JP2006134961A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2006134961A
JP2006134961A JP2004319774A JP2004319774A JP2006134961A JP 2006134961 A JP2006134961 A JP 2006134961A JP 2004319774 A JP2004319774 A JP 2004319774A JP 2004319774 A JP2004319774 A JP 2004319774A JP 2006134961 A JP2006134961 A JP 2006134961A
Authority
JP
Japan
Prior art keywords
film
iridium
sro
conductive film
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004319774A
Other languages
English (en)
Inventor
Hiroshi Itokawa
寛志 糸川
Koji Yamakawa
晃司 山川
Toru Ozaki
徹 尾崎
Yoshinori Kumura
芳典 玖村
Takaki Tsuchiya
隆紀 土屋
Nicholas Nagel
ニコラス・ナゲル
Bum-Ki Moon
ブム−キ・ムーン
Andreas Hilliger
アンドレアス・ヒリガー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Toshiba Corp
Original Assignee
Infineon Technologies AG
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG, Toshiba Corp filed Critical Infineon Technologies AG
Priority to JP2004319774A priority Critical patent/JP2006134961A/ja
Publication of JP2006134961A publication Critical patent/JP2006134961A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】 キャパシタの特性や信頼性の低下を防止することが可能な半導体装置を提供する。
【解決手段】 半導体基板100と、半導体基板の上方に設けられ、下部電極116,117.118,119、120と、上部電極122,123と、下部電極と上部電極との間に設けられた誘電体膜121とを含むキャパシタと、を備えた半導体装置であって、下部電極は、イリジウムを含む第1の導電膜117と、誘電体膜と第1の導電膜との間に設けられ且つ貴金属膜で形成された第2の導電膜119と、誘電体膜と第2の導電膜との間に設けられ且つペロブスカイト構造を有する金属酸化物膜で形成された第3の導電膜120と、第1の導電膜と第2との導電膜の間に設けられ且つ金属膜及び金属酸化物膜の少なくとも一方を含み且つ第1の導電膜に含まれるイリジウムの拡散を防止する拡散防止膜118とを備える。
【選択図】 図3

Description

本発明は、キャパシタを有する半導体装置に関する。
近年、キャパシタの誘電体膜に強誘電体膜を用いた強誘電体メモリ、すなわちFeRAM(Ferroelectric Random Access Memory)の開発が進められている。
強誘電体メモリに用いられる代表的な強誘電体膜としては、Pb(ZrxTi1-x )O3 膜(PZT膜)或いは、SrBi2Ta29 膜(SBT膜)があげられる。PZTはペロブスカイト化合物であり、SBTは疑似ペロブスカイト構造を持つBi層状化合物である。
強誘電体膜として例えばPZT膜を用いた場合、疲労特性の改善等の観点から、電極にはSrRuO3 膜(SRO膜)等の導電性ペロブスカイト型金属酸化物膜が用いられる。例えば、特許文献1及び特許文献2には、SRO膜とPt膜との積層膜を電極に用いた強誘電体キャパシタが記載されている。
また、強誘電体メモリの高集積化をはかるため、プラグ上にキャパシタが形成された、いわゆるCOP(capacitor on plug)構造が提案されている。このCOP構造では、熱処理によってプラグが酸化されないようにするため、酸素バリア性の高いIr膜或いはIr酸化物膜をキャパシタの下部電極の一部に用いている。
しかしながら、上述した構造では、Irが導電性ペロブスカイト型金属酸化物膜やキャパシタ誘電体膜に拡散し、キャパシタの特性や信頼性を低下させるという問題が生じる。例えば、IrがPZT膜中のPbと反応して導電性酸化物が形成され、キャパシタのリーク電流が増大するといった問題や、IrがSRO膜中のSrと反応してSRO膜の結晶性を劣化させ、SRO膜上の誘電体膜の特性や信頼性を低下させるといった問題が生じる。
特開2000−208725号公報 特開2000−260954号公報
このように、従来のキャパシタでは、Irの拡散によってキャパシタの特性や信頼性を低下させるという問題があった。
本発明は、上記従来の課題に対してなされたものであり、キャパシタの特性や信頼性の低下を防止することが可能な半導体装置を提供することを目的としている。
本発明に係る半導体装置は、半導体基板と、前記半導体基板の上方に設けられ、下部電極と、上部電極と、前記下部電極と前記上部電極との間に設けられた誘電体膜とを含むキャパシタと、を備えた半導体装置であって、前記下部電極は、イリジウムを含む第1の導電膜と、前記誘電体膜と前記第1の導電膜との間に設けられ且つ貴金属膜で形成された第2の導電膜と、前記誘電体膜と前記第2の導電膜との間に設けられ且つペロブスカイト構造を有する金属酸化物膜で形成された第3の導電膜と、前記第1の導電膜と前記第2との導電膜の間に設けられ且つ金属膜及び金属酸化物膜の少なくとも一方を含み且つ前記第1の導電膜に含まれるイリジウムの拡散を防止する拡散防止膜と、を備える。
本発明によれば、第1の導電膜と第2の導電膜との間に拡散防止膜を設けているため、イリジウムの拡散が抑制され、第3の導電膜や誘電体膜の劣化を防止することができ、特性や信頼性に優れたキャパシタを得ることが可能となる。
以下、本発明の実施形態を図面を参照して説明する。
(実施形態1)
図1〜図3は、本発明の第1の実施形態に係る半導体装置の製造方法を模式的に示した断面図である。
まず、図1に示すように、p型シリコン基板(半導体基板)100上に、STI(Sallow Trench Isolation)構造の素子分離領域101を形成する。続いて、MISトランジスタを以下のようにして形成する。
まず、ゲート絶縁膜102として、熱酸化により厚さ6nm程度のシリコン酸化膜を形成する。続いて、ゲート絶縁膜102上に、砒素をドープしたn+ 型多結晶シリコン膜103を形成する。さらに、多結晶シリコン膜103上にWSix 膜104及びシリコン窒化膜105を形成する。その後、多結晶シリコン膜103、WSix 膜104及びシリコン窒化膜105を、通常の光リソグラフィー法及びRIE法によって加工して、ゲート電極を形成する。続いて、全面にシリコン窒化膜106を堆積する。さらに、RIEを行い、ゲート電極の側壁上にシリコン窒化膜106からなる側壁スペーサを形成する。なお、詳細な説明は省くが、本工程において、イオン注入及び熱処理により、ソース/ドレイン領域107が形成される。
次に、図2に示すように、CVD(化学的気相成長)法により全面にシリコン酸化膜108を堆積し、さらにCMP法により平坦化処理を行う。続いて、一方のソース/ドレイン領域107に達するコンタクトホールをシリコン酸化膜108に形成する。その後、スパッタリング法或いはCVD法によりチタン膜を堆積する。続いて、フォーミングガス中で熱処理を行うことによりチタン膜を窒化して、TiN膜110を形成する。さらに、CVD法によりタングステン膜111を堆積する。続いて、CMP法によりコンタクトホール外のTiN膜110及びタングステン膜111を除去し、コンタクトホール内にTiN膜110及びタングステン膜111を残す。これにより、一方のソース/ドレイン領域107に接続されたプラグが形成される。その後、全面にCVD法によりシリコン窒化膜112を堆積する。さらに、もう一方のソース/ドレイン領域107に達するコンタクトホールを形成する。続いて、上述した方法と同様の方法により、TiN膜114及びタングステン膜115をコンタクトホール内に形成する。これにより、他方のソース/ドレイン領域107に接続されたプラグが形成される。
次に、図3に示すように、厚さ10nm程度のチタン(Ti)膜116をスパッタリング法によって堆積する。続いて、第1の導電膜117として、厚さ100nm程度のイリジウム(Ir)膜117a及び厚さ50nm程度のイリジウム酸化物(IrO2 )膜117bを、順次スパッタリング法によって堆積する。これらのイリジウム膜117a及びイリジウム酸化物膜117bは、酸素バリア性が高いため、後の熱処理工程においてプラグ115の酸化を防止することができる。続いて、拡散防止膜118として、厚さ2.5nm程度のチタン(Ti)膜118aをスパッタリング法によって堆積する。このチタン膜118aは、イリジウム膜117a及びイリジウム酸化物膜117bに含まれるイリジウムの上方への拡散を防止するためのものである。続いて、第2の導電膜として、厚さ50nm程度のプラチナ(Pt)膜119を、スパッタリング法によって堆積する。さらに、第3の導電膜として、厚さ10nm程度のSrRuO3 膜(SRO膜)120を、スパッタリング法によって堆積する。続いて、酸素雰囲気中でのRTA(Rapid Thermal Annealing)により、SRO膜120の結晶化を行う。なお、例えば500℃の温度でSRO膜120を堆積することにより、結晶性に優れたSRO膜120を容易に形成することが可能である。
次に、キャパシタの誘電体膜(強誘電体膜)として、厚さ130nm程度のPb(ZrxTi1-x )O3 膜(PZT膜)121をスパッタリング法によって形成する。さらに、酸素雰囲気中でのRTAにより、PZT膜121の結晶化を行う。
次に、厚さ10nm程度のSRO膜122をスパッタリング法によって堆積する。さらに、酸素雰囲気中でのRTAにより、SRO膜122の結晶化を行う。なお、例えば500℃の温度でSRO膜122を堆積することにより、結晶性に優れたSRO膜122を容易に形成することが可能である。さらに、厚さ50nm程度のプラチナ膜123をスパッタリング法によって堆積する。
次に、CVD法によって全面にシリコン酸化膜(図示せず)を堆積する。さらに、光リソグラフィー法とRIE法によって、シリコン酸化膜をパターンニングする。続いて、パターニングされたシリコン酸化膜をマスクとして、RIE法により、プラチナ膜123、SRO膜122及びPZT膜121をエッチングする。さらに、光リソグラフィー法とRIE法により、SRO膜120、プラチナ膜119、チタン膜118a、イリジウム酸化物膜117b、イリジウム膜117a及びチタン膜116をパターニングする。
このようにして、チタン膜116、イリジウム膜117a、イリジウム酸化物膜117b、チタン膜118a、プラチナ膜119及びSRO膜120を有する下部電極と、PZT膜121で形成された誘電体膜と、SRO膜122及びプラチナ膜123を有する上部電極とを備えた強誘電体キャパシタが形成される。
その後、全面にCVD法によりシリコン酸化膜124を堆積する。続いて、エッチング時にPZT膜121に生じたダメージを回復するために、酸素雰囲気下において650℃程度の温度で熱処理を行う。この熱処理の際に、タングステンプラグ115の表面は、酸素バリア性の高いイリジウム膜117a及びイリジウム酸化物膜117bによって覆われているため、タングステンプラグ115の酸化が防止される。また、イリジウム酸化物膜117b上にはチタン膜118aが形成されているため、イリジウム膜117a及びイリジウム酸化物膜117bに含まれるイリジウムの拡散が、チタン膜118aによってブロックされる。したがって、イリジウムがプラチナ膜119を通してSRO膜120及びPZT膜121へ拡散することを防止することができる。
その後の工程は図示しないが、タングステン膜111に接続されるコンタクトの形成、ドライブ線及びビット線の形成、メタル配線の形成等を行い、COP(Capacitor On Plug)構造を有する強誘電体メモリが完成する。
図4は、上述した工程と同様の工程によって形成されたキャパシタについて、そのヒステリシス特性を示した図である。横軸はキャパシタへの印加電圧、縦軸はキャパシタの分極である。図5は、比較例のキャパシタについて、そのヒステリシス特性を示した図である。比較例のキャパシタでは、拡散防止膜(図3に示したチタン膜118aに対応)を設けていない。
図4(本実施形態)と図5(比較例)を対比すれば明らかなように、本実施形態のキャパシタは比較例のキャパシタに比べて、ヒステリシス特性が大幅に改善されていることがわかる。
図6は本実施形態に関する試料のSIMS分析結果を示した図であり、図7は本実施形態の比較例に関する試料のSIMS分析結果を示した図である。横軸は深さ、縦軸は2次イオン数である。本実施形態に関する試料については、シリコン基板上のシリコン酸化膜上に、厚さ10nm程度のチタン膜、厚さ100nm程度のイリジウム膜、厚さ50nm程度のイリジウム酸化物膜、厚さ2.5nm程度のチタン膜、及び厚さ100nm程度のプラチナ膜を順次形成した後、酸素雰囲気中において650℃程度の温度で60分間の熱処理を行った。比較例に関する試料については、シリコン基板上のシリコン酸化膜上に、厚さ10nm程度のチタン膜、厚さ100nm程度のイリジウム膜、厚さ50nm程度のイリジウム酸化物膜、及び厚さ100nm程度のプラチナ膜を順次形成した後、酸素雰囲気中において650℃程度の温度で60分間の熱処理を行った。
図6(本実施形態)と図7(比較例)を対比すれば明らかなように、本実施形態の試料では、プラチナ膜中へのイリジウムの拡散が大幅に抑制されていることがわかる。その結果、図4に示すような良好なヒステリシス特性が得られたものと考えられる。
以上のように、本実施形態によれば、イリジウム膜117aとイリジウム酸化物膜117bとの積層膜(第1の導電膜)とプラチナ膜119(第2の導電膜)との間に、イリジウムの拡散に対するバリア効果の高いチタン膜118a(拡散防止膜)を設けている。そのため、イリジウムがプラチナ膜119を通してSRO膜120(第3の導電膜)及びPZT膜121(誘電体膜)へ拡散することを防止できる。その結果、イリジウムとSRO膜に含まれる元素との反応や、イリジウムとPZT膜に含まれる元素との反応が抑制され、SRO膜やPZT膜の劣化を防止することができる。したがって、良好なSRO膜及びPZT膜を得ることができ、特性及び信頼性に優れたキャパシタを得ることが可能となる。
また、一般にイリジウム酸化物膜は(111)配向を示さないため、イリジウム酸化物膜上に直接プラチナ膜を形成した場合には、プラチナ膜も良好な(111)配向を示さない。そのため、良好な(111)配向を有するSRO膜及びPZT膜を得ることが困難である。本実施形態では、イリジウム酸化物膜とプラチナ膜との間にチタン膜を形成することにより、プラチナ膜が(111)配向しやすくなり、良好な(111)配向を有するSRO膜及びPZT膜を得ることが可能となる。したがって、良好なSRO膜及びPZT膜を得ることができ、特性及び信頼性に優れたキャパシタを得ることが可能となる。
(実施形態2)
図8は、本発明の第2の実施形態に係る半導体装置の製造方法を模式的に示した断面図である。なお、キャパシタ形成工程前の工程については、第1の実施形態で示した図1及び図2の工程と同様である。
第1の実施形態の図2の工程の後、図8に示すように、厚さ10nm程度のチタン膜116をスパッタリング法によって堆積する。続いて、第1の導電膜117として、厚さ100nm程度のイリジウム(Ir)膜117a及び厚さ50nm程度のイリジウム酸化物(IrO2 )膜117bを、順次スパッタリング法によって堆積する。続いて、拡散防止膜118として、厚さ2.5nm程度のチタン(Ti)膜118a及び厚さ10nm程度のSrRuO3 膜(SRO膜)118bをスパッタリング法によって順次堆積する。これらのチタン膜118a及びSRO膜118bは、イリジウム膜117a及びイリジウム酸化物膜117bに含まれるイリジウムの上方への拡散を防止するためのものである。続いて、酸素雰囲気中でのRTAにより、SRO膜118bの結晶化を行う。続いて、第2の導電膜として、厚さ50nm程度のプラチナ(Pt)膜119を、スパッタリング法によって堆積する。さらに、第3の導電膜として、厚さ10nm程度のSRO膜120を、スパッタリング法によって堆積する。続いて、酸素雰囲気中でのRTAにより、SRO膜120の結晶化を行う。なお、例えば500℃の温度でSRO膜120を堆積することにより、結晶性に優れたSRO膜120を容易に形成することが可能である。
次に、キャパシタの誘電体膜(強誘電体膜)として、厚さ130nm程度のPb(ZrxTi1-x )O3 膜(PZT膜)121をスパッタリング法によって形成する。さらに、酸素雰囲気中でのRTAにより、PZT膜121の結晶化を行う。
次に、厚さ10nm程度のSRO膜122をスパッタリング法によって堆積する。さらに、酸素雰囲気中でのRTAにより、SRO膜122の結晶化を行う。なお、例えば500℃の温度でSRO膜122を堆積することにより、結晶性に優れたSRO膜122を容易に形成することが可能である。さらに、厚さ50nm程度のプラチナ膜123をスパッタリング法によって堆積する。
次に、CVD法によって全面にシリコン酸化膜(図示せず)を堆積する。さらに、光リソグラフィー法とRIE法によって、シリコン酸化膜をパターンニングする。続いて、パターニングされたシリコン酸化膜をマスクとして、RIE法により、プラチナ膜123、SRO膜122及びPZT膜121をエッチングする。さらに、光リソグラフィー法とRIE法により、SRO膜120、プラチナ膜119、SRO膜118b、チタン膜118a、イリジウム酸化物膜117b、イリジウム膜117a及びチタン膜116をパターニングする。
このようにして、チタン膜116、イリジウム膜117a、イリジウム酸化物膜117b、チタン膜118a、SRO膜118b、プラチナ膜119及びSRO膜120を有する下部電極と、PZT膜121で形成された誘電体膜と、SRO膜122及びプラチナ膜123を有する上部電極とを備えた強誘電体キャパシタが形成される。
その後、全面にCVD法によりシリコン酸化膜124を堆積する。続いて、エッチング時にPZT膜121に生じたダメージを回復するために、酸素雰囲気下において650℃程度の温度で熱処理を行う。この熱処理の際に、タングステンプラグ115の表面は、酸素バリア性の高いイリジウム膜117a及びイリジウム酸化物膜117bによって覆われているため、タングステンプラグ115の酸化が防止される。また、イリジウム酸化物膜117b上にはチタン膜118a及びSRO膜118bの積層膜が形成されているため、イリジウム膜117a及びイリジウム酸化物膜117bに含まれるイリジウムの拡散が、チタン膜118a及びSRO膜118bによって抑制される。したがって、イリジウムがプラチナ膜119を通してSRO膜120及びPZT膜121へ拡散することを防止することができる。なお、SRO膜118bによるイリジウムの拡散抑制効果は、主としてイリジウムとSRO膜118bとの反応による。すなわち、SRO膜118bとの反応によってイリジウムが消費されるため、結果としてイリジウムの上方への拡散が抑制される。イリジウムとの反応によってSRO膜118bの結晶性が劣化するおそれがあるが、SRO膜118bはPZT膜121に接していないため、SRO膜118bの結晶性が劣化してもPZT膜121等への悪影響はほとんどない。
その後の工程は図示しないが、タングステン膜111に接続されるコンタクトの形成、ドライブ線及びビット線の形成、メタル配線の形成等を行い、COP(Capacitor On Plug)構造を有する強誘電体メモリが完成する。
以上のように、本実施形態では、イリジウム膜117aとイリジウム酸化物膜117bとの積層膜(第1の導電膜)とプラチナ膜119(第2の導電膜)との間に、チタン膜118aとSRO膜118bとの積層膜(拡散防止膜)を設けているため、第1の実施形態と同様、良好なSRO膜及びPZT膜を得ることができ、特性及び信頼性に優れたキャパシタを得ることが可能となる。
なお、上述した第1及び第2の実施形態は、以下のような種々の変更が可能である。
イリジウムの拡散を防止する拡散防止膜としては、Ti、V、W、Zr、Co、Mg、Hf、Mo、Mn、Ta、Nb、Pb及びAlの少なくとも一つを含む金属膜を用いることが可能である。また、Ti、V、W、Zr、Co、Mg、Hf、Mo、Mn、Ta、Nb、Pb、Al及びRuの少なくとも一つを含む金属酸化物膜を用いることも可能である。さらに、上記金属膜と金属酸化物膜との積層膜を用いることも可能である。金属酸化物膜としては、代表的には、TiO2 膜、ZrO2 膜、CoO2 膜、PbO2 膜、Al23 膜、SRO膜、Sr(Ru,Ti)O3 膜、等を用いることが可能である。金属膜と金属酸化物膜との積層膜としては、代表的には、Ti/SRO膜、Ti/Sr(Ru,Ti)O3 膜、Co/SRO膜、Co/Sr(Ru,Ti)O3 膜、等を用いることが可能である。
また、第1の導電膜には、イリジウム(Ir)膜の単層膜、イリジウム酸化物(IrO2 )膜の単層膜、イリジウム膜とイリジウム酸化物膜との積層膜を用いることが可能である。
また、第2の導電膜には、プラチナ膜及びルテニウム膜の少なくとも一方を含む貴金属膜を用いることが可能である。
また、第3の導電膜には、ペロブスカイト結晶構造(一般式:ABO3 )を有し、Ru、Co及びNiの少なくとも一つを含む導電性金属酸化物膜を用いることが可能である。代表的には、第3の導電膜には、SrRuO3 膜、(La,Sr)CoO3 膜、BaRuO3 膜及びLaNiO3 膜、等を用いることが可能である。
また、誘電体膜には、ペロブスカイト構造を有する化合物膜或いはBi層状構造を有する化合物膜を用いることが可能である。代表的には、Pb(ZrxTi1-x )O3 膜(PZT膜)、SrBi2Ta29 膜(SBT膜)、等を用いることが可能である。
また、プラグには、タングステンプラグ或いはポリシリコンプラグを用いることが可能である。
また、拡散防止膜、第1の導電膜、第2の導電膜、第3の導電膜及び誘電体膜は、スパッタリング法、CVD法、ゾル−ゲル法を用いて形成することが可能である。
以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内において種々変形して実施することが可能である。さらに、上記実施形態には種々の段階の発明が含まれており、開示された構成要件を適宜組み合わせることによって種々の発明が抽出され得る。例えば、開示された構成要件からいくつかの構成要件が削除されても、所定の効果が得られるものであれば発明として抽出され得る。
本発明の第1の実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 本発明の第1の実施形態に係り、キャパシタのヒステリシス特性を示した図である。 本発明の第1の実施形態の比較例に係り、キャパシタのヒステリシス特性を示した図である。 本発明の第1の実施形態に係り、イリジウムの拡散について示した図である。 本発明の第1の実施形態の比較例に係り、イリジウムの拡散について示した図である。 本発明の第2の実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。
符号の説明
100…シリコン基板 101…素子分離領域
102…ゲート絶縁膜 103…多結晶シリコン膜
104…WSix 膜 105…シリコン窒化膜
106…シリコン窒化膜 107…ソース/ドレイン領域
108…シリコン酸化膜 110…TiN膜
111…タングステン膜 112…シリコン窒化膜
114…TiN膜 115…タングステン膜
116…チタン膜 117…第1の導電膜
117a…イリジウム膜 117b…イリジウム酸化物膜
118…拡散防止膜 118a…チタン膜 118b…SRO膜
119…プラチナ膜(第2の導電膜) 120…SRO膜(第3の導電膜)
121…PZT膜(誘電体膜) 122…SRO膜
123…プラチナ膜 124…シリコン酸化膜

Claims (5)

  1. 半導体基板と、
    前記半導体基板の上方に設けられ、下部電極と、上部電極と、前記下部電極と前記上部電極との間に設けられた誘電体膜とを含むキャパシタと、
    を備え、
    前記下部電極は、イリジウムを含む第1の導電膜と、前記誘電体膜と前記第1の導電膜との間に設けられ且つ貴金属膜で形成された第2の導電膜と、前記誘電体膜と前記第2の導電膜との間に設けられ且つペロブスカイト構造を有する金属酸化物膜で形成された第3の導電膜と、前記第1の導電膜と前記第2との導電膜の間に設けられ且つ金属膜及び金属酸化物膜の少なくとも一方を含み且つ前記第1の導電膜に含まれるイリジウムの拡散を防止する拡散防止膜と、を備える
    ことを特徴とする半導体装置。
  2. 前記拡散防止膜に含まれる金属膜は、Ti、V、W、Zr、Co、Mg、Hf、Mo、Mn、Ta、Nb、Pb及びAlの少なくとも一つを含む
    ことを特徴とする請求項1に記載の半導体装置。
  3. 前記拡散防止膜に含まれる金属酸化物膜は、Ti、V、W、Zr、Co、Mg、Hf、Mo、Mn、Ta、Nb、Pb、Al及びRuの少なくとも一つを含む
    ことを特徴とする請求項1に記載の半導体装置。
  4. 前記第1の導電膜は、イリジウム膜及びイリジウム酸化物膜の少なくとも一方を含む
    ことを特徴とする請求項1に記載の半導体装置。
  5. 前記下部電極に接続されたプラグをさらに備え、前記キャパシタは前記プラグ上に形成されている
    ことを特徴とする請求項1に記載の半導体装置。
JP2004319774A 2004-11-02 2004-11-02 半導体装置 Pending JP2006134961A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319774A JP2006134961A (ja) 2004-11-02 2004-11-02 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319774A JP2006134961A (ja) 2004-11-02 2004-11-02 半導体装置

Publications (1)

Publication Number Publication Date
JP2006134961A true JP2006134961A (ja) 2006-05-25

Family

ID=36728256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319774A Pending JP2006134961A (ja) 2004-11-02 2004-11-02 半導体装置

Country Status (1)

Country Link
JP (1) JP2006134961A (ja)

Similar Documents

Publication Publication Date Title
KR20070016472A (ko) 강유전체 구조물, 강유전체 구조물의 형성 방법, 강유전체구조물을 구비하는 반도체 장치 및 그 제조 방법
JPH1154718A (ja) 低温処理により安定化される金属酸化膜からなる緩衝膜を具備した集積回路装置及びその製造方法
US8614104B2 (en) Method for manufacturing semiconductor device
JP4930371B2 (ja) 半導体装置及びその製造方法
JP3782401B2 (ja) 半導体装置
JP4105656B2 (ja) 半導体装置及びその製造方法
JP2006310637A (ja) 半導体装置
JP4220459B2 (ja) 半導体装置
US7105400B2 (en) Manufacturing method of semiconductor device
US6924519B2 (en) Semiconductor device with perovskite capacitor
US7091538B2 (en) Semiconductor device and method for manufacturing the same
US20060214210A1 (en) Semiconductor device
JP3906215B2 (ja) 半導体装置
JP2005129852A (ja) 半導体装置
JP5487140B2 (ja) 半導体装置の製造方法
JP3930453B2 (ja) 半導体装置
US7042037B1 (en) Semiconductor device
JP2006134961A (ja) 半導体装置
KR100943011B1 (ko) 반도체 장치 및 그 제조 방법
JP2007329232A (ja) 誘電体メモリ及びその製造方法
JP2023112910A (ja) 半導体装置および半導体装置の製造方法
JP2005101213A (ja) 半導体装置の製造方法
JP2005050899A (ja) 半導体装置
JP2003163328A (ja) 半導体装置
JP2008098219A (ja) 半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028