WO2021036153A1 - 单工质蒸汽联合循环 - Google Patents

单工质蒸汽联合循环 Download PDF

Info

Publication number
WO2021036153A1
WO2021036153A1 PCT/CN2020/000201 CN2020000201W WO2021036153A1 WO 2021036153 A1 WO2021036153 A1 WO 2021036153A1 CN 2020000201 W CN2020000201 W CN 2020000201W WO 2021036153 A1 WO2021036153 A1 WO 2021036153A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
kilogram
endothermic
depressurization
heat
Prior art date
Application number
PCT/CN2020/000201
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2021036153A1 publication Critical patent/WO2021036153A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate

Definitions

  • the invention belongs to the field of energy and power technology.
  • the heat source is high temperature and variable temperature heat source; when the Rankine cycle is used as the theoretical basis and steam is used as the circulating working fluid to achieve thermal variable work, it is affected by the temperature and pressure resistance of the material. And safety restrictions, no matter what parameters are used for operation, there is a large temperature difference between the circulating working fluid and the heat source, and the irreversible loss is large, resulting in low thermal efficiency.
  • thermal cycle is The theoretical basis of thermal energy utilization devices and the core of energy utilization systems; the creation and development and application of thermal cycles will play a major role in the leap of energy utilization and will actively promote social progress and productivity development.
  • the present invention proposes a single working substance steam combination cycle.
  • the main purpose of the present invention is to provide a single working fluid steam combined cycle.
  • the specific content of the invention is described as follows:
  • the single working fluid steam combined cycle refers to the working fluids composed of M 1 kg and M 2 kg, which are carried out separately or together in ten processes-M 1 kg working fluid boost process 12, M 1 kg working fluid absorption Thermal vaporization process 23, M 1 kg working fluid depressurization process 3f, M 2 kg working fluid boosting process 74, M 2 kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5, (M 1 +M 2 )Kg working fluid depressurization process 56, (M 1 +M 2 )Kg working fluid exothermic process 67, M 1 kg working fluid depressurization process 78, M 1 kg working fluid exothermic condensation process 81 ——The closing process of composition.
  • Single working fluid steam combined cycle refers to 13 processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic vaporization process 23, M 1 kg working fluid depressurization process 3f, M 2 kg working fluid boosting process 94, M 2 kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5 , X kilogram working fluid depressurization process 58, (M 1 +M 2 -X) kilogram working fluid endothermic process 56, (M 1 +M 2 -X) kilogram working fluid depressurization process 67, (M 1 +M 2 -X) Kilogram working fluid exothermic process 78, (M 1 +M 2 ) kilogram working fluid exothermic process 89, M 1 kg working fluid depressurization process 9c, M 1 kg working fluid exothermic condensation process c1——composition The closing process.
  • Single working fluid steam combined cycle refers to 13 processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid depressurization process 3f, M 2 kg working fluid boosting process 7a, M kg working fluid exothermic Condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5, (M 1 +M 2 )Kg working fluid depressurization process 56, (M 1 +M 2 )Kg working fluid heat release process 67, M 1 kg working fluid depressurization process 78, M 1 kg working fluid heat release and condensation process 81——composition The closing process.
  • Single working fluid steam combined cycle refers to the sixteen processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid pressure reduction process 3f, M 2 kg working fluid pressure increase process 9a, M kg working fluid heat release Condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5, X kg working fluid Mass depressurization process 58, (M 1 +M 2 -X) kg working fluid endothermic process 56, (M 1 +M 2 -X) kg working fluid depressurization process 67, (M 1 +M 2 -X) kg Working fluid heat release process 78, (M 1 +M 2 ) kg working fluid heat release process 89, M 1 kg working fluid depress
  • Single working fluid steam combined cycle refers to eleven processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic vaporization process 23, M 1 kg working fluid depressurization process 3f, M 2 kg working fluid boosting process 74, M 2 kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5 , (M 1 + M 2 ) kg working fluid depressurization process 56, (M 1 + M 2 ) kg working fluid exothermic process 67, M 1 kg working fluid exothermic process 78, M 1 kg working fluid depressurizing over 89 , M 1 kg of working fluid exothermic condensation process 91-composition of the closed process.
  • Single working fluid steam combined cycle refers to the working fluid composed of M 1 kg and M 2 kg, which are carried out separately or jointly in 14 processes-M 1 kg working fluid boosting process 12, M 1 kg working fluid Endothermic vaporization process 23, M 1 kg working fluid depressurization process 3f, M 2 kg working fluid boosting process 94, M 2 kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5 , X kilogram working fluid depressurization process 58, (M 1 +M 2 -X) kilogram working fluid endothermic process 56, (M 1 +M 2 -X) kilogram working fluid depressurization process 67, (M 1 +M 2 -X) Kilogram working fluid heat release process 78, (M 1 +M 2 ) Kilogram working fluid heat release process 89, M 1 kg working fluid heat release process 9c, M 1 kg working fluid pressure reduction process cd, M 1 kg working fluid Mass exothermic condensation process d1-the closed process of composition.
  • Single working fluid steam combined cycle refers to the working fluids composed of M 1 kg and M 2 kg, and 14 processes carried out separately or together-M 1 kg working fluid boosting process 12, M 1 kg working fluid Endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid depressurization process 3f, M 2 kg working fluid boosting process 7a, M kg working fluid exothermic Condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5, (M 1 +M 2 )Kg working fluid depressurization process 56, (M 1 +M 2 )Kg working fluid heat release process 67, M 1 kg working fluid heat release process 78, M 1 kg working fluid depressurization process 89, M 1 kg Working fluid exothermic condensation process 91-a closed process of composition.
  • the single working fluid steam combined cycle refers to the seventeen processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid pressure reduction process 3f, M 2 kg working fluid pressure increase process 9a, M kg working fluid heat release Condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5, X kg working fluid Mass depressurization process 58, (M 1 +M 2 -X) kg working fluid endothermic process 56, (M 1 +M 2 -X) kg working fluid depressurization process 67, (M 1 +M 2 -X) kg Working fluid heat release process 78, (M 1 +M 2 ) kg working fluid heat release process 89, M 1
  • Single working fluid steam combined cycle refers to eleven processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic vaporization process 23, M 1 kg working fluid depressurization process 3f, M 2 kg working fluid boosting process 84, M 2 kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5 , (M 1 + M 2 ) kg working fluid depressurization process 56, (M 1 + M 2 ) kg working fluid heat release process 67, M 2 kg working fluid heat release process 78, M 1 kg working fluid depressurization process 79 , M 1 kg of working fluid exothermic condensation process 91-composition of the closed process.
  • Single working fluid steam combined cycle refers to the working fluid composed of M 1 kilogram and M 2 kilogram, and 14 processes carried out separately or together-M 1 kilogram working medium boosting process 12, M 1 kilogram working medium Endothermic vaporization process 23, M 1 kg working fluid depressurization process 3f, M 2 kg working fluid boosting process c4, M 2 kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5 , X kilogram working fluid depressurization process 58, (M 1 +M 2 -X) kilogram working fluid endothermic process 56, (M 1 +M 2 -X) kilogram working fluid depressurization process 67, (M 1 +M 2 -X) Kilogram working fluid heat release process 78, (M 1 +M 2 ) Kilogram working fluid heat release process 89, M 2 kg working fluid heat release process 9c, M 1 kg working fluid pressure reduction process cd, M 1 kg working fluid Mass exothermic condensation process d1-the closed process of composition.
  • Single working fluid steam combined cycle refers to the working fluids composed of M 1 kg and M 2 kg, and 14 processes carried out separately or together-M 1 kg working fluid boosting process 12, M 1 kg working fluid Endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid pressure reduction process 3f, M 2 kg working fluid pressure increase process 8a, M kg working fluid heat release Condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5, (M 1 +M 2 )Kg working fluid depressurization process 56, (M 1 +M 2 )Kg working fluid heat release process 67, M 2 kg working fluid heat release process 78, M 1 kg working fluid depressurization process 79, M 1 kg Working fluid exothermic condensation process 91-a closed process of composition.
  • Single working fluid steam combined cycle refers to the seventeen processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid pressure reduction process 3f, M 2 kg working fluid pressure increase process ca, M kg working fluid heat release Condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic process 4f, (M 1 +M 2 ) kg working fluid endothermic process f5, X kg working fluid Mass depressurization process 58, (M 1 +M 2 -X) kg working fluid endothermic process 56, (M 1 +M 2 -X) kg working fluid depressurization process 67, (M 1 +M 2 -X) kg Working fluid heat release process 78, (M 1 + M 2 ) kg working fluid heat release process 89, M 2 kg working fluid heat release process
  • Fig. 1/12 is an example diagram of the first principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 2/12 is an example diagram of the second principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 3/12 is an example diagram of the third principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 4/12 is an example diagram of the fourth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 5/12 is an example diagram of the fifth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 6/12 is an example diagram of the sixth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 7/12 is an example diagram of the seventh principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 8/12 is an example diagram of the eighth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 9/12 is an example diagram of the ninth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 10/12 is an example diagram of the tenth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 11/12 is an example diagram of the eleventh principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 12/12 is an example diagram of the twelfth principle flow chart of the single working fluid steam combined cycle provided by the present invention
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kilogram refrigerant expansion process down 3f, M 2 kilogram working substance Boost Heating process 74, M 2 kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, (M 1 +M 2 ) kg working fluid depressurization expansion process 56, (M 1 +M 2 ) Kilogram working fluid exothermic cooling process 67, M 1 kg working fluid depressurization expansion process 78, M 1 kg working fluid exothermic condensation process 81-a total of 10 processes.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump, the booster during the working medium M 2 kilogram generally accomplished by the compressor 74; M 1 kilogram of working fluid down the expansion process 3f, (M 1 +M 2 ) the pressure-reducing expansion process of (M 1 +M 2) kg of working fluid 56 and the pressure-reducing expansion process of M 1 kg of working fluid 78 are generally completed by the expander; the expansion work is greater than the pressure boosting work, and the heat is completed Variable power and external circulation net power is provided to form a single working substance steam combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kilogram refrigerant expansion process down 3f, M 2 kilogram working substance Boost Heating process 94, M 2 kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, X kg working fluid depressurization expansion process 58, (M 1 +M 2 -X) Kilogram working fluid endothermic heating process 56, (M 1 +M 2 -X) kilogram working fluid pressure-reducing expansion process 67, (M 1 +M 2 -X) kilogram working fluid thermal cooling process 78, (M 1 +M 2 ) kg refrigerant heat cooling process 89, M 1 kg refrigerant expansion process down 9c, M 1 kg refrigerant exothermic condensation of 13 c1-- process.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kilogram bootstrapping working medium is generally accomplished by the compressor 94; M 1 kilogram of working fluid down the expansion process 3f, the pressure-reducing expansion process of X kilogram working fluid 58, the pressure-reducing expansion process of (M 1 +M 2 -X) kilogram working fluid 67, and the pressure-reducing expansion process of M 1 kilogram working fluid 9c, which are generally performed by an expander Complete; expansion work is greater than pressure boosting work consumption, complete thermal transformation work and provide external circulation net work, forming a single working fluid steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 +M) Pressure reduction and expansion process of kilogram working fluid 3f, M 2 kilogram working fluid pressure rising and heating process 7a, the mixed exothermic condensation process of M kilogram working fluid and M 1 kilogram working fluid ab, (M 2 -M) kilogram working fluid Pressure rising process a4, (M 2 -M) kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, (M 1 +M 2 ) kg working fluid depressurization expansion Process 56, (M 1 + M 2 ) kg working fluid exothermic cooling process 67, M 1 kg working fluid depressurization expansion process 78, M 1 kg working fluid exothermic condensation process 81-a total of 13 processes.
  • Endothermic process- the endothermic heat of M 1 kg of working fluid for process 2b comes from the mixed exothermic heat of M kg of superheated steam, M 1 kg of working fluid for b3 process, (M 2 -M) kg of working fluid for 4f process and ( M 1 + M 2 ) kilogram of working fluid is used for the f5 process.
  • the heat absorption of the high temperature section is generally provided by an external heat source, and the heat absorption of the low temperature section is performed by an external heat source or (M 1 + M 2 ) kilogram of working fluid.
  • Exothermic heat (regeneration) is provided, or provided by an external heat source and working fluid recovery.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant 7a and bootstrapping (M 2 -M) kg of the working fluid by the general a4 bootstrapping Compressor to complete; (M 1 +M) the pressure-reduced expansion process 3f of the working fluid of (M 1 +M 2 ) kilograms of the pressure-reduced expansion process 56, and the pressure-reduced expansion process of the M 1 kilogram working fluid 78 , Generally completed by the expander; the expansion work is greater than the boosting work consumption, the thermal transformation is completed and the net work is provided to the outside, forming a single working substance steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 +M) Pressure reduction and expansion process of kilogram working fluid 3f, pressure increase and heating process of M 2 kilogram working fluid 9a, the mixed exothermic condensation process of M kilogram working fluid and M 1 kilogram working fluid ab, (M 2 -M) kilogram working fluid Pressure rising process a4, (M 2 -M) kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, X kg working fluid depressurization expansion process 58, (M 1 +M 2 -X) Kilogram working fluid endothermic heating process 56, (M 1 +M 2 -X) Kilogram working fluid pressure reduction expansion process 67, (M 1 +M 2 -X) Kilogram working fluid exothermic cooling process 78 , (M 1 + M 2 ) Kilogram
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant 9a and bootstrapping (M 2 -M) kg of the working fluid by the general a4 bootstrapping Compressor to complete; (M 1 +M) the pressure reduction and expansion process of kilograms of working fluid 3f, the pressure reduction process of X kilograms of working fluid 58, the pressure reduction process of (M 1 +M 2 -X) kilograms of working fluid 67, also There is M 1 kg of working fluid pressure-reducing expansion process 9c, which is generally completed by an expander; the expansion work is greater than the pressure-boosting power consumption, and the thermal conversion work is completed and the net work is provided to the outside to form a single working fluid steam combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kilogram refrigerant expansion process down 3f, M 2 kilogram working substance Boost Heating process 74, M 2 kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, (M 1 +M 2 ) kg working fluid depressurization expansion process 56, (M 1 +M 2 ) Kilogram working fluid exothermic cooling process 67, M 1 kg working fluid exothermic cooling process 78, M 1 kg working fluid depressurization expansion over 89, M 1 kg working fluid exothermic condensation process 91-11 in total process.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump, the booster during the working medium M 2 kilogram generally accomplished by the compressor 74; M 1 kilogram of working fluid down the expansion process 3f, (M 1 + M 2 ) the pressure-reducing expansion process of (M 1 +M 2) kg of working fluid 56 and the pressure-reducing expansion process of M 1 kg of working fluid 89 are generally completed by the expander; the expansion work is greater than the pressure boosting work, and the heat is completed Variable power and external circulation net power is provided to form a single working substance steam combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kilogram refrigerant expansion process down 3f, M 2 kilogram working substance Boost Heating process 94, M 2 kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, X kg working fluid depressurization expansion process 58, (M 1 +M 2 -X) Kilogram working fluid endothermic heating process 56, (M 1 +M 2 -X) kilogram working fluid pressure-reducing expansion process 67, (M 1 +M 2 -X) kilogram working fluid thermal cooling process 78, (M 1 +M 2 ) Kilogram working fluid exothermic cooling process 89, M 1 kg working fluid exothermic cooling process 9c, M 1 kg working fluid depressurization expansion process cd, M 1 kg working fluid exothermic condensation process d1-a total of 14 processes.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kilogram bootstrapping working medium is generally accomplished by the compressor 94; M 1 kilogram of working fluid down the expansion process 3f, the pressure-reducing expansion process of X kilogram working fluid 58, the pressure-reducing expansion process of (M 1 +M 2 -X) kilogram working fluid 67, and the pressure-reducing expansion process cd of M 1 kilogram working fluid, which are generally performed by an expander Complete; expansion work is greater than pressure boosting work consumption, complete thermal transformation work and provide external circulation net work, forming a single working fluid steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 +M) Pressure reduction and expansion process of kilogram working fluid 3f, M 2 kilogram working fluid pressure rising and heating process 7a, the mixed exothermic condensation process of M kilogram working fluid and M 1 kilogram working fluid ab, (M 2 -M) kilogram working fluid Pressure rising process a4, (M 2 -M) kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, (M 1 +M 2 ) kg working fluid depressurization expansion Process 56, (M 1 + M 2 ) kg working fluid exothermic cooling process 67, M 1 kg working fluid exothermic cooling process 78, M 1 kg working fluid depressurizing expansion process 89, M 1 kg working fluid exothermic condensation process 91-A total of 14 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant 7a and bootstrapping (M 2 -M) kg of the working fluid by the general a4 bootstrapping Compressor to complete; (M 1 +M) the pressure-reduced expansion process of (M 1 +M) kg of working fluid 3f, (M 1 +M 2 ) the pressure-reduced expansion process of (M 1 +M 2) kilogram of working fluid56, and M 1 kg of working fluid pressure-reduced expansion process 89 , Generally completed by the expander; the expansion work is greater than the boosting work consumption, the thermal transformation is completed and the net work is provided to the outside, forming a single working substance steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 +M) Pressure reduction and expansion process of kilogram working fluid 3f, pressure rise and heating process of M 2 kilogram working fluid 9a, the mixed exothermic condensation process of M kilogram working fluid and M 1 kilogram working fluid ab, (M 2 -M) kilogram working fluid Pressure rising process a4, (M 2 -M) kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, X kg working fluid depressurization expansion process 58, (M 1 +M 2 -X) Kilogram working fluid endothermic heating process 56, (M 1 +M 2 -X) Kilogram working fluid pressure reduction expansion process 67, (M 1 +M 2 -X) Kilogram working fluid exothermic cooling process 78 , (M 1 + M 2 ) kg working
  • the heat absorption in the high temperature section is generally provided by an external heat source; the heat absorption in the low temperature section is provided by External heat source or heat release ( regeneration) from (M 1 +M 2 -X) kilogram of working fluid for 78 process, (M 1 + M 2 ) kilogram of working fluid for 89 process and M 1 kilogram of working fluid for 9c process Provided, or provided by an external heat source and working fluid heat recovery.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant 9a and bootstrapping (M 2 -M) kg of the working fluid by the general a4 bootstrapping Compressor to complete; (M 1 +M) the pressure reduction and expansion process of kilograms of working fluid 3f, the pressure reduction process of X kilograms of working fluid 58, the pressure reduction process of (M 1 +M 2 -X) kilograms of working fluid 67, also
  • the pressure-reducing expansion process cd with M 1 kg of working fluid is generally completed by an expander; the expansion work is greater than the pressure-boosting work, which completes the thermal transformation work and provides external net power for the cycle, forming a single-working-substance steam combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kilogram refrigerant expansion process down 3f, M 2 kilogram working substance Boost Heating process 84, M 2 kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, (M 1 +M 2 ) kg working fluid depressurization expansion process 56, (M 1 +M 2 ) Kilogram working fluid exothermic cooling process 67, M 2 kg working fluid exothermic cooling process 78, M 1 kg working fluid depressurization expansion process 79, M 1 kg working fluid exothermic condensation process 91-11 in total process.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump, the booster during the working medium M 2 kilogram generally accomplished by the compressor 84; M 1 kilogram of working fluid down the expansion process 3f, (M 1 +M 2 ) the pressure-reducing expansion process of (M 1 +M 2) kg of working fluid 56 and the pressure-reducing expansion process of M 1 kg of working fluid 79 are generally completed by the expander; the expansion work is greater than the pressure boosting work, and the heat is completed Variable power and external circulation net power is provided to form a single working substance steam combined cycle.
  • M 1 kilogram working medium condensed liquid refrigerant boosting process 12 M 1 kilogram refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kilogram refrigerant expansion process down 3f, M 2 kilogram working substance Boost Heating process c4, M 2 kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, X kg working fluid depressurization expansion process 58, (M 1 +M 2 -X) Kilogram working fluid endothermic heating process 56, (M 1 +M 2 -X) kilogram working fluid pressure-reducing expansion process 67, (M 1 +M 2 -X) kilogram working fluid thermal cooling process 78, (M 1 +M 2 ) kg refrigerant heat cooling process 89, M 2 kg refrigerant heat cooling process 9c, M 1 kg refrigerant expansion process down 9d, M 1 kg refrigerant exothermic condensation of 14 d1-- process.
  • 3Energy conversion process-M 1 kg of working fluid's pressure increase process 12 is generally completed by a circulating pump
  • M 2 kg of working fluid's pressure increase process c4 is generally completed by a compressor
  • M 1 kilogram of working fluid's depressurization expansion process 3f the pressure-reducing expansion process of X kilogram working fluid 58, the pressure-reducing expansion process of (M 1 +M 2 -X) kilogram working fluid 67, and the pressure-reducing expansion process of M 1 kilogram working fluid 9d, which is generally performed by an expander Complete
  • expansion work is greater than pressure boosting work consumption, complete thermal transformation work and provide external circulation net work, forming a single working fluid steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 +M) Pressure reduction and expansion process of kilogram working fluid 3f, M 2 kilogram working fluid pressure increasing process 8a, the mixed exothermic condensation process of M kilogram working fluid and M 1 kilogram working fluid ab, (M 2 -M) kilogram working fluid Pressure rising process a4, (M 2 -M) kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, (M 1 +M 2 ) kg working fluid depressurization expansion Process 56, (M 1 + M 2 ) kg working fluid exothermic cooling process 67, M 2 kg working fluid exothermic cooling process 78, M 1 kg working fluid decompression expansion process 79, M 1 kg working fluid exothermic and condensation process 91-A total of 14 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of working fluid boosting process and 8a (M 2 -M) kg of the working fluid by the general a4 bootstrapping Compressor to complete; (M 1 +M) the pressure-reduced expansion process of (M 1 +M) kg of working fluid 3f, (M 1 +M 2 ) the pressure-reduced expansion process of (M 1 +M 2) kilogram of working fluid56, and M 1 kg of working fluid pressure-reduced expansion process 79 , Generally completed by the expander; the expansion work is greater than the boosting work consumption, the thermal transformation is completed and the net work is provided to the outside, forming a single working substance steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 +M) Pressure reduction and expansion process of kilogram working fluid 3f, M 2 kilogram working fluid pressure rise and heating process ca, M kilogram working fluid and M 1 kilogram working fluid mixed exothermic condensation process ab, (M 2 -M) kilogram working fluid Pressure rising process a4, (M 2 -M) kg working fluid endothermic heating process 4f, (M 1 +M 2 ) kg working fluid endothermic heating process f5, X kg working fluid depressurization expansion process 58, (M 1 +M 2 -X) Kilogram working fluid endothermic heating process 56, (M 1 +M 2 -X) Kilogram working fluid pressure reduction expansion process 67, (M 1 +M 2 -X) Kilogram working fluid exothermic cooling process 78 , (M 1 + M 2 ) kg working fluid exothermic
  • the heat absorption in the high temperature section is generally provided by an external heat source; the heat absorption in the low temperature section is provided by External heat source or heat release ( regeneration) from (M 1 +M 2 -X) kilogram of working fluid for 78 process, (M 1 +M 2 ) kilogram of working fluid for 89 process and M 2 kilogram of working fluid for 9c process Provided, or provided by an external heat source and working fluid heat recovery.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant and bootstrapping ca (M 2 -M) kg of the working fluid by the general a4 bootstrapping Compressor to complete; (M 1 +M) the pressure reduction and expansion process of kilograms of working fluid 3f, the pressure reduction process of X kilograms of working fluid 58, the pressure reduction process of (M 1 +M 2 -X) kilograms of working fluid 67, also there are M 1 kilogram refrigerant expansion process down 9D, is generally accomplished by the expander; expansion work is greater than boosted power consumption to complete the thermal power net work and provide external circulation, to form a single steam combined cycle working fluid.
  • a single working fluid is conducive to production and storage; reduces operating costs and improves the flexibility of cycle adjustment
  • the circulating medium and the heat source medium are the same gas, and the circulating working fluid's heat absorption link from the heat source is beneficial to reduce the temperature difference heat transfer loss and improve the thermal efficiency.
  • the low-pressure and high-temperature operation mode is adopted in the high-temperature zone to solve the difficult to reconcile contradictions between thermal efficiency, circulating medium parameters and pipe pressure and temperature resistance in traditional steam power plants.
  • low-pressure operation can be selected to provide theoretical support for improving the safety of device operation.
  • the working medium has a wide application range, can well adapt to the energy supply demand, and the working medium and working parameters are matched flexibly.
  • thermodynamic cycle range for realizing the utilization of temperature difference is expanded, which is beneficial to better realize the high-efficiency power utilization of high temperature heat source and variable temperature heat source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Lubricants (AREA)

Abstract

单工质蒸汽联合循环,属于能源与动力技术领域。是指由M1千克和M2千克组成的工质,分别或共同进行的十个过程——M1千克工质升压过程12,M1千克工质吸热汽化过程23,M1千克工质降压过程3f,M2千克工质升压过程74,M2千克工质吸热过程4f,(M1+M2)千克工质吸热过程f5,(M1+M2)千克工质降压过程56,(M1+M2)千克工质放热过程67,M1千克工质降压过程78,M1千克工质放热冷凝过程81——组成的闭合过程。类似地,工质还可以分别或共同进行十、十一、十三、十四、十六、十七个过程组成单工质蒸汽联合循环。

Description

单工质蒸汽联合循环 技术领域:
本发明属于能源与动力技术领域。
背景技术:
冷需求、热需求和动力需求,为人类生活与生产当中所常见;其中,利用热能转换为机械能是获得和提供动力的重要方式。一般情况下,热源的温度随着热的释放而降低,热源是变温的;在以化石燃料为源头能源时,热源同时具有高温和变温的双重特点,这使得采用单一热力循环理论实现制冷、供热或转化为动时能源利用率不理想。
以外燃式蒸汽动力装置为例,其热源属于高温且为变温热源;当以朗肯循环为理论基础,采用水蒸气为循环工质实现热变功时,由于受到材料耐温耐压性能和安全性方面的限制,无论采用何种参数运行,循环工质与热源之间都存在较大的温差损失,不可逆损失大,导致热效率较低。
现实中,人们需要简单、主动、高效地利用燃料生成或其它的高温热能来实现制冷、供热或转化为动力,这需要热科学基础理论的支撑;在热科学基础理论体系中,热力循环是热能利用装置的理论基础和能源利用系统的核心;热力循环的创建及发展应用将对能源利用的飞跃起到重大作用,将积极推动社会进步和生产力发展。
从简单、主动和高效地实现温差利用的原则出发,针对高温热源或变温热源的动力应用,力求为热动系统的简单化和高效化提供理论支撑,本发明提出了单工质蒸汽联合循环。
发明内容:
本发明主要目的是要提供单工质蒸汽联合循环,具体发明内容分项阐述如下:
1.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程74,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 1千克工质降压过程78,M 1千克工质放热冷凝过程81——组成的闭合过程。
2.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程94,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程。
3.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程7a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f, (M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 1千克工质降压过程78,M 1千克工质放热冷凝过程81——组成的闭合过程。
4.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程。
5.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程74,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 1千克工质放热过程78,M 1千克工质降压过89,M 1千克工质放热冷凝过程91——组成的闭合过程。
6.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程94,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 1千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程。
7.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程7a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 1千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程。
8.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十七个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 1千克工质放热过程9c,M 1千克工质降压过程cd,M 1 千克工质放热冷凝过程d1——组成的闭合过程。
9.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程84,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 2千克工质放热过程78,M 1千克工质降压过程79,M 1千克工质放热冷凝过程91——组成的闭合过程。
10.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程c4,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 2千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程。
11.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 2千克工质放热过程78,M 1千克工质降压过程79,M 1千克工质放热冷凝过程91——组成的闭合过程。
12.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十七个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 2千克工质放热过程9c,M 1千克工质降压过程9d,M 1千克工质放热冷凝过程d1——组成的闭合过程。
附图说明:
图1/12是依据本发明所提供的单工质蒸汽联合循环第1种原则性流程示例图。
图2/12是依据本发明所提供的单工质蒸汽联合循环第2种原则性流程示例图。
图3/12是依据本发明所提供的单工质蒸汽联合循环第3种原则性流程示例图。
图4/12是依据本发明所提供的单工质蒸汽联合循环第4种原则性流程示例图。
图5/12是依据本发明所提供的单工质蒸汽联合循环第5种原则性流程示例图。
图6/12是依据本发明所提供的单工质蒸汽联合循环第6种原则性流程示例图。
图7/12是依据本发明所提供的单工质蒸汽联合循环第7种原则性流程示例图。
图8/12是依据本发明所提供的单工质蒸汽联合循环第8种原则性流程示例图。
图9/12是依据本发明所提供的单工质蒸汽联合循环第9种原则性流程示例图。
图10/12是依据本发明所提供的单工质蒸汽联合循环第10种原则性流程示例图。
图11/12是依据本发明所提供的单工质蒸汽联合循环第11种原则性流程示例图。
图12/12是依据本发明所提供的单工质蒸汽联合循环第12种原则性流程示例图
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行;对显而易见的流程不作表述。下面结合附图和实例来详细描述本发明。
图1/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3f,M 2千克工质升压升温过程74,M 2千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质放热降温过程67,M 1千克工质降压膨胀过程78,M 1千克工质放热冷凝过程81——共10个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 2千克工质进行4f过程和(M 1+M 2)千克工质进行f5过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由(M 1+M 2)千克工质进行67过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2)千克工质进行67过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行81过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程74一般由压缩机来完成;M 1千克工质的降压膨胀过程3f,(M 1+M 2)千克工质的降压膨胀过程56,还有M 1千克工质降压膨胀过程78,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图2/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3f,M 2千克工质升压升温过程94,M 2千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质热降温过程78,(M 1+M 2)千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过程c1——共13个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 2千克工质进行4f过程、(M 1+M 2)千克工质进行f5过程和(M 1+M 2-X)千克进行56过程,其高温段的吸热一般由外部热源 来提供;低温段的吸热由外部热源或由(M 1+M 2-X)千克工质进行78过程与(M 1+M 2)千克工质进行89过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2-X)千克工质进行78过程的放热和(M 1+M 2)千克工质进行89过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程94一般由压缩机来完成;M 1千克工质的降压膨胀过程3f,X千克工质的降压膨胀过程58,(M 1+M 2-X)千克工质的降压膨胀过程67,还有M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图3/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3f,M 2千克工质升压升温过程7a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质放热降温过程67,M 1千克工质降压膨胀过程78,M 1千克工质放热冷凝过程81——共13个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,M 1千克工质进行b3过程、(M 2-M)千克工质进行4f过程和(M 1+M 2)千克工质进行f5过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由(M 1+M 2)千克工质进行67过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2)千克工质进行67过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行81过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程7a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3f,(M 1+M 2)千克工质的降压膨胀过程56,还有M 1千克工质降压膨胀过程78,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图4/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3f,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab, (M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质放热降温过程78,(M 1+M 2)千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过程c1——共计16个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程、(M 2-M)千克工质进行4f过程、(M 1+M 2)千克工质进行f5过程和(M 1+M 2-X)千克进行56过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 1+M 2-X)千克工质进行78过程与(M 1+M 2)千克工质进行89过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2-X)千克工质进行78过程的放热和(M 1+M 2)千克工质进行89过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程9a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3f,X千克工质的降压过程58,(M 1+M 2-X)千克工质的降压过程67,还有M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图5/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3f,M 2千克工质升压升温过程74,M 2千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质放热降温过程67,M 1千克工质放热降温过程78,M 1千克工质降压膨胀过89,M 1千克工质放热冷凝过程91——共11个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 2千克工质进行4f过程和(M 1+M 2)千克工质进行f5过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由(M 1+M 2)千克工质进行67过程与M 1千克工质进行78过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2)千克工质进行67过程和M 1千克工质进行78过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程74一般由压缩机来完成;M 1千克工质的降压膨胀过程3f,(M 1+M 2)千克工质 的降压膨胀过程56,还有M 1千克工质降压膨胀过程89,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图6/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3f,M 2千克工质升压升温过程94,M 2千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质热降温过程78,(M 1+M 2)千克工质放热降温过程89,M 1千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过程d1——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 2千克工质进行4f过程、(M 1+M 2)千克工质进行f5过程和(M 1+M 2-X)千克进行56过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 1+M 2-X)千克工质进行78过程、(M 1+M 2)千克工质进行89过程与M 1千克工质进行9c过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2-X)千克工质进行78过程的放热、(M 1+M 2)千克工质进行89过程和M 1千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程94一般由压缩机来完成;M 1千克工质的降压膨胀过程3f,X千克工质的降压膨胀过程58,(M 1+M 2-X)千克工质的降压膨胀过程67,还有M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图7/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3f,M 2千克工质升压升温过程7a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质放热降温过程67,M 1千克工质放热降温过程78,M 1千克工质降压膨胀过程89,M 1千克工质放热冷凝过程91——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,M 1千克工质进行b3过程、(M 2-M)千克工质进行4f过程和(M 1+M 2)千克工质进行f5 过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由(M 1+M 2)千克工质进行67过程与M 1千克工质进行78过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2)千克工质进行67过程和M 1千克工质进行78过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程7a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3f,(M 1+M 2)千克工质的降压膨胀过程56,还有M 1千克工质降压膨胀过程89,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图8/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3f,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质放热降温过程78,(M 1+M 2)千克工质放热降温过程89,M 1千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过程d1——共计17个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程、(M 2-M)千克工质进行4f过程、(M 1+M 2)千克工质进行f5过程和(M 1+M 2-X)千克进行56过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 1+M 2-X)千克工质进行78过程、(M 1+M 2)千克工质进行89过程与M 1千克工质进行9c过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2-X)千克工质进行78过程的放热、(M 1+M 2)千克工质进行89过程的放热和M 1千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程9a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3f,X千克工质的降压过程58,(M 1+M 2-X)千克工质的降压过程67,还有M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图9/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3f,M 2千克工质升压升温过程84,M 2千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质放热降温过程67,M 2千克工质放热降温过程78,M 1千克工质降压膨胀过程79,M 1千克工质放热冷凝过程91——共11个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 2千克工质进行4f过程和(M 1+M 2)千克工质进行f5过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由(M 1+M 2)千克工质进行67过程与M 2千克工质进行78过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2)千克工质进行67过程和M 2千克工质进行78过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程84一般由压缩机来完成;M 1千克工质的降压膨胀过程3f,(M 1+M 2)千克工质的降压膨胀过程56,还有M 1千克工质降压膨胀过程79,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图10/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3f,M 2千克工质升压升温过程c4,M 2千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质热降温过程78,(M 1+M 2)千克工质放热降温过程89,M 2千克工质放热降温过程9c,M 1千克工质降压膨胀过程9d,M 1千克工质放热冷凝过程d1——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 2千克工质进行4f过程、(M 1+M 2)千克工质进行f5过程和(M 1+M 2-X)千克进行56过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 1+M 2-X)千克工质进行78过程、(M 1+M 2)千克工质进行89过程与M 2千克工质进行9c过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2-X)千克工质进行78过程的放热、(M 1+M 2)千克工质进行89过程的放热和M 2千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1 千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程c4一般由压缩机来完成;M 1千克工质的降压膨胀过程3f,X千克工质的降压膨胀过程58,(M 1+M 2-X)千克工质的降压膨胀过程67,还有M 1千克工质降压膨胀过程9d,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图11/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3f,M 2千克工质升压升温过程8a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质放热降温过程67,M 2千克工质放热降温过程78,M 1千克工质降压膨胀过程79,M 1千克工质放热冷凝过程91——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,M 1千克工质进行b3过程、(M 2-M)千克工质进行4f过程和(M 1+M 2)千克工质进行f5过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由(M 1+M 2)千克工质进行67过程与M 2千克工质进行78过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2)千克工质进行67过程和M 2千克工质进行78过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程8a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3f,(M 1+M 2)千克工质的降压膨胀过程56,还有M 1千克工质降压膨胀过程79,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图12/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3f,M 2千克工质升压升温过程ca,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4f,(M 1+M 2)千克工质吸热升温过程f5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质放热降温 过程78,(M 1+M 2)千克工质放热降温过程89,M 2千克工质放热降温过程9c,M 1千克工质降压膨胀过程9d,M 1千克工质放热冷凝过程d1——共计17个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程、(M 2-M)千克工质进行4f过程、(M 1+M 2)千克工质进行f5过程和(M 1+M 2-X)千克进行56过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 1+M 2-X)千克工质进行78过程、(M 1+M 2)千克工质进行89过程与M 2千克工质进行9c过程的放热(回热)来提供,或由外部热源和工质回热共同来提供。
②放热过程——(M 1+M 2-X)千克工质进行78过程的放热、(M 1+M 2)千克工质进行89过程的放热和M 2千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程ca和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3f,X千克工质的降压过程58,(M 1+M 2-X)千克工质的降压过程67,还有M 1千克工质降压膨胀过程9d,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
本发明技术可以实现的效果——本发明所提出的单工质蒸汽联合循环,具有如下效果和优势:
(1)创建热能(温差)利用基础理论。
(2)较大幅度减少相变吸热过程的热负荷,相对增加高温段吸热负荷,热效率高。
(3)方法简单,流程合理,适用性好,是实现温差有效利用的共性技术。
(4)单一工质,有利于生产和储存;降低运行成本,提高循环调节的灵活性
(5)过程共用,提高热效率,并为减少设备投资提供理论基础。
(6)在高温区或变温区阶段,循环介质与热源介质同为气体,循环工质自热源吸热环节有利于降低温差传热损失,提高热效率。
(7)在高温区采取低压高温运行方式,解决传统蒸汽动力装置中热效率、循环介质参数与管材耐压耐温性能之间难以调和的矛盾。
(8)在实现高热效率前提下,可选择低压运行,为提高装置运行的安全性提供理论支撑。
(9)工质适用范围广,能够很好地适应供能需求,工质与工作参数之间匹配灵活。
(10)扩展了实现温差利用的热力循环范围,有利于更好地实现高温热源和变温热源的高效动力利用。

Claims (12)

  1. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程74,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 1千克工质降压过程78,M 1千克工质放热冷凝过程81——组成的闭合过程。
  2. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程94,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程。
  3. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程7a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 1千克工质降压过程78,M 1千克工质放热冷凝过程81——组成的闭合过程。
  4. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程。
  5. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程74,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 1千克工质放热过程78,M 1千克工质降压过89,M 1千克工质放热冷凝过程91——组成的闭合过程。
  6. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程94,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 1千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1 ——组成的闭合过程。
  7. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程7a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 1千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程。
  8. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十七个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 1千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程。
  9. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程84,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 2千克工质放热过程78,M 1千克工质降压过程79,M 1千克工质放热冷凝过程91——组成的闭合过程。
  10. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3f,M 2千克工质升压过程c4,M 2千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 2千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程。
  11. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程67,M 2千克工质放热过程78,M 1千克工质降压过程79,M 1千克工质放热冷凝过程91——组成的闭合过程。
  12. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行 的十七个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3f,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4f,(M 1+M 2)千克工质吸热过程f5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程78,(M 1+M 2)千克工质放热过程89,M 2千克工质放热过程9c,M 1千克工质降压过程9d,M 1千克工质放热冷凝过程d1——组成的闭合过程。
PCT/CN2020/000201 2019-09-01 2020-08-31 单工质蒸汽联合循环 WO2021036153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910847030.9 2019-09-01
CN201910847030 2019-09-01

Publications (1)

Publication Number Publication Date
WO2021036153A1 true WO2021036153A1 (zh) 2021-03-04

Family

ID=74684865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000201 WO2021036153A1 (zh) 2019-09-01 2020-08-31 单工质蒸汽联合循环

Country Status (2)

Country Link
CN (1) CN115263462A (zh)
WO (1) WO2021036153A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317595A (zh) * 2007-10-12 2012-01-11 多蒂科技有限公司 带有气体分离的高温双源有机朗肯循环
US20150315935A1 (en) * 2014-04-30 2015-11-05 General Electric Company System and method for inductor cooling
JP6019759B2 (ja) * 2012-05-30 2016-11-02 セントラル硝子株式会社 フルオロアルケンを含有する熱伝達媒体
CN107016187A (zh) * 2017-03-31 2017-08-04 天津大学 一种确定烟气余热有机朗肯循环系统参数的优化方法
JP2017172450A (ja) * 2016-03-23 2017-09-28 大阪瓦斯株式会社 ランキンサイクル装置、及びランキンサイクル装置における吸収剤溶液用の温度応答性ポリマー粒子
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317595A (zh) * 2007-10-12 2012-01-11 多蒂科技有限公司 带有气体分离的高温双源有机朗肯循环
JP6019759B2 (ja) * 2012-05-30 2016-11-02 セントラル硝子株式会社 フルオロアルケンを含有する熱伝達媒体
US20150315935A1 (en) * 2014-04-30 2015-11-05 General Electric Company System and method for inductor cooling
JP2017172450A (ja) * 2016-03-23 2017-09-28 大阪瓦斯株式会社 ランキンサイクル装置、及びランキンサイクル装置における吸収剤溶液用の温度応答性ポリマー粒子
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN107016187A (zh) * 2017-03-31 2017-08-04 天津大学 一种确定烟气余热有机朗肯循环系统参数的优化方法

Also Published As

Publication number Publication date
CN115263462A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2020215814A1 (zh) 单工质蒸汽联合循环
WO2020211472A1 (zh) 单工质蒸汽联合循环
WO2021036153A1 (zh) 单工质蒸汽联合循环
WO2021036152A1 (zh) 单工质蒸汽联合循环
WO2021042646A1 (zh) 单工质蒸汽联合循环
WO2020211473A1 (zh) 单工质蒸汽联合循环
WO2020215817A1 (zh) 单工质蒸汽联合循环
WO2021042648A1 (zh) 单工质蒸汽联合循环
WO2020211474A1 (zh) 单工质蒸汽联合循环
WO2021042649A1 (zh) 单工质蒸汽联合循环
WO2021042647A1 (zh) 单工质蒸汽联合循环
WO2020215815A1 (zh) 单工质蒸汽联合循环
WO2020215816A1 (zh) 单工质蒸汽联合循环
WO2020215813A1 (zh) 单工质蒸汽联合循环
WO2020211471A1 (zh) 单工质蒸汽联合循环
WO2020211475A1 (zh) 单工质蒸汽联合循环
WO2022001077A1 (zh) 第二类单工质联合循环
WO2021258718A1 (zh) 第二类单工质联合循环
WO2020248588A1 (zh) 逆向单工质蒸汽联合循环
WO2020248589A1 (zh) 逆向单工质蒸汽联合循环
WO2021047125A1 (zh) 逆向单工质蒸汽联合循环
WO2020248591A1 (zh) 逆向单工质蒸汽联合循环
WO2021253810A1 (zh) 第二类单工质联合循环
WO2021047126A1 (zh) 逆向单工质蒸汽联合循环
WO2022001076A1 (zh) 第二类单工质联合循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858853

Country of ref document: EP

Kind code of ref document: A1