入する 。これを繰り返すことにより、小分け包装体の内容物を 8個の受器 8もしくは計量容器 9に等分割することができる。  [0024] As a method of equally dividing the contents of the subdivided package, for example, a divider shown in Figs. 3 and 4 can be used. Fig. 3 shows a type in which receivers 8 are arranged in a circle, and Fig. 4 shows a type in which receivers 8 are arranged in series. A measuring container 9 having an inner volume of 8 equal parts is placed in a receiver 8, and the contents of the subdivided package are put into the measuring container 9. When the weighing container 9 is filled, the rotating shaft 10 or the pulley 11 is moved, and subsequently, the weighing container 9 is set in the next receiver 8. By repeating this, the contents of the subdivided package can be equally divided into eight receivers 8 or measuring containers 9.
[0025] また、本発明における充填物の容積の計量は、メスシリンダー等の容積測定器を用 レ、て計量することができる。また、嵩密度で換算して電子天秤等の重量測定器を用 レ、て計量することもできるし、市販の自動重量測定器を用いることもできる。  [0025] In addition, the volume of the packing in the present invention can be measured using a volume measuring device such as a measuring cylinder. In addition, the weight can be measured using a weighing device such as an electronic balance in terms of the bulk density, or a commercially available automatic weighing device can be used.
[0026] 本発明で使用する不活性充填物は、反応で余計な副反応を引き起こさない材料で あればよぐ例えば、ァノレミナ、ジルコユア、チタニア、マグネシア、シリカ等の高温処 理した酸化物ゃステアタイト、ムライト、炭化珪素、窒化珪素などの高温焼結材料等 を用いることができる。  [0026] The inert filler used in the present invention may be any material that does not cause an unnecessary side reaction in the reaction. For example, high-temperature-treated oxides such as anoremina, zirconia, titania, magnesia, and silica may be used. High-temperature sintering materials such as tight, mullite, silicon carbide, and silicon nitride can be used.
[0027] また、本発明で使用する代表的な触媒は、固定床多管式反応器を用いた気相接 触酸化反応に使用される複合酸化物触媒である。具体的には、例えば、プロピレン 力 ァクロレイン及びアクリル酸を製造する気相接触酸化反応に使用される触媒が挙 げられる。該複合酸化物触媒の好ましい態様としては、下記の式(1)で示される触媒 が例示される。  [0027] A typical catalyst used in the present invention is a composite oxide catalyst used for a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor. Specifically, for example, a catalyst used in a gas phase catalytic oxidation reaction for producing propylene perchlorein and acrylic acid can be mentioned. Preferred embodiments of the composite oxide catalyst include a catalyst represented by the following formula (1).
MoaBibCocNidFeeXfYgZhQiSijOk (1)  MoaBibCocNidFeeXfYgZhQiSijOk (1)
(式中、 Moはモリブデン、 Biはビスマス、 Coはコノ ノレト、 Niはニッケル、 Feは鉄、 Si はケィ素、 Oは酸素を示し、 Xは Na、 K、 Rb、 Cs及び T1のいずれか少なくとも一種を 示し、 Yは B, P, As及び Wのいずれか少なくとも 1種を示し、 Zは Mg、 Ca、 Zn、 Ce及 び Smの少なくとも一種を示す。 Qはハロゲン原子を示し、 a kはそれぞれの元素の 原子 i を表わし、 a= 12であるとき、 0. 5≤b≤7, 0≤c≤10, 0≤d≤10, l≤c + d ≤10, 0. 05≤e≤3, 0. 0005≤f≤3, 0≤g≤3, 0≤h≤l, 0≤i≤0. 5、 0≤j≤4 8であり、 kは他の元素の酸化状態を満足させる値である。 ) (In the formula, Mo is molybdenum, Bi is bismuth, Co is konorelate, Ni is nickel, Fe is iron, Si is silicon, O is oxygen, and X is any of Na, K, Rb, Cs, and T1. At least one Y indicates at least one of B, P, As and W, and Z indicates at least one of Mg, Ca, Zn, Ce and Sm. Q represents a halogen atom, ak represents the atom i of each element, and when a = 12, 0.5≤b≤7, 0≤c≤10, 0≤d≤10, l≤c + d ≤10, 0.05≤e≤3, 0.0005≤f≤3, 0≤g≤3, 0≤h≤l, 0≤i≤0.5, 0≤j≤4 8, and k is This is a value that satisfies the oxidation state of other elements. )
[0028] なお、上記にぉレ、て、モリブデン(Mo)、ビスマス(Bi)、ケィ素(Si)、コバルト(Co) 、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム (Ce)、サマリウム(Sm)、ナトリウム(Na)、カリウム(K)、 ノレビジゥム(Rb)、セシウム(C s)、タリウム (T1)、ホウ素(B)、リン(P)、ヒ素 (As)、タングステン (W)、フッ素(F)、塩 素(C1)、臭素(Br)、ヨウ素(I)の各元素は、それぞれカツコ内の元素記号を用いて表 記した。式(1)で表されるモリブデン一ビスマス系複合酸化物触媒それ自体は公知で あり、公知の方法により調製することができる。  [0028] In the above, molybdenum (Mo), bismuth (Bi), silicon (Si), cobalt (Co), nickel (Ni), iron (Fe), magnesium (Mg), calcium ( Ca), zinc (Zn), cerium (Ce), samarium (Sm), sodium (Na), potassium (K), norebidium (Rb), cesium (Cs), thallium (T1), boron (B), phosphorus The elements (P), arsenic (As), tungsten (W), fluorine (F), chlorine (C1), bromine (Br), and iodine (I) are represented using the element symbols in Kakko. did. The molybdenum-bismuth composite oxide catalyst represented by the formula (1) itself is known and can be prepared by a known method.
[0029] 本発明で使用する他の代表的な触媒は、不飽和アルデヒドを気相接触酸化反応さ せて対応する不飽和カルボン酸を製造する反応に用いられる、モリブデンを主体と する以下の式(2)を有する複合酸化物触媒である。  [0029] Another representative catalyst used in the present invention is a molybdenum-based formula below, which is used in a reaction for producing a corresponding unsaturated carboxylic acid by subjecting an unsaturated aldehyde to a gas phase catalytic oxidation reaction. A composite oxide catalyst having (2).
MoaVbCucXdYeZfOg (2)  MoaVbCucXdYeZfOg (2)
(式中、 Moはモリブデン、 Vはバナジウム、 Cuは銅、 Oは酸素を示し、 Xは、 W及び N b力 なる群力 選ばれる少なくとも 1種の元素であり、 Yは、 Fe、 Co、 Ni、及び Biか らなる群力 選ばれる少なくとも 1種の元素であり、 Zは Ti、 Zr、 Ce、 Cr、 Mn及び Sb 力 なる群より選ばれた少なくとも 1種の元素を示す。 a、 b、 c、 d、 e、 f及び gは各元素 の原子 itを表わし、 a= 12のとき、 l≤b≤12, 0≤c≤6, 0≤d≤12, 0≤e≤100, 0≤f≤100、 gは他の元素の酸化状態を満足するのに必要な酸素原子数である。 ) (In the formula, Mo is molybdenum, V is vanadium, Cu is copper, O is oxygen, X is at least one element selected from the group force of W and Nb force, Y is Fe, Co, Group power consisting of Ni and Bi is at least one element selected from the group consisting of: Ti, Zr, Ce, Cr, Mn, and Sb: at least one element selected from the group consisting of: a, b , C, d, e, f, and g represent the atom it of each element.When a = 12, l≤b≤12, 0≤c≤6, 0≤d≤12, 0≤e≤100, 0 ≤f≤100, g is the number of oxygen atoms required to satisfy the oxidation state of other elements.)
[0030] 本発明で使用する触媒の調製方法は、焼成条件を除き、特に制限はなぐ通常、 各元素成分を含有する供給源化合物の所要量を水性媒体中に適宜溶解あるいは 分散し、加熱撹拌した後、蒸発乾固、乾燥、粉砕し、得られた粉体を押出し成形、造 粒成形、打錠成形などの方法により成形し、成形体が得られる。触媒の形状、大きさ などについても特に制限はな 公知の形状、大きさなどから適宜選ぶことができる。 例えば、形状についていえば、球状、円柱状、リング状などのいずれでもよレ、。この 際、触媒の強度、粉化度を改善する効果があるとして一般に知られているガラス繊維 などの無機繊維、各種ウイスカーなどを添加してもよい。また、触媒物性を再現よく制 御するために、硝酸アンモニゥム、セルロース、デンプン、ポリビュルアルコール、ス テアリン酸など一般に粉体結合剤として知られている添加物を使用することもできる。 [0030] The method for preparing the catalyst used in the present invention is not particularly limited except for the calcination conditions. Usually, the required amount of the source compound containing each elemental component is appropriately dissolved or dispersed in an aqueous medium, and heated and stirred. After that, the mixture is evaporated to dryness, dried, and pulverized, and the obtained powder is molded by a method such as extrusion molding, granulation molding, tablet molding, or the like, to obtain a molded body. The shape and size of the catalyst are not particularly limited, and can be appropriately selected from known shapes and sizes. For example, regarding the shape, any of a spherical shape, a cylindrical shape, a ring shape, and the like may be used. this At this time, inorganic fibers such as glass fibers and various whiskers which are generally known to have an effect of improving the strength and the degree of powdering of the catalyst may be added. To control the physical properties of the catalyst with good reproducibility, additives generally known as powder binders such as ammonium nitrate, cellulose, starch, polybutyl alcohol, and stearic acid can be used.
[0031] 本発明においては、上記式(1)で表される複合酸化物をそれ自体単独で使用する ことができる力 ァノレミナ、シリカ、シリカ一アルミナ、シリコンカーバイド、酸化チタン、 酸化マグネシウム、アルミニウムスポンジ、シリカ—チタニアなど一般に不活性担体と して知られている担体に担持して使用してもよい。また、触媒の強度などを改善する ために前記の無機繊維などを添加しても、あるいは触媒物性を再現よく制御するた めに前記の硝酸アンモニゥムなどの添加剤を使用することもできる。  [0031] In the present invention, the complex oxide represented by the above formula (1) can be used by itself. The compound can be used alone, such as phenol, silica, silica monoalumina, silicon carbide, titanium oxide, magnesium oxide, and aluminum sponge. It may be used by being supported on a carrier generally known as an inert carrier such as silica-titania. In addition, the above-mentioned inorganic fibers or the like may be added to improve the strength of the catalyst, or the above-mentioned additives such as ammonium nitrate may be used to control the physical properties of the catalyst with good reproducibility.
[0032] これら成形体あるいは担持体である触媒を、雰囲気ガス流通下に 300— 650°Cの 温度で 1一 20時間程度焼成することにより複合酸化物触媒を調製する。  The composite oxide catalyst is prepared by calcining the catalyst, which is a molded body or a support, at a temperature of 300 to 650 ° C. for about 120 hours in a flowing atmosphere gas.
[0033] 上記 Mo - Bi - Fe系複合酸化物触媒を用いる気相接触酸化反応は、具体的には、 プロピレンの気相接触酸化であり、ァクロレイン及びアクリル酸を製造する際に一般 に用いられている方法によって行うことができる。例えば、プロピレン 1一 15容量%、 分子状酸素 3— 30容量%、水蒸気 0— 60容量%、窒素、炭酸ガスなどの不活性ガス 20— 80容量%などからなる混合ガスを上記各反応管の触媒層に 250— 450°C、 0. 01— IMPaの加圧下、空間速度(SV) 300— 5000hr— 1で導入すればよい。 [0033] The gas-phase catalytic oxidation reaction using the Mo-Bi-Fe-based composite oxide catalyst is, specifically, a gas-phase catalytic oxidation of propylene, which is generally used when producing acrolein and acrylic acid. You can do that by For example, a mixed gas consisting of 1 to 15% by volume of propylene, 3 to 30% by volume of molecular oxygen, 0 to 60% by volume of steam, and 20 to 80% by volume of an inert gas such as nitrogen and carbon dioxide gas is supplied to each of the above reaction tubes. It may be introduced into the catalyst layer at 250-450 ° C, 0.01-IMPa under pressure and space velocity (SV) 300-5000hr- 1 .
実施例  Example
[0034] 以下に実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定 されるものではない。  [0034] Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.
[0035] また、以下の説明において転化率、収率の定義は、次の通りである。 In the following description, the conversion and the yield are defined as follows.
'プロピレン転化率(モル0 /0) = (反応したプロピレンのモル数/供給したプロピレン のモノレ数) X 100 'Propylene conversion (mol 0/0) = (Monore number of moles / supplied propylene of reacted propylene) X 100
.ァクロレイン及とアクリル酸の合計収率(モル%) = (生成したァクロレイン及びァク リル酸のモル数/供給したプロピレンのモル数) X 100  .Total yield of acrolein and acrylic acid (mol%) = (moles of acrolein and acrylic acid produced / moles of propylene supplied) x 100
[0036] 実施例 1 Example 1
気相接触酸化反応によりプロピレンを原料にァクロレインやアクリル酸を製造する触 媒として、 Mo: Bi: Ni: Co: Fe: Na: B: K: Si = 12: 5: 2: 3: 0. 5 : 0. 1 : 0. 2 : 0. 1 : 2Catalyst for producing acrolein and acrylic acid using propylene as a raw material by gas phase catalytic oxidation reaction As a medium, Mo: Bi: Ni: Co: Fe: Na: B: K: Si = 12: 5: 2: 3: 0.5: 0.5: 0.1: 0.2: 0.1: 2
4、の原子比 (Oを除く)を有する複合酸化物の触媒粉末を調製した。この粉末 100重 量部にグラフアイト(成形助剤) 2重量部を添加し、外径 5mm、内径 2mm、高さ 4mm のリング状に打錠成形した後、空気流通下 500°Cで 6時間、焼成して触媒とした。 A composite oxide catalyst powder having an atomic ratio (excluding O) of 4 was prepared. To 100 parts by weight of this powder was added 2 parts by weight of graphite (molding aid), and the mixture was tableted into a ring having an outer diameter of 5 mm, an inner diameter of 2 mm, and a height of 4 mm. And calcined to obtain a catalyst.
[0037] 次レ、で、前記触媒と不活性充填物(直径約 5mmのアルミナボール)を図 1に示した 触媒混合機を用いて混合し、小分け袋詰めを行った。先ず、触媒 500mlと不活性充 填物 500mlを混合し、小分け袋詰めを行った。ホッパー 2の下方に無撹拌式混合機 4を配置し、無撹拌式混合機 4の下方出口にはポリエチレン製袋 (厚さ 0. 08mm X 横 180mm X縦 270mm)をセットした。ホッパー 2の内容積が 1: 1になるように隔壁 1 の位置を調節した。隔壁 1により 2つに区分けされた一方の区画に触媒 500mlを、他 方の区画に不活性充填物 500mlを投入した。次いでダンパー 3を開にして触媒と不 活性充填物を無撹拌式混合機に投入した。無撹拌式混合機 4の下方出口より排出さ れる触媒と不活性充填物の混合物をポリエチレン製袋にて受け止め、脱気した後、 シールヒートして小分け包装体とした。同じ操作を 6回繰り返して、小分け包装体を 6 個作成し、それぞれ小分け包装体 A— 1一 A— 6とした。 Next, the catalyst and the inert filler (alumina balls having a diameter of about 5 mm) were mixed using the catalyst mixer shown in FIG. First, 500 ml of the catalyst and 500 ml of the inert filler were mixed and packed in small bags. A non-stirring mixer 4 was placed below the hopper 2, and a polyethylene bag (0.08 mm thick × 180 mm wide × 270 mm long) was set at the lower outlet of the non-stirring mixer 4. The position of partition 1 was adjusted so that the internal volume of hopper 2 was 1: 1. 500 ml of the catalyst was charged into one of the two sections divided by the partition 1, and 500 ml of the inert filler was charged into the other section. Next, the damper 3 was opened, and the catalyst and the inert filler were charged into the non-stirring mixer. The mixture of the catalyst and the inert filler discharged from the lower outlet of the non-stirring mixer 4 was received by a polyethylene bag, degassed, and sealed and heated to obtain a small package. The same operation was repeated six times to produce six subdivided packages, each of which was designated subdivided package A-11-A-6.
小分け包装体 A— 1一 A— 5の触媒と不活性充填物の混合状態を評価した結果を表 1に示す。  Table 1 shows the results of evaluating the mixed state of the catalyst and the inert filler of the subdivided packages A-11-A-5.
[0038] 次いで、熱伝対を設置した直径 27mmのステンレス製反応管の原料ガス入口側に 、上記小分け包装体 A— 6に小分けした触媒と不活性充填物の混合物を充填し、原 料ガス出口側に前記触媒 1000mlを充填した。  Next, the mixture of the catalyst and the inert filler divided into the above-mentioned subdivided packages A-6 is filled into the raw material gas inlet side of a stainless steel reaction tube having a diameter of 27 mm provided with a thermocouple. The outlet side was charged with 1000 ml of the catalyst.
[0039] 次レ、で、触媒性能を確認するため、ガス空間速度 lOOOhr— 1 (0°C基準)、入口グー ジ圧 100kPa、反応温度 310°Cの条件下、プロピレン 8. 5容量%、空気 68容量%、 水蒸気 15容量%、窒素 8. 5容量%の混合ガスを流通させ、プロピレンの酸化を行つ た。反応成績は、プロピレン転化率 98. 8%、アクリル酸とァクロレインの合計収率は 92. 6%であった。反応触媒層の最高温度は 383°Cであった。 [0039] Next, in order to confirm the catalyst performance, the gas space velocity lOOOOhr- 1 (0 ° C reference), the inlet gouge pressure 100kPa, the reaction temperature 310 ° C, the propylene 8.5% by volume, Propylene was oxidized by flowing a mixed gas of 68% by volume of air, 15% by volume of steam and 8.5% by volume of nitrogen. The reaction results were as follows: propylene conversion: 98.8%; total yield of acrylic acid and acrolein: 92.6%. The maximum temperature of the reaction catalyst layer was 383 ° C.
[0040] 比較例 1  [0040] Comparative Example 1
図 1に示した触媒混合機の隔壁 1を取り外し、実施例 1と同じ触媒と不活性充填物 を用いて次の方法により小分け袋詰めを行った。 先ず、触媒 500mlと不活性充填物 500mlとを混合し、その小分け袋詰めを行った 。ホッパー 2の下方に無撹拌式混合機 4を配置し、無撹拌式混合機 4の下方出口に ポリエチレン製袋(厚さ 0. 08mm X横 180mm X縦 270mm)をセットした。次いで触 媒 500mlをホッパー 2に投入し、続いて不活性充填物 500mlをホッパーに投入した 。次いでダンパー 3を開にして触媒と不活性充填物を無撹拌式混合機 4に投入した。 無撹拌式混合機 4の下方出口より排出される触媒と不活性充填物の混合物をポリエ チレン製袋にて受け止め、脱気した後、シールヒートして小分け包装体とした。同じ操 作を 6回繰り返して、小分け包装体を 6個作成し、それぞれ小分け包装体 B— 1一 B- 6とした。 The partition wall 1 of the catalyst mixer shown in FIG. 1 was removed, and the same catalyst and the inert filler as in Example 1 were used to pack small portions according to the following method. First, 500 ml of the catalyst and 500 ml of the inert filler were mixed, and the mixture was packaged in small portions. A non-stirring mixer 4 was placed below the hopper 2, and a polyethylene bag (0.08mm thick x 180mm wide x 270mm long) was set at the lower outlet of the non-stirring mixer 4. Next, 500 ml of the catalyst was charged into the hopper 2, and subsequently 500 ml of the inert filler was charged into the hopper. Next, the damper 3 was opened, and the catalyst and the inert filler were charged into the mixer 4 without stirring. The mixture of the catalyst and the inert filler discharged from the lower outlet of the non-stirring mixer 4 was received by a polyethylene bag, degassed, and sealed and heated to obtain a small package. The same operation was repeated six times to produce six subdivided packages, each of which was designated subdivided package B-1-1 B-6.
小分け包装体 B - 1一 B - 5の触媒と不活性充填物の混合状態を評価した結果を表 2に示す。  Table 2 shows the results of evaluating the mixed state of the catalyst and the inert filler of the subdivided packages B-1-1 and B-5.
[0041] 一方、熱伝対を設置した直径 27mmのステンレス製反応管の原料ガス入口側に上 記小分け包装体 B - 6の成形触媒と不活性充填物の混合物を充填し、原料ガス出口 側に前記触媒 1000mlを充填した。  On the other hand, the mixture of the molding catalyst and the inert filler of the above-mentioned subdivided package B-6 is filled into the raw material gas inlet side of a 27 mm diameter stainless steel reaction tube provided with a thermocouple, and the raw material gas outlet side Was charged with 1000 ml of the catalyst.
[0042] 次レ、で、触媒性能を確認するため、ガス空間速度 lOOOhr— 1 (0°C基準)、入口ゲー ジ圧 100kPa、反応温度 310°Cの条件下、プロピレン 8. 5容量%、空気 68容量0 /0、 水蒸気 15容量%、窒素 8. 5容量%の混合ガスを流通させ、プロピレンの酸化を行つ た。反応成績は、プロピレン転化率 98. 6%、アクリル酸とァクロレインの合計収率は 91. 1%であった。反応触媒層の最高温度は 410°Cであった。 [0042] Next, in order to confirm the catalyst performance, under the conditions of a gas hourly space velocity of 100 hr- 1 (0 ° C reference), an inlet gauge pressure of 100 kPa, and a reaction temperature of 310 ° C, propylene 8.5% by volume, air 68 volume 0/0, the water vapor 15 volume%, was circulated nitrogen 8.5% by volume of the mixed gas, having conducted the oxidation of propylene. As for the reaction results, the propylene conversion was 98.6%, and the total yield of acrylic acid and acrolein was 91.1%. The maximum temperature of the reaction catalyst layer was 410 ° C.
[0043] [表 1] [Table 1]
小 <分け包装体 容積比 (%) 触媒容積比のSmall <divided package Volume ratio (%) Catalyst volume ratio
No. 変動係数 ) O 触媒 不活性充填物 No. Coefficient of variation) O catalyst Inert packing
A- 1 48. 4 51. 6  A- 1 48. 4 51. 6
50. 0 50. 0  50.0 50.0
53. 7 46. 3  53. 7 46. 3
49. 2 50. 8 6. 4 49.2 50.86.4
53. 8 46. 2 53. 8 46. 2
43. 8 56. 2  43.8 56.2
47. 1 52. 9  47. 1 52. 9
52. 3 47. 7  52. 3 47. 7
A-2 47. 9 52. 1  A-2 47. 9 52. 1
51. 7 48. 3  51.7 48.3
53. 4 46. 6  53. 4 46. 6
48. 0 52. 0 7. 3 48.0 52.07.3
45. 8 54. 2 45. 8 54. 2
49. 5 50. 5  49.5 50.5
46. 7 53. 3  46.7 53.3
57. 3 42. 7  57. 3 42. 7
44. 6 55. 4  44.6 55.4
52. 4 47. 6  52. 4 47. 6
56. 3 43. 7  56.3 43.7
51. 5 48. 5 7. 8 51.5 48.5 7.8
51. 9 48. 1 51. 9 48. 1
44. 7 55. 3  44.7 55.3
46. 5 53. 5  46.5 53.5
50. 7 49. 3  50.7 49.3
A— 4 50. 7 49. 3  A— 4 50. 7 49. 3
51. 9 48. 1  51. 9 48. 1
50. 1 49. 9  50. 1 49. 9
53. 6 46. 4 4. 4 53.6 46.44.4
49. 4 50. 6 49.4 50.6
46. 8 53. 2  46. 8 53. 2
46. 7 53. 3  46.7 53.3
50. 4 49. 6  50.4 49.6
A— 5 53. 1 46. 9  A— 5 53. 1 46. 9
54. 4 45. 6  54. 4 45. 6
47. 4 52. 6  47. 4 52. 6
49. 6 50. 4 5. 9 49.6 50.45.9
45. 7 54. 3 45. 7 54. 3
46. 5 53. 5  46.5 53.5
50. 7 49. 3  50.7 49.3
52. 0 48. 0 2] 小分け包装体 容積比 (%) 触媒容積比の 52. 0 48. 0 2] Subdivision package Volume ratio (%) Catalyst volume ratio
No. 変動係数 (%)  No. Coefficient of variation (%)
触媒 不活性充填物  Catalyst inert packing
B— 1n 60. 5 39. 5  B— 1n 60. 5 39. 5
57. 5 42. 5  57. 5 42. 5
45. 3 54. 7  45.3 54.7
42. 8 57. 2 14. 9  42.8 57.2 14.9
44. 5 55. 5  44.5 55.5
47. 2 52. 8  47.2 52.8
42. 0 58. 0  42. 0 58. 0
60. 1 39. 9  60. 1 39. 9
B-2 54. 5 45. 5  B-2 54.5 55.5
53. 1 46. 9  53. 1 46. 9
53. 5 46. 5  53. 5 46. 5
56. 7 43. 3 11. 2  56.7 43.3 11.2
53. 0 47. 0  53. 0 47. 0
48. 3 51. 7  48.3 51.7
47. 8 52. 2  47. 8 52. 2
38. 0 62. 0  38.0 62.0
B-3 60. 9 39. 1  B-3 60. 9 39.1
46. 5 53. 5  46.5 53.5
42. 1 57. 9  42. 1 57. 9
39. 9 60. 1 17. 7  39.9 60.1 17.7
44. 2 55. 8  44.2 55.8
50. 4 49. 6  50.4 49.6
53. 5 46. 5  53. 5 46. 5
66. 6 33. 4  66. 6 33. 4
B— 4 49. 5 50. 5  B— 4 49.5 50.5
52. 1 47. 9  52. 1 47. 9
56. 4 43. 6  56.4 43.6
51. 0 49. 0 11. 6  51.0 49.0 11.6
51. 9 48. 1  51. 9 48. 1
53. 7 46. 3  53. 7 46. 3
44. 9 55. 1  44. 9 55. 1
36. 2 63. 8  36.2 63.8
48. 8 51. 2  48. 8 51. 2
52. 6 47. 4  52. 6 47. 4
55. 1 44. 9  55. 1 44. 9
55. 4 44. 6 14. 7  55.4 44.6 14.7
57. 9 42. 1  57. 9 42. 1
52. 7 47. 3  52. 7 47. 3
45. 3 54. 7  45.3 54.7
33. 3 66. 7 産業上の利用可能性  33. 3 66. 7 Industrial Applicability
本発明は、触媒と不活性充填物とを所定の容量比率で混合でき、固定床多管式反 応器を用いた気相接触酸化反応におけるホットスポットの抑制効果が得られるので、 酸化反応生成物、例えば、プロピレンからァクロレイン及びはアクリル酸を製造する場 合の触媒と不活性充填物との混合に適用でき、高収率を図ることができる。 The present invention enables the catalyst and the inert filler to be mixed at a predetermined volume ratio, and provides a fixed-bed multitubular reactor. Since the effect of suppressing hot spots in the gas phase catalytic oxidation reaction using a reactor can be obtained, mixing of a catalyst with an inert filler in the case of producing acrolein and acrylic acid from oxidation reaction products such as propylene And a high yield can be achieved.

Claims

請求の範囲 The scope of the claims
[1] ホッパーの下方に無撹拌式混合機を配置した触媒混合機であって、ホッパー内部 に実質的に内容積を区分けできる隔壁を具備することを特徴とする触媒混合機。  [1] A catalyst mixer in which a non-stirring mixer is arranged below a hopper, the catalyst mixer comprising a partition inside the hopper capable of substantially dividing an internal volume.
[2] 前記隔壁がホッパー内に直立して位置調整可能に設けられている請求項 1に記載 の触媒混合機。  [2] The catalyst mixer according to claim 1, wherein the partition wall is provided upright in a hopper so as to be adjustable in position.
[3] ホッパーの下方に無撹拌式混合機を配置した触媒混合機を用いて複数種類の充 填物を混合する方法であって、該複数種類の充填物を区分けして収容するためにホ ッパー内を隔壁で複数に区画し、各区画の水平方向の断面積比率を各充填物の容 量比率とほぼ等しくすることを特徴とする触媒混合方法。  [3] A method of mixing a plurality of types of packing using a catalyst mixer in which a non-stirring type mixer is arranged below a hopper. A catalyst mixing method, wherein the inside of the upper is divided into a plurality of partitions by partition walls, and a horizontal sectional area ratio of each partition is made substantially equal to a volume ratio of each packing.
[4] 前記複数種類の充填物が、固定床多管式反応器を用いた気相接触酸化反応に使 用される複合酸化物触媒及び不活性充填物である請求項 3に記載の触媒混合方法  4. The catalyst mixture according to claim 3, wherein the plurality of types of packing are a composite oxide catalyst and an inert packing used in a gas-phase catalytic oxidation reaction using a fixed-bed multitubular reactor. Method
[5] 前記の複合酸化物触媒及び不活性充填物を、固定床多管式反応器の反応管 1本 あたりに充填する所定量、または、反応管 1本に複数の反応帯に分割して充填する 各反応帯の所定量に小分けて混合し袋詰めする請求項 4に記載の触媒混合方法。 [5] The above-mentioned complex oxide catalyst and the inert packing are charged in a predetermined amount to be filled per reaction tube of a fixed-bed multitubular reactor, or divided into a plurality of reaction zones in one reaction tube. 5. The catalyst mixing method according to claim 4, wherein a predetermined amount of each reaction zone to be filled is divided, mixed and bagged.
[6] 小分けされた複合酸化物触媒及び不活性充填物を 8分割したときの複合酸化物触 媒と不活性充填物の容積比において、複合酸化物触媒の容積比の変動係数が 10 %以下である請求項 5に記載の触媒混合方法。  [6] The coefficient of variation of the volume ratio of the composite oxide catalyst and the inert filler when the subdivided composite oxide catalyst and the inert filler are divided into 8 parts is 10% or less. 6. The method for mixing a catalyst according to claim 5, wherein
[7] 請求項 5または 6の触媒混合方法によって小分け袋詰めされてなる小分け包装体。  [7] A subdivided package that is packaged in subdivided bags according to the catalyst mixing method of claim 5 or 6.
PCT/JP2004/013465 2004-05-28 2004-09-15 Catalyst mixer and catalyst mixing method WO2005115617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-159538 2004-05-28
JP2004159538A JP4779309B2 (en) 2004-05-28 2004-05-28 Catalyst mixer and catalyst mixing method

Publications (1)

Publication Number Publication Date
WO2005115617A1 true WO2005115617A1 (en) 2005-12-08

Family

ID=35350094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013465 WO2005115617A1 (en) 2004-05-28 2004-09-15 Catalyst mixer and catalyst mixing method

Country Status (3)

Country Link
JP (1) JP4779309B2 (en)
CN (1) CN1697686A (en)
WO (1) WO2005115617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154643A3 (en) * 2007-09-18 2010-04-08 Jernberg Gary R Mixer with catalytic surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG171873A1 (en) * 2008-12-22 2011-07-28 Shell Int Research Process and reactor system for the preparation of an olefinic product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067917U (en) * 1992-07-10 1994-02-01 株式会社名機製作所 Raw material supply device for injection molding machine
JPH0620019U (en) * 1992-08-18 1994-03-15 有限会社中村製作所 Material mixing hopper
JP2003171340A (en) * 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp Method for producing acrylic acid
JP2004049992A (en) * 2002-07-17 2004-02-19 Nobuhide Maeda Volatile organic compound reducing material and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067917U (en) * 1992-07-10 1994-02-01 株式会社名機製作所 Raw material supply device for injection molding machine
JPH0620019U (en) * 1992-08-18 1994-03-15 有限会社中村製作所 Material mixing hopper
JP2003171340A (en) * 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp Method for producing acrylic acid
JP2004049992A (en) * 2002-07-17 2004-02-19 Nobuhide Maeda Volatile organic compound reducing material and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154643A3 (en) * 2007-09-18 2010-04-08 Jernberg Gary R Mixer with catalytic surface
US7887764B2 (en) 2007-09-18 2011-02-15 Jernberg Gary R Mixer with a catalytic surface

Also Published As

Publication number Publication date
JP2005334811A (en) 2005-12-08
JP4779309B2 (en) 2011-09-28
CN1697686A (en) 2005-11-16

Similar Documents

Publication Publication Date Title
TWI446967B (en) Process for charging a reactor with a fixed catalyst bed which comprises at least one annular shaped catalyst body k
CN100551528C (en) The preparation method of the preparation method of multi-metal-oxide catalyst, unsaturated aldehyde and/or carboxylic acid and belt calciner
JP5683467B2 (en) Method for producing a geometric catalyst molded body
JP5628930B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
CN105899480B (en) For gas phase oxidation of olefins to obtain the hollow cylindrical molded catalyst body of the mechanical stability of unsaturated aldehyde and/or unsaturated carboxylic acid
US11285462B2 (en) Catalyst
EP2295136A1 (en) Method of packing solid particulate substance into fixed-bed multitubular reactor
KR101043400B1 (en) Catalyst system, oxidation reactor comprising the same, and process for producing acrolein and acrylic acid using the same
JP2003251183A (en) Catalyst for synthesizing unsaturated aldehyde and manufacturing method therefor, and method for manufacturing unsaturated aldehyde using the catalyst
JP2002306953A (en) Fixed bed multitubular reactor and its usage
WO2005115617A1 (en) Catalyst mixer and catalyst mixing method
JP5037830B2 (en) Method for producing molybdenum-containing solid shaped catalyst
JP5628936B2 (en) Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst
JP5618800B2 (en) FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR
JP7156506B2 (en) Molded catalyst, molded catalyst for producing methacrolein and/or methacrylic acid, and method for producing methacrolein and/or methacrylic acid
JP2004082099A (en) Filling method of solid catalyst
JPS6048143A (en) Manufacture of catalyst for manufacturing unsaturated acid
WO2007119607A1 (en) Process for producing methacrolein and/or methacrylic acid
JP2004249196A (en) Particulate material filling method and fixed bed
JP7468290B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
CN1874986B (en) Long-life method for heterogeneously-catalysed gas phase partial oxidation of propene into acrylic acid
JP2016055271A (en) Method for producing monolithic type spherical catalyst
JP2003171339A (en) Method for producing methacrylic acid
JP2011102249A (en) Method of producing acrylic acid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20048003644

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase