JP2008098219A - 半導体記憶装置及びその製造方法 - Google Patents

半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP2008098219A
JP2008098219A JP2006274739A JP2006274739A JP2008098219A JP 2008098219 A JP2008098219 A JP 2008098219A JP 2006274739 A JP2006274739 A JP 2006274739A JP 2006274739 A JP2006274739 A JP 2006274739A JP 2008098219 A JP2008098219 A JP 2008098219A
Authority
JP
Japan
Prior art keywords
barrier film
hydrogen barrier
film
hydrogen
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274739A
Other languages
English (en)
Inventor
Tomoe Kutouchi
知恵 久都内
Yoshihisa Nagano
能久 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006274739A priority Critical patent/JP2008098219A/ja
Publication of JP2008098219A publication Critical patent/JP2008098219A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】強誘電体を用いた容量素子を備えた半導体記憶装置において、水素による容量素子特性の劣化を防止できる水素バリア膜の構造を提供する。
【解決手段】半導体記憶装置は、半導体基板100上に形成され、底部及び側部下部電極107及び109、容量絶縁膜110及び上部電極111がこの順に形成されてなる複数の容量素子130と、複数の容量素子130が配列されたキャパシタアレイ領域ARを覆うように形成された第3の絶縁膜112とを備える。第3の絶縁膜112上に形成され、第1の上部水素バリア膜113及び第2の上部水素バリア膜114がこの順に積層されてなる積層水素バリア膜をさらに備えている。
【選択図】図1

Description

本発明は、強誘電体膜を用いた容量素子への水素侵入を防ぐ水素バリア膜を有する半導体記憶装置及びその製造方法に関する。
容量絶縁膜に強誘電体を用いた強誘電体メモリ装置は、低電圧動作が可能であり、その低消費電力性に特徴がある。容量絶縁膜を構成する強誘電体としての物理的特性、とりわけその信頼性を保証する観点から、容量素子の電極面積を大きくして所定の分極量を維持する必要がある。これは、強誘電体膜が層状の金属酸化物からなるため、水素等の還元性雰囲気によって容易に還元されてしまうことから、その劣化分を考慮してメモリセルの面積を大きくする必要があるからである。そのため、強誘電体メモリ装置の開発に水素バリア技術を導入して、水素による容量素子の特性劣化を防止することにより、メモリセルの微細化が進展している。
従来から、水素バリア技術を導入した強誘電体メモリ装置の構造として、強誘電体容量素子を水素バリア膜によって被覆する種々の構造が提案されている。例えば、従来の強誘電体メモリ装置の構造の一例では、強誘電体を用いた複数の容量素子が配置された容量素子領域の下部、上部、及び側方に水素バリア膜を配置することで、水素による容量素子の特性劣化を抑制している(例えば特許文献1参照)。
特開2001−007303号公報(第18頁、第26図)
しかしながら、上記従来の強誘電体メモリ装置のように、容量素子領域を水素バリア膜によって被覆する構造を備えた強誘電体メモリ装置であっても、容量素子特性が水素によって劣化していることが判明した。つまり、水素バリア膜を備えた従来の構造では、十分な容量素子特性を有する強誘電体メモリ装置が得られないという問題があった。
前記に鑑み、本発明の目的は、強誘電体を用いた容量素子を備えた半導体記憶装置において、水素による容量素子特性の劣化をより効率よく防止できる水素バリア膜の構造を提供することである。
前記の目的を達成するために、本件発明者らが前記の問題点に対して鋭意検討を重ねた結果、上部、下部及び側部が水素バリア膜によって覆われた容量素子の特性劣化の原因は、容量素子領域の上部からの水素拡散の影響が支配的であることが判明した。つまり、容量素子領域の上部に水素バリア膜を成膜する際に発生する水素によって容量素子の特性劣化が生じていたことが見出された。このように容量素子領域の上部からの水素拡散の影響が支配的になる原因を考察したところ、容量素子領域の上部、下部及び側部を水素バリア膜で覆う場合、容量素子領域の周縁部の絶縁膜に溝部を設けて該溝部を介して水素バリア膜同士を接続する構造が採用されるが(例えば、特願2003−375148を参照)、溝部において良好な接続を実現するためには、カバレッジに優れたCVD法を用い、成膜時に水素が発生する水素バリア膜を容量素子領域の上部及び側部に形成する必要があったからである。これに対して、成膜時に水素が発生しないスパッタ法を用いて、容量素子領域の上部及び側部に水素バリア膜を形成することもできるが、スパッタ法を用いた場合には溝部でカバレッジの不十分な箇所や断線が生じるため、そのような箇所から例えば配線工程などで大量に発生する水素の拡散が促進されてしまう。
本発明は、前記の知見に鑑み、水素による容量素子特性への影響が支配的となる容量素子領域の上部からの水素拡散の影響を防止することに主眼を置いてなされたものであり、容量素子領域の上部に積層水素バリア膜を配置する構造を解決手段として提供するものである。また、容量素子領域の上部に積層水素バリア膜を配置する構造を採用することを利用して、容量素子領域の周縁部に形成された溝部における水素バリア膜同士の接続も良好にするものである。
具体的には、本発明の一側面に係る半導体記憶装置は、半導体基板上に形成され、下部電極、容量絶縁膜及び上部電極からなる複数の容量素子と、複数の容量素子が配列された容量素子領域を覆うように形成された絶縁膜と、絶縁膜上に形成され、第1の水素バリア膜及び第2の水素バリア膜がこの順に積層されてなる積層水素バリア膜とを備えている。
本発明の一側面に係る半導体記憶装置によると、容量素子領域の上部に第1の水素バリア膜及び第2の水素バリア膜よりなる積層水素バリア膜を備えているため、第1の水素バリア膜及び第2の水素バリア膜の材料を適宜選択することにより、水素バリア膜の成膜中に発生する水素による容量素子領域の上部からの水素拡散による容量素子特性の劣化を防止することができる。さらに、積層水素バリア膜の構造を採用することにより、上層の第2の水素バリア膜が第1の水素バリア膜上に形成されることで緻密な膜構造にできるので、容量素子領域の上部からの水素拡散をより防止することができる。
本発明の一側面に係る半導体記憶装置において、絶縁膜は、容量素子形成領域の周縁部に溝部を有しており、溝部の側壁部及び底部には、第1の水素バリア膜及び第2の水素バリア膜が形成されていることが好ましい。
このように、容量素子形成領域の周縁部の溝部の側壁部及び底部に第1の水素バリア膜及び第2の水素バリア膜の積層水素バリア膜を備える構造であれば、容量素子形成領域の上部からの水素拡散に加えて、上記と同様の理由で、容量素子形成領域の側部からの水素拡散による容量素子特性の劣化を防止することができる。また、溝部の側壁部及び底部に第1及び第2の水素バリア膜が形成され、カバレッジに優れた積層水素バリア膜が配置されることになるので、容量素子形成領域の側部からの水素拡散による容量素子特性の劣化をより防止することができる。さらに、第1の水素バリア膜及び第2の水素バリア膜の材用を適宜選択することにより、水素バリア膜の成膜中に容量素子形成領域の側部からの水素拡散による容量素子特性の劣化をより防止することができる。
本発明の一側面に係る半導体記憶装置において、下部電極の下側に下部水素バリア膜をさらに備え、下部水素バリア膜は、第1の水素バリア膜と溝部の底部で接続していることが好ましい。
このように、下部電極の下側に形成された下部水素バリア膜は、第1の水素バリア膜と溝部の底部で接続しているため、容量素子形成領域を上部、下部及び側部からの水素拡散による容量素子特性の劣化を防止することができる。
本発明の一側面に係る半導体記憶装置において、絶縁膜は、容量素子形成領域の周縁部に溝部を有しており、溝部の側壁部及び底部には、第2の水素バリア膜が形成されていることが好ましい。
このように、容量素子形成領域の周縁部の溝部の側壁部及び底部に第2の水素バリア膜を備える構造であれば、容量素子形成領域の上部からの水素拡散に加えて、容量素子形成領域の側部からの水素拡散による容量素子特性の劣化を防止することができる。また、第2の水素バリア膜の構成を適宜選択することにより、溝部の側壁部及び底部にカバレッジに優れた第2の水素バリア膜を配置することができるため、容量素子形成領域の側部からの水素拡散による容量素子特性の劣化をより防止することができる。
本発明の一側面に係る半導体記憶装置において、下部電極の下側に下部水素バリア膜をさらに備え、下部水素バリア膜は、第2の水素バリア膜と溝部の底部で接続していることが好ましい。
このように、下部電極の下側に形成された下部水素バリア膜は、第2の水素バリア膜と溝部の底部で接続しているため、容量素子形成領域を上部、下部及び側部からの水素拡散による容量素子特性の劣化を防止することができる。
本発明の一側面に係る半導体記憶装置において、第2の水素バリア膜は水素を含有していることが好ましい。
このようにすると、第2の水素バリア膜の成膜時に発生する水素の拡散は第1の水素バリア膜によって防止されるため、容量素子形成領域の上部からの水素拡散による容量素子特性の劣化を防止することができる。また、容量素子形成領域の周縁部に溝部を有する構造において、該溝部に積層水素バリア膜が配置されている場合には、同様に第1の水素バリア膜により、容量素子形成領域の側部からの水素拡散による容量素子特性の劣化を防止することができる。一方、該溝部に第2の水素バリア膜が配置されている場合には、密着性及びカバレッジに優れた第2の水素バリア膜が形成されることにより、容量素子形成領域の側部からの水素拡散による容量素子特性の劣化を防止することができる。
本発明の一側面に係る半導体記憶装置において、第2の水素バリア膜は膜厚がほぼ均一であることが好ましい。
このように、第2の水素バリア膜の膜厚がほぼ均一であれば、容量素子形成領域の上部からの水素拡散による容量素子特性の劣化を確実に防止することができることに加えて、特に、溝部が形成されている構造において、容量素子形成領域の側部からの水素拡散による容量素子特性の劣化を防止することができる。
本発明の一側面に係る半導体記憶装置において、第1の水素バリア膜は水素を含有していないことが好ましい。
このようにすると、第1の水素バリア膜の成膜時には水素が発生しないため、第1の水素バリア膜の成膜時における容量素子形成領域の上部からの水素拡散によるキャパシタ特性の劣化を確実に防止することができる。また、容量素子形成領域の周縁部に溝部を有する構造において、該溝部に積層水素バリア膜が配置されている場合には、同様に第1の水素バリア膜の成膜時には水素が発生しないため、容量素子形成領域の側部からの水素拡散による容量素子特性の劣化を防止することができる。
本発明の一側面に係る半導体記憶装置において、第1の水素バリア膜は、Al、TiAlO、TaAlO、TiSiO、及びTaSiOよりなる群のうちから選択された単層膜又は積層膜からなることが好ましい。
このようにすると、例えば配線工程で大量に発生する水素の拡散を確実に防止することができる。
本発明の一側面に係る半導体記憶装置において、第2の水素バリア膜は、SiN若しくはSiONよりなる単層膜、又はSiN及びSiONよりなる積層膜からなることが好ましい。
このようにすると、隣り合う容量素子を電気的に絶縁するとともに、例えば配線工程で大量に発生する水素の拡散を防止することができる。
本発明の一側面に係る半導体記憶装置において、下部水素バリア膜は、SiN又はTiAlOからなることが好ましい。
本発明の一側面に係る半導体記憶装置の製造方法は、半導体基板上に、下部電極、容量絶縁膜及び上部電極がこの順に形成されてなる複数の容量素子を形成する工程(a)と、複数の容量素子が配列された容量素子領域を覆うように絶縁膜を形成する工程(b)と、絶縁膜上に、第1の水素バリア膜及び第2の水素バリア膜がこの順に積層されてなる積層水素バリア膜を形成する工程(c)とを備える。
本発明の一側面に係る半導体記憶装置の製造方法によると、上述した効果を備える本発明の一側面に係る半導体記憶装置を製造することができる。
本発明の一側面に係る半導体記憶装置の製造方法において、工程(c)は、絶縁膜をエッチングして、容量素子形成領域の周縁部に溝部を形成する工程と、絶縁膜上及び溝部の側壁部及び底部に、積層水素バリア膜を形成する工程とを含むことが好ましい。
このようにすると、上述した絶縁膜に積層水素バリア膜を備え、且つ溝部の側壁部及び底部に第2の水素バリア膜を備えた構造を実現できる。
本発明の一側面に係る半導体記憶装置の製造方法において、工程(a)よりも前に、半導体基板上に下部水素バリア膜を形成する工程をさらに備え、下部水素バリア膜は、第1の水素バリア膜と溝部の底部で接続していることが好ましい。
このようにすると、下部電極の下側に形成され、第1の水素バリア膜と溝部の底部で接続した下部水素バリア膜を備えた構造を実現できる。
本発明の一側面に係る半導体記憶装置の製造方法において、工程(c)は、絶縁膜上に第1の水素バリア膜を形成する工程と、絶縁膜及び第1の水素バリア膜をエッチングして、容量素子形成領域の周縁部に溝部を形成する工程と、第1の水素バリア膜並びに溝部の側壁部及び底部に、第2の水素バリア膜を形成する工程とを含むことが好ましい。
このようにすると、上述した絶縁膜及び溝部の側壁部及び底部に積層水素バリア膜を備えた構造を実現できる。
本発明の一側面に係る半導体記憶装置の製造方法において、工程(a)よりも前に、半導体基板上に下部水素バリア膜を形成する工程をさらに備え、下部水素バリア膜は、第2の水素バリア膜と溝部の底部で接続していることが好ましい。
このようにすると、下部電極の下側に形成され、第2の水素バリア膜と溝部の底部で接続した下部水素バリア膜を備えた構造を実現できる。
本発明の一側面に係る半導体記憶装置の製造方法において、第1の水素バリア膜は、スパッタ法を用いて形成されることが好ましい。
本発明の一側面に係る半導体記憶装置の製造方法において、第2の水素バリア膜は、CVD法を用いて形成されることが好ましい。
本発明の一側面に係る半導体記憶装置の製造方法において、第1の水素バリア膜の成膜時には、水素が発生しないことが好ましい。
本発明の一側面に係る半導体記憶装置の製造方法において、第2の水素バリア膜の成膜時には、水素が発生することが好ましい。
本発明によると、積層水素バリア膜の構造を採用することにより、上層の水素バリア膜の膜構造を緻密な膜構造とすることができるので、容量素子領域の上部からの水素拡散をより防止することができる。このように、水素による容量素子の特性劣化が抑制可能で、ひいては、微細化が可能な構造を有する半導体記憶装置を実現できる。
(第1の実施形態)
以下、本発明の第1の実施形態に係る半導体記憶装置ついて、図面を参照しながら説明する。
図1は、本発明の第1の実施形態に係る半導体記憶装置の構造を示す要部断面図である。
図1に示すように、例えばシリコン(Si)からなる半導体基板100の主面には、複数の素子分離領域101により互いに絶縁分離された複数の活性領域が形成されており、該活性領域には高濃度不純物拡散層102が設けられている。ここで、各高濃度不純物拡散層102の表面は、コバルトシリサイド(CoSi )等によりシリサイド化されていてもよい。このようにシリサイド化することで、低抵抗化を図ることができ、回路動作の遅延を防止することができる。また、活性領域には、図示はしていないが、例えばポリシリコンからなるゲート電極と高濃度不純物拡散層102とを含む電界効果型トランジスタからなるセルトランジスタが形成されている。
半導体基板100の主面上には、図示していないセルトランジスタを覆うように、例えば膜厚が約500nm〜1000nmで上面を平坦化した酸化シリコンからなる第1の絶縁膜103と、平坦化された第1の絶縁膜103の上に形成され、例えば膜厚が約5nm〜100nmで窒化シリコン(SiN)、酸窒化シリコン(SiON)又は酸化チタンアルミニウム(TiAlO)からなる下部水素バリア膜104が形成されている。第1の絶縁膜103及び下部水素バリア膜104には、これらを貫通して各セルトランジスタの高濃度不純物拡散層102と電気的に接続する例えばタングステン(W)又はポリシリコンからなるストレージノードコンタクトプラグ105が形成されている。
下部水素バリア膜104の上には、各ストレージノードコンタクトプラグ105の上端面を覆う、例えば膜厚が約100nm〜300nmの導電性の酸素バリア膜106がそれぞれ選択的に形成されている。酸素バリア膜106の構成材料は、例えばイリジウム(Ir)、酸化イリジウム(IrO )、窒化チタンアルミニウム(TiAlN)又は窒化タンタルアルミニウム(TaAlN)を用いることができ、さらにはこれらのうちの少なくとも2つを含む積層体を用いることができる。各酸素バリア膜106の上には、例えば白金(Pt)、イリジウム(Ir)等の貴金属又は酸化イリジウム(IrO )等の貴金属の導電性酸化物からなる底部下部電極107が形成されている。底部下部電極107の材料として貴金属又はその導電性酸化物を用いるのは、後述する強誘電体からなる容量絶縁膜110の結晶化を図る酸素雰囲気下での熱処理において、ストレージノードコンタクトプラグ105の酸化を防止できるため好ましい。但し、強誘電体の結晶化温度が十分に低い場合には酸素バリア膜106を設けなくともよい。また、酸素バリア膜106の最下層の材料として窒化チタンアルミニウム(TiAlN)を用いた場合には、該窒化チタンアルミニウムは水素に対するバリア膜としても機能する。
下部水素バリア膜104の上には、各酸素バリア膜106及び底部下部電極107同士の間を埋め込むように、例えば膜厚が約500nm〜1000nmの酸化シリコンからなる第2の絶縁膜108が形成されている。第2の絶縁膜108としてシラン系を用いたプラズマ酸化膜ではなく、オゾン系TEOS−CVD膜を用いることで、酸素バリア膜のバリア性を良好に維持することができる。また、第2の絶縁膜108には、底部下部電極107の上面を露出する開口部(溝部)108hが形成されており、該開口部108hの側壁部には、上記底部下部電極107の材料と同様の材料を用いてなる側部下部電極109が形成されている。
底部下部電極107、側部下部電極109及び第2の絶縁膜108の上には、強誘電体からなる容量絶縁膜110と、Pt、Ir等の貴金属又はその導電性金属酸化物からなる上部電極111とが順次形成されている。底部下部電極107、側部下部電極109、容量絶縁膜110及び上部電極111により容量素子(強誘電体キャパシタ)130が構成されている。また、各容量素子130はアレイ状に形成されており、キャパシタアレイ領域(容量素子領域)ARを構成している。なお、本実施形態では、容量絶縁膜110に用いる強誘電体材料として、タンタルニオブ酸ストロンチウムビスマス(SBTN:SrBi(Ta1−xNb)O)を用いたが、チタン酸ストロンチウムバリウム(SBT:SrBiTa)、チタン酸鉛ジルコニウム(PZT:PbZrTi1−x)又はチタン酸ランタンバリウム(BLT:(Bi,La)Ti12)等の金属酸化物を用いることができる。
各容量素子130及び第2の絶縁膜108の上には、例えば膜厚が約50nm〜400nmでO-NSG若しくはO-BPSGの単層膜又は積層膜からなる第3の絶縁膜112が形成されている。第3の絶縁膜112は、キャパシタアレイ領域ARの端部に生じる段差を緩和する機能を有している。
第2の絶縁膜108及び第3の絶縁膜112には、これらを貫通して下部水素バリア膜104を露出する開口部(溝部)112hが形成されている。開口部112hの底部及び側壁部を含む第3の絶縁膜112の上には、水素を含有しないバリア膜である第1の上部水素バリア膜(第1の水素バリア膜)113、及び水素を含有するバリア膜である第2の上部水素バリア膜(第2の水素バリア膜)114が下から順に形成されている。このように、開口部112hの底部では、各容量素子130を下部から覆う下部水素バリア膜104と、各容量素子130を上部及び側部から覆う第1の上部水素バリア膜113とが接続している。これにより、各容量素子130は、下部水素バリア膜104並びに第1及び第2の上部水素バリア膜113及び114によって完全に覆われている。ここで、水素を含有しないバリア膜である第1の上部水素バリア膜113は、例えば酸化チタンアルミニウム(TiAlON)、酸化タンタルアルミニウム(TaAlO)、アルミナ(Al)、酸化チタンシリコン(TiSiO)、又は酸化タンタルシリコン(TaSiO)等を用いることができ、さらには、これらのうちの少なくとも2つを含む積層体を用いることができる。一方、水素を含有するバリア膜である第2の上部水素バリア膜114は例えば窒化シリコン(SiN)又は酸窒化シリコン(SiON)等を用いることができ、さらには、これらの積層体を用いることができる。開口部112hの内部を含む第2の上部水素バリア膜114の上には、例えば膜厚が約100〜300nmで酸化シリコンからなる第4の絶縁膜115が形成されている。なお、図示していないが、第4の絶縁膜115の上には、通常、配線等が形成されている。
以下に、本発明の第1の実施形態に係る半導体記憶装置の製造方法について説明する。
図2(a)〜(d)及び図3(a)〜(c)は、本発明の第1の実施形態に係る半導体記憶装置の製造方法を工程順に示す要部工程断面図である。
まず、図2(a)に示すように、半導体基板100に、STI(shallow trench isolation)等からなる素子分離領域101を選択的に形成して、複数の活性領域を形成する。続いて、イオン注入法により、各活性領域の上部にN型の高濃度不純物拡散層102を形成する。なお、上述のように、各高濃度不純物拡散層102の表面をシリサイド化してもよい。続いて、図示はしていないが、公知の方法により、各活性領域の上にセルトランジスタを形成する。続いて、半導体基板100上の全面に、各セルトランジスタを覆うように、例えば膜厚が約500nm〜1000nmの酸化シリコンからなる第1の絶縁膜103及び例えば膜厚が約5nm〜100nmの窒化シリコン(SiN)等からなる下部水素バリア膜104を下から順に形成する。続いて、第1の絶縁膜103及び下部水素バリア膜104に、これらを貫通して形成された各セルトランジスタの高濃度不純物拡散層102と電気的に接続する例えばタングステン又はポリシリコンからなるストレージノードコンタクトプラグ105を形成する。
次に、図2(b)に示すように、蒸着法又はスパッタ法により、ストレージノードコンタクトプラグ105及び下部水素バリア膜104上の全面に、例えば膜厚が約100nm〜300nmのイリジウム(Ir)又は酸化イリジウム(IrO )等からなる導電性の酸素バリア膜形成膜と、例えば膜厚が約50nm〜200nmの白金(Pt)又はイリジウム(Ir)等からなる底部下部電極形成膜とを下から順に堆積する。ここで、酸素バリア膜形成膜の構成材料は、例えばイリジウム(Ir)、酸化イリジウム(IrO )、窒化チタンアルミニウム(TiAlN)又は窒化タンタルアルミニウム(TaAlN)を用いることができ、さらにはこれらのうちの少なくとも2つを含む積層体を用いることができる。また、底部下部電極形成膜の構成材料は、例えば白金(Pt)、イリジウム(Ir)等の貴金属又は酸化イリジウム(IrO )等の貴金属を用いることができる。続いて、リソグラフィ法及びドライエッチング法により、堆積した底部下部電極形成膜及び酸素バリア膜形成膜に対して、各ストレージノードコンタクトプラグ105の上端面を含むようにパターニングすることにより、酸素バリア膜形成膜からなる酸素バリア膜106及び底部下部電極形成膜からなる底部下部電極107を形成する。なお、酸素バリア膜106を形成する工程は、上述の通り、強誘電体の結晶化温度に応じて省略することもできる。
次に、図2(c)に示すように、CVD法により、酸素バリア膜106及び底部下部電極107を含む下部水素バリア膜104の上に、例えば膜厚が約500nm〜1000nmの酸化シリコンからなる第2の絶縁膜108を堆積した後、CMP法又はエッチバック法等により、堆積した第2の絶縁膜108の表面を平坦化する。続いて、リソグラフィ法及びドライエッチング法により、平坦化された第2の絶縁膜108に各底部下部電極107を露出する開口部108hを形成する。続いて、蒸着法又はスパッタ法により、各開口部108hの内部を含む第2の絶縁膜108の上に、例えば膜厚が約50nm〜200nmの白金(Pt)等の貴金属又は貴金属の導電性酸化物からなる側部下部電極形成膜を堆積した後、堆積した側部下部電極形成膜に対してハロゲン系ガスを主成分とするエッチングガスを用いたエッチバックを行って、各開口部108hの側壁部に側部下部電極109を形成する。
次に、図2(d)に示すように、各種金属ソースをガス化して成膜するCVD法又は液体ソースをミスト化して成膜するLSMCD(Liquid Source Misted Chemical Vapor Deposition)法を用いて、底部下部電極107及び側部下部電極109が形成された各開口部108hを含む第2の絶縁膜108上の全面に、SBT、PZT又はBLTを主成分とする強誘電体膜を成膜する。続いて、スパッタ法等により、強誘電体膜を覆うように、例えば膜厚が約50nm〜200nmでPt、Ir等の貴金属又はその導電性金属酸化物からなる上部電極形成膜を堆積する。続いて、リソグラフィ法及びドライエッチング法により、成膜した強誘電体膜及び上部電極形成膜に対して、行方向に互いに隣接する底部下部電極107を含むようにパターニングすることにより、強誘電体膜からなる容量絶縁膜110と上部電極形成膜からなる上部電極111とを同時に形成する。このようにして、底部下部電極107、側部下部電極109、容量絶縁膜110及び上部電極111により容量素子(強誘電体キャパシタ)130が形成される。なお、容量絶縁膜116と上部電極117とを1つのマスクにより1度にパターニングしたが、異なるマスクを用いて2回に分けてパターニングしてもよい。
次に、図3(a)に示すように、CVD法により、容量素子130上を含む第2の絶縁膜108上の全面に亘って、例えば膜厚が約50nm〜400nmでO-NSG若しくはO-BPSGの単層膜又は積層膜からなる第3の絶縁膜112を成膜する。
次に、図3(b)に示すように、リソグラフィ法及びドライエッチング法により、第2の絶縁膜102及び第3の絶縁膜112に対してパターニングを行って、下部水素バリア膜104の上面を露出する開口部112hを形成する。なお、この場合、ドライエッチ法などによるエッチバック法を用いて、第3の絶縁膜112における開口部112hの上部に位置する角部の形状を丸めて滑らかな下地を形成することで、後に形成される水素バリア膜の角部における膜質劣化を防いで、高い水素バリア性を実現することができる。
次に、図3(c)に示すように、CVD法により、開口部112hの底部及び側壁部を含む第3の絶縁膜112の上に、例えば膜厚が約5nm〜100nmで、上述したように、酸化チタンアルミニウム(TiAlON)、酸化タンタルアルミニウム(TaAlO)又はアルミナ(Al)等の成膜時に水素を発生しない第1の上部水素バリア膜113を形成する。さらに上部水素バリア膜113を被覆するように、例えば、上述したように、窒化シリコン(SiN)又は酸窒化シリコン(SiON)等の成膜時に水素が発生する第2の上部水素バリア膜114を形成する。このようにして、開口部112hの底部では、各容量素子130を下部から覆う下部水素バリア膜104と、各容量素子130を上部及び側部から覆う第1の上部水素バリア膜113とが接続している。これにより、各容量素子130は、下部水素バリア膜104並びに第1及び第2の上部水素バリア膜113及び114によって完全に覆われている。続いて、CVD法により、開口部112hの内部を含む第2の上部水素バリア膜114の上に、例えば膜厚が約100〜300nmで酸化シリコンからなる第4の絶縁膜115を形成する。なお、図示していないが、第4の絶縁膜115の上には、通常、配線等を形成する。
以上のように、本発明の第1の実施形態に係る半導体記憶装置及びその製造方法によると、キャパシタアレイ領域ARにおいて、水素を含有しないバリア膜である第1の上部水素バリア膜113を積層構造の下側に配置し、水素を含有するバリア膜である第2の上部水素バリア膜114を積層構造の上側に配置した積層水素バリア構造を採用するため、下側の第1の上部水素バリア膜113を成膜する際には水素を発生させないので、水素バリア膜を成膜する際における水素の拡散が支配的となるキャパシタアレイ領域ARの上部からの水素拡散を防止し、容量絶縁膜110におけるリーク電流の増加や強誘電性発現の劣化などの容量素子130の特性劣化を防止することができる。また、積層水素バリア構造とすることにより、第3の絶縁膜112における開口部112hの開口上部に位置する角部においても、水素バリア膜の膜質を劣化させることがなく、高い水素バリア性を確保でき、上述のように、当該角部の形状を丸めて滑らかな下地を形成しておくことで、水素バリア膜の膜質劣化をより防いで、より高い水素バリア性を実現できる。
また、開口部112hにおいても、成膜時に水素が発生しない第1の上部水素バリア膜113と、成膜時に水素が発生する第2の上部水素バリア膜114とが下から順に積層された積層水素バリア膜を配置しているため、上述と同様に成膜時におけるキャパシタアレイ領域ARの側部からの水素の拡散を防止するだけではなく、開口部112h内においてカバレッジに優れた積層水素バリア膜を実現し、例えば配線工程などで発生する水素が拡散する断線の発生をも防止できる。すなわち、図4(a)及び(b)に示すように、一般に、水素バリア膜の成膜において、水素が発生しない成膜法としてスパッタ法を用いた場合には、開口部などの段差を有する段差膜2に形成される水素バリア膜2aは、カバレッジの不十分な箇所や断線が生じて、そのような箇所からかえって水素の拡散が促進される一方((a))、水素が発生する成膜法としてCVD法を用いた場合には、カバレッジに優れた水素バリア膜2bが形成される((b))。このことから、本実施形態では、まず、成膜時の水素拡散の防止を目的として、カバレッジは悪いが成膜時に水素の発生しない第1の上部水素バリア膜113を形成した後に、配線工程などに発生する水素が拡散する断線を防止する目的で、膜厚がほぼ均一でカバレッジに優れた第2の上部水素バリア膜114を形成する積層水素バリア構造を採用している。
また、第1の上部水素バリア膜113及び第2の上部水素バリア膜114の積層構造とすることにより、上層の第2の上部水素バリア膜114が第1の上部水素バリア膜113の上に形成されることで緻密な膜構造となるので、キャパシタアレイ領域ARの上部からの水素拡散をより防止することができる。
また、上述のように、キャパシタアレイ領域ARの上部及び側部からの水素拡散を防止できるため、底部下部電極107の下部に形成された酸素バリア膜106が水素によって還元されて酸素バリア性が劣化することを防止し、容量絶縁膜110の結晶化に必要な高温酸素アニール時に、酸素が底部及び側部下部電極107及び109中を拡散してストレージノードコンタクトプラグ105の表面を酸化することを防止できる。その結果、後述する第2の実施形態でも説明するように、底部下部電極107とストレージノードコンタクトプラグ105とのコンタクト抵抗のばらつきが非常に少なく且つ低抵抗化を実現できる。
ここで、従来例の半導体記憶装置と本実施形態の半導体記憶装置との特性比較を行った結果について、図5を参照しながら説明する。
図5は、本実施形態の半導体記憶装置における耐還元性の評価結果を示すグラフであって、400℃の水素アニール(シンター)を行う前後について、容量素子の残留分極(2Pr)を評価した結果を示している。
図5に示すように、まず、従来例の一構造として、本実施形態の積層水素バリア構造の代わりに、スパッタ法を用いて形成する膜中に水素を含有しないTiAlOからなる一層の水素バリア構造を採用した場合は、成膜時における水素の影響はないが、本実施形態の開口部112hに相当するような高段差部では、スパッタ法を用いるために段差被覆性が悪くなる。このような場合、TiAlOからなる水素バリア膜の果たす役割である水素バリア性は、広く平坦な箇所に堆積される部分に比べ、高段差部の側壁部などでは膜厚に応じて大幅に低下するため、容量素子の特性が大きく低下することが分かる。また、CVD法を用いて形成する膜中に水素を含有するSiNからなる一層の水素バリア構造を採用した場合は、高段差部での被覆性には優れているが、NHガスとSiHガスとの反応からなり、非常に強い還元性雰囲気下でSiN膜が堆積されるため、SiN膜を成膜する工程で容量素子が還元されてしまい、容量素子の特性が大きく低下することが分かる。一方、本実施形態の積層水素バリア構造(SiN/TiAlO)を採用した場合では、水素シンター後であっても特性の変化はほとんどないことが明らかである。このように、本実施形態の積層水素バリア構造を採用すると、TiAlO膜はテンサイル応力を保持しているので上層に積層したSiNはコンプレッシブ応力が負荷される。従ってSiNは緻密な膜として形成できるため、水素バリア膜の成膜時に発生する水素の拡散を防止するだけではなく、配線工程などで多量に発生する水素の拡散をも防止して、優れた特性を有する容量素子を実現することができる。
(第2の実施形態)
以下、本発明の第2の実施形態に係る半導体記憶装置及びその製造方法について、図面を参照しながら説明する。
まず、本発明の第2の実施形態に係る半導体記憶装置の構造について説明する。
図6は、本発明の第2の実施形態に係る半導体記憶装置の構造を示す要部断面図である。
図6に示すように、本実施形態に係る半導体記憶装置の構造は、開口部112hにおいて、その底部及び側壁部に第2の上部水素バリア膜114のみが形成された単層の水素バリア構造である点で、開口部112hの底部及び側壁部において第1の上部水素バリア膜113及び第2の上部水素バリア膜114の積層水素バリア構造を有する第1の実施形態に係る半導体記憶装置の構造と異なっており、その他の構造は第1の実施形態に係る半導体記憶装置の構造と同様である。
以下に、本発明の第2の実施形態に係る半導体記憶装置の製造方法について説明する。
図7(a)及び(b)は、本発明の第2の実施形態に係る半導体記憶装置の製造方法の一部の工程を示す要部工程断面図であり、上述の構造の相違に基づいて異なる工程のみを示している。
まず、前述の第1の実施形態で用いた図2(a)〜(d)及び図3(a)に示す工程を同様に行う。
ここで、第1の実施形態では、第2の絶縁膜108及び第3の絶縁膜112に、下部水素バリア膜104を露出する開口部112hを形成した後に、第1の上部水素バリア膜113及び第2の水素バリア膜114の積層水素バリア構造を形成したが、本実施形態では、図7(a)及び(b)に示すように、第3の絶縁膜112の上に第1の上部水素バリア膜113を形成した後に、第1の上部水素バリア膜113、第3の絶縁膜112及び第2の絶縁膜108に、同一のマスクを用いたエッチングにより、下部水素バリア膜104を露出する開口部112hを形成し、その後、第1の上部水素バリア膜113の上部及び側部、第3の絶縁膜112の側部、第2の絶縁膜108の側部、並びに露出している下部水素バリア膜104の上部に、第2の上部水素バリア膜114を形成する。なお、その後の工程は、第1の実施形態と同様である。
以上のように、上述した第1の実施形態に係る半導体記憶装置及びその製造方法では、キャパシタ形成領域ARの容量素子130の上部及び側部に、第1の上部水素バリア膜113及び第2の水素バリア膜114の積層水素バリア構造を形成したのに対して、第2の実施形態に係る半導体記憶装置及びその製造方法では、キャパシタ形成領域ARの容量素子130の上部には、第1の上部水素バリア膜113及び第2の水素バリア膜114の積層水素バリア構造を形成するが、キャパシタ形成領域ARの容量素子130の側部には、第2の上部水素バリア膜114の単層の水素バリア構造を形成している。このように、キャパシタ形成領域ARの容量素子130の上部には、第1の上部水素バリア膜113及び第2の水素バリア膜114の積層水素バリア構造が形成され、下側には、成膜時に水素が発生しない第1の上部水素バリア膜113を形成しているため、水素バリア膜を成膜する際における水素の拡散が支配的となるキャパシタアレイ領域ARの上部からの水素拡散を防止し、容量絶縁膜110におけるリーク電流の増加や強誘電性発現の劣化などの容量素子130の特性劣化を防止することができる。また、開口部112hの内部には、成膜時に水素が発生する第2の上部水素バリア膜114のみが形成されているが、キャパシタアレイ領域ARの側部からの水素拡散は上部からの水素拡散に比べて影響が小さい一方で、第2の上部水素バリア膜114は開口部112hにおいてカバレッジに優れるために、断線などの発生による配線工程などにおける水素の拡散の影響を防止し、容量素子130の特性劣化を防止することができる。
ここで、従来例の半導体記憶装置と本実施形態の半導体記憶装置との特性比較を行った結果について、図8を参照しながら説明する。
図8は、ストレージノードコンタクトプラグ105と底部下部電極107とのコンタクト抵抗の評価結果を示しており、コンタクト抵抗の8インチシリコンウエハー面内全点での測定結果を示している。
図8に示すように、従来例の一構造として、本実施形態の積層水素バリア構造の代わりに、図5の場合と同様に、TiAlO又はSiNからなる単層の水素バリア構造を採用した場合は、いずれの材料の場合も、コンタクト抵抗が200Ωから10000Ωまでばらついていた。これは、底部下部電極107の下部に形成された酸素バリア膜が水素によって還元されて、その酸素バリア性が劣化し、容量絶縁膜110の結晶化に必要な高温酸素アニール時に、酸素が底部及び側部下部電極107及び109中を拡散してストレージノードコンタクトプラグ105の表面が酸化したためである。一方、本実施形態の場合には、ウエハー面内全点でコンタクト抵抗が25Ωから35Ωの範囲であって、ばらつきが非常に少なく且つ低抵抗化が実現されたことが分かる。なお、図8の測定結果は、第2の実施形態の構造の場合に得られたものであるが、開口部112hの内部も積層水素バリア構造とした第1の実施形態の構造の場合は、第2の実施形態の場合よりもより優れた結果が得られることは言うまでもない。
本発明は、容量絶縁膜に強誘電体を用いた容量素子と該容量素子への水素の侵入を防止する水素バリア膜とを有する半導体記憶装置及びその製造方法等に有用である。
本発明の第1の実施形態に係る半導体記憶装置の構造を示す要部断面図である。 (a)〜(d)は、本発明の第1の実施形態に係る半導体記憶装置の製造方法を示す要部工程断面図である。 (a)〜(c)は、本発明の第1の実施形態に係る半導体記憶装置の製造方法を示す要部工程断面図である。 (a)及び(b)は、本発明の第1の実施形態に係る半導体記憶装置及びその製造方法による効果を説明するための製法に応じた水素バリア膜の段差被覆性を説明する要部断面図である。 本発明の第1の実施形態に係る半導体記憶装置における容量素子の特性図である。 本発明の第2の実施形態に係る半導体記憶装置の構造を示す要部断面図である。 (a)及び(b)は、本発明の第2の実施形態に係る半導体記憶装置の製造方法を示す要部工程断面図である。 本発明の第2の実施形態に係る半導体記憶装置におけるコンタクト抵抗を示す図である。
符号の説明
100 半導体基板
101 素子分離領域
102 高濃度不純物拡散層
103 第1の絶縁膜
104 下部水素バリア膜
105 ストレージノードコンタクトプラグ
106 酸素バリア膜
107 底部下部電極
108 第2の絶縁膜
108h 開口部(溝部)
109 側部下部電極
110 容量絶縁膜
111 上部電極
112 第3の絶縁膜
112h 開口部(溝部)
113 第1の上部水素バリア膜(第1の水素バリア膜)
114 第2の上部水素バリア膜(第2の水素バリア膜)
115 第4の絶縁膜
AR キャパシタアレイ領域

Claims (20)

  1. 半導体基板上に形成され、下部電極、容量絶縁膜及び上部電極からなる複数の容量素子と、
    前記複数の容量素子が配列された容量素子領域を覆うように形成された絶縁膜と、
    前記絶縁膜上に形成され、第1の水素バリア膜及び第2の水素バリア膜がこの順に積層されてなる積層水素バリア膜とを備えていることを特徴とする半導体記憶装置。
  2. 前記絶縁膜は、前記容量素子形成領域の周縁部に溝部を有しており、
    前記溝部の側壁部及び底部には、前記第1の水素バリア膜及び前記第2の水素バリア膜が形成されていることを特徴とする請求項1に記載の半導体記憶装置。
  3. 前記下部電極の下側に下部水素バリア膜をさらに備え、
    前記下部水素バリア膜は、前記第1の水素バリア膜と前記溝部の底部で接続していることを特徴とする請求項2に記載の半導体記憶装置。
  4. 前記絶縁膜は、前記容量素子形成領域の周縁部に溝部を有しており、
    前記溝部の側壁部及び底部には、前記第2の水素バリア膜が形成されていることを特徴とする請求項1に記載の半導体記憶装置。
  5. 前記下部電極の下側に下部水素バリア膜をさらに備え、
    前記下部水素バリア膜は、前記第2の水素バリア膜と前記溝部の底部で接続していることを特徴とする請求項4に記載の半導体記憶装置。
  6. 前記第2の水素バリア膜は水素を含有していることを特徴とする請求項1〜5のうちのいずれか1項に記載の半導体記憶装置。
  7. 前記第2の水素バリア膜は膜厚がほぼ均一であることを特徴とする請求項1〜6のうちのいずれか1項に記載の半導体記憶装置。
  8. 前記第1の水素バリア膜は水素を含有していないことを特徴とする請求項1〜5のうちのいずれか1項に記載の半導体記憶装置。
  9. 前記第1の水素バリア膜は、Al、TiAlO、TaAlO、TiSiO、及びTaSiOよりなる群のうちから選択された単層膜又は積層膜からなることを特徴とする請求項1〜5のうちのいずれか1項に記載の半導体記憶装置。
  10. 前記第2の水素バリア膜は、SiN若しくはSiONよりなる単層膜、又はSiN及びSiONよりなる積層膜からなることを特徴とする請求項1〜7のうちのいずれか1項に記載の半導体記憶装置。
  11. 前記下部水素バリア膜は、SiN又はTiAlOからなることを特徴とする請求項2〜5のうちのいずれか1項に記載の半導体記憶装置。
  12. 半導体基板上に、下部電極、容量絶縁膜及び上部電極がこの順に形成されてなる複数の容量素子を形成する工程(a)と、
    前記複数の容量素子が配列された容量素子領域を覆うように絶縁膜を形成する工程(b)と、
    前記絶縁膜上に、第1の水素バリア膜及び第2の水素バリア膜がこの順に積層されてなる積層水素バリア膜を形成する工程(c)とを備えることを特徴とする半導体記憶装置の製造方法。
  13. 前記工程(c)は、
    前記絶縁膜をエッチングして、前記容量素子形成領域の周縁部に溝部を形成する工程と、
    前記絶縁膜上並びに前記溝部の側壁部及び底部に、前記積層水素バリア膜を形成する工程とを含むことを特徴とする請求項12に記載の半導体記憶装置の製造方法。
  14. 前記工程(a)よりも前に、前記半導体基板上に下部水素バリア膜を形成する工程をさらに備え、
    前記下部水素バリア膜は、前記第1の水素バリア膜と前記溝部の底部で接続していることを特徴とする請求項13に記載の半導体記憶装置の製造方法。
  15. 前記工程(c)は、
    前記絶縁膜上に前記第1の水素バリア膜を形成する工程と、
    前記絶縁膜及び前記第1の水素バリア膜をエッチングして、前記容量素子形成領域の周縁部に溝部を形成する工程と、
    前記第1の水素バリア膜並びに前記溝部の側壁部及び底部に、前記第2の水素バリア膜を形成する工程とを含むことを特徴とする請求項12に記載の半導体記憶装置の製造方法。
  16. 前記工程(a)よりも前に、前記半導体基板上に下部水素バリア膜を形成する工程をさらに備え、
    前記下部水素バリア膜は、前記第2の水素バリア膜と前記溝部の底部で接続していることを特徴とする請求項15に記載の半導体記憶装置の製造方法。
  17. 前記第1の水素バリア膜は、スパッタ法を用いて形成されることを特徴とする請求項12〜14のうちのいずれか1項に記載の半導体記憶装置の製造方法。
  18. 前記第2の水素バリア膜は、CVD法を用いて形成されることを特徴とする請求項12〜14のうちのいずれか1項に記載の半導体記憶装置の製造方法。
  19. 前記第1の水素バリア膜の成膜時には、水素が発生しないことを特徴とする請求項12〜14のうちのいずれか1項に記載の半導体記憶装置の製造方法。
  20. 前記第2の水素バリア膜の成膜時には、水素が発生することを特徴とする請求項12〜14のうちいずれか1項に記載の半導体記憶装置の製造方法。
JP2006274739A 2006-10-06 2006-10-06 半導体記憶装置及びその製造方法 Pending JP2008098219A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274739A JP2008098219A (ja) 2006-10-06 2006-10-06 半導体記憶装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274739A JP2008098219A (ja) 2006-10-06 2006-10-06 半導体記憶装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2008098219A true JP2008098219A (ja) 2008-04-24

Family

ID=39380792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274739A Pending JP2008098219A (ja) 2006-10-06 2006-10-06 半導体記憶装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2008098219A (ja)

Similar Documents

Publication Publication Date Title
US7531863B2 (en) Semiconductor device and method of fabricating the same
US6730951B2 (en) Capacitor, semiconductor memory device, and method for manufacturing the same
US8497537B2 (en) Semiconductor device with ferro-electric capacitor
US7884406B2 (en) Semiconductor device including ferroelectric capacitor
JP2006344929A (ja) 強誘電体キャパシタの製造方法及びこれを利用した半導体装置の製造方法
JP4690985B2 (ja) 不揮発性記憶装置およびその製造方法
JP2008198813A (ja) 半導体装置及びその製造方法
US7910968B2 (en) Semiconductor device and method for manufacturing the same
JP4280006B2 (ja) 半導体装置
JP3643091B2 (ja) 半導体記憶装置及びその製造方法
JP5168273B2 (ja) 半導体装置とその製造方法
JP2006310637A (ja) 半導体装置
JP2006261483A (ja) 強誘電体キャパシタ及びその製造方法
JP4105656B2 (ja) 半導体装置及びその製造方法
US20090256259A1 (en) Semiconductor device and method for manufacturing the same
JP3906215B2 (ja) 半導体装置
US20080197390A1 (en) Semiconductor apparatus and method for manufacturing semiconductor apparatus
JP4002882B2 (ja) 容量素子、半導体記憶装置及びその製造方法
JP2005129852A (ja) 半導体装置
JP2009105388A (ja) 半導体装置及びその製造方法
JP3967315B2 (ja) 容量素子、半導体記憶装置及びその製造方法
JP2008098219A (ja) 半導体記憶装置及びその製造方法
JP2007329232A (ja) 誘電体メモリ及びその製造方法
JP2007035915A (ja) 半導体装置及びその製造方法
JP2007103769A (ja) 半導体装置