JP2006105526A - 混合冷媒冷凍サイクル - Google Patents

混合冷媒冷凍サイクル Download PDF

Info

Publication number
JP2006105526A
JP2006105526A JP2004294736A JP2004294736A JP2006105526A JP 2006105526 A JP2006105526 A JP 2006105526A JP 2004294736 A JP2004294736 A JP 2004294736A JP 2004294736 A JP2004294736 A JP 2004294736A JP 2006105526 A JP2006105526 A JP 2006105526A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
liquid separator
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004294736A
Other languages
English (en)
Inventor
Toshio Hirata
敏夫 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004294736A priority Critical patent/JP2006105526A/ja
Publication of JP2006105526A publication Critical patent/JP2006105526A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】 地球温暖化防止の効果が高いとともに、火災発生リスクを低下でき、かつ、高効率運転が可能な冷凍サイクルを提供する。
【解決手段】 ノズル部12a、媒吸引口12cおよび昇圧部12bを有するエジェクタ12を備え、エジェクタ12の冷媒流出側に配置される気液分離器13内の気相冷媒を圧縮機10に吸入させ、気液分離器13の液相冷媒出口部13bと冷媒吸引口12cとの間を結合する分岐通路14に、気液分離器13からの液相冷媒を蒸発させて冷却能力を発揮する蒸発器15を設け、サイクル内循環冷媒としてCO2と、CO2に比較して高沸点で、蒸発潜熱が大きい可燃性冷媒とを混合した混合冷媒を用いる。
【選択図】 図1

Description

本発明は、冷媒減圧手段および冷媒循環手段をなすエジェクタを有するエジェクタ式冷凍サイクルにおいて混合冷媒を用いるものであり、例えば、車両用空調装置等の冷凍サイクルに適用して有効である。
冷媒減圧手段および冷媒循環手段をなすエジェクタを使用した蒸気圧縮式冷凍サイクル(エジェクタサイクル)において、冷媒としてCO2(二酸化炭素)を用いて高圧圧力が冷媒の臨界圧力を越える超臨界サイクルを構成することが特許文献1に提案されている。
このエジェクタサイクルによると、エジェクタの昇圧部で昇圧した後の冷媒の気液を気液分離器で分離し、その気相冷媒を圧縮機に吸入させるとともに、気液分離器の液相冷媒をエジェクタの冷媒吸引口側に導く分岐通路に蒸発器を設け、この蒸発器で気液分離器の液相冷媒を蒸発させて、冷却能力を発揮するようになっている。
ここで、圧縮機の吸入圧をエジェクタの昇圧作用(ポンプ作用)によって蒸発器の冷媒蒸発圧力よりも高くすることができるので、蒸発器の冷媒蒸発圧力と圧縮機の吸入圧とが一致する通常の冷凍サイクルに比較してエジェクタサイクルでは圧縮機動力を低減でき、サイクルのCOP(成績係数)を向上できる。
特許第3322263号公報
ところで、CO2冷媒は後述の図2に示すように地球温暖化係数GWP(Global Warming Potential)が従来のフロン系冷媒であるR134aに比較して極めて小さいので、地球温暖化防止の観点からフロンR134aの代替冷媒として使うことが推奨されている。
しかし、CO2の物性はフロンR134aに比較して、臨界温度が非常に低温度(31.1℃)であるにもかかわらず、臨界圧力が非常に高い(7372kPa)という特徴を持っている。
このため、夏期の高外気温時には外気を冷却流体として高圧冷媒の放熱を行うために、高圧冷媒の圧力(圧縮機吐出圧)を上記臨界圧力を越える高い圧力まで上昇させる必要が生じ、圧縮機動力の増加を招く。
一方、フロンR152aは、図2に示すように地球温暖化係数GWPがフロンR134aに比較して大幅に小さいので、地球温暖化防止に有利である。しかも、フロンR152aはCO2の臨界温度以上の温度域でも飽和圧力がCO2の臨界圧力に比較して大幅に低い物性になっている。
このため、フロンR152aを用いた冷凍サイクルの高圧側圧力はCO2冷凍サイクルに比較して大幅に引き下げることができる。従って、フロンR152aを用いた冷凍サイクルでは、CO2冷凍サイクルに比較して圧縮機動力を低減できる。
しかし、フロンR152a冷媒は図2に示す化学式の組成からなり、可燃性を有しているので、フロンR152aを単体で用いると、室内へ漏れ出た場合に火災発生のリスクが高くなる。
本発明は、上記点に鑑み、地球温暖化防止の効果が高いとともに、火災発生リスクを低下でき、かつ、高効率運転が可能な冷凍サイクルを提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、高圧冷媒の放熱を行う放熱器(11)下流側の冷媒を減圧膨張させるノズル部(12a)、このノズル部(12a)から噴出する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(12c)、および高い速度の冷媒流と冷媒吸引口(12c)からの吸引冷媒とを混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(12b)を有するエジェクタ(12)を備えるエジェクタ式冷凍サイクルにおいて、
エジェクタ(12)の冷媒流出側と圧縮機(10)の吸入側との間に、エジェクタ(12)から流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機(10)に吸入させる気液分離器(13)を配置し、
気液分離器(13)の液相冷媒出口部(13b)と冷媒吸引口(12c)との間を結合する分岐通路(14)に、気液分離器(13)からの液相冷媒を蒸発させて冷却能力を発揮する蒸発器(15)を設け、
サイクル内循環冷媒として、CO2と、CO2に比較して高沸点で、かつ、蒸発潜熱が大きい可燃性冷媒とを混合した混合冷媒を用いることを特徴としている。
これによると、混合冷媒を構成するCO2および可燃性冷媒の地球温暖化係数GWPがフロンR134aに比較して大幅に小さいので、地球温暖化防止の効果を高めることができる。
そして、可燃性冷媒はCO2に比較して高沸点であるため、CO2よりも高い圧力条件まで液相を維持する。その結果、気液分離器(13)で分離される液相冷媒は可燃性冷媒の比率が高くなり、一方、気液分離器(13)で分離される気相冷媒はCO2の比率が高くなる。
ここで、可燃性冷媒の蒸発潜熱はCO2よりも十分大きいため、可燃性冷媒の比率が高い液相冷媒を分岐通路(14)の蒸発器(15)に導くことにより、CO2単体の冷媒を用いる場合に比較して、蒸発器(15)の冷却能力を向上できる。
更に、可燃性冷媒はCO2の臨界温度以上の温度域でも飽和圧力がCO2の臨界圧力に比較して大幅に低い物性になっているので、圧縮機(10)に吸入される気相冷媒中に可燃性冷媒が混じっていることにより、圧縮機(10)の吐出圧(高圧側圧力)をCO2単体の冷媒を用いる場合に比較して低下できる。これにより、圧縮機(10)の駆動動力を低減できる。
しかも、可燃性冷媒と不燃性のCO2とを混合することにより、可燃性冷媒を単体で用いる場合に比較して可燃性を大幅に低減できるので、火災発生のリスクを低下できる。
なお、本発明における可燃性冷媒は、具体的には、請求項2に記載のフロンR152aや請求項3に記載の炭化水素系冷媒を用いればよい。この炭化水素系冷媒としては、プロパン(R290)やイソブタン(R600a)等を使用できる。
請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の混合冷媒冷凍サイクルにおいて、気液分離器(13)内の気相冷媒を冷却する冷却手段(18)を有することを特徴とする。
これによると、気液分離器(13)内の気相冷媒中に含まれる可燃性冷媒の液化を冷却手段(18)により促進できるので、気液分離器(13)内における液相冷媒のうち可燃性冷媒の比率をより一層高めて、蒸発器(15)の冷却能力を一層向上できる。
請求項5に記載の発明では、請求項4に記載の混合冷媒冷凍サイクルにおいて、冷却手段は、気液分離器(13)内の液相冷媒の一部が減圧されて流入し、蒸発する補助蒸発器(18)であることを特徴とする。
これによると、気液分離器(13)内の液相冷媒自体を利用して、簡単な構成で気相冷媒を冷却できる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関
係を示すものである。
(第1実施形態)
図1は第1実施形態によるエジェクタサイクルを示しており、本実施形態は車両用空調装置の冷凍サイクルに適用した例を示す。
圧縮機10は冷媒を吸入し、圧縮するもので、本実施形態では、この圧縮機10を図示しない車両走行用エンジンにより電磁クラッチ10a、ベルト等を介して回転駆動するようになっている。なお、圧縮機10として固定容量型圧縮機を使用する場合は、電磁クラッチにより圧縮機作動のオンオフ制御を行ってオンオフ作動の比率を制御することにより冷媒吐出能力を制御できる。また、圧縮機10として吐出容量を変化できる可変容量型圧縮機を使用すれば、吐出容量の制御により冷媒吐出能力を制御できる。
この圧縮機10の冷媒流れ下流側には放熱器11が配置されている。放熱器11は圧縮機10から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
放熱器11の冷媒流れ下流側部位にはエジェクタ12が配置されている。このエジェクタ12は流体を減圧する減圧手段であるとともに、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプである(JIS Z 8126 番号2.1.2.3等参照)。
エジェクタ12には、放熱器11から流入する高圧冷媒の通路面積を小さく絞って、高圧冷媒を等エントロピ的に減圧膨張させるノズル部12aと、ノズル部12aの冷媒噴出口と同一空間に配置され、後述する蒸発器15からの気相冷媒を吸引する吸引口12cが備えられている。
さらに、ノズル部12aおよび吸引口12cの冷媒流れ下流側部位には、昇圧部をなすディフューザ部12bが配置されている。このディフューザ部12bは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。
エジェクタ12のディフューザ部12bの冷媒流出側は気液分離器13に接続される。この気液分離器13はタンク形状からなり、エジェクタ12から流出した冷媒の気液を密度差により分離して、気液分離器13のタンク形状内部の上方側に気相冷媒が溜まり、下方側に液相冷媒が溜まる。
そこで、気液分離器13のタンク形状の上方部に気相冷媒の出口13aを設けて圧縮機10の吸入側に接続している。一方、気液分離器13のタンク形状の下方部に液相冷媒の出口13bを設けて、この液相冷媒の出口13bとエジェクタ12の冷媒吸引口12cとの間を分岐通路14により結合している。
この分岐通路14には蒸発器15が設けられている。この蒸発器15は車両用空調装置の室内空調ユニット部の通風路内に設置されて、空調用送風機16の送風空気を冷却する。空調用送風機16はモータ回転数制御により風量が制御可能な電動送風機である。
そして、本実施形態では、サイクル内循環冷媒として、CO2と、可燃性冷媒の一種であるフロンR152aとを混合した混合冷媒を用いている。フロンR152aはフロンR134aと同様にフロン系冷媒であるが、フロンR152aは図2に示す化学式の組成からなり、可燃性を有している。
なお、図2において、燃焼範囲は空気に対する各冷媒の体積比率(vol%)で示しており、フロンR152aの燃焼範囲は、4.8%(下限値)〜17.3%(上限値)の範囲である。
ところで、フロンR152aの大気圧における沸点は−25℃で、CO2の大気圧における沸点は−78.4℃であるから、フロンR152aの方がCO2よりも高沸点である。
CO2とフロンR152aとでは、沸点の差が10℃を上回る大きな差になっているため、CO2とフロンR152aとを混合した混合冷媒は非共沸混合冷媒となる。従って、CO2とフロンR152aとを混合した状態でもCO2とフロンR152aがそれぞれの物性を維持する。
次に、上記構成において本実施形態の作動を説明する。最初に、エジェクタサイクルとしての基本作動を説明する。圧縮機10を車両エンジンにより駆動すると、圧縮機10は気液分離器13内の気相冷媒を吸入して圧縮し、吐出する。この吐出冷媒(高温高圧状態の冷媒)は放熱器11に流入して外気により冷却され放熱する。
放熱器11から流出した高圧冷媒は、エジェクタ12に流入しノズル部12aで減圧され、膨張する。これにより、冷媒は低温低圧の気液2相状態となる。このノズル部12aで高圧冷媒の圧力エネルギーが速度エネルギーに変換され、冷媒は高速度となってノズル噴出口から噴出する。この際に生じるノズル噴出口付近の圧力低下により、吸引口12cから蒸発器15通過後の気相冷媒を吸引する。
ノズル部12aから噴出した冷媒と吸引口12cに吸引された冷媒は、ノズル部12a下流側で混合してディフューザ部12bに流入する。このディフューザ部12bでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。
そして、エジェクタ12のディフューザ部12bから流出した冷媒は気液分離器13内に流入して、気相冷媒と液相冷媒とに分離される。よって、気液分離器13は、気相冷媒と液相冷媒とを分離する1段の蒸留器としての作用を果たすことになる。
気液分離器13内の気相冷媒は圧縮機10に吸入され、圧縮される。一方、気液分離器13内の液相冷媒は分岐通路14側へ流れる。この液相冷媒は蒸発器15に流入し、ここで送風機16の送風空気から吸熱して蒸発する。
これにより、送風機16の送風空気を冷却でき、車室内の冷房を行うことができる。蒸発器15で蒸発した気相冷媒は吸引口12cに吸引され、ノズル部12aからの高速噴出流(駆動流)と混合する。
なお、蒸発器15における冷媒蒸発圧力は、気液分離器13の液相冷媒出口13bと蒸発器15との間の冷媒通路圧損により気液分離器13内の冷媒圧力よりも一段と低い圧力となる。気液分離器13の液相冷媒出口13bと蒸発器15との間にキャピラリチューブやオリフィス等からなる固定絞り、あるいは絞り開度を調節できる可変絞りからなる絞り機構(減圧手段)を設けてもよい。
次に、サイクル内循環冷媒として、CO2と、可燃性冷媒の一種であるフロンR152aとを混合した混合冷媒を用いることに基づく特有の作用効果を説明する。フロンR152aはCO2に比較して高沸点冷媒であるから、エジェクタ12通過後の液相冷媒は、CO2よりもフロンR152aの比率が高いフロンR152aリッチの液となる。
このため、気液分離器13内で気液分離され、下方部に溜まる液相冷媒もフロンR152aリッチとなる。これに伴って、気液分離器13内の上方部に溜まる気相冷媒はCO2リッチとなる。
フロンR152aの潜熱(ここでは蒸発潜熱)は図2に示すようにCO2よりも十分大きいから、蒸発器15にCO2単体の冷媒が蒸発器15に流入する場合に比較して、フロンR152aリッチの混合冷媒が蒸発器15に流入することにより、蒸発器15の冷却能力を向上できる。
なお、蒸発器15で蒸発した気相状態のフロンR152a冷媒の一部は、エジェクタ12のノズル部12aからの低温低圧の高速噴出流(駆動流)と混合することにより液化することができる。
一方、圧縮機10は、気液分離器13内の上方部に溜まるCO2リッチの気相冷媒を吸入し、圧縮して吐出するが、このCO2リッチの気相冷媒の中にはフロンR152aが混合されており、このフロンR152aはCO2の臨界温度以上の温度域でも飽和圧力がCO2の臨界圧力に比較して大幅に低い物性になっているので、CO2単体の冷媒を用いる場合に比較して圧縮機10の冷媒吐出圧、すなわち、サイクル高圧側圧力を下げることができる。
これにより、圧縮機10の駆動動力をCO2単体の冷媒を用いる場合に比較して低減できる。よって、蒸発器15の冷却能力の向上と圧縮機10の駆動動力低減とを同時に達成でき、サイクルの高効率運転(COP向上)を実現できる。
また、CO2とフロンR152aとの混合冷媒を用いることにより、CO2単体の冷媒を用いる場合に比較してサイクル高圧側圧力および低圧側圧力(蒸発器15の冷媒蒸発圧力)をともに下げることができる。そのため、放熱器11等の高圧側機器および蒸発器15等の低圧側機器の耐圧強度をともに下げることができ、これらの機器のコスト低減にも貢献できる。
ところで、蒸発器15は室内側機器であるから、蒸発器15付近で冷媒洩れが発生すると、その洩れ冷媒は直接車室内へ流入することになるが、フロンR152aとCO2の混合冷媒は、フロンR152a単体の冷媒を用いる場合に比較してCO2の不燃性により冷媒の可燃性を引き下げることができ、火災発生のリスクを低下できる。
(第2実施形態)
第1実施形態では、エジェクタ12の下流側に気液分離器13を配置し、この気液分離器13のみで冷媒の気液を分離しているので、気液分離器13により1段の蒸留器を構成しているが、第2実施形態は複数段の蒸留器を構成する。
図3は第2実施形態を示すもので、気液分離器13の下方部に、蒸発器15の入口側に接続される液相冷媒出口13bの他に補助液相冷媒出口13cを設け、この補助液相冷媒出口13cに、絞り機構17および補助蒸発器18を有する補助分岐通路19を接続し、この補助分岐通路19の出口部を圧縮機10の吸入側通路に合流させている。
補助蒸発器18は、気液分離器13内部の上方側の気相冷媒領域に配置される。絞り機構17はキャピラリチューブやオリフィス等からなる固定絞りで構成すればよいが、必要に応じて、絞り開度を調節できる可変絞りで絞り機構17を構成してもよい。
第2実施形態によると、絞り機構17による減圧相当分だけ補助蒸発器18での冷媒蒸発温度が気液分離器13内の冷媒温度よりも低くなるので、補助蒸発器18により気液分離器13内の気相冷媒を冷却できる。この冷却作用によって気液分離器13内の気相冷媒の液化を促進できる。
その結果、気液分離器13内の気相冷媒中に含まれるフロンR152aの液化を一層促進できるので、気液分離器13内の下方部に溜まる液相冷媒におけるフロンR152aの比率を高めることができる。これにより、蒸発器15の冷却能力を一層向上できる。
第2実施形態によると、気液分離器13による冷媒の気液の密度差を利用した気液分離作用と、補助蒸発器18の冷却作用による気相冷媒の液化促進作用とにより2段の蒸留作用を発揮できる。
なお、図3では補助液相冷媒出口13cを独立に設けているが、補助液相冷媒出口13cを廃止して液相冷媒出口13bに補助分岐通路19の入口部を接続してもよい。
(他の実施形態)
なお、本発明は上述の実施形態に限定されることなく、以下述べるごとく種々変形可能である。
(1)上述の実施形態では、CO2とフロンR152aとを混合した混合冷媒を用いているが、フロンR152aの代わりにプロパン(R290)やイソブタン(R600a)等の炭化水素系の冷媒を用いてよい。すなわち、これらの炭化水素系の冷媒(可燃性冷媒)の物性は図2に示すようにフロンR152aと同様に、CO2よりも高沸点で、蒸発潜熱が大であり、かつ、炭化水素系の冷媒はCO2の臨界温度以上の温度域でも飽和圧力がCO2の臨界圧力に比較して大幅に低い物性になっている。
このように炭化水素系の冷媒はフロンR152aと共通の特徴を持っているので、フロンR152aの代わりに炭化水素系の冷媒を用いても同様の作用効果を発揮できる。
(2)上述の実施形態では、分岐通路14に1個の蒸発器15のみを設けているが、分岐通路14に複数の蒸発器を直列接続、あるいは並列接続してもよい。また、エジェクタ12のディフューザ部12bと気液分離器13の冷媒入口部との間に別の蒸発器を追加設置してもよい。
(3)上述の実施形態では、蒸発器15を車両用空調装置の室内空調ユニットに設置して、蒸発器15により車室内の冷房機能を発揮するようにしているが、車両用冷凍冷蔵装置における冷凍冷蔵機能発揮のために蒸発器15を使用してもよい。また、本発明は車両用に限らず、定置用等の用途の冷凍サイクルにも適用できる。
(4)上述の実施形態では、エジェクタ12として、ノズル14aの冷媒流路面積が一定の固定ノズル式のものを使用しているが、エジェクタ12として、ノズル14aの冷媒流路面積つまり流量を調節する可変流量型のエジェクタを使用してもよい。
本発明の第1実施形態によるエジェクタサイクルを示す模式図である。 各種冷媒の物性を比較して示す図表である。 本発明の第2実施形態による気液分離器13部分を示す概略断面図である。
符号の説明
10…圧縮機、11…放熱器、12…エジェクタ、12a…ノズル部、
12b…ディフューザ部(昇圧部)、12c…冷媒吸引口、13…気液分離器、
14…分岐通路、15…蒸発器。

Claims (5)

  1. 冷媒を吸入し圧縮する圧縮機(10)と、
    前記圧縮機(10)から吐出された高圧冷媒の放熱を行う放熱器(11)と、
    前記放熱器(11)下流側の冷媒を減圧膨張させるノズル部(12a)、前記ノズル部(12a)から噴出する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(12c)、および前記高い速度の冷媒流と前記冷媒吸引口(12c)からの吸引冷媒とを混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(12b)を有するエジェクタ(12)と、
    前記エジェクタ(12)の冷媒流出側と前記圧縮機(10)の吸入側との間に配置され、前記エジェクタ(12)から流出した冷媒を気相冷媒と液相冷媒とに分離して前記気相冷媒を前記圧縮機(10)に吸入させる気液分離器(13)と、
    前記気液分離器(13)の液相冷媒出口部(13b)と前記冷媒吸引口(12c)との間を結合する分岐通路(14)と、
    前記分岐通路(14)に設けられ、前記気液分離器(13)からの液相冷媒を蒸発させて冷却能力を発揮する蒸発器(15)とを備え、
    サイクル内循環冷媒として、CO2と、CO2に比較して高沸点で、かつ、蒸発潜熱が大きい可燃性冷媒とを混合した混合冷媒を用いることを特徴とする混合冷媒冷凍サイクル。
  2. 前記可燃性冷媒は、フロンR152aであることを特徴とする請求項1に記載の混合冷媒冷凍サイクル。
  3. 前記可燃性冷媒は、炭化水素系冷媒であることを特徴とする請求項1に記載の混合冷媒冷凍サイクル。
  4. 前記気液分離器(13)内の気相冷媒を冷却する冷却手段(18)を有することを特徴とする請求項1ないし3のいずれか1つに記載の混合冷媒冷凍サイクル。
  5. 前記冷却手段は、前記気液分離器(13)内の液相冷媒の一部が減圧されて流入し、蒸発する補助蒸発器(18)であることを特徴とする請求項4に記載の混合冷媒冷凍サイクル。
JP2004294736A 2004-10-07 2004-10-07 混合冷媒冷凍サイクル Withdrawn JP2006105526A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294736A JP2006105526A (ja) 2004-10-07 2004-10-07 混合冷媒冷凍サイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294736A JP2006105526A (ja) 2004-10-07 2004-10-07 混合冷媒冷凍サイクル

Publications (1)

Publication Number Publication Date
JP2006105526A true JP2006105526A (ja) 2006-04-20

Family

ID=36375484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294736A Withdrawn JP2006105526A (ja) 2004-10-07 2004-10-07 混合冷媒冷凍サイクル

Country Status (1)

Country Link
JP (1) JP2006105526A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300002A (ja) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2010085042A (ja) * 2008-10-01 2010-04-15 Mitsubishi Electric Corp 冷凍サイクル装置
CN102226595A (zh) * 2011-05-31 2011-10-26 天津商业大学 一种两相流引射制冷系统
CN103471273A (zh) * 2013-09-02 2013-12-25 中国科学院理化技术研究所 混合工质制冷循环系统
CN107557153A (zh) * 2017-10-12 2018-01-09 太湖县纯野生态茶油有限责任公司 自动换热式茶籽油辅助脱色装置
WO2021047127A1 (zh) * 2019-09-11 2021-03-18 李华玉 逆向单工质蒸汽联合循环

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300002A (ja) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2010085042A (ja) * 2008-10-01 2010-04-15 Mitsubishi Electric Corp 冷凍サイクル装置
US8713962B2 (en) 2008-10-01 2014-05-06 Mitsubishi Electric Corporation Refrigerating cycle apparatus
CN102226595A (zh) * 2011-05-31 2011-10-26 天津商业大学 一种两相流引射制冷系统
CN103471273A (zh) * 2013-09-02 2013-12-25 中国科学院理化技术研究所 混合工质制冷循环系统
CN103471273B (zh) * 2013-09-02 2015-06-10 中国科学院理化技术研究所 混合工质制冷循环系统
CN107557153A (zh) * 2017-10-12 2018-01-09 太湖县纯野生态茶油有限责任公司 自动换热式茶籽油辅助脱色装置
WO2021047127A1 (zh) * 2019-09-11 2021-03-18 李华玉 逆向单工质蒸汽联合循环

Similar Documents

Publication Publication Date Title
JP4595607B2 (ja) エジェクタを使用した冷凍サイクル
JP4581720B2 (ja) エジェクタを用いたサイクル
JP4626531B2 (ja) エジェクタ式冷凍サイクル
JP4259478B2 (ja) 蒸発器構造およびエジェクタサイクル
JP3931899B2 (ja) エジェクタサイクル
US7367202B2 (en) Refrigerant cycle device with ejector
JP4661449B2 (ja) エジェクタ式冷凍サイクル
WO2014057656A1 (ja) 熱交換装置及びヒートポンプ装置
JP4400522B2 (ja) エジェクタ式冷凍サイクル
JP5018724B2 (ja) エジェクタ式冷凍サイクル
JP2007051833A (ja) エジェクタ式冷凍サイクル
JP2007057156A (ja) 冷凍サイクル
JP2005300067A (ja) エジェクタサイクル
JP2007040612A (ja) 蒸気圧縮式サイクル
JP4577365B2 (ja) エジェクタを用いたサイクル
JP4952830B2 (ja) エジェクタ式冷凍サイクル
JP2005037056A (ja) エジェクタサイクル
JP2006143124A (ja) 車両用冷凍サイクル装置
JP2005249315A (ja) エジェクタサイクル
JP2007078349A (ja) エジェクタサイクル
JP2006105526A (ja) 混合冷媒冷凍サイクル
JP4725449B2 (ja) エジェクタ式冷凍サイクル
JP6116810B2 (ja) 冷凍サイクル装置
JP4200780B2 (ja) 蒸気圧縮式冷凍機
JP2006118727A (ja) エジェクタサイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090305