WO2022001077A1 - 第二类单工质联合循环 - Google Patents

第二类单工质联合循环 Download PDF

Info

Publication number
WO2022001077A1
WO2022001077A1 PCT/CN2021/000134 CN2021000134W WO2022001077A1 WO 2022001077 A1 WO2022001077 A1 WO 2022001077A1 CN 2021000134 W CN2021000134 W CN 2021000134W WO 2022001077 A1 WO2022001077 A1 WO 2022001077A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
working
exothermic
working medium
kilogram
Prior art date
Application number
PCT/CN2021/000134
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2022001077A1 publication Critical patent/WO2022001077A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the invention belongs to the technical field of thermodynamics and heating.
  • thermodynamic cycle In the basic theoretical system of thermal science, the creation, development and application of thermodynamic cycle will play a major role in the scientific production and utilization of energy, and will actively promote social progress and productivity development. Aiming at the variable-temperature type medium-temperature heat resource and high-temperature heat demand, and considering the simultaneous use of power drive or taking into account the power demand, the present invention proposes to use the phase change process or the phase change process as the main method to realize low temperature heat release, and the use of the temperature change process or the temperature change process as It mainly realizes heat absorption at medium temperature, strong adaptability of working medium selection and heat recovery measures, flexible adaptation to high temperature heat sources, and the second type of single working medium combined cycle that uses temperature change process to realize high temperature heating. Invention content:
  • the main purpose of the present invention is to provide the second type of single working substance combined cycle, and the specific content of the invention is described as follows:
  • the second type of single working fluid combined cycle refers to the twelve processes carried out separately or jointly by working fluids composed of M 1 kg and M 2 kg - M 1 kg working fluid boosting process 12, M 1 kg Working fluid endothermic vaporization process 2f, M 1 kg working fluid depressurization process fg, M 1 kg working fluid endothermic process g3, M 2 kg working fluid boosting process 83, M 3 kg working fluid endothermic process 34, M 3 Kilogram working fluid boosting process 45, M 3 kg working fluid exothermic process 56, M 3 kg working fluid depressurizing process 67, M 3 kg working fluid exothermic process 78, M 1 kg working fluid depressurizing process 89, M 1 Kilogram working fluid exothermic condensation process 91 - a closed process of composition; wherein, M 3 is the sum of M 1 and M 2 .
  • the second type of single working fluid combined cycle refers to the thirteen processes that are carried out separately or jointly by working fluids composed of M 1 kg and M 2 kg - M 1 kg working fluid boosting process 12, M 1 kg Working fluid endothermic vaporization process 2f, M 1 kg working fluid depressurization process fg, M 1 kg working fluid endothermic process g5, M 2 kg working fluid boosting process 93, M 2 kg working fluid endothermic process 34, M 2 Kilogram working fluid boosting process 45, M 3 kg working fluid boosting process 56, M 3 kg working fluid exothermic process 67, M 3 kg working fluid depressurizing process 78, M 3 kg working fluid exothermic process 89, M 1 Kilogram working fluid depressurization process 9c, M 1 kilogram working fluid exothermic condensation process c1—a closed process composed of; wherein, M 3 is the sum of M 1 and M 2 .
  • the second type of single working fluid combined cycle refers to the thirteen processes that are carried out separately or jointly by working fluids composed of M 1 kg and M 2 kg - M 1 kg working fluid boosting process 12, M 1 kg Working fluid endothermic vaporization process 2f, M 1 kg working fluid depressurization process fg, M 1 kg working fluid endothermic process g4, M 2 kg working fluid boosting process 93, M 2 kg working fluid endothermic process 35, M 1 Kilogram working fluid boosting process 45, M 3 kg working fluid boosting process 56, M 3 kg working fluid exothermic process 67, M 3 kg working fluid depressurizing process 78, M 3 kg working fluid exothermic process 89, M 1 Kilogram working fluid depressurization process 9c, M 1 kilogram working fluid exothermic condensation process c1—a closed process composed of; wherein, M 3 is the sum of M 1 and M 2 .
  • the second type of single working fluid combined cycle refers to the fifteen processes that are carried out separately or jointly by working fluids composed of M 1 kg and M 2 kg - M 1 kg working fluid boosting process 12, M 1 kg Working fluid endothermic vaporization process 2f, M 1 kg working fluid depressurization process fg, M 1 kg working fluid endothermic process g3, M 2 kg working fluid boosting process c3, M 3 kg working fluid endothermic process 34, M 3 kg bootstrapping working fluid 45, M 3 kg refrigerant exothermic process 56, X kg working fluid depressurisation 67, (M 3 -X) kg refrigerant exothermic process 68, (M 3 -X) kg refrigerants Depressurization process 89, X kilogram working fluid exothermic process 79, M 3 kilogram working fluid exothermic process 9c, M 1 kilogram working fluid depressurization process cd, M 1 kilogram working fluid exothermic condensation process d1 - closed process of composition ;
  • M 3 is the sum of M 1 and M
  • the second type of single working fluid combined cycle refers to the fifteen processes that are carried out separately or jointly by working fluids composed of M 1 kg and M 2 kg - M 1 kg working fluid boosting process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kilogram working fluid endothermic vaporization process bf, (M 1 +M) kilogram working fluid depressurization process fg, (M 1 +M) kilogram working fluid endothermic process g3, M 2 kg working fluid boosting process 8a, M 2 kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a3, M 3 kg working fluid endothermic process 34, M 3 kg working fluid liter Pressing process 45, M 3 kg working fluid exothermic process 56, M 3 kg working fluid depressurization process 67, M 3 kg working fluid exothermic process 78, M 1 kg working fluid depressurization process 89, M 1 kg working fluid release process Thermal condensation process 91 - a closed process of composition; where M 3 is the sum of M 1 and
  • the second type of single working fluid combined cycle refers to the sixteen processes carried out separately or jointly by working fluids composed of M 1 kg and M 2 kg - M 1 kg working fluid boosting process 12, M 1 kg Working fluid endothermic process 2b, M 2 kg working fluid boosting process 9a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a3, (M 2 -M) kg working fluid Endothermic process 34, (M 1 +M) kilogram working fluid endothermic vaporization process bf, (M 1 +M) kilogram working fluid depressurization process fg, (M 1 +M) kilogram working fluid endothermic process g5, (M 2- M) Kilogram working medium boosting process 45, M 3 kg working medium boosting process 56, M 3 kg working medium exothermic process 67, M 3 kg working medium depressurization process 78, M 3 kg working medium exothermic process 89, M 1 kg working fluid depressurization process 9c, M 1 kg working fluid exothermic condensation process c1—a closed
  • the second type of single working fluid combined cycle refers to the working fluid composed of M 1 kilogram and M 2 kilogram, which are carried out separately or together in sixteen processes - M 1 kilogram working fluid boosting process 12, M 1 kilogram Working fluid endothermic process 2b, M 2 kg working fluid boosting process 9a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a3, (M 1 +M) kg working fluid Endothermic vaporization process bf, (M 1 +M) kilogram working fluid depressurization process fg, (M 1 +M) kilogram working fluid endothermic process g4, (M 2 -M) kilogram working fluid endothermic process 35, (M 1 +M) Kilogram working medium boosting process 45, M 3 kg working medium boosting process 56, M 3 kg working medium exothermic process 67, M 3 kg working medium depressurization process 78, M 3 kg working medium exothermic process 89, M 1 kg working fluid depressurization process 9c, M 1 kg working fluid exothermic condensation process c1
  • the second type of single working fluid combined cycle refers to the eighteen processes that are carried out separately or jointly by working fluids composed of M 1 kg and M 2 kg - M 1 kg working fluid boosting process 12, M 1 kg Working fluid endothermic process 2b, (M 1 +M) kilogram working fluid endothermic vaporization process bf, (M 1 +M) kilogram working fluid depressurization process fg, (M 1 +M) kilogram working fluid endothermic process g3, M 2 kg working fluid boosting process ca, M working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a3, M 3 kg working fluid endothermic process 34, M 3 kg working fluid liter Pressure process 45, M 3 kg working fluid exothermic process 56, X kg working fluid depressurization process 67, (M 3 -X) kg working fluid exothermic process 68, (M 3 -X) kg working fluid depressurization process 89 , X kilogram working fluid exothermic process 79, M 3 kilogram working fluid exothermic process 9
  • Fig. 2/10 is an example diagram of the second principle flow chart of the second type of single working fluid combined cycle provided according to the present invention.
  • FIG. 4/10 is an example diagram of the fourth principle flow chart of the second type of single working fluid combined cycle provided according to the present invention.
  • Fig. 5/10 is an example flow chart of the fifth principle of the second type of single working fluid combined cycle provided according to the present invention.
  • FIG. 6/10 is an example diagram of the sixth principle flow chart of the second type of single working fluid combined cycle provided according to the present invention.
  • Fig. 7/10 is an example diagram of the seventh principle flow chart of the second type of single working fluid combined cycle provided according to the present invention.
  • Fig. 8/10 is an example diagram of the eighth principle flow chart of the second type of single working fluid combined cycle provided according to the present invention.
  • Fig. 9/10 is an example diagram of the ninth principle flow chart of the second type of single working fluid combined cycle provided according to the present invention.
  • Fig. 10/10 is an example diagram of the tenth principle flow chart of the second type of single working substance combined cycle provided according to the present invention.
  • M 3 is the sum of M 1 and M 2 ; below in conjunction with the accompanying drawings The invention is described in detail with examples.
  • Working medium is carried out - M 1 kg working medium condensate boosting process 12, M 1 kg working medium endothermic temperature rise, vaporization and superheating process 2f, M 1 kg working medium depressurization and expansion fg, M 1 kg working medium endothermic temperature rise Process g3, M 2 kilograms of working medium pressure rise and temperature process 83, M 3 kilograms of working medium endothermic temperature rise process 34, M 3 kilograms of working medium pressure rise and temperature process 45, M 3 kilograms of working medium exothermic cooling process 56, M 3 kilograms Working fluid decompression and expansion process 67, M 3 kg working fluid exothermic cooling process 78, M 1 kg working fluid decompression and expansion process 89, M 1 kg working fluid exothermic condensation 91—a total of 12 processes.
  • Working medium is carried out - M 1 kg working medium condensate boosting process 12, M 1 kg working medium endothermic temperature rise, vaporization and superheating process 2f, M 1 kg working medium depressurization and expansion fg, M 1 kg working medium endothermic temperature rise Process g3, M 1 kg working medium pressure increase and temperature rise process 34, M 1 kg working medium exothermic cooling process 45, M 1 kg working medium pressure reduction and expansion process 56, M 1 kg working medium exothermic cooling process 6d, M 2 kg Working fluid boosting and heating process e7, M 2 kg working fluid endothermic heating process 78, M 2 kg working fluid boosting and heating process 89, M 2 kg working fluid exothermic cooling process 9c, M 2 kg working fluid pressure reduction and expansion process cd, M 3 kg working fluid exothermic cooling process de, M 1 kg working fluid decompression and expansion process ef, M 1 kg working fluid exothermic condensation f1 - a total of 16 processes.
  • the boosting process 12 of M 1 kg working medium is generally completed by a circulating pump, and the power consumption of the circulating pump can be provided by the expansion work or provided by the outside;
  • the boosting process 56 of the kilogram working fluid is generally completed by the compressor;
  • the depressurization and expansion process 78 of kilogram working fluid, the (M 1 +M) kilogram working fluid depressurization and expansion process fg, and the M 1 kilogram working fluid depressurization and expansion process 9c are generally completed by an expander; the depressurization and expansion work is used for The boost power consumption, or when the buck expansion work is greater than the boost power consumption, simultaneously outputs mechanical energy to the outside, or when the buck expansion work is less than the boost power consumption, external mechanical energy is input simultaneously, forming the second type of single working fluid combined cycle
  • the working medium is carried out—the M 1 kg working medium condensate pressurization process 12, the mixing endothermic heating process 2b of the M 1 kg working medium and the M kg working medium, the (M 1 +M) kg working medium endothermic heating, vaporization and Overheating process bf, (M 1 +M) kilogram working fluid pressure reduction and expansion process fg, (M 1 +M) kilogram working fluid endothermic heating process g3, M 2 kilogram working fluid pressure boosting and heating process ca, M kilogram working fluid and Mixing exothermic condensation process ab of M 1 kilogram of working fluid, (M 2 -M) kilogram of working fluid boosting and heating process a3, M 3 kilogram working fluid endothermic heating process 34, M 3 kilogram working fluid boosting and heating process 45, M 3 kilograms of working fluid exothermic cooling process 56, X kilograms of working fluid depressurization and expansion process 67, (M 3 -X) kilograms of working fluid exothermic cooling process 68, (M 3 -X) kilograms of working fluid pressure reduction expansion process 89
  • Endothermic process - the endothermic heat of M 1 kg working medium for 2b process comes from the mixing exotherm of M kg superheated steam, (M 1 +M) kg working medium for bf, g3 two processes and M 3 kg working medium for two processes 34 process
  • the endothermic high-temperature stage is generally provided by an external heat source
  • low-temperature stage of the endothermic process is exothermic by X 79 kg working fluid or by an external heat source
  • M 3 kg refrigerant 9c exothermic process (heat recovery ) to provide, or to provide together
  • M 3 kilograms of working medium for endothermic process 34 high temperature section can also be provided by (M 3 -X) kilograms of working medium exothermic 68 process.
  • (M 1 +M) kilogram working medium carries out the absorption of heat in the high temperature section of the g3 process, which can also be provided by the low temperature section of the exothermic 45 process; (M 2 -M) kilogram working medium carries out the absorption of the high temperature section of the 78 process Heat can also be provided by the low temperature section of its exothermic 9c process.
  • the temperature of thermal energy can be increased with the help of some external power, which is flexible and adaptable.
  • variable temperature process or the variable temperature process mainly realizes the heat absorption at the medium temperature, which is beneficial to reduce the heat transfer temperature difference in the acquisition of the medium temperature heat load and improve the cycle performance index.
  • variable temperature releases heat, which is conducive to reducing the heat transfer temperature difference in the heating link and realizing the rationalization of the cycle performance index.
  • a single working fluid is beneficial to production and storage; reduce operating costs and improve the flexibility of cycle adjustment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

第二类单工质联合循环,属于热力学/热泵技术领域。第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g3,M 2千克工质升压过程83,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。

Description

第二类单工质联合循环 技术领域:
本发明属于热力学与制热技术领域。
背景技术:
冷、热和动力需求,为人类生活与生产当中所常见;人们经常需要利用热能来实现制冷、供热或转化为动力。在实现上述目的之过程中,将面临多方面的条件限制,包括能源的类型、品位和数量,用户需求的类型、品位和数量,环境温度,工作介质的类型,设备的流程、结构和制造成本等。
在热科学基础理论体系中,热力循环的创建及发展应用将对能源的科学生产和科学利用起到重大作用,将积极推动社会进步和生产力发展。本发明针对变温型中温热资源和高温热需求,也考虑到同时利用动力驱动或兼顾动力需求,提出了采用相变过程或相变过程为主实现低温放热,采用变温过程或变温过程为主实现中温吸热,工质选择和回热措施适应性强,灵活适应高温热源,以及采用变温过程实现高温供热的第二类单工质联合循环。发明内容:
本发明主要目的是要提供第二类单工质联合循环,具体发明内容分项阐述如下:
1.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g3,M 2千克工质升压过程83,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
2.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g5,M 2千克工质升压过程93,M 2千克工质吸热过程34,M 2千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
3.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g4,M 2千克工质升压过程93,M 2千克工质吸热过程35,M 1千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
4.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降 压过程fg,M 1千克工质吸热过程g3,M 2千克工质升压过程c3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,X千克工质降压过程67,(M 3-X)千克工质放热过程68,(M 3-X)千克工质降压过程89,X千克工质放热过程79,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
5.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g3,M 1千克工质升压过程34,M 1千克工质放热过程45,M 1千克工质降压过56,M 1千克工质放热过程6d,M 2千克工质升压过程e7,M 2千克工质吸热过程78,M 2千克工质升压过程89,M 2千克工质放热过程9c,M 2千克工质降压过程cd,M 3千克工质放热过程de,M 1千克工质降压过程ef,M 1千克工质放热冷凝过程f1——组成的闭合过程;其中,M 3为M 1与M 2之和。
6.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g3,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
7.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,(M 2-M)千克工质吸热过程34,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g5,(M 2-M)千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
8.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g4,(M 2-M)千克工质吸热过程35,(M 1+M)千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
9.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十八个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质 吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g3,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,X千克工质降压过程67,(M 3-X)千克工质放热过程68,(M 3-X)千克工质降压过程89,X千克工质放热过程79,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
10.第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十九个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g3,(M 1+M)千克工质升压过程34,(M 1+M)千克工质放热过程45,(M 1+M)千克工质降压过56,(M 1+M)千克工质放热过程6d,M 2千克工质升压过程ea,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a7,(M 2-M)千克工质吸热过程78,(M 2-M)千克工质升压过程89,(M 2-M)千克工质放热过程9c,(M 2-M)千克工质降压过程cd,M 3千克工质放热过程de,M 1千克工质降压过程ef,M 1千克工质放热冷凝过程f1——组成的闭合过程;其中,M 3为M 1与M 2之和。
附图说明:
图1/10是依据本发明所提供的第二类单工质联合循环第1种原则性流程示例图。
图2/10是依据本发明所提供的第二类单工质联合循环第2种原则性流程示例图。
图3/10是依据本发明所提供的第二类单工质联合循环第3种原则性流程示例图。
图4/10是依据本发明所提供的第二类单工质联合循环第4种原则性流程示例图。
图5/10是依据本发明所提供的第二类单工质联合循环第5种原则性流程示例图。
图6/10是依据本发明所提供的第二类单工质联合循环第6种原则性流程示例图。
图7/10是依据本发明所提供的第二类单工质联合循环第7种原则性流程示例图。
图8/10是依据本发明所提供的第二类单工质联合循环第8种原则性流程示例图。
图9/10是依据本发明所提供的第二类单工质联合循环第9种原则性流程示例图。
图10/10是依据本发明所提供的第二类单工质联合循环第10种原则性流程示例图。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行,对显而易见的流程不作表述;下述各示例中,M 3为M 1与M 2之和;下面结合附图和实例详细描述本发明。
图1/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程2f,M 1千克工质降压膨胀fg,M 1千克工质吸热升温过程g3,M 2千克工质升压升温过程83,M 3千克工质吸热升温过程34,M 3千克工质升压升温过程45,M 3千克工质放热降温过程56,M 3千克工质降压膨胀过程67,M 3千克工质放热降温过程78,M 1千克工质降压膨胀过程89,M 1千克工质放热冷凝过91——共12个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2f、g3两个过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行78过程的放热(回热)来提供,或者共同来提供;其中,M 3千克工质进行34过程高温段的吸热,还可由其放热56过程的低温段来提供。
②放热过程——M 3千克工质进行56过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于34过程高温段吸热(回热);M 3千克工质进行78过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程83,以及M 3千克工质的升压过程45,一般由压缩机来完成;M 3千克工质的降压膨胀过程67,M 1千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程89,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图2/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程2f,M 1千克工质降压膨胀fg,M 1千克工质吸热升温过程g5,M 2千克工质升压升温过程93,M 2千克工质吸热升温过程34,M 2千克工质升压升温过程45,M 3千克工质升压升温过程56,M 3千克工质放热降温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过c1——共13个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2f、g5两个过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或者共同来提供;M 2千克工质进行34过程高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的高温段放热(回热)来提供,或者共同来提供;其中,M 1千克工质进行g5过程和M 2千克工质进行34过程的高温段吸热,还可由M 3千克工质放热67过程的低温段来提供。
②放热过程——M 3千克工质进行67过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于M 1千克工质进行g5过程和M 2千克工质进行34过程的高温段吸热;M 3千克工质进行89过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程93和45,以及M 3千克工质的升压过程56,一般由压缩机来完成;M 3千克工质的降压膨胀过程78,M 1千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;降压膨胀作功用于升 压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图3/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程2f,M 1千克工质降压膨胀fg,M 1千克工质吸热升温过程g4,M 2千克工质升压升温过程93,M 2千克工质吸热升温过程35,M 1千克工质升压升温过程45,M 3千克工质升压升温过程56,M 3千克工质放热降温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过c1——共13个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2f、g4两个过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或者共同来提供;M 2千克工质进行35过程的吸热一般由外部热源来提供,部分低温段吸热或由M 3千克工质进行89过程的放热(回热)来提供;其中,M 1千克工质进行g4过程和M 2千克工质进行35过程的高温段吸热,还可由M 3千克工质放热67过程的低温段来提供。
②放热过程——M 3千克工质进行67过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于M 1千克工质进行g4过程和M 2千克工质进行35过程的高温段吸热;M 3千克工质进行89过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 1千克工质的升压过程45,M 2千克工质的升压过程93,以及M 3千克工质的升压过程56,一般由压缩机来完成;M 3千克工质的降压膨胀过程78,M 1千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图4/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程2f,M 1千克工质降压膨胀fg,M 1千克工质吸热升温过程g3,M 2千克工质升压升温过程c3,M 3千克工质吸热升温过程34,M 3千克工质升压升温过程45,M 3千克工质放热降温过程56,X千克工质降压膨胀过程67,(M 3-X)千克工质放热降温过程68,(M 3-X)千克工质降压膨胀过程89,X千克工质放热降温过程79,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过d1——共15个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2f、g3两个过程和M 3千克工质进行34过程,高温 段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由X千克工质进行79过程的放热、(M 3-X)千克工质进行9c过程的放热(回热)来提供,或者共同来提供;其中,M 3千克工质进行34过程高温段的吸热,还可由(M 3-X)千克工质放热68过程来提供。
②放热过程——M 3千克工质进行56过程的放热和(M 3-X)千克工质进行68过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于34过程高温段吸热(回热);X千克工质进行79过程的放热、M 3千克工质进行9c过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行c1过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程c3,以及M 3千克工质升压过程45,一般由压缩机来完成;X千克工质的降压膨胀过程67,(M 3-X)千克工质的降压膨胀过程89,M 1千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图5/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程2f,M 1千克工质降压膨胀fg,M 1千克工质吸热升温过程g3,M 1千克工质升压升温过程34,M 1千克工质放热降温过程45,M 1千克工质降压膨胀过程56,M 1千克工质放热降温过程6d,M 2千克工质升压升温过程e7,M 2千克工质吸热升温过程78,M 2千克工质升压升温过程89,M 2千克工质放热降温过程9c,M 2千克工质降压膨胀过程cd,M 3千克工质放热降温过程de,M 1千克工质降压膨胀过程ef,M 1千克工质放热冷凝过f1——共16个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2f、g3两个过程和M 2千克工质进行78过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 1千克工质进6d过程与M 3千克工质进行de过程的联合放热(回热)来提供,或者共同来提供;其中——M 1千克工质进行g3过程高温段的吸热,还可由其放热45过程的低温段来提供;M 2千克工质进行78过程高温段的吸热,还可由其放热9c过程的低温段来提供。
②放热过程——M 1千克工质进行45过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于g3过程高温段吸热(回热);M 2千克工质放热降温过程9c,对外提供满足相应热需求,其中的低温段放热或可用于78过程高温段吸热(回热);M 1千克工质进行6d过程的放热和M 3千克工质进行de过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行e1过程的放热,一般向低温热源释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程e7和89,以及M 1千克工质的升压过程34,一般由压缩机来完成;M 1千克工质的降压膨胀过程56,M 2千克工质的降压膨胀过程cd,M 1千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程ef,一般由膨胀 机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图6/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克过热蒸汽混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程bf,(M 1+M)千克工质降压膨胀过程fg,(M 1+M)千克工质吸热升温过程g3,M 2千克工质升压升温过程8a,M千克工质与M 1千克工质混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,M 3千克工质吸热升温过程34,M 3千克工质升压升温过程45,M 3千克工质放热降温过程56,M 3千克工质降压膨胀过程67,M 3千克工质放热降温过程78,M 1千克工质降压膨胀过程89,M 1千克工质放热冷凝过91——共15个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行bf、g3两个过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行78过程的放热(回热)来提供,或者共同来提供;其中,M 3千克工质进行34过程高温段的吸热,还可由其放热56过程的低温段来提供。
②放热过程——M 3千克工质进行56过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于34过程高温段吸热(回热);M 3千克工质进行78过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行81过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程8a和(M 2-M)千克工质的升压过程a3,以及M 3千克工质的升压过程45,一般由压缩机来完成;M 3千克工质的降压膨胀过程67,(M 1+M)千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程89,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图7/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程bf,(M 1+M)千克工质降压膨胀过程fg,(M 1+M)千克工质吸热升温过程g5,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,(M 2-M)千克工质吸热升温过程34,(M 2-M)千克工质升压升温过程45,M 3千克工质升压升温过程56,M 3千克工质放热降温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过c1——共 16个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行bf、g5两个过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或者共同来提供;(M 2-M)千克工质进行34过程高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的高温段放热(回热)来提供,或者共同来提供;其中,(M 1+M)千克工质进行g5过程和(M 2-M)千克工质进行34过程的高温段吸热,还可由M 3千克工质放热67过程的低温段来提供。
②放热过程——M 3千克工质进行67过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于(M 1+M)千克工质进行g5过程和(M 2-M)千克工质进行34过程的高温段吸热;M 3千克工质进行89过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程9a,(M 2-M)千克工质的升压过程a3和45,以及M 3千克工质的升压过程56,一般由压缩机来完成;M 3千克工质的降压膨胀过程78,(M 1+M)千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图8/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程bf,(M 1+M)千克工质降压膨胀过程fg,(M 1+M)千克工质吸热升温过程g4,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,(M 2-M)千克工质吸热升温过程35,(M 1+M)千克工质升压升温过程45,M 3千克工质升压升温过程56,M 3千克工质放热降温过程67,M 3千克工质降压膨胀过程78,M 3千克工质放热降温过程89,M 1千克工质降压膨胀过程9c,M 1千克工质放热冷凝过c1——共16个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行bf、g4两个过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由M 3千克工质进行89过程的放热(回热)来提供,或者共同来提供;(M 2-M)千克工质进行35过程的吸热一般由外部热源来提供,部分低温段吸热或由M 3千克工质进行89过程的放热(回热)来提供;其中,(M 1+M)千克工质进行g4过程和(M 2-M)千克工质进行35过程的高温段吸热,还可由M 3千克工质放热67过程的低温段 来提供。
②放热过程——M 3千克工质进行67过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于(M 1+M)千克工质进行g4过程和(M 2-M)千克工质进行35过程的高温段吸热;M 3千克工质进行89过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行91过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程9a,(M 2-M)千克工质的升压过程a3,(M 1+M)千克工质的升压过程45,以及M 3千克工质的升压过程56,一般由压缩机来完成;M 3千克工质的降压膨胀过程78,(M 1+M)千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程9c,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图9/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程bf,(M 1+M)千克工质降压膨胀过程fg,(M 1+M)千克工质吸热升温过程g3,M 2千克工质升压升温过程ca,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a3,M 3千克工质吸热升温过程34,M 3千克工质升压升温过程45,M 3千克工质放热降温过程56,X千克工质降压膨胀过程67,(M 3-X)千克工质放热降温过程68,(M 3-X)千克工质降压膨胀过程89,X千克工质放热降温过程79,M 3千克工质放热降温过程9c,M 1千克工质降压膨胀过程cd,M 1千克工质放热冷凝过d1——共18个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行bf、g3两个过程和M 3千克工质进行34过程,高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由X千克工质进行79过程的放热、M 3千克工质进行9c过程的放热(回热)来提供,或者共同来提供;其中,M 3千克工质进行34过程高温段的吸热,还可由(M 3-X)千克工质放热68过程来提供。
②放热过程——M 3千克工质进行56过程的放热和(M 3-X)千克工质进行68过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于34过程高温段吸热(回热);X千克工质进行79过程的放热、M 3千克工质进行9c过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行c1过程的放热,一般向低温热源(环境)释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程ca和(M 2-M)千克工质的升压过程a3,以及M 3千克工质升压过程45,一般由压缩机来完成;X千克工质的降压过程67,(M 3-X)千克工质的降压过程89,(M 1+M)千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程cd,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀 作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
图10/10所示T-s图中的第二类单工质联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质与M千克工质的混合吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程bf,(M 1+M)千克工质降压膨胀过程fg,(M 1+M)千克工质吸热升温过程g3,(M 1+M)千克工质升压升温过程34,(M 1+M)千克工质放热降温过程45,(M 1+M)千克工质降压膨胀过程56,(M 1+M)千克工质放热降温过程6d,M 2千克工质升压升温过程ea,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a7,(M 2-M)千克工质吸热升温过程78,(M 2-M)千克工质升压升温过程89,(M 2-M)千克工质放热降温过程9c,(M 2-M)千克工质降压膨胀过程cd,M 3千克工质放热降温过程de,M 1千克工质降压膨胀过程ef,M 1千克工质放热冷凝过f1——共19个过程。
(2)从能量转换上看:
①吸热过程——M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,(M 1+M)千克工质进行bf、g3两个过程和(M 2-M)千克工质进行78过程,其高温段的吸热一般由外部热源来提供,低温段的吸热由外部热源或由(M 1+M)千克工质进6d过程与M 3千克工质进行de过程的联合放热(回热)来提供,或者共同来提供。其中——(M 1+M)千克工质进行g3过程高温段的吸热,还可由其放热45过程的低温段来提供;(M 2-M)千克工质进行78过程高温段的吸热,还可由其放热9c过程的低温段来提供。
②放热过程——(M 1+M)千克工质进行45过程的放热,对外提供满足相应热需求,其中的低温段放热或可用于g3过程高温段吸热(回热);(M 2-M)千克工质放热降温过程9c,对外提供满足相应热需求,其中的低温段放热或可用于78过程高温段吸热(回热);(M 1+M)千克进行工质6d过程的放热和M 3千克工质进行de过程的放热,一般用于联合循环其它过程低温段的吸热需求;M 1千克工质进行e1过程的放热,一般向低温热源释放。
③能量转换过程——M 1千克工质的升压过程12一般由循环泵来完成,循环泵的耗功可由膨胀作功提供或由外部提供;M 2千克工质的升压过程ea,(M 2-M)千克工质的升压过程a7,(M 1+M)千克工质的升压过程34,(M 2-M)千克工质的升压过程89,一般由压缩机来完成;(M 1+M)千克工质的降压过程56,(M 2-M)千克工质的降压过程cd,(M 1+M)千克工质降压膨胀过程fg,以及M 1千克工质降压膨胀过程ef,一般由膨胀机来完成;降压膨胀作功用于升压耗功,或降压膨胀作功大于升压耗功时同时对外输出机械能,或降压膨胀作功小于升压耗功时同时由外部投入机械能,形成第二类单工质联合循环。
这里还要指出的是:在前述图6-图10所示的技术方案中,M 1千克工质自2点开始的吸热过程,其低温段吸热也可由cd过程中的某一位置抽出部分蒸汽进行混合加热来满足。
本发明技术可以实现的效果——本发明所提出的第二类单工质联合循环,具有如下效果和优势:
(1)提出了温差利用的新思路和新技术。
(2)热能(温差)驱动,实现热能温度提升,或可选择同时对外提供动力。
(3)方法简单,流程合理,适用性好,是实现温差有效利用的共性技术。
(4)必要时,借助部分外部动力实现热能温度提升,方式灵活,适应性好。
(5)相变过程或相变过程为主实现低温放热,有利于减小低温热负荷释放环节的传热温差,提高循环性能指数。
(6)变温过程或变温过程为主实现中温吸热,有利于减小中温热负荷获取环节的传热温差,提高循环性能指数。
(7)变温放热,有利于减小供热环节传热温差,实现循环性能指数合理化。
(8)单一工质,有利于生产和储存;降低运行成本,提高循环调节的灵活性
(9)过程共用,减少过程数量,为减少设备投资提供理论基础。
(10)工质参数范围宽,实现高效高温供热;能够很好地适应供能需求,工质与工作参数之间匹配灵活。
(11)设置低压膨胀过程,增加回热的适应性和工作介质选择的灵活性。
(12)设置高压膨胀过程,增加对高温热源的适应性和工作介质选择的灵活性。
(13)扩展了实现温差利用的热力循环范围,有利于更好地实现中温热源和变中温热源的高效热利用。

Claims (10)

  1. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g3,M 2千克工质升压过程83,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  2. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g5,M 2千克工质升压过程93,M 2千克工质吸热过程34,M 2千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  3. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g4,M 2千克工质升压过程93,M 2千克工质吸热过程35,M 1千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  4. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g3,M 2千克工质升压过程c3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,X千克工质降压过程67,(M 3-X)千克工质放热过程68,(M 3-X)千克工质降压过程89,X千克工质放热过程79,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  5. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程2f,M 1千克工质降压过程fg,M 1千克工质吸热过程g3,M 1千克工质升压过程34,M 1千克工质放热过程45,M 1千克工质降压过56,M 1千克工质放热过程6d,M 2千克工质升压过程e7,M 2千克工质吸热过程78,M 2千克工质升压过程89,M 2千克工质放热过程9c,M 2千克工质降压过程cd,M 3千克工质放热过程de,M 1千克工质降压过程ef,M 1千克工质放热冷凝过程f1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  6. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g3,M 2千克工质升压过程8a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,M 3千克工质 降压过程67,M 3千克工质放热过程78,M 1千克工质降压过程89,M 1千克工质放热冷凝过程91——组成的闭合过程;其中,M 3为M 1与M 2之和。
  7. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,(M 2-M)千克工质吸热过程34,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g5,(M 2-M)千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  8. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g4,(M 2-M)千克工质吸热过程35,(M 1+M)千克工质升压过程45,M 3千克工质升压过程56,M 3千克工质放热过程67,M 3千克工质降压过程78,M 3千克工质放热过程89,M 1千克工质降压过程9c,M 1千克工质放热冷凝过程c1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  9. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十八个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g3,M 2千克工质升压过程ca,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a3,M 3千克工质吸热过程34,M 3千克工质升压过程45,M 3千克工质放热过程56,X千克工质降压过程67,(M 3-X)千克工质放热过程68,(M 3-X)千克工质降压过程89,X千克工质放热过程79,M 3千克工质放热过程9c,M 1千克工质降压过程cd,M 1千克工质放热冷凝过程d1——组成的闭合过程;其中,M 3为M 1与M 2之和。
  10. 第二类单工质联合循环,是指由M 1千克和M 2千克组成的工质,分别或共同进行的十九个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程bf,(M 1+M)千克工质降压过程fg,(M 1+M)千克工质吸热过程g3,(M 1+M)千克工质升压过程34,(M 1+M)千克工质放热过程45,(M 1+M)千克工质降压过56,(M 1+M)千克工质放热过程6d,M 2千克工质升压过程ea,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a7,(M 2-M)千克工质吸热过程78,(M 2-M)千克工质升压过程89,(M 2-M)千克工质放热过程9c,(M 2-M)千克工质降压过程cd,M 3千克工质放热过程de,M 1千克工质降压过程ef,M 1千克工质放热冷凝过程f1——组成的闭合过程;其中,M 3为M 1与M 2之和。
PCT/CN2021/000134 2020-06-28 2021-06-28 第二类单工质联合循环 WO2022001077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010643633 2020-06-28
CN202010643633.X 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022001077A1 true WO2022001077A1 (zh) 2022-01-06

Family

ID=78246027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000134 WO2022001077A1 (zh) 2020-06-28 2021-06-28 第二类单工质联合循环

Country Status (2)

Country Link
CN (1) CN113587479A (zh)
WO (1) WO2022001077A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818509A (zh) * 2006-03-09 2006-08-16 西安交通大学 一种蒸气喷射式制冷循环系统
EP2009369A1 (en) * 2006-04-11 2008-12-31 Gree Electric Appliances, Inc. Of Zhuhai A heat pump air condition system, and the steam jet system and the control method thereof
EP2765281A1 (en) * 2013-02-07 2014-08-13 Ingenieria I Mas D-Tec Ratio, S.L. A rankine cycle apparatus
CN103998874A (zh) * 2011-12-19 2014-08-20 丰田自动车株式会社 冷却装置
EP3081770A1 (en) * 2015-04-17 2016-10-19 Siemens Aktiengesellschaft Energy storage system and method
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
KR101968517B1 (ko) * 2017-09-04 2019-04-15 한국해양과학기술원 이젝터 결합형 증기압축식 냉방 온도차발전 듀얼시스템
CN110631274A (zh) * 2019-08-24 2019-12-31 李华玉 第二类多向热力循环

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953472B (zh) * 2015-04-13 2020-06-16 李华玉 双向热力循环与第二类热驱动压缩式热泵
CN105953473B (zh) * 2015-04-13 2020-06-16 李华玉 双向热力循环与第二类热驱动压缩式热泵

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818509A (zh) * 2006-03-09 2006-08-16 西安交通大学 一种蒸气喷射式制冷循环系统
EP2009369A1 (en) * 2006-04-11 2008-12-31 Gree Electric Appliances, Inc. Of Zhuhai A heat pump air condition system, and the steam jet system and the control method thereof
CN103998874A (zh) * 2011-12-19 2014-08-20 丰田自动车株式会社 冷却装置
EP2765281A1 (en) * 2013-02-07 2014-08-13 Ingenieria I Mas D-Tec Ratio, S.L. A rankine cycle apparatus
EP3081770A1 (en) * 2015-04-17 2016-10-19 Siemens Aktiengesellschaft Energy storage system and method
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
KR101968517B1 (ko) * 2017-09-04 2019-04-15 한국해양과학기술원 이젝터 결합형 증기압축식 냉방 온도차발전 듀얼시스템
CN110631274A (zh) * 2019-08-24 2019-12-31 李华玉 第二类多向热力循环

Also Published As

Publication number Publication date
CN113587479A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2022001077A1 (zh) 第二类单工质联合循环
WO2020215814A1 (zh) 单工质蒸汽联合循环
WO2022001076A1 (zh) 第二类单工质联合循环
WO2020211472A1 (zh) 单工质蒸汽联合循环
WO2022007375A1 (zh) 第二类单工质联合循环
WO2022007374A1 (zh) 第二类单工质联合循环
WO2022011994A1 (zh) 第二类单工质联合循环
WO2021253810A1 (zh) 第二类单工质联合循环
WO2022011995A1 (zh) 第二类单工质联合循环
WO2021258718A1 (zh) 第二类单工质联合循环
WO2021042646A1 (zh) 单工质蒸汽联合循环
WO2020211474A1 (zh) 单工质蒸汽联合循环
WO2020211473A1 (zh) 单工质蒸汽联合循环
WO2021042648A1 (zh) 单工质蒸汽联合循环
WO2021036153A1 (zh) 单工质蒸汽联合循环
WO2021143550A1 (zh) 双向第一类单工质联合循环
CN112344579A (zh) 逆向单工质蒸汽联合循环
WO2021036152A1 (zh) 单工质蒸汽联合循环
WO2020248589A1 (zh) 逆向单工质蒸汽联合循环
WO2021042649A1 (zh) 单工质蒸汽联合循环
WO2020248592A1 (zh) 逆向单工质蒸汽联合循环
WO2020248591A1 (zh) 逆向单工质蒸汽联合循环
WO2020248588A1 (zh) 逆向单工质蒸汽联合循环
WO2020248590A1 (zh) 逆向单工质蒸汽联合循环
WO2022199200A1 (zh) 双向第一类单工质联合循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832015

Country of ref document: EP

Kind code of ref document: A1