JP2005249315A - エジェクタサイクル - Google Patents

エジェクタサイクル Download PDF

Info

Publication number
JP2005249315A
JP2005249315A JP2004061392A JP2004061392A JP2005249315A JP 2005249315 A JP2005249315 A JP 2005249315A JP 2004061392 A JP2004061392 A JP 2004061392A JP 2004061392 A JP2004061392 A JP 2004061392A JP 2005249315 A JP2005249315 A JP 2005249315A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporators
gas
ejector
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061392A
Other languages
English (en)
Inventor
Makoto Ikegami
真 池上
Hirotsugu Takeuchi
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004061392A priority Critical patent/JP2005249315A/ja
Publication of JP2005249315A publication Critical patent/JP2005249315A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Abstract

【課題】 エジェクタサイクルにおいて、複数の蒸発器5・6で複数の冷却対象空間を同時に異なる温度帯で冷却する。
【解決手段】 気液分離器4と複数の蒸発器5・6との間に圧力損失発生手段7を設けた。
これは、蒸発温度を低く制御したい蒸発器の上流側に圧力損失発生手段7を設けたものである。これによれば、複数の蒸発器5・6に常時冷媒を流すことができるため、複数の蒸発器5・6で同時に冷却作用を発揮することができる。これにより、複数の蒸発器5・6が同時に、同一または別々の冷却対象空間を冷却することができる。また、各々の蒸発器5・6にてエジェクタ3による省動力効果を活用可能であり、冷凍サイクルの効率を良くできると共に、各々の蒸発器5・6での蒸発温度が調節可能であり、複数の蒸発器5・6で複数の冷却対象空間を同時に異なる温度帯で冷却することができる。
【選択図】 図1

Description

本発明は、流体を減圧する減圧手段を成すと共に、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプであるエジェクタ(JIS Z 8126 番号2.1.2.3など参照)を有するエジェクタサイクルに関するものであり、複数の冷媒蒸発器(以下、蒸発器)で異なる温度帯を実現するような冷凍サイクル適用して有効である。
従来、複数の蒸発器を持つ冷凍サイクルとして、以下に示すようなものが知られている。まず、図4に示すように蒸気圧縮式冷凍サイクルにおいて、放熱器2下流側の冷媒流路を2つに分岐して、一方の蒸発器5は冷房用として車室内の冷房を行い、他方の蒸発器6は冷蔵用として冷蔵庫内の冷却を行うように配置したものが知られている。
このクールボックス付きカーエアコンのような複数の蒸発器を用いた冷凍サイクルでは、冷房用の冷媒流路と冷蔵用の冷媒流路とを切替弁や電磁弁11・12の組み合わせなどで切り替えると共に、室内冷房を行う蒸発器5と庫内冷蔵を行う蒸発器6とが所望蒸発温度となるよう、膨張弁などの減圧手段13・14を設けて両立させている。
また、図5に示すように冷媒減圧手段および冷媒循環手段としてエジェクタ3を使用した蒸気圧縮式冷凍サイクル(エジェクタサイクル)において、気液分離器4の下流側に蒸発器5・6を並列に配置して同時運転するものが知られている。このエジェクタサイクルによると、エジェクタ3を使用しているため、冷媒を膨張させる時のエネルギー損失を低減できる。
また、膨張時の冷媒の高速な流れにより生じる負圧を利用して、蒸発器6から排出される冷媒を吸引することにより、圧縮機1の負荷を軽減できる。このため、サイクルの冷凍能力が向上すると共に、圧縮機1の動力を低減することができる。また、蒸発器を2つ配置したため、2つの蒸発器5・6が別々の空間、または2つの蒸発器5・6で同一の空間を冷却することができる。
また、図6に示すように冷媒減圧手段および冷媒循環手段としてエジェクタ3を使用した蒸気圧縮式冷凍サイクル(エジェクタサイクル)において、エジェクタ3と気液分離器4との間に第2の蒸発器6を配置したものが知られている。これによれば、両蒸発器5・6間にエジェクタ3での昇圧分の蒸発温度差が生じる。
しかしながら、図4の冷凍サイクルでは、タイマーで冷房用の冷媒流路と冷蔵用の冷媒流路とを切り替えて運転するため、冷媒が流れていない流路にある蒸発器の温度が上昇し、切り替え直後の吹出温度が高温となってしまうという問題がある。また、エジェクタサイクルでの構成も提案されているが、図5の冷凍サイクルでは、気液分離器4から単純に分岐する構成のため、各々の蒸発器5・6ともエジェクタ3による昇圧効果が期待できるが、蒸発温度を別々に制御することはできない。
また、図6のエジェクタサイクルでは、エジェクタ3の吐出側に配置される蒸発器6には、エジェクタ3の昇圧効果(省動力効果)が適用されない。また、エジェクタ3の冷媒循環(気相冷媒の吸引)作用を維持しつつ、エジェクタ3よりも冷媒流れ下流の第1蒸発器5で冷媒を完全に蒸発させなければならないため、冷媒の流量を最適に調整することが難しいという問題もある。また、これらのエジェクタサイクルでは冷凍能力が必要な蒸発器にのみ冷媒を流すことができない点も大きな課題である。
本発明は、上記従来の問題に鑑みて成されたものであり、その目的は、エジェクタを使用した高効率の冷凍サイクルにおいて、複数の蒸発器で複数の冷却対象空間を同時に異なる温度帯で冷却することのできるエジェクタサイクルを提供することにある。更に、冷凍能力が必要な蒸発器でのみ冷却が行えるエジェクタサイクルを提供することにある。
本発明は上記目的を達成するために、請求項1ないし請求項6に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、冷媒を吸入して圧縮する圧縮機(1)と、圧縮機(1)が吐出する高圧冷媒の熱を放熱する放熱器(2)と、放熱器(2)から流出する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル部(3a)、ノズル部(3a)から噴射する高い速度の冷媒流により吸引部(3b)から気相冷媒を吸引し、ノズル部(3a)から噴射する冷媒と吸引部(3b)から吸引した気相冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部(3c、3d)を有するエジェクタ(3)と、エジェクタ(3)から流出する冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を蓄えると共に、液相冷媒を複数の蒸発器(5、6)に供給し、気相冷媒を圧縮機(1)に供給する気液分離器(4)と、気液分離器(4)の液冷媒出口下流側に並列接続され、気液分離器(4)から供給される液相冷媒を蒸発させ、その蒸発した冷媒を吸引部(3b)に供給する複数の蒸発器(5、6)とを備えたエジェクタサイクルにおいて、気液分離器(4)と複数の蒸発器(5、6)との間に圧力損失発生手段(7)を設けたことを特徴としている。
これは、図5の構成に加えて、蒸発温度を低く制御したい蒸発器(図1の例では蒸発器6)の上流側に圧力損失発生手段(7)を設けたものである。この請求項1に記載の発明によれば、複数の蒸発器(5、6)に常時冷媒を流すことができるため、複数の蒸発器(5、6)が同時に吸熱作用を発揮することができる。これにより、複数の蒸発器(5、6)が同時に、同一または別々の冷却対象空間を冷却することができる。
尚、図4に示した従来の冷凍サイクルのように、冷媒が通過する蒸発器の切り替えが無いため、当然に切り替え後の蒸発器の熱負荷に起因する不具合は解消される。また、各々の蒸発器(5、6)にてエジェクタ(3)による省動力効果を活用可能であり、冷凍サイクルの効率を良くできると共に、各々の蒸発器(5、6)での蒸発温度が調節可能であり、複数の蒸発器(5、6)で複数の冷却対象空間を同時に異なる温度帯で冷却することができる。
また、請求項2に記載の発明では、圧力損失発生手段(7)として液相冷媒を減圧する減圧手段(7)を用いたことを特徴としている。この請求項2に記載の発明によれば、圧力損失発生手段(7)としては、従来から用いているキャピラリチューブなどの固定絞りや膨張弁などの可変絞り、または、曲げやヘッド差などの配管レイアウトによる圧力損失発生手段などであっても良い。
また、請求項3に記載の発明では、冷媒流路選択手段(8〜10)を設け、気液分離器(4)から複数の蒸発器(5、6)へ液相冷媒を供給する複数の冷媒流路の中から流通させる流路を選択可能としたことを特徴としている。この請求項3に記載の発明によれば、例えば一方の蒸発器(5)のみや、他方の蒸発器(6)のみなどと、必要な蒸発器のみで冷却対象空間を冷却することができる。
また、請求項4に記載の発明では、冷媒流路選択手段(8〜10)として切替弁(8)を用いたことを特徴としている。この請求項4に記載の発明によれば、冷媒流路選択手段(8〜10)として、気液分離器(4)から複数の蒸発器(5、6)に分岐させる部位に、例えば三方弁などの切替弁(8)を構成して冷媒流路を切り替えるようにしても良い。
また、請求項5に記載の発明では、冷媒流路選択手段(8〜10)として開閉弁(9、10)を組み合せて用いたことを特徴としている。この請求項5に記載の発明によれば、冷媒流路選択手段(8〜10)として、気液分離器(4)から複数の蒸発器(5、6)に分岐させたそれぞれの冷媒流路に、例えば電磁開閉弁などの開閉弁(9、10)を組み合せて構成して冷媒流路を切り替えるようにしても良い。これにより、例えば一方の蒸発器(5)のみや、他方の蒸発器(6)のみや、両方の蒸発器(5、6)などと、必要な蒸発器にて冷却対象空間を冷却することができる。
また、請求項6に記載の発明では、冷媒は、フロン系冷媒・ハイドロカーボン系冷媒・二酸化炭素冷媒のいずれか1つであることを特徴としている。尚、ここでフロン系とは炭素・フッ素・塩素・水素からなる有機化合物の総称であり、冷媒として広く使用されているものである。フロン系冷媒には、HCFC(ハイドロ・クロロ・フルオロ・カーボン)系冷媒、HFC(ハイドロ・フルオロ・カーボン)系冷媒などが含まれており、これらはオゾン層を破壊しないため代替フロンと呼ばれる冷媒である。
また、HC(炭化水素)系冷媒とは、水素・炭素を含み、自然界に存在する冷媒物質のことである。このHC系冷媒には、R600a(イソブタン)、R290(プロパン)などがある。この請求項6に記載の発明によれば、これらフロン系冷媒・ハイドロカーボン系冷媒・二酸化炭素冷媒のいずれか1つを使用しても良い。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
(第1実施形態)
以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の第1実施形態におけるエジェクタサイクルを示す模式図であり、車両用空調装置の冷凍サイクルに適用した例で説明する。エジェクタサイクルには、冷媒が循環する冷媒循環経路が構成されており、冷媒循環経路には冷媒を吸入圧縮する圧縮機1が配置されている。この圧縮機1の冷媒流れ下流側には、圧縮機1が吐出する高圧冷媒の熱を放熱する放熱器2が配置されており、放熱器2よりも更に冷媒流れ下流側部位には、エジェクタ3が配置されている。
エジェクタ3は、圧縮機1で加圧され放熱器2を経由して流入する高圧冷媒の圧力エネルギー(圧力ヘッド)を速度エネルギー(速度ヘッド)に変換して冷媒を減圧膨張させるノズル3aと、そのノズル3aから噴射する高い速度の冷媒流により低圧側に接続した複数のエバポレータ(蒸発器)5・6で蒸発した気相冷媒を吸引する吸引部3bと、その吸引した冷媒とノズル3aから噴射する冷媒とを混合させる混合部3cと、速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ部3dとを有する。
尚、エジェクタ3から噴出する冷媒は、必ずしもディフィーザ部3dのみで昇圧されるものではなく、混合部3cにおいても、低圧側で蒸発した気相冷媒を吸引する際に冷媒圧力を上昇させるので、混台部3cとディフィーザ部3dとを総称して昇圧部と呼ぶ。また、本実施形態では、混合部3cの断面積はディフューザ部3dまで一定であるが、混合部3cの断面積をディフューザ部3dに向かうほど大きくなるようにテーパ状としても良い。
エジェクタ3から流出した冷媒は気液分離器4に流入される。気液分離器4は、冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を蓄えると共に、その液相冷媒を複数のエバポレータ5・6に供給し、気相冷媒は圧縮機1に供給するものである。そして、気液分離器4の液相冷媒出口下流側には、複数のエバポレータ5・6が並列接続されている。
第1エバポレータ5は、冷媒と車室内に吹き出す空気とを熱交換させて、冷媒を蒸発(吸熱)させることにより冷房能力を発揮するものである。また、第2エバポレータ6は、冷媒と冷蔵庫内の空気とを熱交換させて、冷媒を蒸発(吸熱)させることにより冷蔵能力を発揮するものである。これらの複数のエバポレータ5・6は、気液分離器4から供給される液相冷媒を蒸発させ、その蒸発した冷媒をエジェクタ3の吸引部3bに供給するようになっている。
また、本実施形態のエジェクタサイクルには、蒸発温度を低く制御したいエバポレータ(本実施形態では第2エバポレータ6とする)の上流側に圧力損失発生手段として減圧手段7を設けている。この減圧手段7は、従来から用いているキャピラリチューブなどの固定絞りや膨張弁などの可変絞り、または、曲げやヘッド差などの配管レイアウトによる圧力損失発生手段などであっても良い。
次に、上記構成において本実施形態の作動を説明する。圧縮機1が駆動すると、圧縮機1で圧縮されて高温高圧状態となった冷媒は吐出され、放熱器2に流入する。放熱器2では高温の冷媒が車室外空気へ放熱する、言い換えると冷媒が車室外空気により冷却されて液化凝縮する。
放熱器2から流出した液相冷媒は、エジェクタ3に流入してノズル部3aで減圧される。つまり、ノズル部3aで冷媒の圧力エネルギーが速度エネルギーに変換されている。このノズル部3aで高速度となって噴出口から噴出する冷媒は、この際に生じる断熱熱落差により、吸入部3bから第1・第2エバポレータ5・6にて蒸発した気相冷媒を吸引する。
そして、ノズル部3aから噴出した冷媒と吸引された冷媒とは、混合してディフューザ部3dに流入する。この時、冷媒の膨張エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。エジェクタ3から流出した冷媒は、気液分離器4に流入する。
気液分離器4では、冷媒が気相冷媒と液相冷媒とに分離され、液相冷媒は蓄えられると共に、その液相冷媒は複数のエバポレータ5・6に供給され、気相冷媒は圧縮機1に供給される。尚、第2エバポレータ6へ流れる冷媒は、減圧手段7によって減圧されてから供給される。
第1エバポレータ5では、冷媒が車室内へ流れる空気から吸熱する、言い換えると冷媒が車室内空気で加熱されて気化蒸発する。また、第2エバポレータ6では、冷蔵庫内の空気から吸熱する、言い換えると冷媒が冷蔵庫内空気で加熱されて気化蒸発する。そして、第1・第2エバポレータ5・6から流出した気相冷媒は、エジェクタ3の吸引部3bへ流れる。
次に、本実施形態での特徴と、その効果について述べる。まず、気液分離器4と複数のエバポレータ5・6との間に減圧手段7を設けている。これは、従来(図5)の構成に加えて、蒸発温度を低く制御したい蒸発器(本実施形態ではエバポレータ6)の上流側に減圧手段7を設けたものである。これによれば、複数のエバポレータ5・6に常時冷媒を流すことができるため、複数のエバポレータ5・6が同時に吸熱作用を発揮することができる。これにより、複数のエバポレータ5・6が同時に、同一または別々の冷却対象空間を冷却することができる。
尚、図4に示した従来の冷凍サイクルのように、冷媒が通過するエバポレータの切り替えが無いため、当然に切り替え後のエバポレータの熱負荷に起因する不具合は解消される。また、各々のエバポレータ5・6にてエジェクタ3による省動力効果を活用可能であり、冷凍サイクルの効率を良くできると共に、各々のエバポレータ5・6での蒸発温度が調節可能であり、複数のエバポレータ5・6で複数の冷却対象空間を同時に異なる温度帯で冷却することができる。
また、圧力損失発生手段7として液相冷媒を減圧する減圧手段7を用いている。これによれば、減圧手段7としては、従来から用いているキャピラリチューブなどの固定絞りや膨張弁などの可変絞り、または、曲げやヘッド差などの配管レイアウトによる圧力損失発生手段などであっても良い。
また、冷媒は、フロン系冷媒・ハイドロカーボン系冷媒・二酸化炭素冷媒のいずれか1つであるとしている。尚、ここでフロン系とは炭素・フッ素・塩素・水素からなる有機化合物の総称であり、冷媒として広く使用されているものである。フロン系冷媒には、HCFC(ハイドロ・クロロ・フルオロ・カーボン)系冷媒、HFC(ハイドロ・フルオロ・カーボン)系冷媒などが含まれており、これらはオゾン層を破壊しないため代替フロンと呼ばれる冷媒である。
また、HC(炭化水素)系冷媒とは、水素・炭素を含み、自然界に存在する冷媒物質のことである。このHC系冷媒には、R600a(イソブタン)、R290(プロパン)などがある。これによれば、これらフロン系冷媒・ハイドロカーボン系冷媒・二酸化炭素冷媒のいずれか1つを使用しても良い。
(第2実施形態)
図2は、本発明の第2実施形態におけるエジェクタサイクルを示す模式図である。上述した第1実施形態と異なるのは、冷媒流路選択手段8を設け、気液分離器4から複数のエバポレータ5・6へ液相冷媒を供給する複数の冷媒流路の中から流通させる流路を選択可能としている。これによれば、例えば一方のエバポレータ5のみや、他方のエバポレータ6のみなどと、必要なエバポレータのみで冷却対象空間を冷却することができる。
また、冷媒流路選択手段として切替弁8を用いている。これによれば、本実施形態のように冷媒流路選択手段として、気液分離器4から複数のエバポレータ5・6に分岐させる部位に、例えば三方弁などの切替弁8を構成して冷媒流路を切り替えるようにしても良い。
(第3実施形態)
図3は、本発明の第3実施形態におけるエジェクタサイクルを示す模式図である。上述した第1・第2実施形態と異なるのは、冷媒流路選択手段として第1・第2電磁開閉弁(開閉弁)9・10を組み合せて用いている。これによれば、冷媒流路選択手段として、気液分離器4から複数のエバポレータ5・6に分岐させたそれぞれの冷媒流路に、例えば電磁開閉弁などの開閉弁9・10を組み合せて構成して冷媒流路を切り替えるようにしても良い。これにより、例えば一方のエバポレータ5のみや、他方のエバポレータ6のみや、両方のエバポレータ5・6などと、必要なエバポレータにて冷却対象空間を冷却することができる。
(その他の実施形態)
上述の第1〜第3実施形態では本発明を車両用空調装置に適用した例を示したが、本発明は車両用空調装置に限らず、給湯器用のヒートポンプサイクルなどの蒸気圧縮式サイクルに適用しても良い。また、上述の第1〜第3実施形態では、冷媒の種類を特定しなかったが、冷媒はフロン系・HC系の代替フロン・二酸化炭素など、蒸気圧縮式冷凍サイクルに適用できるものであれば良い。
また、上述の第1〜第3実施形態では、エバポレータ5・6が2つの異なる冷凍能力を持つ冷凍サイクルであるが、3つ以上のエバポレータが異なる冷凍能力を発揮するものであっても良い。また、放熱器2の下流側にレシーバが配置されていても良い。また、上述の第1〜第3実施形態のエジェクタ3として、第1エバポレータ5の過熱度などを検知して流量調整機能を有する可変エジェクタを使用しても良いし、ノズル3aでの絞りが一定の固定エジェクタであっても良い。また、上述の第1〜第3実施形態では、2つの冷凍能力を発揮するエバポレータ5・6を別体で構成しているが、これらのエバポレータ5・6が一体となっていても良い。
本発明の第1実施形態におけるエジェクタサイクルを示す模式図である。 本発明の第2実施形態におけるエジェクタサイクルを示す模式図である。 本発明の第3実施形態におけるエジェクタサイクルを示す模式図である。 従来の複数の蒸発器を持つ冷凍サイクルを示す模式図である。 従来の複数の蒸発器を持つエジェクタサイクルを示す模式図である。 従来の複数の蒸発器を持つエジェクタサイクルを示す模式図である。
符号の説明
1…圧縮機
2…放熱器
3…エジェクタ
3a…ノズル部
3b…吸引部
3c…混合部(昇圧部)
3d…ディフューザ部(昇圧部)
4…気液分離器
5…第1エバポレータ(複数の蒸発器)
6…第2エバポレータ(複数の蒸発器)
7…減圧弁(減圧手段、圧力損失発生手段)
8…三方弁(切替弁、冷媒流路選択手段)
9…第1電磁開閉弁(開閉弁、冷媒流路選択手段)
10…第2電磁開閉弁(開閉弁、冷媒流路選択手段)

Claims (6)

  1. 冷媒を吸入して圧縮する圧縮機(1)と、
    前記圧縮機(1)が吐出する高圧冷媒の熱を放熱する放熱器(2)と、
    前記放熱器(2)から流出する前記高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル部(3a)、前記ノズル部(3a)から噴射する高い速度の冷媒流により吸引部(3b)から気相冷媒を吸引し、前記ノズル部(3a)から噴射する冷媒と前記吸引部(3b)から吸引した前記気相冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部(3c、3d)を有するエジェクタ(3)と、
    前記エジェクタ(3)から流出する冷媒を気相冷媒と液相冷媒とに分離して前記液相冷媒を蓄えると共に、前記液相冷媒を複数の蒸発器(5、6)に供給し、前記気相冷媒を前記圧縮機(1)に供給する気液分離器(4)と、
    前記気液分離器(4)の液相冷媒出口下流側に並列接続され、前記気液分離器(4)から供給される前記液相冷媒を蒸発させ、その蒸発した冷媒を前記吸引部(3b)に供給する前記複数の蒸発器(5、6)とを備えたエジェクタサイクルにおいて、
    前記気液分離器(4)と前記複数の蒸発器(5、6)との間に圧力損失発生手段(7)を設けたことを特徴とするエジェクタサイクル。
  2. 前記圧力損失発生手段(7)として前記液相冷媒を減圧する減圧手段(7)を用いたことを特徴とする請求項1に記載のエジェクタサイクル。
  3. 冷媒流路選択手段(8〜10)を設け、前記気液分離器(4)から前記複数の蒸発器(5、6)へ前記液相冷媒を供給する複数の冷媒流路の中から流通させる流路を選択可能としたことを特徴とする請求項1または請求項2に記載のエジェクタサイクル。
  4. 前記冷媒流路選択手段(8〜10)として切替弁(8)を用いたことを特徴とする請求項3に記載のエジェクタサイクル。
  5. 前記冷媒流路選択手段(8〜10)として開閉弁(9、10)を組み合せて用いたことを特徴とする請求項3に記載のエジェクタサイクル。
  6. 前記冷媒は、フロン系冷媒・ハイドロカーボン系冷媒・二酸化炭素冷媒のいずれか1つであることを特徴とする請求項1ないし請求項5のいずれか1つに記載のエジェクタサイクル。
JP2004061392A 2004-03-04 2004-03-04 エジェクタサイクル Pending JP2005249315A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061392A JP2005249315A (ja) 2004-03-04 2004-03-04 エジェクタサイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061392A JP2005249315A (ja) 2004-03-04 2004-03-04 エジェクタサイクル

Publications (1)

Publication Number Publication Date
JP2005249315A true JP2005249315A (ja) 2005-09-15

Family

ID=35029951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061392A Pending JP2005249315A (ja) 2004-03-04 2004-03-04 エジェクタサイクル

Country Status (1)

Country Link
JP (1) JP2005249315A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016004988A1 (en) * 2014-07-09 2016-01-14 Carrier Corporation Refrigeration system
US9625193B2 (en) 2012-12-27 2017-04-18 Denso Corporation Ejector
CN107923666A (zh) * 2015-08-14 2018-04-17 丹佛斯有限公司 具有至少两个蒸发器组的蒸气压缩系统
WO2018118609A1 (en) * 2016-12-21 2018-06-28 Carrier Corporation Ejector refrigeration system and control method thereof
CN110748937A (zh) * 2019-10-25 2020-02-04 河南理工大学 压缩机双压力工况大温差取热电驱动热泵机组及工作方法
JP2020029983A (ja) * 2018-08-22 2020-02-27 株式会社デンソー 冷凍サイクル装置
US10775086B2 (en) 2015-10-20 2020-09-15 Danfoss A/S Method for controlling a vapour compression system in ejector mode for a prolonged time
US11333449B2 (en) 2018-10-15 2022-05-17 Danfoss A/S Heat exchanger plate with strengthened diagonal area
US11408647B2 (en) 2019-02-02 2022-08-09 Carrier Corporation Enhanced thermally-driven ejector cycles
US11448427B2 (en) 2019-02-02 2022-09-20 Carrier Corporation Heat-recovery-enhanced refrigeration system
US11460230B2 (en) 2015-10-20 2022-10-04 Danfoss A/S Method for controlling a vapour compression system with a variable receiver pressure setpoint
US20230194130A1 (en) * 2021-12-22 2023-06-22 Hyundai Motor Company Thermal management system for vehicle including ejector
US11725858B1 (en) * 2022-03-08 2023-08-15 Bechtel Energy Technologies & Solutions, Inc. Systems and methods for regenerative ejector-based cooling cycles

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625193B2 (en) 2012-12-27 2017-04-18 Denso Corporation Ejector
US10801757B2 (en) 2014-07-09 2020-10-13 Carrier Corporation Refrigeration system
CN106537064A (zh) * 2014-07-09 2017-03-22 开利公司 制冷系统
RU2656775C1 (ru) * 2014-07-09 2018-06-06 Кэррие Корпорейшн Холодильная система
WO2016004988A1 (en) * 2014-07-09 2016-01-14 Carrier Corporation Refrigeration system
CN106537064B (zh) * 2014-07-09 2019-07-09 开利公司 制冷系统
CN107923666A (zh) * 2015-08-14 2018-04-17 丹佛斯有限公司 具有至少两个蒸发器组的蒸气压缩系统
US10816245B2 (en) 2015-08-14 2020-10-27 Danfoss A/S Vapour compression system with at least two evaporator groups
CN107923666B (zh) * 2015-08-14 2020-08-14 丹佛斯有限公司 具有至少两个蒸发器组的蒸气压缩系统
US11460230B2 (en) 2015-10-20 2022-10-04 Danfoss A/S Method for controlling a vapour compression system with a variable receiver pressure setpoint
US10775086B2 (en) 2015-10-20 2020-09-15 Danfoss A/S Method for controlling a vapour compression system in ejector mode for a prolonged time
WO2018118609A1 (en) * 2016-12-21 2018-06-28 Carrier Corporation Ejector refrigeration system and control method thereof
US11365913B2 (en) 2016-12-21 2022-06-21 Carrier Corporation Ejector refrigeration system and control method thereof
JP2020029983A (ja) * 2018-08-22 2020-02-27 株式会社デンソー 冷凍サイクル装置
JP7135583B2 (ja) 2018-08-22 2022-09-13 株式会社デンソー 冷凍サイクル装置
US11333449B2 (en) 2018-10-15 2022-05-17 Danfoss A/S Heat exchanger plate with strengthened diagonal area
US11408647B2 (en) 2019-02-02 2022-08-09 Carrier Corporation Enhanced thermally-driven ejector cycles
US11448427B2 (en) 2019-02-02 2022-09-20 Carrier Corporation Heat-recovery-enhanced refrigeration system
CN110748937A (zh) * 2019-10-25 2020-02-04 河南理工大学 压缩机双压力工况大温差取热电驱动热泵机组及工作方法
US20230194130A1 (en) * 2021-12-22 2023-06-22 Hyundai Motor Company Thermal management system for vehicle including ejector
US11725858B1 (en) * 2022-03-08 2023-08-15 Bechtel Energy Technologies & Solutions, Inc. Systems and methods for regenerative ejector-based cooling cycles

Similar Documents

Publication Publication Date Title
KR100798395B1 (ko) 이젝터-타입 냉동사이클 장치
JP4595607B2 (ja) エジェクタを使用した冷凍サイクル
US7779647B2 (en) Ejector and ejector cycle device
JP3931899B2 (ja) エジェクタサイクル
US20070271942A1 (en) Ejector cycle
JP2005308384A (ja) エジェクタサイクル
JP2007147198A (ja) エジェクタを用いた蒸気圧縮式冷凍サイクルおよびその低圧系部品
JP2005249315A (ja) エジェクタサイクル
JP2005300067A (ja) エジェクタサイクル
JP2008082693A (ja) 冷凍サイクル
JP4858399B2 (ja) 冷凍サイクル
JP5617791B2 (ja) 冷凍サイクル装置
JP4548266B2 (ja) 蒸気圧縮式冷凍サイクル装置
JP2008008572A (ja) エジェクタを用いた蒸気圧縮式冷凍サイクル
JP2005024210A (ja) 蒸気圧縮式冷凍機
JP2007078349A (ja) エジェクタサイクル
JP2006017444A (ja) エジェクタサイクルおよびその制御方法
JP4725449B2 (ja) エジェクタ式冷凍サイクル
JP2013213605A (ja) 冷凍サイクル及び冷凍冷蔵庫
JP2008051499A (ja) 冷凍サイクル装置および冷凍サイクル
JP2007057177A (ja) 蒸気圧縮式冷凍サイクル装置
JP2005265223A (ja) 冷凍サイクル装置および冷凍サイクル
JP2003343932A (ja) エジェクタサイクル
JP2006105526A (ja) 混合冷媒冷凍サイクル
JP4200780B2 (ja) 蒸気圧縮式冷凍機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212