WO2020248588A1 - 逆向单工质蒸汽联合循环 - Google Patents

逆向单工质蒸汽联合循环 Download PDF

Info

Publication number
WO2020248588A1
WO2020248588A1 PCT/CN2020/000132 CN2020000132W WO2020248588A1 WO 2020248588 A1 WO2020248588 A1 WO 2020248588A1 CN 2020000132 W CN2020000132 W CN 2020000132W WO 2020248588 A1 WO2020248588 A1 WO 2020248588A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
kilogram
endothermic
boosting
exothermic
Prior art date
Application number
PCT/CN2020/000132
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Priority to US17/619,246 priority Critical patent/US20220282890A1/en
Priority to GB2200355.2A priority patent/GB2599867A/en
Publication of WO2020248588A1 publication Critical patent/WO2020248588A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the invention belongs to the technical fields of thermodynamics, refrigeration and heat pumps.
  • Cold demand, heat demand, and power demand are common in human life and production; among them, the use of mechanical energy to convert heat energy is an important way to achieve cooling and efficient heating. Under normal circumstances, the temperature of the cooling medium changes during cooling, and the temperature of the heated medium often changes during heating. When using mechanical energy to heat, the heated medium often has the dual characteristics of variable temperature and high temperature at the same time, which makes the use of a single The thermal cycle theory realizes the unreasonable performance index for cooling or heating; these problems are-unreasonable performance index, low heating parameters, high compression ratio, and too much working pressure.
  • the main purpose of the present invention is to provide a reverse single working fluid steam combined cycle.
  • the specific content of the invention is described as follows:
  • Reverse single working fluid steam combined cycle refers to thirteen processes composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially-M 1 kg working fluid endothermic vaporization process 12, ( M 1 +M 2 ) Kilogram working fluid endothermic process 23, (M 1 +M 2 -X) Kilogram working fluid heat absorption process 34, (M 1 +M 2 -X) Kilogram working fluid boosting process 45, (M 1 +M 2 -X) Kilogram working fluid heat release process 56, X kilogram working fluid boosting process 36, (M 1 +M 2 ) Kilogram working fluid heat releasing process 67, M 2 kg working fluid depressurizing process 7a, M 2 kg refrigerant endothermic process ab, M 2 kilogram working fluid depressurisation b2, M 1 kilogram bootstrapping working fluid 78, M 1 kilogram refrigerant radiates heat and condenses process 89, M 1 kilogram refrigerant depressurization 91- -The closing process of the composition.
  • Reverse single working fluid steam combined cycle refers to the working fluids composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially in 14 processes-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid boosting process 23, (M 1 +M 2 ) kg working fluid heat absorption process 34, (M 1 +M 2 -X) kg working fluid heat absorption process 45, (M 1 +M 2 -X) Kilogram working fluid boost process 56, (M 1 +M 2 -X) kilogram working fluid heat release process 67, X kilogram working fluid boost process 47, (M 1 +M 2 ) kg working fluid heat release process 78, M 2 kg working fluid depressurization process 8a, M 2 kg working fluid endothermic process ab, M 2 kg working fluid depressurization process b3, M 1 kg working fluid boosting process 89, M 1 kg working fluid exothermic condensation process 9c, M 1 kg of working fluid depressurization process c1-the closed process of composition.
  • Reverse single working fluid steam combined cycle refers to the working fluid composed of M 1 kilogram and M 2 kilogram, and twelve processes that are carried out separately or jointly-M 1 kilogram working fluid endothermic vaporization process 12, (M 1 +M 2 ) Kilogram working fluid endothermic process 23, (M 1 +M 2 ) Kilogram working fluid boost process 34, (M 1 +M 2 ) Kilogram working fluid heat release process 45, (M 2 -M) Kilogram working fluid Pressure reduction process 5t, M 2 kg working fluid pressure reduction process t2, (M 1 +M) kg working fluid pressure increase process 56, (M 1 +M) kg working fluid exothermic condensation process 6r, M kg working fluid reduction Pressure process rs, M kg working fluid endothermic vaporization process st, M 1 kg working fluid exothermic process r7, M 1 kg working fluid depressurization process 71-a closed process composed of.
  • Reverse single working fluid steam combined cycle refers to sixteen processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partly-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid boosting process 23, (M 1 +M 2 ) kg working fluid heat absorption process 34, (M 1 +M 2 -X) kg working fluid heat absorption process 45, (M 1 +M 2 -X) Kilogram working fluid boost process 56, (M 1 +M 2 -X) kilogram working fluid heat release process 67, X kilogram working fluid boost process 47, (M 1 +M 2 ) kg working fluid heat release process 78, ( M 2 -M) kg working fluid pressure reduction process 8t, M 2 kg working fluid pressure reduction process t3, (M 1 +M) kg working fluid pressure increase process 89, (M 1 +M) kg working fluid exothermic condensation process 9r, M kilogram working fluid depressurization process rs, M kilogram working fluid endothermic vaporization process st, M 1 kilogram working fluid exothermic process r
  • Fig. 3/12 is an example diagram of the third principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Figure 5/12 is an example diagram of the fifth principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Figure 6/12 is an example diagram of the sixth principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Figure 11/12 is an example diagram of the eleventh principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Figure 12/12 is an example diagram of the twelfth principle flow chart of the reverse single working fluid steam combined cycle provided by the present invention.
  • Working medium M 1 kg working fluid endothermic vaporization process 12, (M 1 +M 2 ) kg working fluid endothermic heating process 23, (M 1 +M 2 -X) kg working fluid endothermic heating process 34, (M 1 +M 2 -X) Kilogram working fluid boosting process 45, (M 1 +M 2 -X) Kilogram working fluid exothermic cooling process 56, X kg working fluid boosting process 36, (M 1 + M 2 ) kg working fluid exothermic cooling process 67, M 2 kg working fluid depressurization expansion process 72, M 1 kg working fluid boosting and heating process 78, M 1 kg working fluid exothermic cooling, liquefaction and condensate cooling Process 89, M 1 kg of working fluid condensate pressure reduction process 91-a total of 11 processes.
  • M 1 kg of working fluid is used for 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source;
  • M 1 +M 2 ) kg of working fluid is used for 23 processes of heat absorption. It is used to obtain low-temperature heat load, or part of it is used to obtain low-temperature heat load and part is satisfied by regenerative heat;
  • M 1 +M 2 -X kilogram of working fluid undergoes 34 processes to absorb heat, which can be used to obtain low-temperature heat load, or partly It is used to obtain the low temperature heat load and is partly satisfied by the regenerative heating, or fully satisfied by the regenerative heating.
  • Working medium M 1 kg of working fluid endothermic vaporization process 12, M 1 kg of working fluid pressure increasing process 23, (M 1 +M 2 ) kg of working fluid endothermic heating process 34, (M 1 +M 2 ) Kilogram working fluid pressure rise process 45, (M 1 +M 2 ) kilogram working fluid heat release process 56, M 2 kilogram working fluid depressurization expansion process 63, M 1 kilogram working fluid pressure rise and temperature rise process 67, M 1 kg Working fluid exothermic cooling, liquefaction and condensate cooling process 78, M 1 kg working fluid condensate pressure reduction process 81-a total of 9 processes.
  • M 1 kg of working fluid undergoes 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source; (M 1 +M 2 ) kg of working fluid undergoes 34 processes of heat absorption, which can be Part of it is used to obtain the low-temperature heat load and part of it is met by reheating, or all of it is met by reheating.
  • the process of M 1 kg of working fluid can be completed by a turbine or a throttle valve; the pressure-reducing expansion work is less than the pressure boosting work, and the insufficient part (circulation net work) is provided by the outside, forming a reverse Single working substance steam combined cycle.
  • the working medium is carried out-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure increasing process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2- X) Kilogram working fluid endothermic heating process 45, (M 1 +M 2 -X) kilogram working fluid boosting and heating process 56, (M 1 +M 2 -X) kilogram working fluid exothermic and cooling process 67, X kg working fluid Process of pressure increase and temperature increase 47, (M 1 +M 2 ) kg of working fluid exothermic cooling process 78, M 2 kg of working fluid depressurization expansion process 83, M 1 kg of working fluid pressure increase process 89, M 1 kg of working fluid Exothermic cooling, liquefaction and condensate cooling process 9c, M 1 kg working fluid condensate pressure reduction process c1-a total of 12 processes.
  • M 1 kg of working fluid is used for 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source;
  • (M 1 +M 2 ) kg of working fluid is used for 34 processes of heat absorption.
  • (M 1 +M 2 -X) kg of working fluid undergoes 45 process heat absorption, which can be partly used to obtain low-temperature heat load. Part of it is met by reheating, or all of it is met by reheating.
  • the working medium is carried out——M 1 kg of working fluid endothermic vaporization process 12, (M 1 +M 2 ) kg of working fluid endothermic heating process 23, (M 1 +M 2 ) kg of working fluid pressure increasing process 34, (M 1 + M 2) kg refrigerant heat cooling process 45, M 2 kg refrigerant expansion process down 5a, M 2 kg warmed refrigerant absorbs heat ab, M 2 kg refrigerant expansion process down b2, M 1 kg ENGINEERING mass boost heating process 56, M 1 kilogram cooling heat refrigerant, heat liquefaction and cooling process condensate 67, M 1 kilogram refrigerant condensate depressurization 71-- total of 10 process.
  • M 1 kg of working fluid is used for 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source; (M 1 +M 2 ) kg of working fluid is used for 23 processes of heat absorption.
  • low-temperature heat load or part of it is used to obtain low-temperature heat load and part is satisfied by regenerative heat, or all is satisfied by regenerative heat; the heat absorption of M 2 kg working fluid in the ab process can be satisfied by regenerative heat, or External heat source to meet.
  • Working medium M 1 kg working fluid endothermic vaporization process 12, (M 1 +M 2 ) kg working fluid endothermic heating process 23, (M 1 +M 2 -X) kg working fluid endothermic heating process 34, (M 1 +M 2 -X) Kilogram working fluid boosting process 45, (M 1 +M 2 -X) Kilogram working fluid exothermic cooling process 56, X kg working fluid boosting process 36, (M 1 + M 2 ) Kilogram working fluid exothermic cooling process 67, M 2 kg working fluid depressurizing expansion process 7a, M 2 kg working fluid endothermic heating up ab, M 2 kg working fluid depressurizing expansion process b2, M 1 kg working fluid rising Pressure increasing process 78, M 1 kg working fluid exothermic cooling, liquefaction and condensate cooling process 89, M 1 kg working fluid condensate pressure reduction process 91-a total of 13 processes.
  • M 1 kg of working fluid is used for 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source; (M 1 +M 2 ) kg of working fluid is used for 23 processes of heat absorption.
  • Working medium M 1 kg of working fluid endothermic vaporization process 12, M 1 kg of working fluid pressure increasing process 23, (M 1 +M 2 ) kg of working fluid endothermic heating process 34, (M 1 +M 2 ) Pressure rise process of kilogram working fluid 45, (M 1 +M 2 ) kilogram working fluid exothermic cooling process 56, M 2 kilogram working fluid depressurization expansion process 6a, M 2 kilogram working fluid endothermic heating up ab, M 2 kilogram working fluid Mass depressurization and expansion process b3, M 1 kg working fluid boosting and heating process 67, M 1 kg working fluid exothermic cooling, liquefaction and condensate cooling process 78, M 1 kg working fluid condensate depressurizing process 81—— A total of 11 processes.
  • M 1 kg of working fluid undergoes 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source;
  • (M 1 +M 2 ) kg of working fluid undergoes 34 processes of heat absorption, which can be Part of it is used to obtain the low-temperature heat load and part of it is satisfied by the regenerative heat, or all is satisfied by the regenerative heat; the heat absorption of the ab process of the M 2 kg working fluid can be satisfied by the regenerative heat or an external heat source.
  • the working medium is carried out-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure increasing process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2- X) Kilogram working fluid endothermic heating process 45, (M 1 +M 2 -X) kilogram working fluid boosting and heating process 56, (M 1 +M 2 -X) kilogram working fluid exothermic and cooling process 67, X kg working fluid
  • M 1 kg of working fluid undergoes 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source;
  • M 1 +M 2 kg of working fluid undergoes 34 processes of heat absorption, which can be Part of it is used to obtain low temperature heat load and part of it is satisfied by regenerative heat, or all is satisfied by regenerative heat;
  • M 1 +M 2 -X kilogram of working fluid undergoes 45 process heat absorption, which can be partially used to obtain low temperature heat load And part of it is satisfied by the regenerative heat, or all of it is satisfied by the regenerative heat; the heat absorption of the ab process by the M 2 kg working fluid can be satisfied by the regenerative heat or an external heat source.
  • the working medium is carried out——M 1 kg of working fluid endothermic vaporization process 12, (M 1 +M 2 ) kg of working fluid endothermic heating process 23, (M 1 +M 2 ) kg of working fluid pressure increasing process 34, (M 1 + M 2) kg refrigerant heat cooling process 45, (M 2 -M) kg refrigerant expansion process down 5t, M 2 kg refrigerant expansion process down t2, (M 1 + M) kg liter working medium Pressure heating process 56, (M 1 +M) kg working fluid exothermic cooling, liquefaction and condensate cooling process 6r, M kg working fluid pressure reduction process rs, M kg working fluid endothermic, vaporization and overheating process st, M 1 kg of working fluid condensate exothermic cooling process r7, M 1 kg of working fluid condensate pressure reduction process 71-a total of 12 processes.
  • M 1 kg of working fluid is used for 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source; (M 1 +M 2 ) kg of working fluid is used for 23 processes of heat absorption.
  • the heat absorption of the M kg working fluid in the st process is generally satisfied by the regenerative heat.
  • Working medium M 1 kg working fluid endothermic vaporization process 12, (M 1 +M 2 ) kg working fluid endothermic heating process 23, (M 1 +M 2 -X) kg working fluid endothermic heating process 34, (M 1 +M 2 -X) Kilogram working fluid boosting process 45, (M 1 +M 2 -X) Kilogram working fluid exothermic cooling process 56, X kg working fluid boosting process 36, (M 1 + M 2) kg refrigerant heat cooling process 67, (M 2 -M) kg refrigerant expansion process down 7t, M 2 kg refrigerant expansion process down t2, (M 1 + M) kg boost heating the working medium Process 78, (M 1 +M) kg working fluid exothermic cooling, liquefaction and condensate cooling process 8r, M kg working fluid pressure reduction process rs, M kg working fluid endothermic, vaporization and overheating process st, M 1 Kilogram working fluid condensate exothermic cooling process r9, M 1 kg working fluid condensate pressure
  • M 1 kg of working fluid is used for 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source; (M 1 +M 2 ) kg of working fluid is used for 23 processes of heat absorption.
  • the M kilogram working fluid is used for the rs process and the M 1 kilogram working fluid
  • the 91 process can be completed by a turbine or a throttle valve; the pressure-reducing expansion work is less than the pressure-boosting work, and the insufficient part (net cycle power) is provided by the outside, forming a reverse single working substance steam combined cycle.
  • Working medium M 1 kg of working fluid endothermic vaporization process 12, M 1 kg of working fluid pressure increasing process 23, (M 1 +M 2 ) kg of working fluid endothermic heating process 34, (M 1 +M 2 ) Pressure increasing process of kilogram working fluid 45, (M 1 +M 2 ) kilogram working fluid exothermic cooling process 56, (M 2 -M) kilogram working fluid depressurizing expansion process 6t, M 2 kilogram working fluid pressure reducing expansion process t3 , (M 1 +M) Kilogram working fluid boosting and heating process 67, (M 1 +M) Kilogram working fluid exothermic cooling, liquefaction and condensate cooling process 7r, M kg working fluid pressure reducing process rs, M kg Working fluid endothermic, vaporization and overheating process st, M 1 kg working fluid condensate exothermic cooling process r8, M 1 kg working fluid condensate pressure reduction process 81-a total of 13 processes.
  • M 1 kg of working fluid undergoes 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source;
  • (M 1 +M 2 ) kg of working fluid undergoes 34 processes of heat absorption, which can be Part of it is used to obtain low-temperature heat load and part of it is met by regenerative heat, or all is met by regenerative heat; the heat absorption of M kg of working fluid in the st process is generally satisfied by regenerative heat.
  • (M 2 -M) the pressure-reducing expansion process of (M 2 -M) kilogram working fluid 6t and M 2 kilogram working fluid pressure-reducing expansion process t3 are completed by the expander and provide mechanical energy, M kilogram working fluid is used for rs process and M 1 kilogram working fluid
  • the 81 process can be completed by a turbine or a throttle valve; the pressure-reducing expansion work is less than the pressure boosting work, and the insufficient part (net cycle power) is provided by the outside, forming a reverse single-working-substance steam combined cycle.
  • the working medium is carried out-M 1 kg working fluid endothermic vaporization process 12, M 1 kg working fluid pressure increasing process 23, (M 1 +M 2 ) kg working fluid endothermic heating process 34, (M 1 +M 2- X) Kilogram working fluid endothermic heating process 45, (M 1 +M 2 -X) kilogram working fluid boosting and heating process 56, (M 1 +M 2 -X) kilogram working fluid exothermic and cooling process 67, X kg working fluid Pressure increasing process 47, (M 1 +M 2 ) kg working fluid exothermic cooling process 78, (M 2 -M) kg working fluid depressurizing expansion process 8t, M 2 kg working fluid depressurizing expansion process t3, ( M 1 +M) Kilogram working fluid pressure increasing process 89, (M 1 +M) Kilogram working fluid exothermic cooling, liquefaction and condensate cooling process 9r, M kg working fluid pressure reduction process rs, M kg working fluid Heat absorption, vaporization and overheating process st, M 1 kg of working fluid con
  • M 1 kg of working fluid undergoes 12 processes to obtain low temperature heat load, which is provided by the refrigerated medium or low temperature heat source;
  • M 1 +M 2 kg of working fluid undergoes 34 processes of heat absorption, which can be Part of it is used to obtain low temperature heat load and part of it is satisfied by regenerative heat, or all is satisfied by regenerative heat;
  • M 1 +M 2 -X kilogram of working fluid undergoes 45 process heat absorption, which can be partially used to obtain low temperature heat load And part of it is satisfied by the regenerative heat, or the whole is satisfied by the regenerative heat; the heat absorption of the M kg working fluid in the st process can be satisfied by the regenerative heat.
  • the rs process and the C1 process for the M 1 kg working fluid can be completed by a turbine or a throttle valve; the pressure-reducing expansion work is less than the pressure boosting work, and the insufficient part (circulation net work) is provided by the outside to form a reverse single working substance steam Combined cycle.
  • a single working fluid is conducive to production and storage; reduces operating costs and improves the flexibility of cycle adjustment
  • the working fluid has a wide application range, can well adapt to the energy supply demand, and the working fluid and working parameters can be matched flexibly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

单工质蒸汽联合循环,属于热力学、制冷与热泵技术领域。逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的八个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2)千克工质升压过程34,(M 1+M 2)千克工质放热过程45,M 2千克工质降压过程52,M 1千克工质升压过程56,M 1千克工质放热冷凝过程67,M 1千克工质降压过程71——组成的闭合过程。

Description

逆向单工质蒸汽联合循环 技术领域:
本发明属于热力学、制冷与热泵技术领域。
背景技术:
冷需求、热需求和动力需求,为人类生活与生产当中所常见;其中,利用机械能转换为热能是实现制冷和高效供热的重要方式。一般情况下,制冷时冷却介质的温度是变化的,制热时被加热介质的温度往往也是变化的;利用机械能制热时,很多时候被加热介质同时具有变温和高温双重特点,这使得采用单一热力循环理论实现制冷或供热时性能指数不合理;这些存在的问题是——性能指数不合理,供热参数不高,压缩比较高,工作压力太大。
从基础理论看,长久以来存在重大不足:(1)采用逆向朗肯循环为理论基础的蒸汽压缩式制冷或热泵循环,放热主要依靠冷凝过程,导致放热时工质与被加热介质之间温差损失大;同时,冷凝液的降压过程损失较大或利用代价高;采用超临界工况时,压缩比较高,使得压缩机的制造代价大,安全性降低等。(2)采用逆向布雷顿循环为理论基础的气体压缩式制冷或热泵循环,要求压缩比较低,这限制了供热参数的提高;同时,低温过程是变温的,这使得制冷或制热时低温环节往往存在较大的温差损失,性能指数不理想。
在热科学基础理论体系中,热力循环的创建及发展应用将对能源利用的飞跃起到重大作用,将积极推动社会进步和生产力发展;其中,逆向热力循环是机械能制冷或制热利用装置的理论基础,也是相关能源利用系统的核心。针对长久以来存在的问题,从简单、主动和高效地利用机械能进行制冷或制热的原则出发,力求为制冷或热泵装置的简单、主动和高效提供基本理论支撑,本发明提出了逆向单工质蒸汽联合循环。
发明内容:
本发明主要目的是要提供逆向单工质蒸汽联合循环,具体发明内容分项阐述如下:
1.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的八个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2)千克工质升压过程34,(M 1+M 2)千克工质放热过程45,M 2千克工质降压过程52,M 1千克工质升压过程56,M 1千克工质放热冷凝过程67,M 1千克工质降压过程71——组成的闭合过程。
2.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十一个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2-X)千克工质吸热过程34,(M 1+M 2-X)千克工质升压过程45,(M 1+M 2-X)千克工质放热过程56,X千克工质升压过程36,(M 1+M 2)千克工质放热过程67,M 2千克工质降压过程72,M 1千克工质升压过程78,M 1千克工质放热冷凝过程89,M 1千克工质降压过程91——组成的闭合过程。
3.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的九个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克 工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,M 2千克工质降压过程63,M 1千克工质升压过程67,M 1千克工质放热冷凝过程78,M 1千克工质降压过程81——组成的闭合过程。
4.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,M 2千克工质降压过程83,M 1千克工质升压过程89,M 1千克工质放热冷凝过程9c,M 1千克工质降压过程c1——组成的闭合过程。
5.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2)千克工质升压过程34,(M 1+M 2)千克工质放热过程45,M 2千克工质降压过程5a,M 2千克工质吸热过程ab,M 2千克工质降压过程b2,M 1千克工质升压过程56,M 1千克工质放热冷凝过程67,M 1千克工质降压过程71——组成的闭合过程。
6.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十三个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2-X)千克工质吸热过程34,(M 1+M 2-X)千克工质升压过程45,(M 1+M 2-X)千克工质放热过程56,X千克工质升压过程36,(M 1+M 2)千克工质放热过程67,M 2千克工质降压过程7a,M 2千克工质吸热过程ab,M 2千克工质降压过程b2,M 1千克工质升压过程78,M 1千克工质放热冷凝过程89,M 1千克工质降压过程91——组成的闭合过程。
7.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,M 2千克工质降压过程6a,M 2千克工质吸热过程ab,M 2千克工质降压过程b3,M 1千克工质升压过程67,M 1千克工质放热冷凝过程78,M 1千克工质降压过程81——组成的闭合过程。
8.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十四个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,M 2千克工质降压过程8a,M 2千克工质吸热过程ab,M 2千克工质降压过程b3,M 1千克工质升压过程89,M 1千克工质放热冷凝过程9c,M 1千克工质降压过程c1——组成的闭合过程。
9.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2)千克工质升压过程34,(M 1+M 2)千克工质放热过程45,(M 2-M)千克工质降压过程5t,M 2千克工质降压过程t2,(M 1+M)千克工质升压过程56,(M 1+M)千 克工质放热冷凝过程6r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程r7,M 1千克工质降压过程71——组成的闭合过程。
10.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2-X)千克工质吸热过程34,(M 1+M 2-X)千克工质升压过程45,(M 1+M 2-X)千克工质放热过程56,X千克工质升压过程36,(M 1+M 2)千克工质放热过程67,(M 2-M)千克工质降压过程7t,M 2千克工质降压过程t2,(M 1+M)千克工质升压过程78,(M 1+M)千克工质放热冷凝过程8r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程r9,M 1千克工质降压过程91——组成的闭合过程。
11.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,(M 2-M)千克工质降压过程6t,M 2千克工质降压过程t3,(M 1+M)千克工质升压过程67,(M 1+M)千克工质放热冷凝过程7r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程r8,M 1千克工质降压过程81——组成的闭合过程。
12.逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十六个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,(M 2-M)千克工质降压过程8t,M 2千克工质降压过程t3,(M 1+M)千克工质升压过程89,(M 1+M)千克工质放热冷凝过程9r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程rc,M 1千克工质降压过程c1——组成的闭合过程。
附图说明:
图1/12是依据本发明所提供的逆向单工质蒸汽联合循环第1种原则性流程示例图。
图2/12是依据本发明所提供的逆向单工质蒸汽联合循环第2种原则性流程示例图。
图3/12是依据本发明所提供的逆向单工质蒸汽联合循环第3种原则性流程示例图。
图4/12是依据本发明所提供的逆向单工质蒸汽联合循环第4种原则性流程示例图。
图5/12是依据本发明所提供的逆向单工质蒸汽联合循环第5种原则性流程示例图。
图6/12是依据本发明所提供的逆向单工质蒸汽联合循环第6种原则性流程示例图。
图7/12是依据本发明所提供的逆向单工质蒸汽联合循环第7种原则性流程示例图。
图8/12是依据本发明所提供的逆向单工质蒸汽联合循环第8种原则性流程示例图。
图9/12是依据本发明所提供的逆向单工质蒸汽联合循环第9种原则性流程示例图。
图10/12是依据本发明所提供的逆向单工质蒸汽联合循环第10种原则性流程示例图。
图11/12是依据本发明所提供的逆向单工质蒸汽联合循环第11种原则性流程示例图。
图12/12是依据本发明所提供的逆向单工质蒸汽联合循环第12种原则性流程示例图。
具体实施方式:
首先要说明的是,在流程的表述上,非必要情况下不重复进行,对显而易见的流程不作表述;下面结合附图和实例详细描述本发明。
图1/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热升温过程23,(M 1+M 2)千克工质升压升温过程34,(M 1+M 2)千克工质放热降温过程45,M 2千克工质降压膨胀过程52,M 1千克工质升压升温过程56,M 1千克工质放热降温、液化和冷凝液放热降温过程67,M 1千克工质冷凝液降压过程71——共8个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2)千克工质进行45过程的放热,以及M 1千克工质进行67过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行23过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行23过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足。
③能量转换过程——(M 1+M 2)千克工质进行34过程和M 1千克工质进行56过程,一般由压缩机来完成,需要机械能;M 2千克工质进行52过程由膨胀机来完成并提供机械能,M 1千克工质进行71过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图2/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热升温过程23,(M 1+M 2-X)千克工质吸热升温过程34,(M 1+M 2-X)千克工质升压升温过程45,(M 1+M 2-X)千克工质放热降温过程56,X千克工质升压升温过程36,(M 1+M 2)千克工质放热降温过程67,M 2千克工质降压膨胀过程72,M 1千克工质升压升温过程78,M 1千克工质放热降温、液化和冷凝液放热降温过程89,M 1千克工质冷凝液降压过程91——共11个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行56过程的放热,(M 1+M 2)千克工质进行67过程的放热,以及M 1千克工质进行89过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行23过程和(M 1+M 2-X)千克工质进行34过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行23过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足;(M 1+M 2-X)千克工质进行34过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足。
③能量转换过程——(M 1+M 2-X)千克工质进行45过程、X千克工质进行36过程 和M 1千克工质进行78过程,一般由压缩机来完成,需要机械能;M 2千克工质进行72过程由膨胀机来完成并提供机械能,M 1千克工质进行91过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图3/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2)千克工质升压升温过程45,(M 1+M 2)千克工质放热降温过程56,M 2千克工质降压膨胀过程63,M 1千克工质升压升温过程67,M 1千克工质放热降温、液化和冷凝液放热降温过程78,M 1千克工质冷凝液降压过程81——共9个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2)千克工质进行56过程的放热,以及M 1千克工质进行78过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足。
③能量转换过程——M 1千克工质进行23、67两过程和(M 1+M 2)千克工质进行45过程,一般由压缩机来完成,需要机械能;M 2千克工质进行63过程由膨胀机来完成并提供机械能,M 1千克工质进行81过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图4/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2-X)千克工质吸热升温过程45,(M 1+M 2-X)千克工质升压升温过程56,(M 1+M 2-X)千克工质放热降温过程67,X千克工质升压升温过程47,(M 1+M 2)千克工质放热降温过程78,M 2千克工质降压膨胀过程83,M 1千克工质升压升温过程89,M 1千克工质放热降温、液化和冷凝液放热降温过程9c,M 1千克工质冷凝液降压过程c1——共12个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行67过程的放热,(M 1+M 2)千克工质进行78过程的放热,以及M 1千克工质进行9c过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程和(M 1+M 2-X)千克工质进行45过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足;(M 1+M 2-X)千克工质进行45过程的吸 热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足。
③能量转换过程——M 1千克工质进行23、89两过程,以及(M 1+M 2-X)千克工质进行56过程和X千克工质进行47过程,一般由压缩机来完成,需要机械能;M 2千克工质进行83过程由膨胀机来完成并提供机械能,M 1千克工质进行c1过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图5/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热升温过程23,(M 1+M 2)千克工质升压升温过程34,(M 1+M 2)千克工质放热降温过程45,M 2千克工质降压膨胀过程5a,M 2千克工质吸热升温ab,M 2千克工质降压膨胀过程b2,M 1千克工质升压升温过程56,M 1千克工质放热降温、液化和冷凝液放热降温过程67,M 1千克工质冷凝液降压过程71——共10个过程。
(2)从能量转换上看:
①放热过程——一般地,(M 1+M 2)千克工质进行45过程的放热,以及M 1千克工质进行67过程的放热,其高温部分用于被加热介质,低温部分用于(M 1+M 2)千克工质进行23过程、M 2千克工质进行ab过程的热需求(回热)。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行23过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M 2千克工质进行ab过程的吸热,可由回热来满足,或者由外部热源来满足。
③能量转换过程——(M 1+M 2)千克工质进行34过程和M 1千克工质进行56过程,一般由压缩机来完成,需要机械能;M 2千克工质进行5a、b2过程由膨胀机来完成并提供机械能,M 1千克工质进行71过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图6/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热升温过程23,(M 1+M 2-X)千克工质吸热升温过程34,(M 1+M 2-X)千克工质升压升温过程45,(M 1+M 2-X)千克工质放热降温过程56,X千克工质升压升温过程36,(M 1+M 2)千克工质放热降温过程67,M 2千克工质降压膨胀过程7a,M 2千克工质吸热升温ab,M 2千克工质降压膨胀过程b2,M 1千克工质升压升温过程78,M 1千克工质放热降温、液化和冷凝液放热降温过程89,M 1千克工质冷凝液降压过程91——共13个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行56过程的放热,(M 1+M 2)千克工质进行67过程的放热,以及M 1千克工质进行89过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行23过程、(M 1+M 2-X)千克工质进行34过程和M 2千克工质进行ab过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行23过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;(M 1+M 2-X)千克工质进行34过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M 2千克工质进行ab过程的吸热,可由回热来满足,或者由外部热源来满足。
③能量转换过程——(M 1+M 2-X)千克工质进行45过程、X千克工质进行36过程和M 1千克工质进行78过程,一般由压缩机来完成,需要机械能;M 2千克工质进行7a、b2过程由膨胀机来完成并提供机械能,M 1千克工质进行91过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图7/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2)千克工质升压升温过程45,(M 1+M 2)千克工质放热降温过程56,M 2千克工质降压膨胀过程6a,M 2千克工质吸热升温ab,M 2千克工质降压膨胀过程b3,M 1千克工质升压升温过程67,M 1千克工质放热降温、液化和冷凝液放热降温过程78,M 1千克工质冷凝液降压过程81——共11个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2)千克工质进行56过程的放热,以及M 1千克工质进行78过程的放热,其高温部分一般用于被加热介质,低温部分一般用于M 2千克工质进行ab过程和(M 1+M 2)千克工质进行34过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M 2千克工质进行ab过程的吸热,可由回热来满足,或者由外部热源来满足。
③能量转换过程——M 1千克工质进行23、67两过程,以及(M 1+M 2)千克工质进行45过程,一般由压缩机来完成,需要机械能;M 2千克工质进行6a、b3过程由膨胀机来完成并提供机械能,M 1千克工质进行81过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图8/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2-X)千克工质吸热升温过程45,(M 1+M 2-X)千克工质升压升温过程56,(M 1+M 2-X)千克工质放热降温过程67,X千克工质升压升温过程47,(M 1+M 2)千克工质放热降温过程78,M 2千克工质降压膨胀过程8a,M 2千克工质吸热升温ab,M 2千克工质降压膨胀过程b3,M 1千克工质升压升温过程89,M 1千克工质放热降温、液化和冷凝液放热降温过程9c,M 1千克工质冷凝液降压过 程c1——共14个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行67过程的放热,(M 1+M 2)千克工质进行78过程的放热,以及M 1千克工质进行9c过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程、(M 1+M 2-X)千克工质进行45过程和M 2千克工质进行ab过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;(M 1+M 2-X)千克工质进行45过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M 2千克工质进行ab过程的吸热,可由回热来满足,或者由外部热源来满足。
③能量转换过程——M 1千克工质进行23、89两过程,以及(M 1+M 2-X)千克工质进行56过程和X千克工质进行47过程,一般由压缩机来完成,需要机械能;M 2千克工质进行8a、b3过程由膨胀机来完成并提供机械能,M 1千克工质进行c1过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图9/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热升温过程23,(M 1+M 2)千克工质升压升温过程34,(M 1+M 2)千克工质放热降温过程45,(M 2-M)千克工质降压膨胀过程5t,M 2千克工质降压膨胀过程t2,(M 1+M)千克工质升压升温过程56,(M 1+M)千克工质放热降温、液化和冷凝液放热降温过程6r,M千克工质降压过程rs,M千克工质吸热、汽化和过热过程st,M 1千克工质冷凝液放热降温过程r7,M 1千克工质冷凝液降压过程71——共12个过程。
(2)从能量转换上看:
①放热过程——一般地,(M 1+M 2)千克工质进行45过程的放热,(M 1+M)千克工质进行6r过程的放热,以及M 1千克工质冷凝液进行r7过程的放热,其高温部分用于被加热介质,低温部分用于(M 1+M 2)千克工质进行23过程、M千克工质进行st过程的热需求(回热);其中,M 1千克工质r7的低温段放热可用于12过程的过热。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行23过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M千克工质进行st过程的吸热,一般由回热来满足。
③能量转换过程——(M 1+M 2)千克工质进行34过程和(M 1+M)千克工质进行56过程,一般由压缩机来完成,需要机械能;(M 2-M)千克工质降压膨胀过程5t和M 2千克工质降压膨胀过程t2由膨胀机来完成并提供机械能,M千克工质进行rs过程和M 1千克工质进行71过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图10/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热升温过程23,(M 1+M 2-X)千克工质吸热升温过程34,(M 1+M 2-X)千克工质升压升温过程45,(M 1+M 2-X)千克工质放热降温过程56,X千克工质升压升温过程36,(M 1+M 2)千克工质放热降温过程67,(M 2-M)千克工质降压膨胀过程7t,M 2千克工质降压膨胀过程t2,(M 1+M)千克工质升压升温过程78,(M 1+M)千克工质放热降温、液化和冷凝液放热降温过程8r,M千克工质降压过程rs,M千克工质吸热、汽化和过热过程st,M 1千克工质冷凝液放热降温过程r9,M 1千克工质冷凝液降压过程91——共15个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行56过程的放热,(M 1+M 2)千克工质进行67过程的放热,(M 1+M)千克工质进行8r过程的放热,以及M 1千克工质冷凝液进行r9过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行23过程、(M 1+M 2-X)千克工质进行34过程和M千克工质进行st过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行23过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;(M 1+M 2-X)千克工质进行34过程的吸热,可用于获取低温热负荷,或者部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M千克工质进行st过程的吸热,可由回热来满足。
③能量转换过程——(M 1+M 2-X)千克工质进行45过程、X千克工质进行36过程和(M 1+M)千克工质进行78过程,一般由压缩机来完成,需要机械能;(M 2-M)千克工质降压膨胀过程7t和M 2千克工质降压膨胀过程t2由膨胀机来完成并提供机械能,M千克工质进行rs过程和M 1千克工质进行91过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图11/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2)千克工质升压升温过程45,(M 1+M 2)千克工质放热降温过程56,(M 2-M)千克工质降压膨胀过程6t,M 2千克工质降压膨胀过程t3,(M 1+M)千克工质升压升温过程67,(M 1+M)千克工质放热降温、液化和冷凝液放热降温过程7r,M千克工质降压过程rs,M千克工质吸热、汽化和过热过程st,M 1千克工质冷凝液放热降温过程r8,M 1千克工质冷凝液降压过程81——共13个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2)千克工质进行56过程的放热,(M 1+M)千克工质进行7r过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程和M千克工质进行st过程的热需求;M 1千克工质冷凝液进行r8过程的放热,一般用于(M 1+M 2)千克工质进行34过程低温段的加热。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或 低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M千克工质进行st过程的吸热,一般由回热来满足。
③能量转换过程——M 1千克工质进行23过程,(M 1+M 2)千克工质进行45过程,以及(M 1+M)千克工质进行67过程,一般由压缩机来完成,需要机械能;(M 2-M)千克工质降压膨胀过程6t和M 2千克工质降压膨胀过程t3由膨胀机来完成并提供机械能,M千克工质进行rs过程和M 1千克工质进行81过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
图12/12所示T-s图中的逆向单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质吸热汽化过程12,M 1千克工质升压升温过程23,(M 1+M 2)千克工质吸热升温过程34,(M 1+M 2-X)千克工质吸热升温过程45,(M 1+M 2-X)千克工质升压升温过程56,(M 1+M 2-X)千克工质放热降温过程67,X千克工质升压升温过程47,(M 1+M 2)千克工质放热降温过程78,(M 2-M)千克工质降压膨胀过程8t,M 2千克工质降压膨胀过程t3,(M 1+M)千克工质升压升温过程89,(M 1+M)千克工质放热降温、液化和冷凝液放热降温过程9r,M千克工质降压过程rs,M千克工质吸热、汽化和过热过程st,M 1千克工质冷凝液放热降温过程rc,M 1千克工质冷凝液降压过程c1——共16个过程。
(2)从能量转换上看:
①放热过程——(M 1+M 2-X)千克工质进行67过程的放热,(M 1+M 2)千克工质进行78过程的放热,(M 1+M)千克工质进行9r过程的放热,以及M 1千克工质冷凝液进行rc过程的放热,其高温部分一般用于被加热介质,低温部分一般用于(M 1+M 2)千克工质进行34过程、(M 1+M 2-X)千克工质进行45过程和M千克工质进行st过程的热需求。
②吸热过程——一般地,M 1千克工质进行12过程获取低温热负荷,由被制冷介质或低温热源来提供;(M 1+M 2)千克工质进行34过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;(M 1+M 2-X)千克工质进行45过程的吸热,可部分用于获取低温热负荷而部分由回热来满足,或者全部由回热来满足;M千克工质进行st过程的吸热,可由回热来满足。
③能量转换过程——M 1千克工质进行23过程,(M 1+M 2-X)千克工质进行56过程,X千克工质进行47过程,以及(M 1+M)千克工质进行89过程,一般由压缩机来完成,需要机械能;(M 2-M)千克工质降压膨胀过程8t和M 2千克工质降压膨胀过程t3由膨胀机来完成并提供机械能,M千克工质进行rs过程和M 1千克工质进行c1过程可由涡轮机或节流阀来完成;降压膨胀作功小于升压耗功,不足部分(循环净功)由外部提供,形成逆向单工质蒸汽联合循环。
本发明技术可以实现的效果——本发明所提出的逆向单工质蒸汽联合循环,具有如下效果和优势:
(1)创建机械能制冷与制热利用(能差利用)基础理论。
(2)消除或较大幅度减少相变放热过程的热负荷,相对增加高温段放热负荷,实现逆向 循环性能指数合理化。
(3)工质参数范围得到大幅度扩展,实现高效高温供热。
(4)为降低工作压力和提高装置安全性提供理论基础。
(5)降低循环压缩比,为核心设备的选取和制造提供方便。
(6)方法简单,流程合理,适用性好,是实现能差有效利用的共性技术。
(7)单一工质,有利于生产和储存;降低运行成本,提高循环调节的灵活性
(8)过程共用,减少过程,为减少设备投资提供理论基础。
(9)在高温区或变温区,有利于降低放热环节的温差传热损失,提高性能指数。
(10)在高温供热区采取低压运行方式,缓解或解决传统制冷与热泵装置中性能指数、循环介质参数与管材耐压耐温性能之间的矛盾。
(11)在实现高性能指数前提下,可选择低压运行,为提高装置运行安全性提供理论支撑。
(12)工质适用范围广,能够很好地适应供能需求,工质与工作参数之间匹配灵活。
(13)扩展了机械能进行冷热高效利用的热力循环范围,有利于更好地实现机械能在制冷、高温供热和变温供热领域的高效利用。

Claims (12)

  1. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的八个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2)千克工质升压过程34,(M 1+M 2)千克工质放热过程45,M 2千克工质降压过程52,M 1千克工质升压过程56,M 1千克工质放热冷凝过程67,M 1千克工质降压过程71——组成的闭合过程。
  2. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十一个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2-X)千克工质吸热过程34,(M 1+M 2-X)千克工质升压过程45,(M 1+M 2-X)千克工质放热过程56,X千克工质升压过程36,(M 1+M 2)千克工质放热过程67,M 2千克工质降压过程72,M 1千克工质升压过程78,M 1千克工质放热冷凝过程89,M 1千克工质降压过程91——组成的闭合过程。
  3. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的九个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,M 2千克工质降压过程63,M 1千克工质升压过程67,M 1千克工质放热冷凝过程78,M 1千克工质降压过程81——组成的闭合过程。
  4. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十二个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,M 2千克工质降压过程83,M 1千克工质升压过程89,M 1千克工质放热冷凝过程9c,M 1千克工质降压过程c1——组成的闭合过程。
  5. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2)千克工质升压过程34,(M 1+M 2)千克工质放热过程45,M 2千克工质降压过程5a,M 2千克工质吸热过程ab,M 2千克工质降压过程b2,M 1千克工质升压过程56,M 1千克工质放热冷凝过程67,M 1千克工质降压过程71——组成的闭合过程。
  6. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十三个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2-X)千克工质吸热过程34,(M 1+M 2-X)千克工质升压过程45,(M 1+M 2-X)千克工质放热过程56,X千克工质升压过程36,(M 1+M 2)千克工质放热过程67,M 2千克工质降压过程7a,M 2千克工质吸热过程ab,M 2千克工质降压过程b2,M 1千克工质升压过程78,M 1千克工质放热冷凝过程89,M 1千克工质降压过程91——组成的闭合过程。
  7. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,M 2千克工质降压过程6a,M 2千克工质吸热过程ab,M 2千克工质降压过程b3,M 1千克 工质升压过程67,M 1千克工质放热冷凝过程78,M 1千克工质降压过程81——组成的闭合过程。
  8. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十四个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,M 2千克工质降压过程8a,M 2千克工质吸热过程ab,M 2千克工质降压过程b3,M 1千克工质升压过程89,M 1千克工质放热冷凝过程9c,M 1千克工质降压过程c1——组成的闭合过程。
  9. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2)千克工质升压过程34,(M 1+M 2)千克工质放热过程45,(M 2-M)千克工质降压过程5t,M 2千克工质降压过程t2,(M 1+M)千克工质升压过程56,(M 1+M)千克工质放热冷凝过程6r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程r7,M 1千克工质降压过程71——组成的闭合过程。
  10. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质吸热汽化过程12,(M 1+M 2)千克工质吸热过程23,(M 1+M 2-X)千克工质吸热过程34,(M 1+M 2-X)千克工质升压过程45,(M 1+M 2-X)千克工质放热过程56,X千克工质升压过程36,(M 1+M 2)千克工质放热过程67,(M 2-M)千克工质降压过程7t,M 2千克工质降压过程t2,(M 1+M)千克工质升压过程78,(M 1+M)千克工质放热冷凝过程8r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程r9,M 1千克工质降压过程91——组成的闭合过程。
  11. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2)千克工质升压过程45,(M 1+M 2)千克工质放热过程56,(M 2-M)千克工质降压过程6t,M 2千克工质降压过程t3,(M 1+M)千克工质升压过程67,(M 1+M)千克工质放热冷凝过程7r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程r8,M 1千克工质降压过程81——组成的闭合过程。
  12. 逆向单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十六个过程——M 1千克工质吸热汽化过程12,M 1千克工质升压过程23,(M 1+M 2)千克工质吸热过程34,(M 1+M 2-X)千克工质吸热过程45,(M 1+M 2-X)千克工质升压过程56,(M 1+M 2-X)千克工质放热过程67,X千克工质升压过程47,(M 1+M 2)千克工质放热过程78,(M 2-M)千克工质降压过程8t,M 2千克工质降压过程t3,(M 1+M)千克工质升压过程89,(M 1+M)千克工质放热冷凝过程9r,M千克工质降压过程rs,M千克工质吸热汽化过程st,M 1千克工质放热过程rc,M 1千克工质降压过程c1——组成的闭合过程。
PCT/CN2020/000132 2019-06-14 2020-06-10 逆向单工质蒸汽联合循环 WO2020248588A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/619,246 US20220282890A1 (en) 2019-06-14 2020-06-10 Reversed single-working-medium vapor combined cycle
GB2200355.2A GB2599867A (en) 2019-06-14 2020-06-10 Reverse single working medium steam combined cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910564817 2019-06-14
CN201910564817.4 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020248588A1 true WO2020248588A1 (zh) 2020-12-17

Family

ID=73781329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000132 WO2020248588A1 (zh) 2019-06-14 2020-06-10 逆向单工质蒸汽联合循环

Country Status (4)

Country Link
US (1) US20220282890A1 (zh)
CN (1) CN115478917A (zh)
GB (1) GB2599867A (zh)
WO (1) WO2020248588A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125863A (ja) * 1989-10-06 1991-05-29 Matsushita Electric Ind Co Ltd 2段圧縮冷凍サイクル装置
CN1847750A (zh) * 2005-02-28 2006-10-18 热分析股份有限责任公司 制冷装置
CN105004100A (zh) * 2015-07-21 2015-10-28 同济大学 单制冷剂回路、多吸气压力的蒸气压缩制冷/热泵系统
WO2016117946A1 (en) * 2015-01-23 2016-07-28 Lg Electronics Inc. Cooling cycle apparatus for refrigerator
CN207180086U (zh) * 2017-07-27 2018-04-03 江苏雪龙新能源科技有限公司 二氧化碳热泵机组
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440510B (zh) * 2016-02-25 2020-05-29 李华玉 第二类热驱动压缩式热泵
CN108679880B (zh) * 2017-03-30 2021-07-27 李华玉 双工质联合循环压缩式热泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125863A (ja) * 1989-10-06 1991-05-29 Matsushita Electric Ind Co Ltd 2段圧縮冷凍サイクル装置
CN1847750A (zh) * 2005-02-28 2006-10-18 热分析股份有限责任公司 制冷装置
WO2016117946A1 (en) * 2015-01-23 2016-07-28 Lg Electronics Inc. Cooling cycle apparatus for refrigerator
CN105004100A (zh) * 2015-07-21 2015-10-28 同济大学 单制冷剂回路、多吸气压力的蒸气压缩制冷/热泵系统
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN207180086U (zh) * 2017-07-27 2018-04-03 江苏雪龙新能源科技有限公司 二氧化碳热泵机组

Also Published As

Publication number Publication date
US20220282890A1 (en) 2022-09-08
GB2599867A (en) 2022-04-13
CN115478917A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2020211472A1 (zh) 单工质蒸汽联合循环
WO2020248588A1 (zh) 逆向单工质蒸汽联合循环
WO2020215814A1 (zh) 单工质蒸汽联合循环
CN112344579A (zh) 逆向单工质蒸汽联合循环
WO2020248591A1 (zh) 逆向单工质蒸汽联合循环
WO2021047125A1 (zh) 逆向单工质蒸汽联合循环
WO2020248589A1 (zh) 逆向单工质蒸汽联合循环
WO2020248592A1 (zh) 逆向单工质蒸汽联合循环
WO2021047126A1 (zh) 逆向单工质蒸汽联合循环
WO2021047127A1 (zh) 逆向单工质蒸汽联合循环
WO2020248590A1 (zh) 逆向单工质蒸汽联合循环
WO2021042646A1 (zh) 单工质蒸汽联合循环
WO2020215817A1 (zh) 单工质蒸汽联合循环
WO2021042647A1 (zh) 单工质蒸汽联合循环
WO2021072988A1 (zh) 逆向单工质蒸汽联合循环与单工质联合循环热泵装置
WO2021042648A1 (zh) 单工质蒸汽联合循环
WO2020211474A1 (zh) 单工质蒸汽联合循环
WO2020215815A1 (zh) 单工质蒸汽联合循环
WO2020215813A1 (zh) 单工质蒸汽联合循环
WO2020211471A1 (zh) 单工质蒸汽联合循环
WO2021036153A1 (zh) 单工质蒸汽联合循环
WO2020211475A1 (zh) 单工质蒸汽联合循环
WO2020211473A1 (zh) 单工质蒸汽联合循环
WO2020215816A1 (zh) 单工质蒸汽联合循环
WO2021143550A1 (zh) 双向第一类单工质联合循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202200355

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200610

122 Ep: pct application non-entry in european phase

Ref document number: 20822916

Country of ref document: EP

Kind code of ref document: A1