WO2021047127A1 - 逆向单工质蒸汽联合循环 - Google Patents

逆向单工质蒸汽联合循环 Download PDF

Info

Publication number
WO2021047127A1
WO2021047127A1 PCT/CN2020/000214 CN2020000214W WO2021047127A1 WO 2021047127 A1 WO2021047127 A1 WO 2021047127A1 CN 2020000214 W CN2020000214 W CN 2020000214W WO 2021047127 A1 WO2021047127 A1 WO 2021047127A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
kilogram
endothermic
exothermic
working
Prior art date
Application number
PCT/CN2020/000214
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2021047127A1 publication Critical patent/WO2021047127A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the invention belongs to the technical fields of thermodynamics, refrigeration and heat pumps.
  • the main purpose of the present invention is to provide a reverse single working fluid steam combined cycle.
  • the specific content of the invention is described as follows:
  • Reverse single working fluid steam combined cycle refers to ten processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid Mass pressure boosting process 23, (M 1 +M 2 ) kg working fluid endothermic process 34, (M 1 +M 2 ) kg working fluid boosting process 45, (M 1 +M 2 ) kg working fluid heat release process 56 , M 2 kg working fluid exothermic process 67, M 2 kg working fluid depressurization process 73, M 1 kg working fluid boosting process 68, M 1 kg working fluid exothermic condensation process 89, M 1 kg working fluid depressurizing process 91—The closing process of composition.
  • Reverse single working fluid steam combined cycle refers to thirteen processes composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid boosting process 23, (M 1 +M 2 ) kg working fluid endothermic process 34, (M 1 +M 2 -X) kg working fluid endothermic process 45, (M 1 +M 2 -X) Kilogram working fluid boost process 56, (M 1 +M 2 -X) kilogram working fluid heat release process 67, X kilogram working fluid boost process 47, (M 1 +M 2 ) kg working fluid heat release process 78, M 2 kg refrigerant exothermic process 89, M 2 kilogram working fluid depressurisation 93, M 1 kilogram refrigerant bootstrapping 8c, M 1 kilogram refrigerant radiates heat and condenses process cd, M 1 kilogram refrigerant depressurization d1- -The closing process of the composition.
  • Reverse single working fluid steam combined cycle refers to the working fluid composed of M 1 kilogram and M 2 kilograms, and twelve processes that are carried out separately or jointly-M 1 kilogram working fluid endothermic vaporization process 12, M 1 kilogram Working fluid boosting process 23, (M 1 +M 2 ) kilogram working fluid endothermic process 34, (M 1 +M 2 ) kilogram working fluid boosting process 45, (M 1 +M 2 ) kilogram working fluid exothermic process 56, M 2 kg working fluid exothermic process 67, M 2 kg working fluid depressurization process 7a, M 2 kg working fluid endothermic process ab, M 2 kg working fluid depressurization process b3, M 1 kg working fluid boosting process 68, M 1 kg of working fluid exothermic condensation process 89, M 1 kg of working fluid depressurization process 91-a closed process of composition.
  • Reverse single working fluid steam combined cycle refers to the working fluid composed of M 1 kilogram and M 2 kilograms, and fifteen processes that are carried out separately or jointly or partly-M 1 kilogram of working fluid endothermic vaporization process 12, M 1 kg working fluid boosting process 23, (M 1 +M 2 ) kg working fluid endothermic process 34, (M 1 +M 2 -X) kg working fluid endothermic process 45, (M 1 +M 2 -X) Kilogram working fluid boost process 56, (M 1 +M 2 -X) kilogram working fluid heat release process 67, X kilogram working fluid boost process 47, (M 1 +M 2 ) kg working fluid heat release process 78, M 2 kg working fluid exothermic process 89, M 2 kg working fluid depressurization process 9a, M 2 kg working fluid endothermic process ab, M 2 kg working fluid depressurization process b3, M 1 kg working fluid boosting process 8c, M 1 kg of working fluid exothermic condensation process cd, M 1 kg of working fluid depressurization process d1-closed process of
  • Reverse single working fluid steam combined cycle refers to the working fluid consisting of M 1 kg and M 2 kg, which are carried out separately or together in 14 processes-M 1 kg working fluid endothermic vaporization process 12, M 1 kg Working fluid boosting process 23, (M 1 +M 2 ) kilogram working fluid endothermic process 34, (M 1 +M 2 ) kilogram working fluid boosting process 45, (M 1 +M 2 ) kilogram working fluid exothermic process 56, (M 2 -M) kg working fluid heat release process 67, (M 2 -M) kg working fluid pressure reduction process 7t, M 2 kg working fluid pressure reduction process t3, (M 1 +M) kg working fluid rise Pressure process 68, (M 1 +M) kg working fluid exothermic condensation process 8r, M kg working fluid depressurization process rs, M kg working fluid endothermic vaporization process st, M 1 kg working fluid exothermic process r9, M 1 Pressure reduction process of kilogram working fluid 91-a closed process of composition.
  • Reverse single working fluid steam combined cycle refers to the seventeen processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid boosting process 23, (M 1 +M 2 ) kg working fluid endothermic process 34, (M 1 +M 2 -X) kg working fluid endothermic process 45, (M 1 +M 2 -X) Kilogram working fluid boost process 56, (M 1 +M 2 -X) kilogram working fluid heat release process 67, X kilogram working fluid boost process 47, (M 1 +M 2 ) kg working fluid heat release process 78, ( M 2 -M) kg working fluid heat release process 89, (M 2 -M) kg working fluid pressure reduction process 9t, M 2 kg working fluid pressure reduction process t3, (M 1 +M) kg working fluid pressure increase process 8c , (M 1 +M) kg working fluid exothermic condensation process cr, M kg working fluid pressure reduction process rs, M kg working fluid endothermic vaporization process
  • the reverse single-working-substance steam combined cycle refers to any reverse single-working-substance steam combined cycle described in items 1-6, in which "M 1 kg of working fluid boosting process 23" is changed to "M 1
  • the pressure increase process of kilogram working fluid is 2z, and the heat absorption process of M 1 kilogram working fluid is z3", forming a reverse single working fluid steam combined cycle.
  • Fig. 1/7 is an example diagram of the first principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Fig. 2/7 is an example diagram of the second principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Fig. 3/7 is an example diagram of the third principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Fig. 4/7 is an example diagram of the fourth principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Fig. 5/7 is an example diagram of the fifth principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Fig. 6/7 is an example diagram of the sixth principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Fig. 7/7 is an example diagram of the seventh principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Working medium M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure rising process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2 ) Pressure increasing process of kilogram working fluid 45, (M 1 +M 2 ) kilogram working fluid exothermic cooling process 56, M 2 kilogram working fluid exothermic cooling process 67, M 2 kilogram working fluid depressurizing expansion process 73, M 1 kg Working fluid pressure increasing process 68, M 1 kg working fluid exothermic cooling, liquefaction and condensate cooling process 89, M 1 kg working fluid condensate pressure reduction process 91-a total of 10 processes.
  • M 1 kg of working fluid undergoes 12 processes to obtain low-temperature heat load, which is provided by the refrigerated medium or low-temperature heat source; (M 1 +M 2 ) kg of working fluid undergoes 34 processes to absorb heat, which can be Part of it is used to obtain the low-temperature heat load and part of it is met by reheating, or all of it is met by reheating.
  • the working medium is carried out-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure increasing process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2- X) Kilogram working fluid endothermic heating process 45, (M 1 +M 2 -X) kilogram working fluid boosting and heating process 56, (M 1 +M 2 -X) kilogram working fluid exothermic cooling process 67, X kilogram working fluid Pressure increasing process 47, (M 1 +M 2 ) kg working fluid exothermic cooling process 78, M 2 kg working fluid exothermic cooling process 89, M 2 kg working fluid decompression expansion process 93, M 1 kg working fluid Pressure increasing process 8c, M 1 kg working fluid exothermic cooling, liquefaction and condensate cooling process cd, M 1 kg working fluid condensate pressure reduction process d1-a total of 13 processes.
  • M 1 kg of working fluid is used for 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source;
  • M 1 +M 2 ) kg of working fluid is used for 34 processes of heat absorption.
  • (M 1 +M 2 -X) kg of working fluid undergoes 45 process heat absorption, which can be partly used to obtain low-temperature heat load. Part of it is satisfied by reheating, or all of it is satisfied by reheating.
  • Working medium M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure rising process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2 ) Pressure increasing process of kilogram working fluid 45, (M 1 +M 2 ) kilogram working fluid exothermic cooling process 56, M 2 kilogram working fluid exothermic cooling process 67, M 2 kilogram working fluid depressurizing expansion process 7a, M 2 kg Working fluid endothermic heating up ab, M 2 kg working fluid pressure reduction and expansion process b3, M 1 kg working fluid pressure increase and heating process 68, M 1 kg working fluid exothermic cooling, liquefaction and condensate cooling process 89, M 1 91 kg of working fluid condensate depressurization process-a total of 12 processes.
  • M 1 kg of working fluid undergoes 12 processes to obtain low-temperature heat load, which is provided by the refrigerated medium or low-temperature heat source, and the superheated part is satisfied by the condensate heat recovery; (M 1 +M 2 )
  • the endothermic process of 34 kilograms of working fluid can be partly used to obtain low-temperature heat load and partly satisfied by regenerative heat, or all of them are satisfied by regenerative heat; M 2 kg of working fluid can absorb heat during ab process, which can be regeneratively satisfied. To be satisfied, or to be satisfied by an external heat source.
  • the working medium is carried out-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure increasing process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2- X) Kilogram working fluid endothermic heating process 45, (M 1 +M 2 -X) kilogram working fluid boosting and heating process 56, (M 1 +M 2 -X) kilogram working fluid exothermic cooling process 67, X kilogram working fluid Pressure increasing process 47, (M 1 +M 2 ) kg working fluid exothermic cooling process 78, M 2 kg working fluid exothermic cooling process 89, M 2 kg working fluid decompression expansion process 9a, M 2 kg working fluid Endothermic heating ab, M 2 kg working fluid depressurization and expansion process b3, M 1 kg working fluid boosting and heating process 8c, M 1 kg working fluid exothermic cooling, liquefaction and condensate cooling process cd, M 1 kg working fluid Condensate pressure reduction process d1-a total of 15 processes.
  • M 1 kg of working fluid undergoes 12 processes to obtain low-temperature heat load, which is provided by the refrigerated medium or low-temperature heat source;
  • M 1 +M 2 kg of working fluid undergoes 34 processes to absorb heat, which can be Part of it is used to obtain low temperature heat load and part of it is satisfied by regenerative heat, or all is satisfied by regenerative heat;
  • M 1 +M 2 -X kilogram of working fluid undergoes 45 process heat absorption, which can be partly used to obtain low temperature heat load And part of it is satisfied by the regenerative heat, or all of it is satisfied by the regenerative heat; the heat absorption of the ab process of the M 2 kg working fluid can be satisfied by the regenerative heat or an external heat source.
  • Working medium M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure rising process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2 ) Kilogram working fluid pressure rising process 45, (M 1 +M 2 ) kilogram working fluid exothermic cooling process 56, (M 2 -M) kilogram working fluid exothermic cooling process 67, (M 2 -M) kilogram working fluid dropping Pressure expansion process 7t, M 2 kg working fluid depressurization expansion process t3, (M 1 +M) kg working fluid pressure increase and temperature rise process 68, (M 1 +M) kg working fluid heat release, cooling, liquefaction and condensate heat release Cooling process 8r, M kg working fluid pressure reduction process rs, M kg working fluid heat absorption, vaporization and overheating process st, M 1 kg working fluid condensate heat release process r9, M 1 kg working fluid condensate pressure reduction process 91 ——A total of 14 processes.
  • M 1 kg of working fluid undergoes 12 processes to obtain low-temperature heat load, which is provided by the refrigerated medium or low-temperature heat source; (M 1 +M 2 ) kg of working fluid undergoes 34 processes to absorb heat, which can be Part of it is used to obtain low-temperature heat load and part of it is met by regenerative heat, or all is met by regenerative heat; the heat absorption of M kg working fluid in the st process is generally satisfied by regenerative heat.
  • the working medium is carried out-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure increasing process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2- X) Kilogram working fluid endothermic heating process 45, (M 1 +M 2 -X) kilogram working fluid boosting and heating process 56, (M 1 +M 2 -X) kilogram working fluid exothermic cooling process 67, X kilogram working fluid Pressure increasing process 47, (M 1 +M 2 ) kg working fluid exothermic cooling process 78, (M 2 -M) kg working fluid exothermic cooling process 89, (M 2 -M) kg working fluid depressurization and expansion Process 9t, M 2 kg working fluid pressure reduction and expansion process t3, (M 1 +M) kg working fluid pressure increase and temperature increase process 8c, (M 1 +M) kg working fluid exothermic cooling, liquefaction and condensate cooling process cr, M kg working fluid depressurization process rs, M kg working fluid endothermic,
  • M 1 kg of working fluid undergoes 12 processes to obtain low-temperature heat load, which is provided by the refrigerated medium or low-temperature heat source;
  • M 1 +M 2 kg of working fluid undergoes 34 processes to absorb heat, which can be Part of it is used to obtain low temperature heat load and part of it is satisfied by regenerative heat, or all is satisfied by regenerative heat;
  • M 1 +M 2 -X kilogram of working fluid undergoes 45 process heat absorption, which can be partly used to obtain low temperature heat load And part of it is satisfied by the regenerative heat, or the whole is satisfied by the regenerative heat; the heat absorption of the M kg working fluid in the st process can be satisfied by the regenerative heat.
  • the rs process and the d1 process of the M 1 kg working fluid can be completed by a turbine or a throttle valve; the pressure-reducing expansion work is less than the pressure boosting work, and the insufficient part (circulation net work) is provided by the outside to form a reverse single working substance steam Combined cycle.
  • a single working fluid is conducive to production and storage; reduces operating costs and improves the flexibility of cycle adjustment
  • the working fluid has a wide application range, can well adapt to the energy supply demand, and the matching between the working fluid and the working parameters is flexible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

逆向单工质蒸汽联合循环,属于热力学、制冷与热泵技术领域,是指由M1千克和M2千克组成的工质,分别或共同进行的十个过程——M1千克工质吸热汽化过程12,M1千克工质升压过程23,(M1+M2)千克工质吸热过程34,(M1+M2)千克工质升压过程45,(M1+M2)千克工质放热过程56,M2千克工质放热过程67,M2千克工质降压过程73,M1千克工质升压过程68,M1千克工质放热冷凝过程89,M1千克工质降压过程91——组成的闭合过程。

Description

逆向单工质蒸汽联合循环 技术领域:
本发明属于热力学、制冷与热泵技术领域。
背景技术:
冷需求、热需求和动力需求,为人类生活与生产当中所常见;其中,利用机械能转换为热能是实现制冷和高效供热的重要方式。一般情况下,制冷时冷却介质的温度是变化的,制热时被加热介质的温度往往也是变化的;利用机械能制热时,很多时候被加热介质同时具有变温和高温双重特点,这使得采用单一热力循环理论实现制冷或供热时性能指数不合理;这些存在的问题是——性能指数不合理,供热参数不高,压缩比较高,工作压力太大。
从基础理论看,长久以来存在重大不足:(1)采用逆向朗肯循环为理论基础的蒸汽压缩式制冷或热泵循环,放热主要依靠冷凝过程,导致放热时工质与被加热介质之间温差损失大;同时,冷凝液的降压过程损失较大或利用代价高;采用超临界工况时,压缩比较高,使得压缩机的制造代价大,安全性降低等。(2)采用逆向布雷顿循环为理论基础的气体压缩式制冷或热泵循环,要求压缩比较低,这限制了供热参数的提高;同时,低温过程是变温的,这使得制冷或制热时低温环节往往存在较大的温差损失,性能指数不理想。
在热科学基础理论体系中,热力循环的创建及发展应用将对能源利用的飞跃起到重大作用,将积极推动社会进步和生产力发展;其中,逆向热力循环是机械能制冷或制热利用装置的理论基础,也是相关能源利用系统的核心。针对长久以来存在的问题,从简单、主动和高效地利用机械能进行制冷或制热的原则出发,力求为制冷或热泵装置的简单、主动和高效提供基本理论支撑,本发明提出了逆向单工质蒸汽联合循环。
发明内容:
本发明主要目的是要提供逆向单工质蒸汽联合循环,具体发明内容分项阐述如下:
1.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,M 2千克工质放热过程67,M 2千克工质降压过程73,M 1千克工质升压过程68,M 1千克工质放热冷凝过程89,M 1千克工质降压过程91——组成的闭合过程。
2.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十三个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,M 2千克工质放热过程89,M 2千克工质降压过程93,M 1千克工质升压过程8c,M 1千克工质放热冷凝过程cd,M 1千克工质降压过程d1——组成的闭合过程。
3.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行 的十二个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,M 2千克工质放热过程67,M 2千克工质降压过程7a,M 2千克工质吸热过程ab,M 2千克工质降压过程b3,M 1千克工质升压过程68,M 1千克工质放热冷凝过程89,M 1千克工质降压过程91——组成的闭合过程。
4.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,M 2千克工质放热过程89,M 2千克工质降压过程9a,M 2千克工质吸热过程ab,M 2千克工质降压过程b3,M 1千克工质升压过程8c,M 1千克工质放热冷凝过程cd,M 1千克工质降压过程d1——组成的闭合过程。
5.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,(M 2-M)千克工质放热过程67,(M 2-M)千克工质降压过程7t,M 2千克工质降压过程t3,(M 1+M)千克工质升压过程68,(M 1+M)千克工质放热冷凝过程8r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程r9,M 1千克工质降压过程91——组成的闭合过程。
6.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十七个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,(M 2-M)千克工质放热过程89,(M 2-M)千克工质降压过程9t,M 2千克工质降压过程t3,(M 1+M)千克工质升压过程8c,(M 1+M)千克工质放热冷凝过程cr,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程rd,M 1千克工质降压过程d1——组成的闭合过程。
7.逆向单工质蒸汽联合循环,是在第1-6项所述的任一逆向单工质蒸汽联合循环中,将其中的“M 1千克工质升压过程23”变更为“M 1千克工质升压过程2z,M 1千克工质吸热过程z3”,形成逆向单工质蒸汽联合循环。
附图说明:
图1/7是依据本发明所提供的逆向单工质蒸汽联合循环第1种原则性流程示例图。
图2/7是依据本发明所提供的逆向单工质蒸汽联合循环第2种原则性流程示例图。
图3/7是依据本发明所提供的逆向单工质蒸汽联合循环第3种原则性流程示例图。
图4/7是依据本发明所提供的逆向单工质蒸汽联合循环第4种原则性流程示例图。
图5/7是依据本发明所提供的逆向单工质蒸汽联合循环第5种原则性流程示例图。
图6/7是依据本发明所提供的逆向单工质蒸汽联合循环第6种原则性流程示例图。
图7/7是依据本发明所提供的逆向单工质蒸汽联合循环第7种原则性流程示例图。
具体实施方式:
首先要说明的是,在流程的表述上,非必要情况下不重复进行,对显而易见的流程不作表述;下面结合附图和实例详细描述本发明。
图1/7所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2)千克工质升压升温过程45,(M 1+M 2)千克工质放热降温过程56,M 2千克工质放热降温过程67,M 2千克工质降压膨胀过程73,M 1千克工质升压升温过程68,M 1千克工质放热降温、液化和冷凝液放热降温过程89,M 1千克工质冷凝液降压过程91——共10个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2)千克工质进行56过程的放热,M 1千克工质进行89过程的放热,以及M 2千克工质进行67过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足。
③能量转换过程——M 1千克工质进行23、68两过程和(M 1+M 2)千克工质进行45过程,一般由压缩机来完成,需要机械能;M 2千克工质进行73过程由膨胀机来完成并提供机械能,M 1千克工质进行91过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图2/7所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2-X)千克工质吸热升温过程45,(M 1+M 2-X)千克工质升压升温过程56,(M 1+M 2-X)千克工质放热降温过程67,X千克工质升压升温过程47,(M 1+M 2)千克工质放热降温过程78,M 2千克工质放热降温过程89,M 2千克工质降压膨胀过程93,M 1千克工质升压升温过程8c,M 1千克工质放热降温、液化和冷凝液放热降温过程cd,M 1千克工质冷凝液降压过程d1——共13个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行67过程的放热,(M 1+M 2)千克工质进行78过程的放热,M 1千克工质进行cd过程的放热,以及M 2千克工质进行89过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程和(M 1+M 2-X)千克工质进行45过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可用于获取低温热负荷,或者 部分用于获取低温热负荷而部分由回热来满足;(M 1+M 2-X)千克工质进行45过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足。
③能量转换过程——M 1千克工质进行23、8c两过程,以及(M 1+M 2-X)千克工质进行56过程和X千克工质进行47过程,一般由压缩机来完成,需要机械能;M 2千克工质进行93过程由膨胀机来完成并提供机械能,M 1千克工质进行d1过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图3/7所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2)千克工质升压升温过程45,(M 1+M 2)千克工质放热降温过程56,M 2千克工质放热降温过程67,M 2千克工质降压膨胀过程7a,M 2千克工质吸热升温ab,M 2千克工质降压膨胀过程b3,M 1千克工质升压升温过程68,M 1千克工质放热降温、液化和冷凝液放热降温过程89,M 1千克工质冷凝液降压过程91——共12个过程。
(2)从能量转换上看:
①放热过程——一般地,(M 1+M 2)千克工质进行56过程的放热,M 1千克工质进行89过程的放热,以及M 2千克工质进行67过程的放热,其高温部分一般用于被加热介质,低温部分一般用于M 2千克工质进行ab过程和(M 1+M 2)千克工质进行34过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供,其过热部分或由冷凝液回热来满足;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M 2千克工质进行ab过程的吸热,可由回热来满足,或者由外部热源来满足。
③能量转换过程——M 1千克工质进行23、68两过程,以及(M 1+M 2)千克工质进行45过程,一般由压缩机来完成,需要机械能;M 2千克工质进行7a、b3过程由膨胀机来完成并提供机械能,M 1千克工质进行91过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图4/7所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2-X)千克工质吸热升温过程45,(M 1+M 2-X)千克工质升压升温过程56,(M 1+M 2-X)千克工质放热降温过程67,X千克工质升压升温过程47,(M 1+M 2)千克工质放热降温过程78,M 2千克工质放热降温过程89,M 2千克工质降压膨胀过程9a,M 2千克工质吸热升温ab,M 2千克工质降压膨胀过程b3,M 1千克工质升压升温过程8c,M 1千克工质放热降温、液化和冷凝液放热降温过程cd,M 1千克工质冷凝液降压过程d1——共15个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行67过程的放热,(M 1+M 2)千克工质进 行78过程的放热,M 1千克工质进行cd过程的放热,以及M 2千克工质进行89过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程、(M 1+M 2-X)千克工质进行45过程和M 2千克工质进行ab过程的热需求;其中,M 1千克工质进行cd过程的低温段放热,可用于M 1千克工质12过程的过热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;(M 1+M 2-X)千克工质进行45过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M 2千克工质进行ab过程的吸热,可由回热来满足,或者由外部热源来满足。
③能量转换过程——M 1千克工质进行23、8c两过程,以及(M 1+M 2-X)千克工质进行56过程和X千克工质进行47过程,一般由压缩机来完成,需要机械能;M 2千克工质进行9a、b3过程由膨胀机来完成并提供机械能,M 1千克工质进行d1过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图5/7所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2)千克工质升压升温过程45,(M 1+M 2)千克工质放热降温过程56,(M 2-M)千克工质放热降温过程67,(M 2-M)千克工质降压膨胀过程7t,M 2千克工质降压膨胀过程t3,(M 1+M)千克工质升压升温过程68,(M 1+M)千克工质放热降温、液化和冷凝液放热降温过程8r,M千克工质降压过程rs,M千克工质吸热、汽化和过热过程st,M 1千克工质冷凝液放热降温过程r9,M 1千克工质冷凝液降压过程91——共14个过程。
(2)从能量转换上看:
①放热过程——一般地,(M 1+M 2)千克工质进行56过程的放热,(M 1+M)千克工质进行8r过程的放热,以及(M 2-M)千克工质进行67过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程和M千克工质进行st过程的热需求;M 1千克工质冷凝液进行r9过程的放热,一般用于(M 1+M 2)千克工质进行34过程低温段的加热。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M千克工质进行st过程的吸热,一般由回热来满足。
③能量转换过程——M 1千克工质进行23过程,(M 1+M 2)千克工质进行45过程,以及(M 1+M)千克工质进行68过程,一般由压缩机来完成,需要机械能;(M 2-M)千克工质降压膨胀过程7t和M 2千克工质降压膨胀过程t3由膨胀机来完成并提供机械能,M千克工质进行rs过程和M 1千克工质进行91过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图6/7所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2-X)千克工质吸热升温过程45,(M 1+M 2-X)千克工质升压升温过程56,(M 1+M 2-X)千克工质放热降温过程67,X千克工质升压升温过程47,(M 1+M 2)千克工质放热降温过程78,(M 2-M)千克工质放热降温过程89,(M 2-M)千克工质降压膨胀过程9t,M 2千克工质降压膨胀过程t3,(M 1+M)千克工质升压升温过程8c,(M 1+M)千克工质放热降温、液化和冷凝液放热降温过程cr,M千克工质降压过程rs,M千克工质吸热、汽化和过热过程st,M 1千克工质冷凝液放热降温过程rd,M 1千克工质冷凝液降压过程d1——共17个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行67过程的放热,(M 1+M 2)千克工质进行78过程的放热,(M 1+M)千克工质进行cr过程的放热,(M 2-M)千克工质进行89过程的放热,以及M 1千克工质冷凝液进行rd过程的放热,其高温部分—般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程、(M 1+M 2-X)千克工质进行45过程和M千克工质进行st过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;(M 1+M 2-X)千克工质进行45过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M千克工质进行st过程的吸热,可由回热来满足。
③能量转换过程——M 1千克工质进行23过程,(M 1+M 2-X)千克工质进行56过程,X千克工质进行47过程,以及(M 1+M)千克工质进行8c过程,一般由压缩机来完成,需要机械能;(M 2-M)千克工质降压膨胀过程9t和M 2千克工质降压膨胀过程t3由膨胀机来完成并提供机械能,M千克工质进行rs过程和M 1千克工质进行d1过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图7/7所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
在图1/7所示的逆向单工质蒸汽联合循环示例中,将其中的“M 1千克工质升压升温过程23”变更为“M 1千克工质升压升温过程2z,M 1千克工质吸热过程z3”;也就是,M 1千克工质升压升温过程23被M 1千克工质升压升温过程2z所取代,并增加M 1千克工质吸热过程z3;M 1千克工质进行z3过程的吸热可由回热来满足,形成逆向单工质蒸汽联合循环。
本发明技术可以实现的效果——本发明所提出的逆向单工质蒸汽联合循环,具有如下效果和优势:
(1)创建机械能制冷与制热利用(能差利用)基础理论。
(2)消除或较大幅度减少相变放热过程的热负荷,相对增加高温段放热负荷,实现逆向循环性能指数合理化。
(3)工质参数范围得到大幅度扩展,实现高效高温供热。
(4)为降低工作压力和提高装置安全性提供理论基础。
(5)降低循环压缩比,为核心设备的选取和制造提供方便。
(6)方法简单,流程合理,适用性好,是实现能差有效利用的共性技术。
(7)单一工质,有利于生产和储存;降低运行成本,提高循环调节的灵活性
(8)过程共用,减少过程,为减少设备投资提供理论基础。
(9)在高温区或变温区,有利于降低放热环节的温差传热损失,提高性能指数。
(10)在高温供热区采取低压运行方式,缓解或解决传统制冷与热泵装置中性能指数、循环介质参数与管材耐压耐温性能之间的矛盾。
(11)在实现高性能指数前提下,可选择低压运行,为提高装置运行安全性提供理论支撑。
(12)工质适用范围广,能够很好地适应供能需求,工质与工作参数之间匹配灵活。
(13)扩展了机械能进行冷热高效利用的热力循环范围,有利于更好地实现机械能在制冷、高温供热和变温供热领域的高效利用。

Claims (7)

  1. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,M 2千克工质放热过程67,M 2千克工质降压过程73,M 1千克工质升压过程68,M 1千克工质放热冷凝过程89,M 1千克工质降压过程91——组成的闭合过程。
  2. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十三个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,M 2千克工质放热过程89,M 2千克工质降压过程93,M 1千克工质升压过程8c,M 1千克工质放热冷凝过程cd,M 1千克工质降压过程d1——组成的闭合过程。
  3. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,M 2千克工质放热过程67,M 2千克工质降压过程7a,M 2千克工质吸热过程ab,M 2千克工质降压过程b3,M 1千克工质升压过程68,M 1千克工质放热冷凝过程89,M 1千克工质降压过程91——组成的闭合过程。
  4. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,M 2千克工质放热过程89,M 2千克工质降压过程9a,M 2千克工质吸热过程ab,M 2千克工质降压过程b3,M 1千克工质升压过程8c,M 1千克工质放热冷凝过程cd,M 1千克工质降压过程d1——组成的闭合过程。
  5. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,(M 2-M)千克工质放热过程67,(M 2-M)千克工质降压过程7t,M 2千克工质降压过程t3,(M 1+M)千克工质升压过程68,(M 1+M)千克工质放热冷凝过程8r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程r9,M 1千克工质降压过程91——组成的闭合过程。
  6. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十七个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47, (M 1+M 2)千克工质放热过程78,(M 2-M)千克工质放热过程89,(M 2-M)千克工质降压过程9t,M 2千克工质降压过程t3,(M 1+M)千克工质升压过程8c,(M 1+M)千克工质放热冷凝过程cr,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程rd,M 1千克工质降压过程d1——组成的闭合过程。
  7. 逆向单工质蒸汽联合循环,是在权利要求1-6所述的任一逆向单工质蒸汽联合循环中,将其中的“M 1千克工质升压过程23”变更为“M 1千克工质升压过程2z,M 1千克工质吸热过程z3”,形成逆向单工质蒸汽联合循环。
PCT/CN2020/000214 2019-09-11 2020-09-07 逆向单工质蒸汽联合循环 WO2021047127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910885950 2019-09-11
CN201910885950.X 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021047127A1 true WO2021047127A1 (zh) 2021-03-18

Family

ID=74866926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000214 WO2021047127A1 (zh) 2019-09-11 2020-09-07 逆向单工质蒸汽联合循环

Country Status (2)

Country Link
CN (1) CN115342545A (zh)
WO (1) WO2021047127A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105526A (ja) * 2004-10-07 2006-04-20 Denso Corp 混合冷媒冷凍サイクル
US20160096629A1 (en) * 2013-03-14 2016-04-07 Rolls-Royce Corporation Trans-critical vapor cycle system with improved heat rejection
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN108019245A (zh) * 2016-12-15 2018-05-11 李华玉 多重联合循环动力装置
CN108119196A (zh) * 2017-12-07 2018-06-05 李华玉 联合循环动力装置
CN108119195A (zh) * 2016-12-20 2018-06-05 李华玉 联合循环动力装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953453B (zh) * 2015-04-13 2021-04-16 李华玉 双向热力循环与第一类热驱动压缩式热泵
CN106440510B (zh) * 2016-02-25 2020-05-29 李华玉 第二类热驱动压缩式热泵
CN106352601B (zh) * 2016-03-14 2020-04-07 李华玉 第三类热驱动压缩式热泵
CN108679880B (zh) * 2017-03-30 2021-07-27 李华玉 双工质联合循环压缩式热泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105526A (ja) * 2004-10-07 2006-04-20 Denso Corp 混合冷媒冷凍サイクル
US20160096629A1 (en) * 2013-03-14 2016-04-07 Rolls-Royce Corporation Trans-critical vapor cycle system with improved heat rejection
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN108019245A (zh) * 2016-12-15 2018-05-11 李华玉 多重联合循环动力装置
CN108119195A (zh) * 2016-12-20 2018-06-05 李华玉 联合循环动力装置
CN108119196A (zh) * 2017-12-07 2018-06-05 李华玉 联合循环动力装置

Also Published As

Publication number Publication date
CN115342545A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2021047127A1 (zh) 逆向单工质蒸汽联合循环
WO2020215814A1 (zh) 单工质蒸汽联合循环
WO2020211472A1 (zh) 单工质蒸汽联合循环
WO2021047125A1 (zh) 逆向单工质蒸汽联合循环
WO2021047126A1 (zh) 逆向单工质蒸汽联合循环
WO2020248589A1 (zh) 逆向单工质蒸汽联合循环
WO2020248591A1 (zh) 逆向单工质蒸汽联合循环
WO2021068431A1 (zh) 单工质联合循环热泵装置
CN112344579A (zh) 逆向单工质蒸汽联合循环
WO2020248588A1 (zh) 逆向单工质蒸汽联合循环
WO2021072988A1 (zh) 逆向单工质蒸汽联合循环与单工质联合循环热泵装置
WO2020248590A1 (zh) 逆向单工质蒸汽联合循环
WO2020248592A1 (zh) 逆向单工质蒸汽联合循环
WO2021042646A1 (zh) 单工质蒸汽联合循环
WO2021042648A1 (zh) 单工质蒸汽联合循环
WO2021042649A1 (zh) 单工质蒸汽联合循环
WO2021253810A1 (zh) 第二类单工质联合循环
WO2020215817A1 (zh) 单工质蒸汽联合循环
WO2021042647A1 (zh) 单工质蒸汽联合循环
WO2021143550A1 (zh) 双向第一类单工质联合循环
WO2020215815A1 (zh) 单工质蒸汽联合循环
WO2020211474A1 (zh) 单工质蒸汽联合循环
WO2020215816A1 (zh) 单工质蒸汽联合循环
WO2020211475A1 (zh) 单工质蒸汽联合循环
WO2021258718A1 (zh) 第二类单工质联合循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862543

Country of ref document: EP

Kind code of ref document: A1