WO2020211473A1 - 单工质蒸汽联合循环 - Google Patents

单工质蒸汽联合循环 Download PDF

Info

Publication number
WO2020211473A1
WO2020211473A1 PCT/CN2020/000071 CN2020000071W WO2020211473A1 WO 2020211473 A1 WO2020211473 A1 WO 2020211473A1 CN 2020000071 W CN2020000071 W CN 2020000071W WO 2020211473 A1 WO2020211473 A1 WO 2020211473A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
kilogram
endothermic
depressurization
exothermic
Prior art date
Application number
PCT/CN2020/000071
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Priority to US17/604,392 priority Critical patent/US20240018885A1/en
Publication of WO2020211473A1 publication Critical patent/WO2020211473A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for

Definitions

  • the invention belongs to the field of energy and power technology.
  • the heat source is high temperature and variable temperature heat source; when the Rankine cycle is used as the theoretical basis, water vapor is used as the circulating working fluid to achieve thermal variable work, due to the temperature and pressure resistance of the material And safety restrictions, no matter what parameters are used for operation, there is a large temperature difference between the circulating working fluid and the heat source, and the irreversible loss is large, resulting in low thermal efficiency.
  • thermal cycle is a heat energy utilization device
  • the present invention proposes a single working substance steam combination cycle.
  • the main purpose of the present invention is to provide a single working fluid steam combined cycle, and the specific content of the invention is described as follows:
  • Single working fluid steam combined cycle refers to the working fluid consisting of M 1 kg and M 2 kg, and ten processes that are carried out separately or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid absorption Thermal vaporization process 23, M 1 kg working fluid depressurization process 34, M 1 kg working fluid endothermic process 45, M 2 kg working fluid boost process 85, M 3 kg working fluid endothermic process 56, M 3 kg working fluid Depressurization process 67, M 3 kg working fluid exothermic process 78, M 1 kg working fluid depressurization process 89, M 1 kg working fluid exothermic and condensing process 91—composition closed process; where M 3 is M 1 and The sum of M 2 .
  • Single working fluid steam combined cycle refers to eleven processes composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic vaporization process 23, M 1 kg working fluid depressurizing process 34, M 1 kg working fluid endothermic process 45, M 1 kg working fluid depressurizing process 57, M 2 kg working fluid boosting process 96, M 2 kg working fluid mass endothermic process 67, M 3 kilogram working fluid depressurisation 78, M 3 kilogram refrigerant exothermic process 89, M 1 kilogram working fluid depressurisation 9c, M 1 kilogram working medium composed of an exothermic condensation c1-- The closing process; where M 3 is the sum of M 1 and M 2 .
  • Single working fluid steam combined cycle refers to eleven processes that are composed of M 1 kg and M 2 kg, respectively or jointly-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic vaporization process 23, M 1 kg working fluid depressurization process 34, M 1 kg working fluid endothermic process 47, M 2 kg working fluid boosting process 95, M 2 kg working fluid endothermic process 56, M 2 kg working fluid Pressure reduction process 67, M 3 kg working fluid pressure reduction process 78, M 3 kg working fluid heat release process 89, M 1 kg working fluid pressure reduction process 9c, M 1 kg working fluid exothermic condensation process c1——composition The closing process; where M 3 is the sum of M 1 and M 2 .
  • Single working fluid steam combined cycle refers to the working fluids composed of M 1 kg and M 2 kg, which are carried out separately or jointly in twelve processes-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic vaporization process 23, M 1 kg working fluid depressurization process 34, M 1 kg working fluid endothermic process 45, M 1 kg working fluid depressurization process 59, M 2 kg working fluid boosting process c6, M 2 kg working fluid mass endothermic process 67, M 2 kilogram working fluid depressurisation 78, M 2 kilogram refrigerant exothermic process 89, M 3 kilogram refrigerant exothermic process 9c, M 1 kilogram working fluid depressurisation cd, M 1 kilogram ENGINEERING Mass exothermic condensation process d1——composition closed process; where M 3 is the sum of M 1 and M 2 .
  • the single working fluid steam combined cycle refers to the working fluids composed of M 1 kg and M 2 kg, and twelve processes that are carried out separately or together-M 1 kg working fluid boost process 12, M 1 kg working fluid Endothermic vaporization process 23, M 1 kg working fluid depressurization process 34, M 1 kg working fluid endothermic process 45, M 1 kg working fluid depressurization process 56, M 1 kg working fluid exothermic process 69, M 2 kg working fluid Mass pressure increase process c7, M 2 kg working fluid endothermic process 78, M 2 kg working fluid pressure reduction process 89, M 3 kg working fluid heat release process 9c, M 1 kg working fluid pressure reduction process cd, M 1 kg working fluid Mass exothermic condensation process d1——composition closed process; where M 3 is the sum of M 1 and M 2 .
  • Single working fluid steam combined cycle refers to thirteen processes composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partly-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic vaporization process 23, M 1 kg working fluid depressurization process 34, M 1 kg working fluid endothermic process 45, M 2 kg working fluid boosting process c5, M 3 kg working fluid endothermic process 56, X kg Working fluid pressure reduction process 69, (M 3 -X) kilogram working fluid endothermic process 67, (M 3 -X) kilogram working fluid pressure reduction process 78, (M 3 -X) kilogram working fluid heat release process 89, M 3 kg working fluid during closing exothermic process 9c, M 1 kilogram working fluid depressurisation cd, M 1 kilogram exothermic condensation d1-- refrigerant thereof; wherein, M 3 to M 1 and M 2 and the sum.
  • Single working fluid steam combined cycle refers to 13 processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid depressurization process 34, (M 1 +M) kg working fluid endothermic process 45, M 2 kg working fluid boost process 8a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boost process a5, M 3 kg working fluid endothermic process 56, M 3 kg working fluid drop Pressure process 67, M 3 kg working fluid exothermic process 78, M 1 kg working fluid depressurization process 89, M 1 kg working fluid exothermic condensation process 91—composition closed process; where M 3 is M 1 and M The sum of 2 .
  • Single working fluid steam combined cycle refers to 14 processes that are composed of M 1 kg and M 2 kg, respectively, jointly or partially-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg depressurization process 34, (M 1 +M) kg endothermic process 45, (M 1 + M)
  • the pressure of the kilogram working fluid has been reduced by 57, the pressure of M 2 kilograms of working fluid is 9a, the exothermic condensation process of M kilograms of working fluid is ab, (M 2 -M) the pressure of kilogram working fluid is a6, (M 2 -M) Kilogram working fluid endothermic process 67, M 3 kilogram working fluid depressurization process 78, M 3 kilogram working fluid exothermic process 89, M 1 kilogram working fluid depressurization process 9c, M 1 kg working fluid exothermic condensation process c1—— The closing process of the composition; where M 3 is the sum of M 1 and M 2
  • Single working fluid steam combined cycle refers to the working fluids composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially in 14 processes-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kilogram working fluid endothermic vaporization process b3, (M 1 +M) kilogram depressurization process 34, (M 1 +M) kilogram endothermic process 47, M 2 kilogram working fluid Mass pressure increase process 9a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid pressure increase process a5, (M 2 -M) kg working fluid endothermic process 56, (M 2 -M) Kilogram working fluid depressurization process 67, M 3 kilogram working fluid depressurization process 78, M 3 kilogram working fluid exothermic process 89, M 1 kilogram working fluid depressurization process 9c, M 1 kg working fluid exothermic condensation process c1—— The closing process of the composition; where M 3 is the sum of M 1 and M 2 .
  • Single working fluid steam combined cycle refers to the working fluids composed of M 1 kilogram and M 2 kilograms, which are carried out separately or jointly or partially in fifteen processes-M 1 kilogram working medium boost process 12, M 1 kilogram Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid depressurization process 34, (M 1 +M) kg working fluid endothermic process 45, (M 1 +M) kg working fluid pressure reduction process 59, M 2 kg working fluid pressure increase process ca, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid pressure increase process a6, (M 2 -M) Kilogram working fluid endothermic process 67, (M 2 -M) Kilogram working fluid pressure reduction process 78, (M 2 -M) Kilogram working fluid heat release process 89, M 3 kg working fluid heat release process 9c, M 1 kg of working fluid depressurization process cd, M 1 kg of working fluid exothermic condensation process d1-composition
  • Single working fluid steam combined cycle refers to the working fluid composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially in fifteen processes-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid depressurization process 34, (M 1 +M) kg working fluid endothermic process 45, (M 1 +M) kg working fluid depressurization process 56, (M 1 +M) kg working fluid exothermic process 69, M 2 kg working fluid boost process ca, M kg working fluid exothermic condensation process ab, (M 2 -M) Kilogram working fluid boost process a7, (M 2 -M) Kilogram working fluid endothermic process 78, (M 2 -M) Kilogram working fluid depressurization process 89, M 3 kg working fluid exothermic process 9c, M 1 kg of working fluid depressurization process cd, M 1 kg of working fluid exothermic condensation process d1-com
  • the single working fluid steam combined cycle refers to the sixteen processes that are composed of M 1 kg and M 2 kg, which are carried out separately or jointly or partially-M 1 kg working fluid boost process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kg working fluid endothermic vaporization process b3, (M 1 +M) kg working fluid depressurization process 34, (M 1 +M) kg working fluid endothermic process 45, M 2 kg working fluid pressure increase process ca, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid pressure increase process a5, M 3 kg working fluid heat absorption process 56, X kg working fluid pressure reduction Process 69, (M 3 -X) kg working fluid endothermic process 67, (M 3 -X) kg working fluid depressurization process 78, (M 3 -X) kg working fluid exothermic process 89, M 3 kg working fluid exothermic 9c, M 1 kilogram working fluid depressurisation cd, M 1 kilogram working medium composed of an exothermic condensation d
  • Figure 1/12 is an example diagram of the first principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 2/12 is an example diagram of the second principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 3/12 is an example diagram of the third principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 4/12 is an example diagram of the fourth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 5/12 is an example diagram of the fifth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 6/12 is an example diagram of the sixth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 7/12 is an example diagram of the seventh principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 8/12 is an example diagram of the eighth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 9/12 is an example diagram of the ninth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 10/12 is an example diagram of the tenth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 11/12 is an example diagram of the eleventh principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 12/12 is an example diagram of the twelfth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • M 3 is the sum of M 1 and M 2 ; And examples describe the present invention in detail.
  • Working medium M 1 kg of working fluid condensate boost process 12, M 1 kg of working fluid endothermic heating, vaporization and overheating process 23, M 1 kg of working fluid depressurization and expansion process 34, M 1 kg of working fluid absorbs heat Heating process 45, M 2 kg working fluid pressure increasing process 85, M 3 kg working fluid endothermic heating process 56, M 3 kg working fluid depressurizing expansion process 67, M 3 kg working fluid exothermic cooling process 78, M 1 The pressure-reducing expansion process of kilogram working fluid 89, the exothermic condensation process of M 1 kilogram working fluid 91-a total of 10 processes.
  • M 1 kg of working fluid is used for 23 and 45 processes, and M 3 kg of working fluid is used for 56 processes.
  • the heat absorption in the high temperature section is generally provided by an external heat source; the heat absorption in the low temperature section is provided by an external heat source Or it is provided by the exothermic heat (return heat) of the 78 process performed by the M 3 kg working fluid, or provided by both.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kilogram bootstrapping working medium is generally accomplished by the compressor 85; M 1 kilogram working fluid during expansion 34 Buck
  • the pressure-reducing expansion process of M 3 kg working fluid 67, and the pressure-reducing expansion process 89 of M 1 kg working fluid are generally completed by the expander; the expansion work is greater than the pressure boosting work, and the thermal conversion work is completed and the external circulation is provided Net work, forming a single working substance steam combined cycle.
  • Working medium M 1 kg of working fluid condensate boost process 12, M 1 kg of working fluid endothermic heating, vaporization and overheating process 23, M 1 kg of working fluid depressurization and expansion process 34, M 1 kg of working fluid absorbs heat Heating process 45, M 1 kg working fluid depressurizing expansion process 57, M 2 kg working fluid pressure increasing process 96, M 2 kg working fluid endothermic heating process 67, M 3 kg working fluid pressure reducing expansion process 78, M 3 kg refrigerant heat cooling process 89, M 1 kg refrigerant expansion process down 9c, M 1 kg refrigerant exothermic condensation of 11 c1-- process.
  • M 1 kg of working fluid is used for 23 and 45 processes, and M 2 kg of working fluid is used for 67 processes.
  • the heat absorption in the high temperature section is generally provided by an external heat source; the heat absorption in the low temperature section is provided by an external heat source Or it is provided by the exothermic heat (regeneration) of the 89 process performed by the M 3 kilogram working fluid, or provided by both.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kilogram bootstrapping working medium is generally accomplished by the compressor 96; M 1 kilogram of working fluid down the expansion process 34.
  • the pressure-reducing expansion process of M 1 kg working fluid 57, the pressure-reducing expansion process of M 3 kg working fluid 78, and the pressure-reducing expansion process of M 1 kg working fluid 89 are generally completed by an expander; the expansion work is greater than The booster consumes power, completes the thermal transformation and provides external circulation net power, forming a single working substance steam combined cycle.
  • Working medium M 1 kg of working fluid condensate boost process 12, M 1 kg of working fluid endothermic heating, vaporization and overheating process 23, M 1 kg of working fluid depressurization and expansion process 34, M 1 kg of working fluid absorbs heat Heating process 47, M 2 kg working fluid pressure rising process 95, M 2 kg working fluid endothermic heating process 56, M 2 kg working fluid depressurizing expansion process 67, M 3 kg working fluid depressurizing expansion process 78, M 3 kg refrigerant heat cooling process 89, M 1 kg refrigerant expansion process down 9c, M 1 kg refrigerant exothermic condensation of 11 c1-- process.
  • M 1 kg of working fluid is used for 23 and 47 processes, and M 2 kg of working fluid is used for 56 processes.
  • the heat absorption in the high temperature section is generally provided by an external heat source, and the heat absorption in the low temperature section is provided by an external heat source Or it is provided by the exothermic heat (regeneration) of the 89 process performed by the M 3 kilogram working fluid, or provided by both.
  • booster working fluid 12 is generally accomplished by the process of the circulation pump, the booster during the working medium M 2 kilogram generally accomplished by the compressor 95; M 1 kilogram of working fluid down the expansion process 34.
  • the booster consumes power, completes the thermal transformation and provides external circulation net power, forming a single working substance steam combined cycle.
  • Working medium M 1 kg of working fluid condensate boost process 12, M 1 kg of working fluid endothermic heating, vaporization and overheating process 23, M 1 kg of working fluid depressurization and expansion process 34, M 1 kg of working fluid absorbs heat Heating process 45, M 1 kg working fluid depressurizing expansion process 59, M 2 kg working fluid pressure increasing process c6, M 2 kg working fluid endothermic heating process 67, M 2 kg working fluid depressurizing expansion process 78, M 2 Kilogram working fluid exothermic cooling process 89, M 3 kg working fluid exothermic cooling process 9c, M 1 kg working fluid depressurization expansion process cd, M 1 kg working fluid exothermic condensation process d1-a total of 12 processes.
  • M 1 kg of working fluid is used for 23 and 45 processes, and M 2 kg of working fluid is used for 67 processes.
  • the heat absorption in the high temperature section is generally provided by an external heat source; the heat absorption in the low temperature section is provided by an external heat source Or it is provided by the combined heat release (regeneration) of the M 2 kg working medium for the 89 process and the M 3 kg working medium for the 9c process, or both.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump
  • M 2 kilogram refrigerants bootstrapping c6 is generally accomplished by the compressor
  • M 1 kilogram of working fluid depressurisation 34 The pressure reduction process of M 1 kg working fluid 59, the pressure reduction process of M 2 kg working fluid 78, and the pressure reduction and expansion process cd of M 1 kg working fluid are generally completed by the expander; the expansion work is greater than the pressure increase consumption It completes the thermal transformation and provides external net power to form a single working fluid steam combined cycle.
  • Working medium M 1 kg of working fluid condensate boost process 12, M 1 kg of working fluid endothermic heating, vaporization and overheating process 23, M 1 kg of working fluid depressurization and expansion process 34, M 1 kg of working fluid absorbs heat Heating process 45, M 1 kg working fluid depressurizing expansion process 56, M 1 kg working fluid exothermic cooling process 69, M 2 kg working fluid boosting and heating process c7, M 2 kg working fluid endothermic heating process 78, M 2 kg refrigerant expansion process down 89, M 3 kg refrigerant heat cooling process 9c, M 1 kg refrigerant expansion process down cd, M 1 kg refrigerant exothermic condensation of 12 d1-- process.
  • the heat absorption in the high temperature section is generally provided by an external heat source; the heat absorption in the low temperature section is provided by an external heat source Or it is provided by the combined heat release (regeneration) of the M 1 kg working fluid for the 69 process and the M 3 kg working fluid for the 9c process, or both.
  • M 1 kg of working fluid carries out the heat release of 69 process and M 3 kilograms of working fluid carries out the heat release of 9c process, which can be provided to meet the corresponding heat demand, or part or most of it can be used in other processes of combined cycle Heat absorption demand, the useless part is released to the low-temperature heat source (such as the environment); M 1 kg of working fluid is used to release the heat in the d1 process, which is generally released to the low-temperature heat source, and provided to the heat user in the case of combined heat and power.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump
  • M 2 kilogram bootstrapping working medium is generally accomplished by the compressor 85
  • M 1 kilogram of working fluid depressurisation 34 M 1 kg of working fluid depressurization process 56, M 2 kg of working fluid depressurization process 89, and M 1 kg of working fluid depressurization expansion process cd, generally completed by an expander
  • expansion work is greater than pressure increase consumption It completes the thermal transformation and provides external net power to form a single working fluid steam combined cycle.
  • Working medium M 1 kg of working fluid condensate boost process 12, M 1 kg of working fluid endothermic heating, vaporization and overheating process 23, M 1 kg of working fluid depressurization and expansion process 34, M 1 kg of working fluid absorbs heat Heating process 45, M 2 kg working fluid pressure rising process c5, M 3 kg working fluid endothermic heating process 56, X kg working fluid depressurizing expansion process 69, (M 3 -X) kg working fluid endothermic heating process 67 , (M 3 -X) kg working fluid depressurization expansion process 78, (M 3 -X) kg working fluid exothermic cooling process 89, M 3 kg working fluid exothermic cooling process 9c, M 1 kg working fluid depressurization expansion Process cd, M 1 kg working fluid exothermic condensation process d1-a total of 13 processes.
  • M 1 kilogram booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kilogram bootstrapping c5 working fluid is generally accomplished by the compressor; M 1 kilogram of working fluid depressurisation 34 , The depressurization process of X kg of working fluid 69, the depressurization process of (M 3 -X) kg of working fluid 78, and the depressurization and expansion process of M 1 kg of working fluid cd, which are generally completed by an expander; the expansion work is greater than The booster consumes power, completes the thermal transformation and provides external circulation net power, forming a single working substance steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, (M 1 +M) kg working fluid depressurization expansion process 34, (M 1 +M) kg working fluid endothermic heating process 45, M 2 kg working fluid pressure rising process 8a, M kg working fluid and The mixed exothermic condensation process of M 1 kg of working fluid ab, (M 2 -M) kg of working fluid’s pressure rising and heating process a5, M 3 kg of working fluid’s endothermic heating process 56, M 3 kg of working fluid depressurizing expansion process 67, M 3 kg working fluid exothermic cooling process 78, M 1 kg working fluid depressurization expansion process 89, M 1 kg working fluid exothermic condensation process 91-a total of 13 processes.
  • Endothermic process-the endothermic heat of M 1 kg of working fluid for process 2b comes from the mixed heat release of M kg of superheated steam, M 1 kg of working fluid for b3 and 45 processes, and M 3 kg of working fluid for 56 processes.
  • the heat absorption in the high temperature section is generally provided by an external heat source, and the heat absorption in the low temperature section is provided by an external heat source or the exothermic heat (regeneration) of the 78 process performed by M 3 kg of working fluid, or both.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of working fluid boosting process and 8a (M 2 -M) kg of the working fluid by the general a5 bootstrapping Compressor to complete; (M 1 +M) the pressure reduction process of the working fluid 34, the pressure reduction and expansion process of the M 3 kg working fluid 67, and the pressure reduction and expansion process of the M 1 kg working fluid 89, which are generally performed by the expander Completed; expansion work is greater than boosting work consumption, complete thermal transformation work and provide external circulation net work, forming a single working fluid steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, (M 1 +M) kg working fluid depressurization expansion process 34, (M 1 +M) kg working fluid endothermic heating process 45, (M 1 +M) kg working fluid depressurization and expansion over 57, M 2 kg working fluid pressure rising process 9a, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a6, (M 2 -M) kg Working fluid endothermic heating process 67, M 3 kg working fluid depressurizing expansion process 78, M 3 kg working fluid exothermic cooling process 89, M 1 kg working fluid depressurizing expansion process 9c, M 1 kg working fluid exothermic condensation process c1-A total of 14 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant 9a and bootstrapping (M 2 -M) kg of the working fluid by the general a6 bootstrapping Compressor to complete; (M 1 +M) the pressure reduction process of the kilogram working fluid 34, (M 1 +M) the pressure reduction expansion process of the kilogram working fluid 57, the pressure reduction expansion process of the M 3 kilogram working fluid 78, and M 1 kg of working fluid pressure-reducing expansion process 9c is generally completed by an expander; the expansion work is greater than the pressure-boosting power consumption, and the thermal conversion work is completed and the net work is provided externally to form a single working fluid steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, (M 1 +M) kg working fluid depressurization expansion process 34, (M 1 +M) kg working fluid endothermic heating process 47, M 2 kg working fluid pressure rising process 9a, M kg working fluid and The mixed exothermic condensation process of M 1 kg of working fluid ab, (M 2 -M) pressure rise and temperature rise process of kg of working fluid a5, (M 2 -M) endothermic heating process of kilograms of working fluid 56, (M 2 -M) kg Working fluid depressurization expansion process 67, M 3 kg working fluid depressurization expansion process 78, M 3 kg working fluid exothermic cooling process 89, M 1 kg working fluid depressurization expansion process 9c, M 1 kg working fluid exothermic condensation process c1-A total of 14 processes.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant 9a and bootstrapping (M 2 -M) kg of the working fluid by the general a5 bootstrapping Compressor to complete; (M 1 +M) the pressure reduction process of the kilogram working fluid 34, (M 2 -M) the pressure reduction expansion process of the kilogram working fluid 67, the pressure reduction expansion process of the M 3 kilogram working fluid 78, and M 1 kg of working fluid pressure-reducing expansion process 9c is generally completed by an expander; the expansion work is greater than the pressure-boosting power consumption, and the thermal conversion work is completed and the net work is provided externally to form a single working fluid steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, (M 1 +M) kg working fluid depressurization expansion process 34, (M 1 +M) kg working fluid endothermic heating process 45, (M 1 +M) kg working fluid depressurization expansion process 59, M 2 kg working fluid pressure rising process ca, M kg working fluid and M 1 kg working fluid mixed exothermic condensation process ab, (M 2 -M) kg working fluid pressure rising process a6, (M 2 -M) kg Working fluid endothermic heating process 67, (M 2 -M) kg working fluid depressurization expansion process 78, (M 2 -M) kg working fluid exothermic cooling process 89, M 3 kg working fluid exothermic cooling process 9c, M 1 kg of working fluid depressurization expansion process cd, M 1 kg of working fluid ex
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant and bootstrapping ca (M 2 -M) kg of the working fluid by the general a6 bootstrapping Compressor to complete; (M 1 +M) kilogram of working fluid pressure reduction process 34, (M 1 +M) kilogram working fluid pressure reduction process 59, (M 2 -M) kilogram working fluid pressure reduction process 78, There is also the depressurization process cd of M 1 kg working fluid, which is generally completed by an expander; the expansion work is greater than the boosting work consumption, and the thermal conversion work is completed and the net work is provided externally to form a single working fluid steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, (M 1 +M) kg working fluid depressurizing expansion process 34, (M 1 +M) kg working fluid endothermic heating process 45, (M 1 +M) kg working fluid depressurizing expansion process 56, ( M 1 +M) Kilogram working fluid exothermic cooling process 69, M 2 kilogram working fluid pressure increasing process ca, M 1 kilogram working fluid mixed exothermic condensation process ab, (M 2 -M) kg Working fluid pressure increasing process a7, (M 2 -M) kilogram working fluid endothermic heating process 78, (M 2 -M) kilogram working fluid depressurizing expansion process 89, M 3 kilogram working fluid exothermic cooling process 9c, M 1 kg of working fluid depressurization expansion process cd, M 1 kg of working fluid exothermic condensation process
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant and bootstrapping ca (M 2 -M) kg of the working fluid by the general bootstrapping a7 Compressor to complete; (M 1 +M) the pressure reduction process of kilograms of working fluid 34, (M 1 +M) the pressure reduction process of kilograms of working fluid 56, (M 2 -M) the pressure reduction process of kilograms of working fluid 89, There is also the depressurization process cd of M 1 kg working fluid, which is generally completed by an expander; the expansion work is greater than the boosting work consumption, and the thermal conversion work is completed and the net work is provided externally to form a single working fluid steam combined cycle.
  • the working medium is carried out-M 1 kg of working fluid condensate pressure increase process 12, M 1 kg of working fluid and M kg of working fluid mixed endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and Overheating process b3, (M 1 +M) kg working fluid depressurization expansion process 34, (M 1 +M) kg working fluid endothermic heating process 45, M 2 kg working fluid pressure rising process ca, M kg working fluid and The mixed exothermic condensation process of M 1 kg of working fluid ab, (M 2 -M) kg of working fluid’s pressure rise and temperature rise process a5, M 3 kg of working fluid’s endothermic temperature rise process 56, X kilograms of working fluid depressurization expansion process 69, ( M 3 -X) Kilogram working fluid endothermic heating process 67, (M 3 -X) Kilogram working fluid pressure reduction expansion process 78, (M 3 -X) Kilogram working fluid exothermic cooling process 89, M 3 kg working fluid release Thermal cooling process 9c,
  • M 1 Endothermic process-the heat absorption of M 1 kg of working fluid for process 2b comes from the mixed exotherm of M kg of superheated steam, (M 1 +M) kg of working fluid for b3 process and 45 process, and M 3 kg of working fluid for 56 There are also (M 3 -X) kilograms for 67 processes.
  • the heat absorption of the high temperature section is generally provided by an external heat source; the heat absorption of the low temperature section is performed by external heat sources or (M 3 -X) kilograms of working fluid for 89 processes It is provided by the combined heat release (regeneration) of the 9c process with the M 3 kg working fluid, or provided by both.
  • M 1 kg booster working fluid 12 is generally accomplished by the process of the circulation pump, M 2 kg of refrigerant and bootstrapping ca (M 2 -M) kg of the working fluid by the general a5 bootstrapping Compressor to complete; (M 1 +M) the pressure reduction process of kilogram working fluid 34, the pressure reduction process of X kilogram working fluid 69, the pressure reduction process of (M 3 -X) kilogram working fluid 78, and M 1 kilogram
  • the working fluid pressure reduction process cd is generally completed by an expander; the expansion work is greater than the pressure boosting power consumption, and the thermal conversion work is completed and the net work is provided to the outside to form a single working fluid steam combined cycle.
  • a single working fluid is conducive to production and storage; reduces operating costs and improves the flexibility of cycle adjustment
  • the circulating medium and the heat source medium are the same gas, and the absorbing link of the circulating working fluid from the heat source is beneficial to reduce temperature difference heat transfer loss and improve thermal efficiency.
  • the low-pressure and high-temperature operation mode is adopted in the high-temperature zone to solve the difficult to reconcile contradictions between thermal efficiency, circulating medium parameters and pipe pressure and temperature resistance in traditional steam power plants.
  • low-pressure operation can be selected to provide theoretical support for improving the safety of device operation.
  • the working fluid has a wide application range, can well adapt to the energy supply demand, and the working fluid and working parameters are matched flexibly.
  • thermodynamic cycle range for realizing the utilization of temperature difference is expanded, which is beneficial to better realize the high-efficiency power utilization of high-temperature heat source and variable-temperature heat source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Press Drives And Press Lines (AREA)
  • Lubricants (AREA)

Abstract

单工质蒸汽联合循环,属于能源与动力技术领域,单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质升压过程(12),M 1千克工质吸热汽化过程(23),M 1千克工质降压过程(34),M 1千克工质吸热过程(45),M 2千克工质升压过程(85),M 3千克工质吸热过程(56),M 3千克工质降压过程(67),M 3千克工质放热过程(78),M 1千克工质降压过程(89),M 1千克工质放热冷凝过程(91)——组成的闭合过程;其中,M 3为M 1与M 2之和。

Description

单工质蒸汽联合循环 技术领域:
本发明属于能源与动力技术领域。
背景技术:
冷需求、热需求和动力需求,为人类生活与生产当中所常见;其中,利用热能转换为机械能是获得和提供动力的重要方式。一般情况下,热源的温度随着热的释放而降低,热源是变温的;在以化石燃料为源头能源时,热源同时具有高温和变温的双重特点,这使得采用单一热力循环理论实现制冷、供热或转化为动时能源利用率不理想。
以外燃式蒸汽动力装置为例,其热源属于高温且为变温热源;当以朗肯循环为理论基础,采用水蒸气为循环工质实现热变功时,由于受到材料耐温耐压性能和安全性方面的限制,无论采用何种参数运行,循环工质与热源之间都存在较大的温差损失,不可逆损失大,导致热效率较低。
人们需要简单、主动、高效地利用燃料生成或其它的高温热能来实现制冷、供热或转化为动力,这需要热科学基础理论的支撑;在热科学基础理论体系中,热力循环是热能利用装置的理论基础和能源利用系统的核心;热力循环的创建及发展应用将对能源利用的飞跃起到重大作用,将积极推动社会进步和生产力发展。
从简单、主动和高效地实现温差利用的原则出发,针对高温热源或变温热源的动力应用,力求为热动系统的简单化和高效化提供理论支撑,本发明提出了单工质蒸汽联合循环。
发明内容:
本发明主要目的是要提供单工质蒸汽联合循环,具体发明内容分项阐述如下:
1.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 2千克工质升压过程85,M 3千克工质吸热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
2.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 1千克工质降压过程57,M 2千克工质升压过程96,M 2千克工质吸热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
3.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程47,M 2千克工质升压过程95,M 2千克工质吸热过程56,M 2千克工质降压过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克 工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
4.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 1千克工质降压过程59,M 2千克工质升压过程c6,M 2千克工质吸热过程67,M 2千克工质降压过程78,M 2千克工质放热过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
5.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 1千克工质降压过程56,M 1千克工质放热过程69,M 2千克工质升压过程c7,M 2千克工质吸热过程78,M 2千克工质降压过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
6.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 2千克工质升压过程c5,M 3千克工质吸热过程56,X千克工质降压过程69,(M 3-X)千克工质吸热过程67,(M 3-X)千克工质降压过程78,(M 3-X)千克工质放热过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
7.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程34,(M 1+M)千克工质吸热过程45,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a5,M 3千克工质吸热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
8.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克降压过程34,(M 1+M)千克吸热过程45,(M 1+M)千克工质降压过57,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a6,(M 2-M)千克工质吸热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
9.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克降压过程34,(M 1+M)千克吸热过程47,M 2千克 工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a5,(M 2-M)千克工质吸热过程56,(M 2-M)千克工质降压过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
10.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程34,(M 1+M)千克工质吸热过程45,(M 1+M)千克工质降压过程59,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a6,(M 2-M)千克工质吸热过程67,(M 2-M)千克工质降压过程78,(M 2-M)千克工质放热过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
11.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程34,(M 1+M)千克工质吸热过程45,(M 1+M)千克工质降压过程56,(M 1+M)千克工质放热过程69,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a7,(M 2-M)千克工质吸热过程78,(M 2-M)千克工质降压过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
12.单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程34,(M 1+M)千克工质吸热过程45,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a5,M 3千克工质吸热过程56,X千克工质降压过程69,(M 3-X)千克工质吸热过程67,(M 3-X)千克工质降压过程78,(M 3-X)千克工质放热过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
附图说明:
图1/12是依据本发明所提供的单工质蒸汽联合循环第1种原则性流程示例图。
图2/12是依据本发明所提供的单工质蒸汽联合循环第2种原则性流程示例图。
图3/12是依据本发明所提供的单工质蒸汽联合循环第3种原则性流程示例图。
图4/12是依据本发明所提供的单工质蒸汽联合循环第4种原则性流程示例图。
图5/12是依据本发明所提供的单工质蒸汽联合循环第5种原则性流程示例图。
图6/12是依据本发明所提供的单工质蒸汽联合循环第6种原则性流程示例图。
图7/12是依据本发明所提供的单工质蒸汽联合循环第7种原则性流程示例图。
图8/12是依据本发明所提供的单工质蒸汽联合循环第8种原则性流程示例图。
图9/12是依据本发明所提供的单工质蒸汽联合循环第9种原则性流程示例图。
图10/12是依据本发明所提供的单工质蒸汽联合循环第10种原则性流程示例图。
图11/12是依据本发明所提供的单工质蒸汽联合循环第11种原则性流程示例图。
图12/12是依据本发明所提供的单工质蒸汽联合循环第12种原则性流程示例图。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行,对显而易见的流程不作表述;下述各示例中,M 3为M 1与M 2之和;下面结合附图和实例详细描述本发明。
图1/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程34,M 1千克工质吸热升温过程45,M 2千克工质升压升温过程85,M 3千克工质吸热升温过程56,M 3千克工质降压膨胀过程67,M 3千克工质放热降温过程78,M 1千克工质降压膨胀过程89,M 1千克工质放热冷凝过程91——共10个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和45过程,还有M 3千克工质进行56过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由M 3千克工质进行78过程的放热(回热)来提供,或由二者共同来提供。
②放热过程——M 3千克工质进行78过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程85一般由压缩机来完成;M 1千克工质降压膨胀过程34,M 3千克工质的降压膨胀过程67,还有M 1千克工质降压膨胀过程89,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图2/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程34,M 1千克工质吸热升温过程45,M 1千克工质降压膨胀过程57,M 2千克工质升压升温过程96,M 2千克工质吸热升温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过程c1——共11个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和45过程,还有M 2千克工质进行67过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或由二者共同来提供。
②放热过程——M 3千克工质进行89过程的放热,可对外提供满足相应热需求,或者 部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程96一般由压缩机来完成;M 1千克工质的降压膨胀过程34,M 1千克工质的降压膨胀过程57,M 3千克工质的降压膨胀过程78,还有M 1千克工质降压膨胀过程89,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图3/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程34,M 1千克工质吸热升温过程47,M 2千克工质升压升温过程95,M 2千克工质吸热升温过程56,M 2千克工质降压膨胀过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过程c1——共11个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和47过程,还有M 2千克工质进行56过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或由二者共同来提供。
②放热过程——M 3千克工质进行89过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程95一般由压缩机来完成;M 1千克工质的降压膨胀过程34,M 2千克工质的降压膨胀过程67,M 3千克工质的降压膨胀过程78,还有M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图4/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程34,M 1千克工质吸热升温过程45,M 1千克工质降压膨胀过程59,M 2千克工质升压升温过程c6,M 2千克工质吸热升温过程67,M 2千克工质降压膨胀过程78,M 2千克工质放热降温过程89,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过程d1——共12个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和45过程,还有M 2千克工质进行67过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由M 2千克工质进行89过程与M 3千克工质进行9c过程的联合放热(回热)来提供,或由二者共同来提供。
②放热过程——M 2千克工质进行89过程的放热和M 3千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程c6一般由压缩机来完成;M 1千克工质的降压过程34,M 1千克工质的降压过程59,M 2千克工质的降压过程78,还有M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图5/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程34,M 1千克工质吸热升温过程45,M 1千克工质降压膨胀过程56,M 1千克工质放热降温过程69,M 2千克工质升压升温过程c7,M 2千克工质吸热升温过程78,M 2千克工质降压膨胀过程89,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过程d1——共12个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程和45过程,还有M 2千克工质进行78过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由M 1千克工质进行69过程与M 3千克工质进行9c过程的联合放热(回热)来提供,或由二者共同来提供。
②放热过程——M 1千克工质进行69过程的放热和M 3千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程85一般由压缩机来完成;M 1千克工质的降压过程34,M 1千克工质的降压过程56,M 2千克工质的降压过程89,还有M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图6/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程34,M 1千克工质吸热升温过程45,M 2千克工质升压升温过程c5,M 3千克工质吸热升温过程56,X千克工质降压膨胀过程69,(M 3-X)千克工质吸热升温过程67,(M 3-X)千克工质降压膨胀过程78,(M 3-X)千克工质放热降温过程89,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过程d1——共13个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行23过程、M 1千克工质进行45过程、M 3千克工质进 行56过程和(M 3-X)千克进行67过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 3-X)千克工质进行89过程与M 3千克工质进行9c过程的联合放热(回热)来提供,或由二者共同来提供。
②放热过程——(M 3-X)千克工质进行89过程的放热和M 3千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程c5一般由压缩机来完成;M 1千克工质的降压过程34,X千克工质的降压过程69,(M 3-X)千克工质的降压过程78,还有M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图7/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程34,(M 1+M)千克工质吸热升温过程45,M 2千克工质升压升温过程8a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a5,M 3千克工质吸热升温过程56,M 3千克工质降压膨胀过程67,M 3千克工质放热降温过程78,M 1千克工质降压膨胀过程89,M 1千克工质放热冷凝过程91——共13个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,M 1千克工质进行b3过程和45过程,还有M 3千克工质进行56过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行78过程的放热(回热)来提供,或由二者共同来提供。
②放热过程——M 3千克工质进行78过程的放热,可对外提供满足相应热需求,或者部分或全部用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行91过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程8a和(M 2-M)千克工质的升压过程a5一般由压缩机来完成;(M 1+M)千克工质的降压过程34,M 3千克工质的降压膨胀过程67,还有M 1千克工质降压膨胀过程89,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图8/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工 质降压膨胀过程34,(M 1+M)千克工质吸热升温过程45,(M 1+M)千克工质降压膨胀过57,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a6,(M 2-M)千克工质吸热升温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过程c1——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行23过程和45过程,还有(M 2-M)千克工质进行67过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或由二者共同来提供。
②放热过程——M 3千克工质进行89过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程9a和(M 2-M)千克工质的升压过程a6一般由压缩机来完成;(M 1+M)千克工质的降压过程34,(M 1+M)千克工质的降压膨胀过程57,M 3千克工质的降压膨胀过程78,还有M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图9/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程34,(M 1+M)千克工质吸热升温过程47,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a5,(M 2-M)千克工质吸热升温过程56,(M 2-M)千克工质降压膨胀过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过程c1——共14个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程和47过程,还有(M 2-M)千克工质进行56过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或由二者共同来提供。
②放热过程——M 3千克工质进行89过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程9a和(M 2-M)千克工质的升压过程a5一般由压缩机来完成;(M 1+M)千克 工质的降压过程34,(M 2-M)千克工质的降压膨胀过程67,M 3千克工质的降压膨胀过程78,还有M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图10/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程34,(M 1+M)千克工质吸热升温过程45,(M 1+M)千克工质降压膨胀过程59,M 2千克工质升压升温过程ca,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a6,(M 2-M)千克工质吸热升温过程67,(M 2-M)千克工质降压膨胀过程78,(M 2-M)千克工质放热降温过程89,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过程d1——共15个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程和45过程,还有(M 2-M)千克工质进行67过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 2-M)千克工质进行89过程与M 3千克工质进行9c过程的联合放热(回热)来提供,或由二者共同来提供。
②放热过程——(M 2-M)千克工质进行89过程的放热和M 3千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程ca和(M 2-M)千克工质的升压过程a6一般由压缩机来完成;(M 1+M)千克工质的降压过程34,(M 1+M)千克工质的降压过程59,(M 2-M)千克工质的降压过程78,还有M 1千克工质降压过程cd,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图11/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程34,(M 1+M)千克工质吸热升温过程45,(M 1+M)千克工质降压膨胀过程56,(M 1+M)千克工质放热降温过程69,M 2千克工质升压升温过程ca,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a7,(M 2-M)千克工质吸热升温过程78,(M 2-M)千克工质降压膨胀过程89,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过程d1——共计15个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热, (M 1+M)千克工质进行b3过程和45过程,还有(M 2-M)千克工质进行78过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 1+M)千克工质进行69过程与M 3千克工质进行9c过程的联合放热(回热)来提供,或由二者共同来提供。
②放热过程——(M 1+M)千克工质进行69过程的放热和M 3千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程ca和(M 2-M)千克工质的升压过程a7一般由压缩机来完成;(M 1+M)千克工质的降压过程34,(M 1+M)千克工质的降压过程56,(M 2-M)千克工质的降压过程89,还有M 1千克工质降压过程cd,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图12/12所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程34,(M 1+M)千克工质吸热升温过程45,M 2千克工质升压升温过程ca,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a5,M 3千克工质吸热升温过程56,X千克工质降压膨胀过程69,(M 3-X)千克工质吸热升温过程67,(M 3-X)千克工质降压膨胀过程78,(M 3-X)千克工质放热降温过程89,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过程d1——共计16个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行b3过程和45过程,M 3千克工质进行56过程,还有(M 3-X)千克进行67过程,其高温段的吸热一般由外部热源来提供;低温段的吸热由外部热源或由(M 3-X)千克工质进行89过程与M 3千克工质进行9c过程的联合放热(回热)来提供,或由二者共同来提供。
②放热过程——(M 3-X)千克工质进行89过程的放热和M 3千克工质进行9c过程的放热,可对外提供满足相应热需求,或者部分或大部分用于联合循环其它过程的吸热需求,无用部分向低温热源(如环境)释放;M 1千克工质进行d1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,M 2千克工质的升压过程ca和(M 2-M)千克工质的升压过程a5一般由压缩机来完成;(M 1+M)千克工质的降压过程34,X千克工质的降压过程69,(M 3-X)千克工质的降压过程78,还有M 1千克工质降压过程cd,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
本发明技术可以实现的效果——本发明所提出的单工质蒸汽联合循环,具有如下效果和优势:
(1)创建热能(温差)利用基础理论。
(2)较大幅度减少相变吸热过程的热负荷,相对增加高温段吸热负荷,热效率高。
(3)方法简单,流程合理,适用性好,是实现温差有效利用的共性技术。
(4)单一工质,有利于生产和储存;降低运行成本,提高循环调节的灵活性
(5)过程共用,提高热效率,并为减少设备投资提供理论基础。
(6)在高温区或变温区阶段,循环介质与热源介质同为气体,循环工质自热源吸热环节有利于降低温差传热损失,提高热效率。
(7)在高温区采取低压高温运行方式,解决传统蒸汽动力装置中热效率、循环介质参数与管材耐压耐温性能之间难以调和的矛盾。
(8)在实现高热效率前提下,可选择低压运行,为提高装置运行的安全性提供理论支撑。
(9)工质适用范围广,能够很好地适应供能需求,工质与工作参数之间匹配灵活。
(10)扩展了实现温差利用的热力循环范围,有利于更好地实现高温热源和变温热源的高效动力利用。

Claims (12)

  1. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 2千克工质升压过程85,M 3千克工质吸热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  2. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 1千克工质降压过程57,M 2千克工质升压过程96,M 2千克工质吸热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  3. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十一个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程47,M 2千克工质升压过程95,M 2千克工质吸热过程56,M 2千克工质降压过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  4. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 1千克工质降压过程59,M 2千克工质升压过程c6,M 2千克工质吸热过程67,M 2千克工质降压过程78,M 2千克工质放热过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  5. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 1千克工质降压过程56,M 1千克工质放热过程69,M 2千克工质升压过程c7,M 2千克工质吸热过程78,M 2千克工质降压过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  6. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程34,M 1千克工质吸热过程45,M 2千克工质升压过程c5,M 3千克工质吸热过程56,X千克工质降压过程69,(M 3-X)千克工质吸热过程67,(M 3-X)千克工质降压过程78,(M 3-X)千克工质放热过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  7. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进 行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程34,(M 1+M)千克工质吸热过程45,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a5,M 3千克工质吸热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  8. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克降压过程34,(M 1+M)千克吸热过程45,(M 1+M)千克工质降压过57,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a6,(M 2-M)千克工质吸热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  9. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十四个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克降压过程34,(M 1+M)千克吸热过程47,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a5,(M 2-M)千克工质吸热过程56,(M 2-M)千克工质降压过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  10. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程34,(M 1+M)千克工质吸热过程45,(M 1+M)千克工质降压过程59,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a6,(M 2-M)千克工质吸热过程67,(M 2-M)千克工质降压过程78,(M 2-M)千克工质放热过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  11. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程34,(M 1+M)千克工质吸热过程45,(M 1+M)千克工质降压过程56,(M 1+M)千克工质放热过程69,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a7,(M 2-M)千克工质吸热过程78,(M 2-M)千克工质降压过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  12. 单工质蒸汽联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同或部分进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程34,(M 1+M)千克工质吸热过程45,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a5,M 3千克工质吸热过程56,X千克工质降压过程69,(M 3-X)千克工质吸热过程67,(M 3-X)千克工质降压过程78,(M 3-X)千克工质放热过程89,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
PCT/CN2020/000071 2019-04-17 2020-04-15 单工质蒸汽联合循环 WO2020211473A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/604,392 US20240018885A1 (en) 2019-04-17 2020-04-15 Single-working-medium vapor combined cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910353342 2019-04-17
CN201910353342.4 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020211473A1 true WO2020211473A1 (zh) 2020-10-22

Family

ID=72203201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000071 WO2020211473A1 (zh) 2019-04-17 2020-04-15 单工质蒸汽联合循环

Country Status (3)

Country Link
US (1) US20240018885A1 (zh)
CN (1) CN111608758A (zh)
WO (1) WO2020211473A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518489A (zh) * 2012-01-06 2012-06-27 新奥科技发展有限公司 发电方法、用于气化生产能源产品和热发电的装置
US20130133328A1 (en) * 2010-08-26 2013-05-30 Michael Joseph Timlin, III The Timlin Cycle - A Binary Condensing Thermal Power Cycle
CN104727867A (zh) * 2015-03-02 2015-06-24 无锡雪浪环境科技股份有限公司 中低温余热的利用方法及其降压吸热式蒸汽动力循环系统
CN106907204A (zh) * 2017-04-28 2017-06-30 中国科学院广州能源研究所 一种低温热源驱动的有机工质吸收式发电方法及其系统
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN107957138A (zh) * 2017-10-17 2018-04-24 上海交通大学 采用自然工质水的高温热泵循环系统及其工作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130133328A1 (en) * 2010-08-26 2013-05-30 Michael Joseph Timlin, III The Timlin Cycle - A Binary Condensing Thermal Power Cycle
CN102518489A (zh) * 2012-01-06 2012-06-27 新奥科技发展有限公司 发电方法、用于气化生产能源产品和热发电的装置
CN104727867A (zh) * 2015-03-02 2015-06-24 无锡雪浪环境科技股份有限公司 中低温余热的利用方法及其降压吸热式蒸汽动力循环系统
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN106907204A (zh) * 2017-04-28 2017-06-30 中国科学院广州能源研究所 一种低温热源驱动的有机工质吸收式发电方法及其系统
CN107957138A (zh) * 2017-10-17 2018-04-24 上海交通大学 采用自然工质水的高温热泵循环系统及其工作方法

Also Published As

Publication number Publication date
US20240018885A1 (en) 2024-01-18
CN111608758A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2020211472A1 (zh) 单工质蒸汽联合循环
WO2020215814A1 (zh) 单工质蒸汽联合循环
WO2020211473A1 (zh) 单工质蒸汽联合循环
WO2020211474A1 (zh) 单工质蒸汽联合循环
WO2021042646A1 (zh) 单工质蒸汽联合循环
WO2021042648A1 (zh) 单工质蒸汽联合循环
WO2020215815A1 (zh) 单工质蒸汽联合循环
WO2021036153A1 (zh) 单工质蒸汽联合循环
WO2021036152A1 (zh) 单工质蒸汽联合循环
WO2020215817A1 (zh) 单工质蒸汽联合循环
WO2020211471A1 (zh) 单工质蒸汽联合循环
WO2021042649A1 (zh) 单工质蒸汽联合循环
WO2020215813A1 (zh) 单工质蒸汽联合循环
WO2020211475A1 (zh) 单工质蒸汽联合循环
WO2020215816A1 (zh) 单工质蒸汽联合循环
WO2021042647A1 (zh) 单工质蒸汽联合循环
CN112344579A (zh) 逆向单工质蒸汽联合循环
WO2022001077A1 (zh) 第二类单工质联合循环
WO2020248589A1 (zh) 逆向单工质蒸汽联合循环
WO2020248588A1 (zh) 逆向单工质蒸汽联合循环
WO2022001076A1 (zh) 第二类单工质联合循环
WO2021258718A1 (zh) 第二类单工质联合循环
WO2021047125A1 (zh) 逆向单工质蒸汽联合循环
WO2020248591A1 (zh) 逆向单工质蒸汽联合循环
WO2021253810A1 (zh) 第二类单工质联合循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791924

Country of ref document: EP

Kind code of ref document: A1