WO2021258718A1 - 第二类单工质联合循环 - Google Patents

第二类单工质联合循环 Download PDF

Info

Publication number
WO2021258718A1
WO2021258718A1 PCT/CN2021/000130 CN2021000130W WO2021258718A1 WO 2021258718 A1 WO2021258718 A1 WO 2021258718A1 CN 2021000130 W CN2021000130 W CN 2021000130W WO 2021258718 A1 WO2021258718 A1 WO 2021258718A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
exothermic
boosting
endothermic
kilogram
Prior art date
Application number
PCT/CN2021/000130
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2021258718A1 publication Critical patent/WO2021258718A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the invention belongs to the field of thermodynamics and heating technology.
  • the present invention In view of the temperature-variable medium-temperature heat resource and high-temperature heat demand, the present invention also considers the use of power drive or the power demand at the same time.
  • the main purpose of the present invention is to provide the second type of single working fluid combined cycle.
  • the specific content of the invention is described as follows:
  • the second type of single working fluid combined cycle refers to ten processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg of working fluid boost process 12, M 1 kg of working fluid Endothermic vaporization process 23, M 2 kg working fluid boosting process 83, M 3 kg working fluid endothermic process 34, M 3 kg working fluid boosting process 45, M 3 kg working fluid exothermic process 56, M 3 kg Working fluid depressurization process 67, M 3 kg working fluid exothermic process 78, M 1 kg working fluid depressurization process 89, M 1 kg working fluid exothermic and condensation process 91—composition closed process; where M 3 is M The sum of 1 and M 2.
  • the second type of single working fluid combined cycle refers to the eleven processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly-M 1 kg working fluid boost process 12, M 2 kg Working fluid boost process 93, M 2 kg working fluid endothermic process 34, M 1 kg working fluid endothermic vaporization process 25, M 2 kg working fluid boosting process 45, M 3 kg working fluid boosting process 56, M 3 Kilogram working fluid exothermic process 67, M 3 kilogram working fluid depressurizing process 78, M 3 kilogram working fluid exothermic process 89, M 1 kilogram working fluid depressurizing process 9c, M 1 kg working fluid exothermic condensation process c1——
  • the closing process of the composition where M 3 is the sum of M 1 and M 2.
  • the second type of single working fluid combined cycle refers to the eleven processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic vaporization process 24, M 2 kg working fluid boosting process 93, M 2 kg working fluid endothermic process 35, M 1 kg working fluid boosting process 45, M 3 kg working fluid boosting process 56, M 3 Kilogram working fluid exothermic process 67, M 3 kilogram working fluid depressurizing process 78, M 3 kilogram working fluid exothermic process 89, M 1 kilogram working fluid depressurizing process 9c, M 1 kg working fluid exothermic condensation process c1——
  • the closing process of the composition where M 3 is the sum of M 1 and M 2.
  • the second type of single working fluid combined cycle refers to the thirteen processes that are composed of M 1 kg and M 2 kg, which are carried out separately or together-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic vaporization process 23, M 2 kg working fluid boosting process c3, M 3 kg working fluid endothermic process 34, M 3 kg working fluid boosting process 45, M 3 kg working fluid exothermic process 56, X kg Working fluid pressure reduction process 67, (M 3 -X) kg working fluid heat release process 68, (M 3 -X) kg working fluid pressure reduction process 89, X kg working fluid heat release process 79, M 3 kg working fluid release Thermal process 9c, M 1 kg working fluid depressurization process cd, M 1 kg working fluid exothermic condensation process d1-a closed process of composition; where M 3 is the sum of M 1 and M 2.
  • the second type of single working fluid combined cycle refers to the fourteen processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic vaporization process 23, M 1 kg working fluid boosting process 34, M 1 kg working fluid exothermic process 45, M 1 kg working fluid depressurizing over 56, M 1 kg working fluid exothermic process 6d, M 2 kg refrigerant bootstrapping e7, M 2 kg refrigerant endothermic process 78, M 2 kg bootstrapping working medium 89, M 2 kg refrigerant exothermic process 9c, M 2 kg working fluid depressurisation cd, M 3 Kilogram working fluid exothermic process de, M 1 kilogram working fluid depressurization process ef, M 1 kilogram working fluid exothermic condensation process f1——composition closed process; where M 3 is the sum of M 1 and M 2.
  • the second type of single working fluid combined cycle refers to the thirteen processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, M 2 kg working fluid boosting process 8a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid Mass boosting process a3, M 3 kg working fluid endothermic process 34, M 3 kg working fluid boosting process 45, M 3 kg working fluid exothermic process 56, M 3 kg working fluid depressurizing process 67, M 3 kg working fluid Mass exothermic process 78, M 1 kg working fluid depressurization process 89, M 1 kg working fluid exothermic condensation process 91—composition closed process; among them, M 3 is the sum of M 1 and M 2.
  • the second type of single working fluid combined cycle refers to the fourteen processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, M 2 kg working fluid boosting process 9a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a3, (M 2 -M) kg working fluid Endothermic process 34, (M 1 +M) kilogram working fluid endothermic vaporization process b5, (M 2 -M) kilogram working fluid boosting process 45, M 3 kilogram working fluid boosting process 56, M 3 kilogram working fluid releasing Thermal process 67, M 3 kg working fluid depressurization process 78, M 3 kg working fluid exothermic process 89, M 1 kg working fluid depressurization process 9c, M 1 kg working fluid exothermic condensation process c1——composition closed process ; Among them, M 3 is the sum of M 1 and M 2.
  • the second type of single working fluid combined cycle refers to the fourteen processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, M 2 kg working fluid boosting process 9a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a3, (M 1 +M) kg working fluid Endothermic vaporization process b4, (M 2 -M) kg working fluid endothermic process 35, (M 1 +M) kg working fluid boost process 45, M 3 kg working fluid boost process 56, M 3 kg working fluid release Thermal process 67, M 3 kg working fluid depressurization process 78, M 3 kg working fluid exothermic process 89, M 1 kg working fluid depressurization process 9c, M 1 kg working fluid exothermic condensation process c1——composition closed process ; Among them, M 3 is the sum of M 1 and M 2.
  • the second type of single working fluid combined cycle refers to the sixteen processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, M 2 kg working fluid boosting process ca, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid Mass pressure increase process a3, M 3 kg working fluid endothermic process 34, M 3 kg working fluid pressure increase process 45, M 3 kg working fluid heat release process 56, X kg working fluid pressure reduction process 67, (M 3 -X ) Kilogram working fluid heat release process 68, (M 3 -X) Kilogram working fluid pressure reduction process 89, X kg working fluid heat release process 79, M 3 kg working fluid heat release process 9c, M 1 kg working fluid pressure reduction process cd, M 1 kg of working fluid exothermic condensation process d1-a closed process of composition; where M 3 is the sum of M 1 and M 2.
  • the second type of single working fluid combined cycle refers to the seventeen processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kilogram working fluid endothermic vaporization process b3, (M 1 +M) kilogram working fluid boosting process 34, (M 1 +M) kilogram working fluid exothermic process 45, (M 1 +M) kg of working fluid has been depressurized by 56, (M 1 +M) kg of working fluid exothermic process 6d, M 2 kg of working fluid pressure increase process ea, M kg of working fluid exothermic condensation process ab, (M 2 -M) Kilogram working fluid boost process a7, (M 2 -M) Kilogram working fluid endothermic process 78, (M 2 -M) Kilogram working fluid boost process 89, (M 2 -M) Kilogram working fluid release Thermal process 9c, (M 2 -M) kg working fluid depressurization process cd, M 3 kg working fluid exother
  • Figure 1/10 is an example diagram of the first principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 2/10 is an example diagram of the second principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 3/10 is an example diagram of the third principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 4/10 is an example diagram of the fourth principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 5/10 is an example diagram of the fifth principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 6/10 is an example diagram of the sixth principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 7/10 is an example diagram of the seventh principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 8/10 is an example diagram of the eighth principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 9/10 is an example diagram of the ninth principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • Fig. 10/10 is an example diagram of the tenth principle flow chart of the second type of single working fluid combined cycle provided by the present invention.
  • M 3 is the sum of M 1 and M 2 ; the following is combined with the accompanying drawings And examples describe the present invention in detail.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 2 kilogram booster working fluid heating process 83, M 3 kilogram refrigerant absorbs heat Heating process 34, M 3 kg working fluid pressure increasing process 45, M 3 kg working fluid exothermic cooling process 56, M 3 kg working fluid depressurizing expansion process 67, M 3 kg working fluid exothermic cooling process 78, M 1 The pressure-reducing expansion process of the kilogram working fluid is 89, and the M 1 kilogram working fluid has exothermic and condensed through 91-a total of 10 processes.
  • 3Energy conversion process -the boosting process of M 1 kg of working fluid 12 is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally;
  • the boosting process of M 2 kg of working fluid 83, and The pressure-increasing process 45 of the M 3 kg working fluid is generally completed by a compressor;
  • the pressure-reducing expansion process 67 of the M 3 kg working fluid and the pressure-reducing expansion process 89 of the M 1 kg working fluid are generally completed by an expander;
  • the pressure expansion work is used for boosting power consumption, or when the pressure expansion work is greater than the boosting power consumption, the mechanical energy is output at the same time, or when the pressure expansion work is less than the boosting work consumption, the mechanical energy is input from the outside at the same time, forming the second type of unit.
  • Working fluid combined cycle is used for boosting power consumption, or when the pressure expansion work is greater than the boosting power consumption, the mechanical energy is output at the same time, or when the pressure expansion work is
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 25, M 2 kilogram booster working fluid heating process 93, M 2 kilogram refrigerant absorbs heat Heating process 34, M 2 kg working fluid boosting and heating process 45, M 3 kg working fluid boosting and heating process 56, M 3 kg working fluid exothermic and cooling process 67, M 3 kg working fluid depressurizing expansion process 78, M 3 Kilogram working fluid exothermic cooling process 89, M 1 kg working fluid depressurizing expansion process 9c, M 1 kg working fluid exothermic and condensed through c1-a total of 11 processes.
  • 2Exothermic process-M 3 kg of working fluid carries out the heat release of 67 process, and external provision meets the corresponding heat demand.
  • the low temperature section of the heat can be used for M 1 kg of working fluid for 25 process and M 2 kg of working fluid for 34
  • the high temperature section of the process absorbs heat;
  • M 3 kg of working fluid carries out the heat release of the 89 process, which is generally used for the heat absorption requirements of the low temperature section of other processes in the combined cycle;
  • M 1 kg of working fluid carries out the heat release of the 91 process, generally to the low temperature heat source ( Environment) release.
  • 3Energy conversion process -the boosting process of M 1 kg of working fluid 12 is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally; the boosting process of M 2 kg of working fluid 93 and 45 , And M 3 kg of working fluid pressure increase process 56, generally completed by the compressor; M 3 kg of working fluid pressure-reducing expansion process 78, and M 1 kg working fluid pressure-reducing expansion process 9c, generally completed by an expander ;
  • the buck expansion work is used for boosting power consumption, or when the buck expansion work is greater than the boosting power consumption, the mechanical energy is output at the same time, or when the buck expansion work is less than the boosting work consumption, the external mechanical energy is input at the same time, forming the second Similar single working fluid combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 24, M 2 kilogram booster working fluid heating process 93, M 2 kilogram refrigerant absorbs heat Heating process 35, M 1 kg working fluid boosting and heating process 45, M 3 kg working fluid boosting and heating process 56, M 3 kg working fluid exothermic and cooling process 67, M 3 kg working fluid depressurizing expansion process 78, M 3 Kilogram working fluid exothermic cooling process 89, M 1 kg working fluid depressurizing expansion process 9c, M 1 kg working fluid exothermic and condensed through c1-a total of 11 processes.
  • Heat release process-M 3 kg of working fluid carries out the heat release of 67 process, and external provision meets the corresponding heat demand.
  • the low temperature section of the heat release may be used for M 1 kg of working fluid for 24 processes and M 2 kg of working fluid for 35
  • the high temperature section of the process absorbs heat;
  • M 3 kg of working fluid carries out the heat release of the 89 process, which is generally used for the heat absorption requirements of the low temperature section of other processes in the combined cycle;
  • M 1 kg of working fluid carries out the heat release of the 91 process, generally to the low temperature heat source ( Environment) release.
  • 3Energy conversion process -the boosting process of M 1 kg of working fluid 12 is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally;
  • M 3 kilogram down the expansion process of the working fluid 78, and M 1 kilogram expanded working fluid buck Process 9c is generally completed by an expander; when the pressure-reducing expansion work is used for boosting power consumption, or when the pressure-reducing expansion work is greater than the boosting power consumption, mechanical energy is output at the same time, or when the pressure-reducing expansion work is less than the boosting power consumption At the same time, the external input of mechanical energy forms the second type of single working fluid combined cycle.
  • Working medium M 1 kg of working fluid condensate boosting process 12, M 1 kg of working fluid endothermic heating, vaporization and overheating process 23, M 2 kg of working fluid boosting and heating process c3, M 3 kg of working fluid endothermic Heating process 34, M 3 kg working fluid pressure increasing process 45, M 3 kg working fluid exothermic cooling process 56, X kg working fluid depressurizing expansion process 67, (M 3 -X) kg working fluid exothermic cooling process 68 , (M 3 -X) kg working fluid depressurization expansion process 89, X kg working fluid exothermic cooling process 79, M 3 kg working fluid exothermic cooling process 9c, M 1 kg working fluid depressurization expansion process cd, M 1 Kilogram of working fluid exotherms and condenses through d1-a total of 13 processes.
  • 3Energy conversion process -the boosting process of M 1 kg of working fluid 12 is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally;
  • the boosting process of M 2 kg of working fluid c3 and
  • the pressure increase process of M 3 kg working fluid 45 is generally completed by a compressor;
  • the expansion process cd is generally completed by an expander;
  • the depressurization expansion work is used for boosting power consumption, or when the depressurization expansion work is greater than the boosting work consumption, the mechanical energy is output at the same time, or the depressurizing expansion work is less than the boosting work At the same time, the external input of mechanical energy forms the second type of single working fluid combined cycle.
  • Working medium M 1 kg of working fluid condensate boosting process 12, M 1 kg of working fluid endothermic heating, vaporization and overheating process 23, M 1 kg of working fluid boosting and heating process 34, M 1 kg of working fluid exothermic Cooling process 45, M 1 kg working fluid depressurizing expansion process 56, M 1 kg working fluid exothermic cooling process 6d, M 2 kg working fluid pressure rising process e7, M 2 kg working fluid endothermic heating process 78, M 2 Pressure increasing process of kg working fluid 89, M 2 kg working fluid exothermic cooling process 9c, M 2 kg working fluid depressurizing expansion process cd, M 3 kg working fluid exothermic cooling process de, M 1 kg working fluid depressurizing expansion Process ef, M 1 kg of working fluid exothermic and condense f1-a total of 14 processes.
  • the low temperature section of the heat may be used for the high temperature section of the 78 process to absorb heat (regeneration); M 1 kg of working fluid is used for the 6d process of heat release and M 3 kg of working fluid
  • the heat release of the de process is generally used for the heat absorption requirements of the low temperature section of other processes in the combined cycle; the M 1 kg working fluid is used for the heat release of the e1 process, and is generally released to the low temperature heat source.
  • 3Energy conversion process -the boosting process 12 of M 1 kg of working fluid is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally; the boosting process of M 2 kg of working fluid e7 and 89 , And the boosting process 34 of the M 1 kg working fluid, generally completed by the compressor; the depressurizing process 56 of the M 1 kg working fluid, and the depressurizing process cd of the M 2 kg working fluid, and the depressurizing process of the M 1 kg working fluid.
  • the pressure expansion process ef is generally completed by an expander; the pressure-reducing expansion work is used for boosting power consumption, or when the pressure-reducing expansion work is greater than the boosting power consumption, mechanical energy is output at the same time, or the pressure-reducing expansion work is less than the boosting consumption At the same time, mechanical energy is input from the outside at the same time, forming the second type of single working substance combined cycle.
  • Working medium M 1 kg of working fluid condensate boosting process 12, M 1 kg of working fluid and M kg of superheated steam mixing endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating Process b3, M 2 kg of working fluid pressure rising process 8a, M kg of working fluid and M 1 kg of working fluid mixed exothermic condensation process ab, (M 2 -M) kg of working fluid pressure rising process a3, M 3 kg of working fluid Endothermic heating process 34, M 3 kg working fluid pressure increasing process 45, M 3 kg working fluid exothermic cooling process 56, M 3 kg working fluid depressurizing expansion process 67, M 3 kg working fluid exothermic cooling process 78 , M 1 kg of working fluid depressurization expansion process 89, M 1 kg of working fluid exothermic condensation 91-a total of 13 processes.
  • 3Energy conversion process -the boosting process of M 1 kg of working fluid 12 is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally;
  • the pressure increase process a3 of kilogram working fluid, and the pressure increase process 45 of M 3 kilogram working fluid, are generally completed by a compressor;
  • the process of depressurization and expansion 89 is generally completed by an expander;
  • the depressurization expansion work is used for boosting power consumption, or when the depressurizing expansion work is greater than the boosting work, mechanical energy is output at the same time, or the depressurizing expansion is less than the boosting work.
  • the pressure is consumed, mechanical energy is input from the outside at the same time, forming the second type of single working fluid combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate boosting process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b5, M 2 kg working fluid pressure rising process 9a, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a3, (M 2 -M) Kilogram working fluid endothermic heating process 34, (M 2 -M) Kilogram working fluid pressure rising and heating process 45, M 3 kg working fluid pressure rising and heating process 56, M 3 kg working fluid exothermic cooling process 67, M 3 kg working fluid depressurization expansion process 78, M 3 kg working fluid exothermic cooling process 89, M 1 kg working fluid depressurization expansion process 9c, M 1 kg working fluid exothermic and condensed through c1-a total of 14 processes.
  • 3Energy conversion process -the boosting process 12 of M 1 kg of working fluid is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally;
  • the pressure increase process a3 and 45 of the kilogram working fluid, and the pressure increase process 56 of the M 3 kilogram working fluid are generally completed by a compressor;
  • the pressure-reducing expansion process of kilogram working fluid 9c is generally completed by an expander; the pressure-reducing expansion work is used for boosting power consumption, or when the pressure-reducing expansion work is greater than the boosting power consumption, the mechanical energy is output at the same time, or the pressure-reducing expansion work When it is less than the boosting power consumption, the mechanical energy is input from the outside at the same time, forming the second type of single working fluid combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate boosting process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b4, M 2 kg working fluid pressure rising process 9a, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a3, (M 2 -M) Kg working fluid endothermic heating process 35, (M 1 +M) Kg working fluid boosting and heating process 45, M 3 kg working fluid boosting and heating process 56, M 3 kg working fluid exothermic and cooling process 67, M 3 kg working fluid depressurization expansion process 78, M 3 kg working fluid exothermic cooling process 89, M 1 kg working fluid depressurization expansion process 9c, M 1 kg working fluid exothermic and condensed through c1-a total of 14 processes.
  • 3Energy conversion process -the boosting process of M 1 kg of working fluid 12 is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally;
  • the boosting process of M 2 kg of working fluid 9a, ( M 2 -M) the pressure increase process a3 of kilogram working fluid, the pressure increase process 45 of (M 1 +M) kilogram working fluid, and the pressure increase process 56 of M 3 kilogram working fluid which are generally completed by a compressor;
  • the pressure-reducing expansion process 78 of the kilogram working fluid and the pressure-reducing expansion process 9c of the M 1 kilogram working fluid are generally completed by the expander;
  • the mechanical energy is output at the same time when the work is performed, or the mechanical energy is input from the outside at the same time when the pressure-reducing expansion work is less than the pressure-boosting work, forming the second type of single-working-substance combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate boosting process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, M 2 kg working fluid pressure rising process ca, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a3, M 3 Kilogram working fluid endothermic heating process 34, M 3 kilogram working fluid pressure increasing process 45, M 3 kilogram working fluid exothermic cooling process 56, X kilogram working fluid depressurizing expansion process 67, (M 3 -X) kilogram working fluid Exothermic cooling process 68, (M 3 -X) kg working fluid depressurizing expansion process 89, X kg working fluid exothermic cooling process 79, M 3 kg working fluid exothermic cooling process 9c, M 1 kg working fluid depressurizing expansion Process cd, M 1 kg of working fluid exothermic and condense d
  • 3Energy conversion process -the boosting process of M 1 kg of working fluid 12 is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally;
  • the boosting process of M 2 kg of working fluid ca and ( M 2 -M) the pressure increase process a3 of kilogram working fluid, and the pressure increase process of M 3 kilogram working fluid 45, are generally completed by the compressor;
  • the qualitative depressurization process 89 and the depressurization expansion process cd of M 1 kg working fluid are generally completed by the expander;
  • the depressurization expansion work is used for the boost work, or the depressurization expansion work is greater than the boost work at the same time
  • External mechanical energy is output, or when the pressure-reducing and expansion work is less than the pressure-boosting work, mechanical energy is input from the outside at the same time, forming the second type of single-working-substance combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate boosting process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, (M 1 +M) kg working fluid boosting and heating process 34, (M 1 +M) kg working fluid exothermic and cooling process 45, (M 1 +M) kg working fluid depressurization and expansion process 56, ( M 1 +M) kg of working fluid exothermic cooling process 6d, M 2 kg of working fluid boosting and heating process ea, M kg of working fluid and M 1 kg of working fluid mixed exothermic condensation process ab, (M 2 -M) kg Working fluid pressure increasing process a7, (M 2 -M) kilogram working fluid endothermic heating process 78, (M 2 -M) kilogram working fluid pressure increasing process 89, (M 2 -M) kilogram working fluid exothermic and cooling Process 9c, (M 2 -M) kg working fluid depress
  • the low temperature section of the heat can be used for the high temperature section of the 23 process to absorb heat (regeneration);
  • the heat release of the 6d process and the heat release of the M 3 kg working fluid for the de process are generally used for the heat absorption requirements of the low temperature section of other processes in the combined cycle;
  • the M 1 kg working fluid is used for the heat release of the e1 process, which is generally released to the low temperature heat source .
  • 3Energy conversion process -the boosting process 12 of M 1 kg of working fluid is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by expansion work or externally;
  • the depressurization process of (M 1 +M) kg of working fluid56, the depressurization process of (M 2 -M) kg of working fluid cd, and the depressurization and expansion process of M 1 kg of working fluid ef are generally completed by an expander;
  • the buck expansion work is used for boosting power consumption, or when the buck expansion work is greater than the boosting work, mechanical energy is output at the same time, or when the buck expansion work is less than the boosting work, the mechanical energy is
  • Thermal energy (temperature difference) drive to increase the temperature of thermal energy, or you can choose to provide power to the outside at the same time.
  • the phase change process or the phase change process mainly realizes low-temperature heat release, which is beneficial to reduce the heat transfer temperature difference in the low-temperature heat load release link and improve the cycle performance index.
  • the temperature change process or the temperature change process mainly realizes the middle temperature heat absorption, which is beneficial to reduce the heat transfer temperature difference in the middle temperature heat load acquisition link and improve the cycle performance index.
  • Variable temperature heat release is beneficial to reduce the heat transfer temperature difference in the heating link and realize the rationalization of the cycle performance index.
  • a single working fluid is conducive to production and storage; reduces operating costs and improves the flexibility of cycle adjustment
  • a wide range of working fluid parameters can achieve high-efficiency and high-temperature heating; it can well adapt to energy supply requirements, and the matching between working fluid and working parameters is flexible.
  • thermodynamic cycle range for realizing the utilization of the temperature difference is expanded, which is beneficial to better realize the high-efficiency heat utilization of the medium-temperature heat source and the variable-medium-temperature heat source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

第二类单工质联合循环,是指由M1千克和M2千克组成的工质,分别或共同进行的十个过程:M1千克工质升压过程12,M1千克工质吸热汽化过程23,M2千克工质升压过程83,M3千克工质吸热过程34,M3千克工质升压过程45,M3千克工质放热过程56,M3千克工质降压过程67,M3千克工质放热过程78,M1千克工质降压过程89,以及M1千克工质放热冷凝过程91所组成的闭合过程;其中,M3为M1与M2之和。

Description

第二类单工质联合循环 技术领域:
本发明属于热力学与制热技术领域。
背景技术:
冷、热和动力需求,为人类生活与生产当中所常见;人们经常需要利用热能来实现制冷、供热或转化为动力。在实现上述目的之过程中,将面临多方面的条件限制,包括能源的类型、品位和数量,用户需求的类型、品位和数量,环境温度,工作介质的类型,设备的流程、结构和制造成本等。
在热科学基础理论体系中,热力循环的创建及发展应用将对能源的科学生产和科学利用起到重大作用,将积极推动社会进步和生产力发展。本发明针对变温型中温热资源和高温热需求,也考虑到同时利用动力驱动或兼顾动力需求,提出了采用相变过程或相变过程为主实现低温放热,采用变温过程或变温过程为主实现中温吸热,工质选择和回热措施适应性强,以及采用变温过程实现高温供热的第二类单工质联合循环。
发明内容:
本发明主要目的是要提供第二类单工质联合循环,具体发明内容分项阐述如下:
1.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程83,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
2.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 2千克工质升压过程93,M 2千克工质吸热过程34,M 1千克工质吸热汽化过程25,M 2千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
3.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程24,M 2千克工质升压过程93,M 2千克工质吸热过程35,M 1千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
4.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升 压过程c3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,X千克工质降压过程67,(M 3-X)千克工质放热过程68,(M 3-X)千克工质降压过程89,X千克工质放热过程79,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
5.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质升压过程34,M 1千克工质放热过程45,M 1千克工质降压过56,M 1千克工质放热过程6d,M 2千克工质升压过程e7,M 2千克工质吸热过程78,M 2千克工质升压过程89,M 2千克工质放热过程9c,M 2千克工质降压过程cd,M 3千克工质放热过程de,M 1千克工质降压过程ef,M 1千克工质放热冷凝过程f1——组成的闭合过程;其中,M 3为M 1与M 2之和。
6.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
7.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,(M 2-M)千克工质吸热过程34,(M 1+M)千克工质吸热汽化过程b5,(M 2-M)千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
8.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,(M 1+M)千克工质吸热汽化过程b4,(M 2-M)千克工质吸热过程35,(M 1+M)千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
9.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,X千克工质降压过程67,(M 3-X)千克工质放热过程68,(M 3-X)千克工质降压过程89,X千克工质放热过程79,M 3千克工质放热过程9c,M 1千克工质降压过程 cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
10.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十七个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质升压过程34,(M 1+M)千克工质放热过程45,(M 1+M)千克工质降压过56,(M 1+M)千克工质放热过程6d,M 2千克工质升压过程ea,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a7,(M 2-M)千克工质吸热过程78,(M 2-M)千克工质升压过程89,(M 2-M)千克工质放热过程9c,(M 2-M)千克工质降压过程cd,M 3千克工质放热过程de,M 1千克工质降压过程ef,M 1千克工质放热冷凝过程f1——组成的闭合过程;其中,M 3为M 1与M 2之和。
附图说明:
图1/10是依据本发明所提供的第二类单工质联合循环第1种原则性流程示例图。
图2/10是依据本发明所提供的第二类单工质联合循环第2种原则性流程示例图。
图3/10是依据本发明所提供的第二类单工质联合循环第3种原则性流程示例图。
图4/10是依据本发明所提供的第二类单工质联合循环第4种原则性流程示例图。
图5/10是依据本发明所提供的第二类单工质联合循环第5种原则性流程示例图。
图6/10是依据本发明所提供的第二类单工质联合循环第6种原则性流程示例图。
图7/10是依据本发明所提供的第二类单工质联合循环第7种原则性流程示例图。
图8/10是依据本发明所提供的第二类单工质联合循环第8种原则性流程示例图。
图9/10是依据本发明所提供的第二类单工质联合循环第9种原则性流程示例图。
图10/10是依据本发明所提供的第二类单工质联合循环第10种原则性流程示例图。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行,对显而易见的流程不作表述;下述各示例中,M 3为M 1与M 2之和;下面结合附图和实例详细描述本发明。
图1/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 2千克工质升压升温过程83,M 3千克工质吸热升温过程34,M 3千克工质升压升温过程45,M 3千克工质放热降温过程56,M 3千克工质降压膨胀过程67,M 3千克工质放热降温过程78,M 1千克工质降压膨胀过程89,M 1千克工质放热冷凝过91——共10个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行78过程的放热(回热)来提供,或由二者共同来提供;其中,M 3千克工质进行34过程高温段的吸热,还可由其放热56过程的低温段来提供。
②放热过程——M 3千克工质进行56过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于34过程高温段吸热(回热);M 3千克工质进行78过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温 热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程83,以及M 3千克工质的升压过程45,一般由压缩机来完成;M 3千克工质的降压膨胀过程67,以及M 1千克工质降压膨胀过程89,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图2/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程25,M 2千克工质升压升温过程93,M 2千克工质吸热升温过程34,M 2千克工质升压升温过程45,M 3千克工质升压升温过程56,M 3千克工质放热降温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过c1——共11个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行25过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或由二者共同来提供;M 2千克工质进行34过程高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的高温段放热(回热)来提供,或由二者共同来提供;其中,M 1千克工质进行25过程和M 2千克工质进行34过程的高温段吸热,还可由M 3千克工质放热67过程的低温段来提供。
②放热过程——M 3千克工质进行67过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于M 1千克工质进行25过程和M 2千克工质进行34过程的高温段吸热;M 3千克工质进行89过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程93和45,以及M 3千克工质的升压过程56,一般由压缩机来完成;M 3千克工质的降压膨胀过程78,以及M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图3/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程24,M 2千克工质升压升温过程93,M 2千克工质吸热升温过程35,M 1千克工质升压升温过程45,M 3千克工质升压升温过程56,M 3千克工质放热降温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过c1——共11个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行24过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或由二者共同来提供;M 2千克工质进行35过程的吸热一般由外部热源来提供,部分低温段吸热或由M 3千克工质进行89过程的放热(回热)来提供;其中,M 1千克工质进行24过程和M 2千克工质进行35过程的高温段吸热,还可由M 3千克工质放热67过程的低温段来提供。
②放热过程——M 3千克工质进行67过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于M 1千克工质进行24过程和M 2千克工质进行35过程的高温段吸热;M 3千克工质进行89过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 1千克工质的升压过程45,M 2千克工质的升压过程93,以及M 3千克工质的升压过程56,一般由压缩机来完成;M 3千克工质的降压膨胀过程78,以及M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图4/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 2千克工质升压升温过程c3,M 3千克工质吸热升温过程34,M 3千克工质升压升温过程45,M 3千克工质放热降温过程56,X千克工质降压膨胀过程67,(M 3-X)千克工质放热降温过程68,(M 3-X)千克工质降压膨胀过程89,X千克工质放热降温过程79,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过d1——共13个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由X千克工质进行79过程的放热、(M 3-X)千克工质进行9c过程的放热(回热)来提供,或由三者共同来提供;其中,M 3千克工质进行34过程高温段的吸热,还可由(M 3-X)千克工质放热68过程来提供。
②放热过程——M 3千克工质进行56过程的放热和(M 3-X)千克工质进行68过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于34过程高温段吸热(回热);X千克工质进行79过程的放热、M 3千克工质进行9c过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行c1过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程c3,以及M 3千克工质升压过程45,一般由压缩机来完成;X千克工质的降压过程67,(M 3-X)千克工质的降压过程89,以及M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时 由外部投入机械能,形成第二类单工质联合循环。
图5/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质升压升温过程34,M 1千克工质放热降温过程45,M 1千克工质降压膨胀过程56,M 1千克工质放热降温过程6d,M 2千克工质升压升温过程e7,M 2千克工质吸热升温过程78,M 2千克工质升压升温过程89,M 2千克工质放热降温过程9c,M 2千克工质降压膨胀过程cd,M 3千克工质放热降温过程de,M 1千克工质降压膨胀过程ef,M 1千克工质放热冷凝过f1——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和M 2千克工质进行78过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 1千克工质进6d过程与M 3千克工质进行de过程的联合放热(回热)来提供,或由二者共同来提供;其中——M 1千克工质进行23过程高温段的吸热,还可由其放热45过程的低温段来提供;M 2千克工质进行78过程高温段的吸热,还可由其放热9c过程的低温段来提供。
②放热过程——M 1千克工质进行45过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于23过程高温段吸热(回热);M 2千克工质放热降温过程9c,对外提供满足相应热需求,其中的低温段放热或可用于78过程高温段吸热(回热);M 1千克工质进行6d过程的放热和M 3千克工质进行de过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行e1过程的放热,一般向低温热源释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程e7和89,以及M 1千克工质的升压过程34,一般由压缩机来完成;M 1千克工质的降压过程56,以及M 2千克工质的降压过程cd,以及M 1千克工质降压膨胀过程ef,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图6/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克过热蒸汽混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,M 2千克工质升压升温过程8a,M千克工质与M 1千克工质混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,M 3千克工质吸热升温过程34,M 3千克工质升压升温过程45,M 3千克工质放热降温过程56,M 3千克工质降压膨胀过程67,M 3千克工质放热降温过程78,M 1千克工质降压膨胀过程89,M 1千克工质放热冷凝过91——共13个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行78过程的放热(回热)来提供, 或由二者共同来提供;其中,M 3千克工质进行34过程高温段的吸热,还可由其放热56过程的低温段来提供。
②放热过程——M 3千克工质进行56过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于34过程高温段吸热(回热);M 3千克工质进行78过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行81过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程8a和(M 2-M)千克工质的升压过程a3,以及M 3千克工质的升压过程45,一般由压缩机来完成;M 3千克工质的降压膨胀过程67,以及M 1千克工质降压膨胀过程89,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图7/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b5,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,(M 2-M)千克工质吸热升温过程34,(M 2-M)千克工质升压升温过程45,M 3千克工质升压升温过程56,M 3千克工质放热降温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过c1——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b5过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或由二者共同来提供;(M 2-M)千克工质进行34过程高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的高温段放热(回热)来提供,或由二者共同来提供;其中,(M 1+M)千克工质进行b5过程和(M 2-M)千克工质进行34过程的高温段吸热,还可由M 3千克工质放热67过程的低温段来提供。
②放热过程——M 3千克工质进行67过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于(M 1+M)千克工质进行b5过程和(M 2-M)千克工质进行34过程的高温段吸热;M 3千克工质进行89过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程9a,(M 2-M)千克工质的升压过程a3和45,以及M 3千克工质的升压过程56,一般由压缩机来完成;M 3千克工质的降压膨胀过程78,以及M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小 于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图8/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b4,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,(M 2-M)千克工质吸热升温过程35,(M 1+M)千克工质升压升温过程45,M 3千克工质升压升温过程56,M 3千克工质放热降温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过c1——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b4过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或由二者共同来提供;(M 2-M)千克工质进行35过程的吸热一般由外部热源来提供,部分低温段吸热或由M 3千克工质进行89过程的放热(回热)来提供;其中,(M 1+M)千克工质进行b4过程和(M 2-M)千克工质进行35过程的高温段吸热,还可由M 3千克工质放热67过程的低温段来提供。
②放热过程——M 3千克工质进行67过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于(M 1+M)千克工质进行b4过程和(M 2-M)千克工质进行35过程的高温段吸热;M 3千克工质进行89过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程9a,(M 2-M)千克工质的升压过程a3,(M 1+M)千克工质的升压过程45,以及M 3千克工质的升压过程56,一般由压缩机来完成;M 3千克工质的降压膨胀过程78,以及M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图9/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,M 2千克工质升压升温过程ca,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,M 3千克工质吸热升温过程34,M 3千克工质升压升温过程45,M 3千克工质放热降温过程56,X千克工质降压膨胀过程67,(M 3-X)千克工质放热降温过程68,(M 3-X)千克工质降压膨胀过程89,X千克工质放热降温过程79,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过d1——共16个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由X千克工质进行79过程的放热、M 3千克工质进行9c过程的放热(回热)来提供,或由三者共同来提供;其中,M 3千克工质进行34过程高温段的吸热,还可由(M 3-X)千克工质放热68过程来提供。
②放热过程——M 3千克工质进行56过程的放热和(M 3-X)千克工质进行68过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于34过程高温段吸热(回热);X千克工质进行79过程的放热、M 3千克工质进行9c过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行c1过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程ca和(M 2-M)千克工质的升压过程a3,以及M 3千克工质升压过程45,一般由压缩机来完成;X千克工质的降压过程67,(M 3-X)千克工质的降压过程89,以及M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图10/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质升压升温过程34,(M 1+M)千克工质放热降温过程45,(M 1+M)千克工质降压膨胀过程56,(M 1+M)千克工质放热降温过程6d,M 2千克工质升压升温过程ea,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a7,(M 2-M)千克工质吸热升温过程78,(M 2-M)千克工质升压升温过程89,(M 2-M)千克工质放热降温过程9c,(M 2-M)千克工质降压膨胀过程cd,M 3千克工质放热降温过程de,M 1千克工质降压膨胀过程ef,M 1千克工质放热冷凝过f1——共17个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程和(M 2-M)千克工质进行78过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由(M 1+M)千克工质进6d过程与M 3千克工质进行de过程的联合放热(回热)来提供,或由三者共同来提供。其中——(M 1+M)千克工质进行23过程高温段的吸热,还可由其放热45过程的低温段来提供;(M 2-M)千克工质进行78过程高温段的吸热,还可由其放热9c过程的低温段来提供。
②放热过程——(M 1+M)千克工质进行45过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于23过程高温段吸热(回热);(M 2-M)千克工质放热降温过程9c,对外提供满足相应热需求,其中的低温段放热或可用于78过程高温段吸热(回热);(M 1+M)千克进行工质6d过程的放热和M 3千克工质进行de过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行e1过程的放热,一般向低温热源释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功 可由膨胀作功提供或由外部提供;M 2千克工质的升压过程ea,(M 2-M)千克工质的升压过程a7,(M 1+M)千克工质的升压过程34,(M 2-M)千克工质的升压过程89,一般由压缩机来完成;(M 1+M)千克工质的降压过程56,(M 2-M)千克工质的降压过程cd,以及M 1千克工质降压膨胀过程ef,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
本发明技术可以实现的效果——本发明所提出的第二类单工质联合循环,具有如下效果和优势:
(1)提出了温差利用的新思路和新技术。
(2)热能(温差)驱动,实现热能温度提升,或可选择同时对外提供动力。
(3)方法简单,流程合理,适用性好,是实现温差有效利用的共性技术。
(4)必要时,借助部分外部动力实现热能温度提升,方式灵活,适应性好。
(5)相变过程或相变过程为主实现低温放热,有利于减小低温热负荷释放环节的传热温差,提高循环性能指数。
(6)变温过程或变温过程为主实现中温吸热,有利于减小中温热负荷获取环节的传热温差,提高循环性能指数。
(7)变温放热,有利于减小供热环节传热温差,实现循环性能指数合理化。
(8)单一工质,有利于生产和储存;降低运行成本,提高循环调节的灵活性
(9)过程共用,减少过程数量,为减少设备投资提供理论基础。
(10)工质参数范围宽,实现高效高温供热;能够很好地适应供能需求,工质与工作参数之间匹配灵活。
(11)设置低压膨胀过程,增加回热的适应性和工作介质选择的灵活性。
(12)有较低的压力与循环压缩比,为核心设备的选取和制造提供方便;为降低温差利用型热泵系统的工作压力和提高装置安全性提供理论基础。
(13)扩展了实现温差利用的热力循环范围,有利于更好地实现中温热源和变中温热源的高效热利用。

Claims (10)

  1. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程83,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  2. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 2千克工质升压过程93,M 2千克工质吸热过程34,M 1千克工质吸热汽化过程25,M 2千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  3. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程24,M 2千克工质升压过程93,M 2千克工质吸热过程35,M 1千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  4. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程c3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,X千克工质降压过程67,(M 3-X)千克工质放热过程68,(M 3-X)千克工质降压过程89,X千克工质放热过程79,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  5. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质升压过程34,M 1千克工质放热过程45,M 1千克工质降压过56,M 1千克工质放热过程6d,M 2千克工质升压过程e7,M 2千克工质吸热过程78,M 2千克工质升压过程89,M 2千克工质放热过程9c,M 2千克工质降压过程cd,M 3千克工质放热过程de,M 1千克工质降压过程ef,M 1千克工质放热冷凝过程f1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  6. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  7. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,(M 2-M)千克工质吸热过程34,(M 1+M)千克工质吸热汽化过程b5,(M 2-M)千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  8. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,(M 1+M)千克工质吸热汽化过程b4,(M 2-M)千克工质吸热过程35,(M 1+M)千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  9. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,X千克工质降压过程67,(M 3-X)千克工质放热过程68,(M 3-X)千克工质降压过程89,X千克工质放热过程79,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  10. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十七个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质升压过程34,(M 1+M)千克工质放热过程45,(M 1+M)千克工质降压过56,(M 1+M)千克工质放热过程6d,M 2千克工质升压过程ea,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a7,(M 2-M)千克工质吸热过程78,(M 2-M)千克工质升压过程89,(M 2-M)千克工质放热过程9c,(M 2-M)千克工质降压过程cd,M 3千克工质放热过程de,M 1千克工质降压过程ef,M 1千克工质放热冷凝过程f1——组成的闭合过程;其中,M 3为M 1与M 2之和。
PCT/CN2021/000130 2020-06-25 2021-06-22 第二类单工质联合循环 WO2021258718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010629960.X 2020-06-25
CN202010629960 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021258718A1 true WO2021258718A1 (zh) 2021-12-30

Family

ID=78245777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000130 WO2021258718A1 (zh) 2020-06-25 2021-06-22 第二类单工质联合循环

Country Status (2)

Country Link
CN (1) CN113587478A (zh)
WO (1) WO2021258718A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795103A (en) * 1971-09-30 1974-03-05 J Anderson Dual fluid cycle
JP2009191762A (ja) * 2008-02-15 2009-08-27 Panasonic Corp コンバインドサイクル装置
CN103502582A (zh) * 2011-05-02 2014-01-08 哈里公司 混合嵌入式组合循环
CN104390387A (zh) * 2014-11-03 2015-03-04 上海伏波环保设备有限公司 双工质双循环式制冷系统
CN105953454A (zh) * 2015-04-13 2016-09-21 李华玉 双向热力循环与第一类热驱动压缩式热泵
CN106016804A (zh) * 2015-04-13 2016-10-12 李华玉 多向热力循环与第三类热驱动压缩式热泵
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
KR101968517B1 (ko) * 2017-09-04 2019-04-15 한국해양과학기술원 이젝터 결합형 증기압축식 냉방 온도차발전 듀얼시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865067B (zh) * 2015-04-13 2020-06-16 李华玉 开式双向热力循环与第二类热驱动压缩式热泵
CN105953473B (zh) * 2015-04-13 2020-06-16 李华玉 双向热力循环与第二类热驱动压缩式热泵

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795103A (en) * 1971-09-30 1974-03-05 J Anderson Dual fluid cycle
JP2009191762A (ja) * 2008-02-15 2009-08-27 Panasonic Corp コンバインドサイクル装置
CN103502582A (zh) * 2011-05-02 2014-01-08 哈里公司 混合嵌入式组合循环
CN104390387A (zh) * 2014-11-03 2015-03-04 上海伏波环保设备有限公司 双工质双循环式制冷系统
CN105953454A (zh) * 2015-04-13 2016-09-21 李华玉 双向热力循环与第一类热驱动压缩式热泵
CN106016804A (zh) * 2015-04-13 2016-10-12 李华玉 多向热力循环与第三类热驱动压缩式热泵
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
KR101968517B1 (ko) * 2017-09-04 2019-04-15 한국해양과학기술원 이젝터 결합형 증기압축식 냉방 온도차발전 듀얼시스템

Also Published As

Publication number Publication date
CN113587478A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2021258718A1 (zh) 第二类单工质联合循环
WO2020215814A1 (zh) 单工质蒸汽联合循环
WO2020211472A1 (zh) 单工质蒸汽联合循环
WO2021253810A1 (zh) 第二类单工质联合循环
WO2022011995A1 (zh) 第二类单工质联合循环
WO2022007375A1 (zh) 第二类单工质联合循环
WO2022001077A1 (zh) 第二类单工质联合循环
WO2022011994A1 (zh) 第二类单工质联合循环
WO2022007374A1 (zh) 第二类单工质联合循环
WO2021143550A1 (zh) 双向第一类单工质联合循环
WO2022001076A1 (zh) 第二类单工质联合循环
WO2021042646A1 (zh) 单工质蒸汽联合循环
WO2020248589A1 (zh) 逆向单工质蒸汽联合循环
WO2021036153A1 (zh) 单工质蒸汽联合循环
WO2021042648A1 (zh) 单工质蒸汽联合循环
WO2021036152A1 (zh) 单工质蒸汽联合循环
WO2020211473A1 (zh) 单工质蒸汽联合循环
WO2020215817A1 (zh) 单工质蒸汽联合循环
WO2020211474A1 (zh) 单工质蒸汽联合循环
WO2021042649A1 (zh) 单工质蒸汽联合循环
WO2022199200A1 (zh) 双向第一类单工质联合循环
WO2020248588A1 (zh) 逆向单工质蒸汽联合循环
WO2021042647A1 (zh) 单工质蒸汽联合循环
WO2021047127A1 (zh) 逆向单工质蒸汽联合循环
WO2020215813A1 (zh) 单工质蒸汽联合循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828758

Country of ref document: EP

Kind code of ref document: A1