WO2021042648A1 - 单工质蒸汽联合循环 - Google Patents

单工质蒸汽联合循环 Download PDF

Info

Publication number
WO2021042648A1
WO2021042648A1 PCT/CN2020/000205 CN2020000205W WO2021042648A1 WO 2021042648 A1 WO2021042648 A1 WO 2021042648A1 CN 2020000205 W CN2020000205 W CN 2020000205W WO 2021042648 A1 WO2021042648 A1 WO 2021042648A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
kilogram
endothermic
working
heat release
Prior art date
Application number
PCT/CN2020/000205
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2021042648A1 publication Critical patent/WO2021042648A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the invention belongs to the field of energy and power technology.
  • the heat source is high temperature and variable temperature heat source; when the Rankine cycle is used as the theoretical basis and steam is used as the circulating working fluid to achieve thermal variable work, it is affected by the temperature and pressure resistance of the material. And safety restrictions, no matter what parameters are used for operation, there is a large temperature difference between the circulating working fluid and the heat source, and the irreversible loss is large, resulting in low thermal efficiency.
  • thermal cycle is a thermal energy utilization device
  • the theoretical basis and the core of the energy utilization system; the creation, development and application of thermal cycles will play a major role in the leap of energy utilization, and will actively promote social progress and productivity development.
  • the present invention proposes a single working substance steam combination cycle.
  • the main purpose of the present invention is to provide a single working fluid steam combined cycle, and the specific content of the invention is described as follows:
  • the single working fluid steam combined cycle refers to the nine processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid absorption Thermal vaporization process 23, M 2 kg working fluid boost process 63, M 3 kg working fluid endothermic process 34, M 3 kg working fluid depressurization process 45, M 3 kg working fluid exothermic process 5f, M 2 kg working fluid exothermic process f6, M 1 kilogram working fluid depressurisation f7, M 1 kilogram 71-- refrigerant radiates heat and condenses during the closing process thereof; wherein, M 3 to M 1 and M 2 and the sum.
  • Single working fluid steam combined cycle refers to twelve processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic vaporization process 23, M 2 kg working fluid boosting process 83, M 3 kg working fluid endothermic process 34, X kg working fluid depressurizing process 47, (M 3 -X) kg working fluid endothermic process 45 , (M 3 -X) kg working fluid depressurization process 56, (M 3 -X) kg working fluid heat release process 67, M 3 kg working fluid heat release process 7f, M 2 kg working fluid heat release process f8, M 1 kg of working fluid depressurization process f9, M 1 kg of working fluid exothermic condensation process 91-composition closed process; where M 3 is the sum of M 1 and M 2.
  • Single working fluid steam combined cycle refers to twelve processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, M 2 kg working fluid boosting process 6a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid Mass pressure increase process a3, M 3 kg working fluid endothermic process 34, M 3 kg working fluid depressurization process 45, M 3 kg working fluid exothermic process 5f, M 2 kg working fluid exothermic process f6, M 1 kg working fluid Mass depressurization process f7, M 1 kg working fluid exothermic condensation process 71-a closed process of composition; where M 3 is the sum of M 1 and M 2.
  • Single working fluid steam combined cycle refers to the working fluids composed of M 1 kilogram and M 2 kilograms, which are carried out separately or jointly or partially in fifteen processes-M 1 kilogram of working fluid boosting process 12, M 1 kilogram Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, M 2 kg working fluid boosting process 8a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid Mass pressure increase process a3, M 3 kg working fluid endothermic process 34, X kg working fluid depressurization process 47, (M 3 -X) kg working fluid endothermic process 45, (M 3 -X) kg working fluid depressurization Process 56, (M 3 -X) kg working fluid heat release process 67, M 3 kg working fluid heat release process 7f, M 2 kg working fluid heat release process f8, M 1 kg working fluid pressure reduction process f9, M 1 kg Working fluid exothermic condensation process 91-a closed process of composition; among them, M 3 is the sum of M 1 and
  • the single working fluid steam combined cycle refers to the nine processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid absorption Thermal vaporization process 23, M 2 kg working fluid boosting process f3, M 3 kg working fluid endothermic process 34, M 3 kg working fluid depressurizing process 45, M 3 kg working fluid exothermic process 5f, M 1 kg working fluid exothermic process f6, M 1 kilogram working fluid depressurisation 67, M 1 kilogram 71-- refrigerant radiates heat and condenses during the closing process thereof; wherein, M 3 to M 1 and M 2 and the sum.
  • Single working fluid steam combined cycle refers to the working fluid composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partly in twelve processes-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic vaporization process 23, M 2 kg working fluid boosting process f3, M 3 kg working fluid endothermic process 34, X kg working fluid depressurizing process 47, (M 3 -X) kg working fluid endothermic process 45 , (M 3 -X) kg working fluid depressurization process 56, (M 3 -X) kg working fluid heat release process 67, M 3 kg working fluid heat release process 7f, M 1 kg working fluid heat release process f8, M The pressure reduction process of 1 kilogram of working fluid 89, the exothermic condensation process of M 1 kilogram of working fluid 91-the closed process of composition; among them, M 3 is the sum of M 1 and M 2.
  • Single working fluid steam combined cycle refers to the working fluids composed of M 1 kilogram and M 2 kilograms, which are carried out separately or jointly or partly in twelve processes-M 1 kilogram working medium boost process 12, M 1 kilogram Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, M 2 kg working fluid boosting process fa, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid Mass pressure increase process a3, M 3 kg working fluid endothermic process 34, M 3 kg working fluid depressurization process 45, M 3 kg working fluid exothermic process 5f, M 1 kg working fluid exothermic process f6, M 1 kg working fluid Mass depressurization process 67, M 1 kg working fluid exothermic condensation process 71-a closed process of composition; among them, M 3 is the sum of M 1 and M 2.
  • Single working fluid steam combined cycle refers to fifteen processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, M 2 kg working fluid boosting process fa, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid Mass pressure increase process a3, M 3 kg working fluid endothermic process 34, X kg working fluid depressurization process 47, (M 3 -X) kg working fluid endothermic process 45, (M 3 -X) kg working fluid depressurization Process 56, (M 3 -X) kg working fluid heat release process 67, M 3 kg working fluid heat release process 7f, M 1 kg working fluid heat release process f8, M 1 kg working fluid pressure reduction process 89, M 1 kg Working fluid exothermic condensation process 91-a closed process of composition; among them, M 3 is the sum of M 1 and M 2.
  • Figure 1/8 is an example diagram of the first principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 2/8 is an example diagram of the second principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 3/8 is an example diagram of the third principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 4/8 is an example diagram of the fourth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 5/8 is an example diagram of the fifth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 6/8 is an example diagram of the sixth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 7/8 is an example diagram of the seventh principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 8/8 is an example diagram of the eighth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • M 3 is the sum of M 1 and M 2 ; the following is combined with the accompanying drawings And examples describe the present invention in detail.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 2 kilogram booster working fluid heating process 63, M 3 kilogram refrigerant absorbs heat Heating process 34, M 3 kg working fluid depressurizing expansion process 45, M 3 kg working fluid exothermic cooling process 5f, M 2 kg working fluid exothermic cooling process f6, M 1 kg working fluid depressurizing expansion process f7, M 1 Kilogram working fluid exothermic condensation process 71-a total of 9 processes.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump
  • bootstrapping M 2 kilogram working fluid 63 is generally accomplished by a compressor
  • M 3 kilogram refrigerant expansion process buck 45 and M 1 kg of working fluid pressure-reducing expansion process f7 is generally completed by an expander; the expansion work is greater than the pressure boosting work, completing the thermal transformation work and providing external circulation net work, forming a single working fluid steam combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 2 kilogram booster working fluid heating process 83, M 3 kilogram refrigerant absorbs heat Heating process 34, X kg working fluid depressurizing expansion process 47, (M 3 -X) kg working fluid endothermic heating process 45, (M 3 -X) kg working fluid depressurizing expansion process 56, (M 3 -X) Kilogram working fluid exothermic cooling process 67, M 3 kg working fluid exothermic cooling process 7f, M 2 kg working fluid exothermic cooling process f8, M 1 kg working fluid depressurization process f9, M 1 kg working fluid exothermic and condensation process 91-A total of 12 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump
  • M 2 kg bootstrapping working fluid 83 is generally accomplished by a compressor
  • the depressurization process 56 of the kilogram working fluid and the depressurization expansion process f9 of the M 1 kilogram working fluid are generally completed by the expander; the expansion work is greater than the pressure boosting work, and the thermal conversion work is completed and the external circulation net is provided Work to form a single working substance steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic temperature, vaporization and Overheating process b3, M 2 kg working fluid pressure rising process 6a, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a3, M 3 Kilogram working fluid endothermic heating process 34, M 3 kg working fluid depressurizing expansion process 45, M 3 kg working fluid exothermic cooling process 5f, M 2 kg working fluid exothermic cooling process f6, M 1 kg working fluid depressurizing expansion process Process f7, M 1 kg working fluid exothermic condensation process 71-a total of 12 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant bootstrapping 6a and (M 2 -M) kg of the working fluid by the general a3 bootstrapping Compressor to complete, M 3 kg of working fluid depressurization expansion process 45 and M 1 kg of working fluid depressurization expansion process f7 are generally completed by the expander; expansion work is greater than the pressure boost work, complete the thermal conversion work and provide external Circulate net power to form a single working substance steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, M 2 kg working fluid pressure rising process 8a, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a3, M 3 Kilogram working fluid endothermic heating process 34, X kilogram working fluid pressure reduction expansion process 47, (M 3 -X) kilogram working fluid endothermic heating process 45, (M 3 -X) kilogram working fluid pressure reduction expansion process 56, ( M 3 -X) Kilogram working fluid exothermic cooling process 67, M 3 kg working fluid exothermic cooling process 7f, M 2 kg working fluid exothermic cooling process f8, M 1 kg working fluid decompression expansion process f9, M 1 kg Working fluid exothermic condensation process 91-a total of 15 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of working fluid boosting process and 8a (M 2 -M) kg of the working fluid by the general a3 bootstrapping Compressor to complete, X kilogram working fluid depressurization process 47, (M 3 -X) kilogram working fluid depressurization process 56 and M 1 kilogram working fluid depressurization expansion process f9 are generally completed by the expander; expansion work Greater than the boosting power consumption, complete the thermal transformation work and provide external circulation net power, forming a single working substance steam combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 2 kilogram refrigerant heating process boosting f3, M 3 kilogram refrigerant absorbs heat Heating process 34, M 3 kg working fluid depressurizing expansion process 45, M 3 kg working fluid exothermic cooling process 5f, M 1 kg working fluid exothermic cooling process f6, M 1 kg working fluid depressurizing expansion process 67, M 1 Kilogram working fluid exothermic condensation process 71-a total of 9 processes.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump
  • M 2 kilogram working fluid boosting f3 is generally accomplished by a process of the compressor
  • M 3 kilogram refrigerant expansion process buck 45 and M 1 kg of working fluid pressure-reducing expansion process 67 is generally completed by an expander; the expansion work is greater than the pressure-boosting power consumption, the thermal conversion work is completed and the net work is provided externally to form a single working fluid steam combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 2 kilogram refrigerant heating process boosting f3, M 3 kilogram refrigerant absorbs heat Heating process 34, X kg working fluid depressurizing expansion process 47, (M 3 -X) kg working fluid endothermic heating process 45, (M 3 -X) kg working fluid depressurizing expansion process 56, (M 3 -X) Kilogram working fluid exothermic cooling process 67, M 3 kg working fluid exothermic cooling process 7f, M 1 kg working fluid exothermic cooling process f8, M 1 kg working fluid depressurization process 89, M 1 kg working fluid exothermic and condensing process 91-A total of 12 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump
  • M 2 kg of working fluid boosting f3 is generally accomplished by a process of the compressor
  • the depressurization process 56 of the kilogram working fluid and the depressurization expansion process 89 of the M 1 kilogram working fluid are generally completed by the expander; the expansion work is greater than the pressure boosting work, and the thermal conversion work is completed and the external circulation net is provided. Work to form a single working substance steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic temperature, vaporization and Overheating process b3, M 2 kg working fluid pressure rising process fa, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a3, M 3 Kilogram working fluid endothermic heating process 34, M 3 kg working fluid depressurizing expansion process 45, M 3 kg working fluid exothermic cooling process 5f, M 1 kg working fluid exothermic cooling process f6, M 1 kg working fluid depressurizing expansion Process 67, M 1 kg working fluid exothermic condensation process 71-a total of 12 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant bootstrapping fa and (M 2 -M) kg of the working fluid by the general a3 bootstrapping Compressor to complete, M 3 kg of working fluid depressurization expansion process 45 and M 1 kg of working fluid depressurization expansion process 67 are generally completed by the expander; expansion work is greater than the pressure boost work, complete the thermal conversion work and provide external Circulate net power to form a single working substance steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, M 2 kg working fluid pressure rising process fa, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a3, M 3 Kilogram working fluid endothermic heating process 34, X kilogram working fluid depressurizing expansion process 47, (M 3 -X) kilogram working fluid endothermic heating process 45, (M 3 -X) kilogram working fluid depressurizing expansion process 56, ( M 3 -X) kg working fluid exothermic cooling process 67, M 3 kg working fluid exothermic cooling process 7f, M 1 kg working fluid exothermic cooling process f8, M 1 kg working fluid decompression expansion process 89, M 1 kg Working fluid exothermic condensation process 91-a total of 15 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant bootstrapping fa and (M 2 -M) kg of the working fluid by the general a3 bootstrapping Compressor to complete, X kilogram working fluid depressurization process 47, (M 3 -X) kilogram working fluid depressurization process 56 and M 1 kilogram working fluid depressurization expansion process 89 are generally completed by the expander; expansion work Greater than the boosting power consumption, complete the thermal transformation work and provide external circulation net power, forming a single working substance steam combined cycle.
  • a single working fluid is conducive to production and storage; reduces operating costs and improves the flexibility of cycle adjustment
  • the circulating medium and the heat source medium are both in the process of variable temperature, which is beneficial to reduce the temperature difference heat transfer loss in the heat absorption link and improve the thermal efficiency.
  • the low-pressure and high-temperature operation mode is adopted in the high-temperature zone to solve the difficult to reconcile contradictions between thermal efficiency, circulating medium parameters and pipe pressure and temperature resistance in traditional steam power plants.
  • low-pressure operation can be selected to provide theoretical support for improving the safety of device operation.
  • the working medium has a wide application range, can well adapt to the energy supply demand, and the working medium and working parameters are matched flexibly.
  • thermodynamic cycle range for realizing the utilization of temperature difference is expanded, which is beneficial to better realize the high-efficiency power utilization of high-temperature heat source and variable-temperature heat source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种单工质蒸汽联合循环,属于能源与动力技术领域。单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的九个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程63,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质放热过程5f,M 2千克工质放热过程f6,M 1千克工质降压过程f7,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。

Description

单工质蒸汽联合循环 技术领域:
本发明属于能源与动力技术领域。
背景技术:
冷需求、热需求和动力需求,为人类生活与生产当中所常见;其中,利用热能转换为机械能是获得和提供动力的重要方式。一般情况下,热源的温度随着热的释放而降低,热源是变温的;在以化石燃料为源头能源时,热源同时具有高温和变温的双重特点,这使得采用单一热力循环理论实现制冷、供热或转化为动时能源利用率不理想。
以外燃式蒸汽动力装置为例,其热源属于高温且为变温热源;当以朗肯循环为理论基础,采用水蒸气为循环工质实现热变功时,由于受到材料耐温耐压性能和安全性方面的限制,无论采用何种参数运行,循环工质与热源之间都存在较大的温差损失,不可逆损失大,导致热效率较低。
人们需要简单、主动、高效地利用燃料生成或其它的高温热能来实现制冷、供热或转化为动力,这需要热科学基础理论的支撑;在热科学基础理论体系中,热力循环是热能利用装置的理论基础和能源利用系统的核心;热力循环的创建及发展应用将对能源利用的飞跃起到重大作用,将积极推动社会进步和生产力发展。
从简单、主动和高效地实现温差利用的原则出发,针对高温热源或变温热源的动力应用,力求为热动系统的简单化和高效化提供理论支撑,本发明提出了单工质蒸汽联合循环。
发明内容:
本发明主要目的是要提供单工质蒸汽联合循环,具体发明内容分项阐述如下:
1.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的九个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程63,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质放热过程5f,M 2千克工质放热过程f6,M 1千克工质降压过程f7,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。
2.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程83,M 3千克工质吸热过程34,X千克工质降压过程47,(M 3-X)千克工质吸热过程45,(M 3-X)千克工质降压过程56,(M 3-X)千克工质放热过程67,M 3千克工质放热过程7f,M 2千克工质放热过程f8,M 1千克工质降压过程f9,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
3.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程6a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质 放热过程5f,M 2千克工质放热过程f6,M 1千克工质降压过程f7,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。
4.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,X千克工质降压过程47,(M 3-X)千克工质吸热过程45,(M 3-X)千克工质降压过程56,(M 3-X)千克工质放热过程67,M 3千克工质放热过程7f,M 2千克工质放热过程f8,M 1千克工质降压过程f9,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
5.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的九个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程f3,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质放热过程5f,M 1千克工质放热过程f6,M 1千克工质降压过程67,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。
6.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程f3,M 3千克工质吸热过程34,X千克工质降压过程47,(M 3-X)千克工质吸热过程45,(M 3-X)千克工质降压过程56,(M 3-X)千克工质放热过程67,M 3千克工质放热过程7f,M 1千克工质放热过程f8,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
7.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程fa,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质放热过程5f,M 1千克工质放热过程f6,M 1千克工质降压过程67,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。
8.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程fa,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,X千克工质降压过程47,(M 3-X)千克工质吸热过程45,(M 3-X)千克工质降压过程56,(M 3-X)千克工质放热过程67,M 3千克工质放热过程7f,M 1千克工质放热过程f8,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
附图说明:
图1/8是依据本发明所提供的单工质蒸汽联合循环第1种原则性流程示例图。
图2/8是依据本发明所提供的单工质蒸汽联合循环第2种原则性流程示例图。
图3/8是依据本发明所提供的单工质蒸汽联合循环第3种原则性流程示例图。
图4/8是依据本发明所提供的单工质蒸汽联合循环第4种原则性流程示例图。
图5/8是依据本发明所提供的单工质蒸汽联合循环第5种原则性流程示例图。
图6/8是依据本发明所提供的单工质蒸汽联合循环第6种原则性流程示例图。
图7/8是依据本发明所提供的单工质蒸汽联合循环第7种原则性流程示例图。
图8/8是依据本发明所提供的单工质蒸汽联合循环第8种原则性流程示例图。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行,对显而易见的流程不作表述;下述各示例中,M 3为M 1与M 2之和;下面结合附图和实例详细描述本发明。
图1/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 2千克工质升压升温过程63,M 3千克工质吸热升温过程34,M 3千克工质降压膨胀过程45,M 3千克工质放热降温过程5f,M 2千克工质放热降温过程f6,M 1千克工质降压膨胀过程f7,M 1千克工质放热冷凝过程71——共9个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行5f过程与M 2千克工质进行6f过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——M 3千克工质进行5f过程和M 2千克工质进行6f过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行71过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程63一般由压缩机来完成,M 3千克工质的降压膨胀过程45和M 1千克工质降压膨胀过程f7一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图2/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 2千克工质升压升温过程83,M 3千克工质吸热升温过程34,X千克工质降压膨胀过程47,(M 3-X)千克工质吸热升温过程45,(M 3-X)千克工质降压膨胀过程56,(M 3-X)千克工质放热降温过程67,M 3千克工质放热降温过程7f,M 2千克工质放热降温过程f8,M 1千克工质降压过程f9,M 1千克工质放热冷凝过程91——共12个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 3千克工质进行34过程和(M 3-X)千克工质进行45过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 3-X)千克工质进行67过程、M 3千克工质进行7f过程和M 2千克工质进行f8过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 3-X)千克工质进行67过程的放热,M 3千克工质进行7f过程 的放热,还有M 2千克工质进行f8的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程83一般由压缩机来完成,X千克工质的降压过程47、(M 3-X)千克工质的降压过程56和M 1千克工质降压膨胀过程f9一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图3/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热温、汽化和过热过程b3,M 2千克工质升压升温过程6a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,M 3千克工质吸热升温过程34,M 3千克工质降压膨胀过程45,M 3千克工质放热降温过程5f,M 2千克工质放热降温过程f6,M 1千克工质降压膨胀过程f7,M 1千克工质放热冷凝过程71——共12个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,M 1千克工质进行b3过程和M 3千克工质进行34过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行5f过程与M 2千克工质进行f6过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——M 3千克工质进行56过程和M 2千克工质进行f6过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行71过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程6a和(M 2-M)千克工质的升压过程a3一般由压缩机来完成,M 3千克工质的降压膨胀过程45和M 1千克工质降压膨胀过程f7一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图4/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,M 2千克工质升压升温过程8a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,M 3千克工质吸热升温过程34,X千克工质降压膨胀过程47,(M 3-X)千克工质吸热升温过程45,(M 3-X)千克工质降压膨胀过程56,(M 3-X)千克工质放热降温过程67,M 3千克工质放热降温过程7f,M 2千克工质放热降温过程f8,M 1千克工质降压膨胀过程f9,M 1千克工质放热冷凝过程91——共计15个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程、M 3千克工质进行34过程和(M 3-X)千克工质进行45过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 3-X)千克工质进行67过程、M 3千克工质进行7f过程与M 2千克工质进行f8过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 3-X)千克工质进行67过程的放热,M 3千克工质进行7f过程的放热,还有M 2千克工质进行f8过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程8a和(M 2-M)千克工质的升压过程a3一般由压缩机来完成,X千克工质的降压过程47、(M 3-X)千克工质的降压过程56和M 1千克工质降压膨胀过程f9一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图5/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 2千克工质升压升温过程f3,M 3千克工质吸热升温过程34,M 3千克工质降压膨胀过程45,M 3千克工质放热降温过程5f,M 1千克工质放热降温过程f6,M 1千克工质降压膨胀过程67,M 1千克工质放热冷凝过程71——共9个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行5f过程与M 1千克工质进行f6过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——M 3千克工质进行5f过程的放热,还有M 1千克工质进行f6过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行71过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程f3一般由压缩机来完成,M 3千克工质的降压膨胀过程45和M 1千克工质降压膨胀过程67一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图6/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 2千克工质升压升温过程f3,M 3千克工质吸热升温过程34,X千克工质降压膨胀过程47,(M 3-X)千克工质吸热升温过程45,(M 3-X)千克工质降压膨胀过程56,(M 3-X)千克工质放热降温过程67,M 3千克工质放热降温过程7f,M 1千克工质放 热降温过程f8,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——共12个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 3千克工质进行34过程和(M 3-X)千克工质进行45过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 3-X)千克工质进行67过程、M 3千克工质进行7f过程与M 1千克工质进行f8过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 3-X)千克工质进行67过程的放热,M 3千克工质进行7f过程的放热,还有M 1千克工质进行f8过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程f3一般由压缩机来完成,X千克工质的降压过程47、(M 3-X)千克工质的降压过程56和M 1千克工质降压膨胀过程89一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图7/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热温、汽化和过热过程b3,M 2千克工质升压升温过程fa,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,M 3千克工质吸热升温过程34,M 3千克工质降压膨胀过程45,M 3千克工质放热降温过程5f,M 1千克工质放热降温过程f6,M 1千克工质降压膨胀过程67,M 1千克工质放热冷凝过程71——共12个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,M 1千克工质进行b3过程和M 3千克工质进行34过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行5f过程与M 1千克工质进行f6过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——M 3千克工质进行5f过程的放热,还有M 1千克工质进行f6过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行71过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程fa和(M 2-M)千克工质的升压过程a3一般由压缩机来完成,M 3千克工质的降压膨胀过程45和M 1千克工质降压膨胀过程67一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图8/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合 吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,M 2千克工质升压升温过程fa,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,M 3千克工质吸热升温过程34,X千克工质降压膨胀过程47,(M 3-X)千克工质吸热升温过程45,(M 3-X)千克工质降压膨胀过程56,(M 3-X)千克工质放热降温过程67,M 3千克工质放热降温过程7f,M 1千克工质放热降温过程f8,M 1千克工质降压膨胀过程89,M 1千克工质放热冷凝过程91——共计15个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程、M 3千克工质进行34过程和(M 3-X)千克工质进行45过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 3-X)千克工质进行67过程、M 3千克工质进行7f过程与M 1千克工质进行f8过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 3-X)千克工质进行67过程的放热,M 3千克工质进行7f过程的放热,还有M 1千克工质进行f8过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程fa和(M 2-M)千克工质的升压过程a3一般由压缩机来完成,X千克工质的降压过程47、(M 3-X)千克工质的降压过程56和M 1千克工质降压膨胀过程89一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
本发明技术可以实现的效果——本发明所提出的单工质蒸汽联合循环,具有如下效果和优势:
(1)创建热能(温差)利用基础理论。
(2)较大幅度减少相变吸热过程的热负荷,相对增加高温段吸热负荷,热效率高。
(3)方法简单,流程合理,适用性好,是实现温差有效利用的共性技术。
(4)单一工质,有利于生产和储存;降低运行成本,提高循环调节的灵活性
(5)过程共用,减少过程,为减少设备投资提供理论基础。
(6)在高温区或变温区阶段,循环介质与热源介质同为变温过程,有利于降低吸热环节的温差传热损失,提高热效率。
(7)在高温区采取低压高温运行方式,解决传统蒸汽动力装置中热效率、循环介质参数与管材耐压耐温性能之间难以调和的矛盾。
(8)在实现高热效率前提下,可选择低压运行,为提高装置运行的安全性提供理论支撑。
(9)工质适用范围广,能够很好地适应供能需求,工质与工作参数之间匹配灵活。
(10)扩展了实现温差利用的热力循环范围,有利于更好地实现高温热源和变温热源的高效动力利用。

Claims (8)

  1. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的九个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程63,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质放热过程5f,M 2千克工质放热过程f6,M 1千克工质降压过程f7,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。
  2. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程83,M 3千克工质吸热过程34,X千克工质降压过程47,(M 3-X)千克工质吸热过程45,(M 3-X)千克工质降压过程56,(M 3-X)千克工质放热过程67,M 3千克工质放热过程7f,M 2千克工质放热过程f8,M 1千克工质降压过程f9,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  3. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程6a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质放热过程5f,M 2千克工质放热过程f6,M 1千克工质降压过程f7,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。
  4. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,X千克工质降压过程47,(M 3-X)千克工质吸热过程45,(M 3-X)千克工质降压过程56,(M 3-X)千克工质放热过程67,M 3千克工质放热过程7f,M 2千克工质放热过程f8,M 1千克工质降压过程f9,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  5. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的九个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程f3,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质放热过程5f,M 1千克工质放热过程f6,M 1千克工质降压过程67,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。
  6. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 2千克工质升压过程f3,M 3千克工质吸热过程34,X千克工质降压过程47,(M 3-X)千克工质吸热过程45,(M 3-X)千克工质降压过程56,(M 3-X)千克工质放热过程67,M 3千克工质放热过程7f,M 1千克工质放热过程f8,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  7. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程fa,M千克工质放热冷凝过程ab,(M 2-M) 千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质降压过程45,M 3千克工质放热过程5f,M 1千克工质放热过程f6,M 1千克工质降压过程67,M 1千克工质放热冷凝过程71——组成的闭合过程;其中,M 3为M 1与M 2之和。
  8. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,M 2千克工质升压过程fa,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,X千克工质降压过程47,(M 3-X)千克工质吸热过程45,(M 3-X)千克工质降压过程56,(M 3-X)千克工质放热过程67,M 3千克工质放热过程7f,M 1千克工质放热过程f8,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
PCT/CN2020/000205 2019-09-04 2020-09-03 单工质蒸汽联合循环 WO2021042648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910878664 2019-09-04
CN201910878664.0 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021042648A1 true WO2021042648A1 (zh) 2021-03-11

Family

ID=74852048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000205 WO2021042648A1 (zh) 2019-09-04 2020-09-03 单工质蒸汽联合循环

Country Status (2)

Country Link
CN (1) CN115263474A (zh)
WO (1) WO2021042648A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795103A (en) * 1971-09-30 1974-03-05 J Anderson Dual fluid cycle
CN1891981A (zh) * 2005-07-04 2007-01-10 陈培豪 热力循环和装置
US20130341929A1 (en) * 2012-06-26 2013-12-26 The Regents Of The University Of California Organic flash cycles for efficient power production
US9038390B1 (en) * 2014-10-10 2015-05-26 Sten Kreuger Apparatuses and methods for thermodynamic energy transfer, storage and retrieval
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN108019245A (zh) * 2016-12-15 2018-05-11 李华玉 多重联合循环动力装置
CN108119195A (zh) * 2016-12-20 2018-06-05 李华玉 联合循环动力装置
CN108679880A (zh) * 2017-03-30 2018-10-19 李华玉 双工质联合循环压缩式热泵
CN108798808A (zh) * 2018-06-11 2018-11-13 山东理工大学 一种用于高温烟气余热回收的co2循环热电联产系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795103A (en) * 1971-09-30 1974-03-05 J Anderson Dual fluid cycle
CN1891981A (zh) * 2005-07-04 2007-01-10 陈培豪 热力循环和装置
US20130341929A1 (en) * 2012-06-26 2013-12-26 The Regents Of The University Of California Organic flash cycles for efficient power production
US9038390B1 (en) * 2014-10-10 2015-05-26 Sten Kreuger Apparatuses and methods for thermodynamic energy transfer, storage and retrieval
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN108019245A (zh) * 2016-12-15 2018-05-11 李华玉 多重联合循环动力装置
CN108119195A (zh) * 2016-12-20 2018-06-05 李华玉 联合循环动力装置
CN108679880A (zh) * 2017-03-30 2018-10-19 李华玉 双工质联合循环压缩式热泵
CN108798808A (zh) * 2018-06-11 2018-11-13 山东理工大学 一种用于高温烟气余热回收的co2循环热电联产系统

Also Published As

Publication number Publication date
CN115263474A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2020215814A1 (zh) 单工质蒸汽联合循环
WO2020211472A1 (zh) 单工质蒸汽联合循环
WO2021042648A1 (zh) 单工质蒸汽联合循环
WO2021042649A1 (zh) 单工质蒸汽联合循环
WO2021042646A1 (zh) 单工质蒸汽联合循环
WO2020215816A1 (zh) 单工质蒸汽联合循环
WO2020211473A1 (zh) 单工质蒸汽联合循环
WO2021042647A1 (zh) 单工质蒸汽联合循环
WO2021036153A1 (zh) 单工质蒸汽联合循环
WO2020215813A1 (zh) 单工质蒸汽联合循环
WO2021036152A1 (zh) 单工质蒸汽联合循环
WO2020211474A1 (zh) 单工质蒸汽联合循环
WO2020215817A1 (zh) 单工质蒸汽联合循环
WO2020211471A1 (zh) 单工质蒸汽联合循环
WO2020211475A1 (zh) 单工质蒸汽联合循环
WO2020215815A1 (zh) 单工质蒸汽联合循环
CN112344579A (zh) 逆向单工质蒸汽联合循环
WO2021047125A1 (zh) 逆向单工质蒸汽联合循环
WO2021047126A1 (zh) 逆向单工质蒸汽联合循环
WO2020248589A1 (zh) 逆向单工质蒸汽联合循环
WO2021047127A1 (zh) 逆向单工质蒸汽联合循环
WO2020248588A1 (zh) 逆向单工质蒸汽联合循环
WO2022001077A1 (zh) 第二类单工质联合循环
WO2022001076A1 (zh) 第二类单工质联合循环
WO2021258718A1 (zh) 第二类单工质联合循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860110

Country of ref document: EP

Kind code of ref document: A1