JP2006088711A - 液体吐出装置及び液体吐出方法 - Google Patents

液体吐出装置及び液体吐出方法 Download PDF

Info

Publication number
JP2006088711A
JP2006088711A JP2005364116A JP2005364116A JP2006088711A JP 2006088711 A JP2006088711 A JP 2006088711A JP 2005364116 A JP2005364116 A JP 2005364116A JP 2005364116 A JP2005364116 A JP 2005364116A JP 2006088711 A JP2006088711 A JP 2006088711A
Authority
JP
Japan
Prior art keywords
liquid
bubble generation
generation region
nozzle
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005364116A
Other languages
English (en)
Inventor
Takeo Eguchi
武夫 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005364116A priority Critical patent/JP2006088711A/ja
Publication of JP2006088711A publication Critical patent/JP2006088711A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】発熱抵抗体の寿命を低下させることなく安定して液体を吐出できるようにしつつ、液体の飛翔特性を制御する。
【解決手段】吐出すべき液体を収容するインク液室12と、エネルギーの供給によりインク液室12内の液体に気泡を発生させる発熱抵抗体13と、発熱抵抗体13による気泡の生成に伴ってインク液室12内の液体を吐出させるためのノズル18とを含む液体吐出装置において、発熱抵抗体13は、1つのインク液室12内で2分割されており、1つのインク液室12内の2つの発熱抵抗体13にエネルギーを同時に供給するとともに、一方の発熱抵抗体13上と、他方の発熱抵抗体13上のエネルギーの分布に差異を設け、その差異によってノズル18から吐出される液体の飛翔特性を制御する。
【選択図】図1

Description

本発明は、液室内の液体をノズルから吐出させる液体吐出装置又は液体吐出方法において、液体の飛翔特性又は着弾位置を制御する技術、具体的には、例えば、液体吐出部を複数並設したヘッドを備える液体吐出装置、及び液体吐出部を複数並設したヘッドを用いた液体吐出方法において、液体吐出部からの液体の吐出方向(液体の着弾位置)を制御する技術に関するものである。
従来、液体吐出部を複数並設したヘッドを備える液体吐出装置の一例として、インクジェットプリンタが知られている。また、インクジェットプリンタのインクの吐出方式の1つとして、熱エネルギーを用いてインクを吐出させるサーマル方式が知られている。
このサーマル方式のプリンタヘッドチップの構造の一例としては、インク液室のインクを、インク液室内に配置された発熱抵抗体で加熱し、発熱抵抗体上のインクに気泡を発生させ、この気泡発生時のエネルギーによってインクを吐出させるものが挙げられる。そして、ノズルは、インク液室の上面側に形成され、インク液室内のインクに気泡が発生したときに、ノズルの吐出口からインクが吐出されるように構成されている。
さらにまた、ヘッド構造の観点からは、プリンタヘッドチップを印画紙幅方向に移動させて印画を行うシリアル方式と、多数のプリンタヘッドチップを印画紙幅方向に並べて配置し、印画紙幅分のラインヘッドを形成したライン方式とが挙げられる(例えば、特許文献1参照)。
特開2002−254649号公報
図18は、従来のラインヘッド10を示す平面図である。図18では、4つのプリンタヘッドチップ1(「N−1」、「N」、「N+1」、「N+2」)を図示しているが、実際にはさらに多数のプリンタヘッドチップ1が並設されている。
各プリンタヘッドチップ1には、インクを吐出する吐出口を有するノズル1aが複数形成されている。ノズル1aは、特定方向に並設されており、この特定方向は、印画紙幅方向と一致している。さらに、このプリンタヘッドチップ1が上記特定方向に複数配置されている。隣接するプリンタヘッドチップ1は、それぞれノズル1aが向き合うように配置されるとともに、隣接するプリンタヘッドチップ1間においては、ノズル1aのピッチが連続するように配置されている(A部詳細参照)。
しかし、前述の従来の技術では、以下の問題点があった。
先ず、プリンタヘッドチップ1からインクを吐出する際、インクは、プリンタヘッドチップ1の吐出面に対して垂直に吐出されるのが理想的である。しかし、種々の要因により、インクの吐出角度が垂直にならない場合がある。
例えば、発熱抵抗体を有するインク液室の上面に、ノズル1aが形成されたノズルシートを貼り合わせる場合、インク液室及び発熱抵抗体と、ノズル1aとの貼付け位置ずれが問題となる。インク液室及び発熱抵抗体の中心上にノズル1aの中心が位置するようにノズルシートが貼り付けられれば、インクは、インクの吐出面(ノズルシート面)に垂直に吐出されるが、インク液室及び発熱抵抗体と、ノズル1aとの中心位置にずれが生じると、インクは、吐出面に対して垂直に吐出されなくなる。
また、インク液室及び発熱抵抗体と、ノズルシートとの熱膨張率の差による位置ずれも生じ得る。
吐出面に対して垂直にインクが吐出されたときには、インク液滴は、理想的に正確な位置に着弾されるとして、インクの吐出角度が垂直からθだけずれると、吐出面と印画紙面(インク液滴の着弾面)までの間の距離(インクジェット方式の場合、通常は1〜2mm)をH(Hは一定)としたとき、インク液滴の着弾位置ずれΔLは、
ΔL=H×tanθ
となる。
ここで、このようなインクの吐出角度のずれが生じたときには、シリアル方式の場合では、ノズル1a間におけるインクの着弾ピッチずれとなって現れる。さらに、ライン方式では、上記の着弾ピッチずれに加え、プリンタヘッドチップ1間の着弾位置ずれとなって現れる。
図19は、図18で示したラインヘッド10(プリンタヘッドチップ1をノズル1aの並び方向に複数配置したもの)での印画状態を示す断面図及び平面図である。図19において、印画紙Pを固定して考えると、ラインヘッド10は、印画紙Pの幅方向には移動せず、平面図において上から下に移動して印画を行う。
図19の断面図では、ラインヘッド10のうち、N番目、N+1番目、及びN+2番目の3つのプリンタヘッドチップ1を図示している。
断面図において、N番目のプリンタヘッドチップ1では、矢印で示すように図中、左方向にインクが傾斜して吐出され、N+1番目のプリンタヘッドチップ1では、矢印で示すように図中、右方向にインクが傾斜して吐出され、N+2番目プリンタヘッドチップ1では、矢印で示すように吐出角度のずれがなく垂直にインクが吐出されている例を示している。
したがって、N番目のプリンタヘッドチップ1では、基準位置より左側にずれてインクが着弾され、N+1番目のプリンタヘッドチップ1では、基準位置より右側にずれてインクが着弾される。よって、両者間は、互いに遠ざかる方向にインクが着弾される。この結果、N番目のプリンタヘッドチップ1と、N+1番目のプリンタヘッドチップ1との間には、インクが吐出されない領域が形成される。そして、ラインヘッド10は、印画紙Pの幅方向には移動せず、平面図において矢印方向に移動されるだけである。これにより、N番目のプリンタヘッドチップ1と、N+1番目のプリンタヘッドチップ1との間には、白スジBが入ってしまい、印画品位が低下するという問題があった。
また、上記と同様に、N+1番目のプリンタヘッドチップ1では、基準位置より右側にずれてインクが着弾されるので、N+1番目のプリンタヘッドチップ1と、N+2番目のプリンタヘッドチップ1との間には、インクが重なる領域が形成される。これにより、画像が不連続になったり、本来の色より濃い色となってスジCが入ってしまい、印画品位が低下するという問題があった。
なお、以上のようなインクの着弾位置ずれが生じた場合において、スジが目立つか否かは、印画される画像によっても左右される。例えば、文書等では、空白部分が多いので、仮にスジが入ってもさほど目立たない。これに対し、印画紙のほぼ全領域にフルカラーで写真画像を印画する場合には、わずかなスジが入ってもそれが目立つようになる。
上記のようなスジの発生防止を目的として、本願出願人より、特願2001−44157(以下、「先願1」という。)が出願されている。先願1は、インク液室内に、個別に駆動可能な複数の発熱素子(ヒーター)を設け、各発熱素子を独立して駆動することで、インク液滴の吐出方向を変えることができる発明である。したがって、上記スジ(白スジB又はスジC)の発生は、先願1により解決できると考えられていた。
しかし、先願1は、複数の発熱素子を各々独立に制御することで、インク液滴の吐出方向を偏向させるものであるが、その後の検討により、先願1の方法を採用した場合には、インク液滴の吐出が不安定になる場合があり、安定して高品質な印画が得られないという問題があることが判明した。以下にその理由を説明する。
本願発明者らの検討によると、本願出願人により出願された、PCT/JP00/08535(以下、「先願2」という。)に記載されているように、ノズルからのインク液滴の吐出量は、通常、発熱素子に印加する電力の増加に伴って単調に増加することはなく、所定の電力値を超えると急激に増加する傾向を呈する(先願2の28ページ目14行〜17行、及びFig.18参照)。いいかえれば、所定値以上の電力を与えないと、十分な量のインク液滴を吐出することができない。
したがって、複数の発熱素子を各々独立に駆動する場合において、一部の発熱素子のみを駆動してインク液滴を吐出させようとするときには、その一部の発熱素子の駆動のみで、インク液滴の吐出に十分な熱量を発生させる必要がある。このため、複数の発熱素子を各々独立に駆動する場合において、一部の発熱素子のみでインク液滴を吐出しようとするときには、その一部の発熱素子に対して与える電力を大きくする必要が生じる。このような状況は、近年の高解像度化に伴う発熱素子の小型化に対して、不利な状況を生む。
すなわち、インク液滴を安定して吐出するためには、各発熱素子の単位面積当たりのエネルギー発生量を、従来に比べて極めて高くする必要が生じ、その結果、小型化された発熱素子が受けるダメージが増大する。よって、発熱素子の寿命が低下し、ひいてはヘッドの寿命が低下してしまうという問題が生じる。
このような問題は、特許第2780648号公報(以下、「先願3」という。)や、特許第2836749号公報(以下、「先願4」という。)に記載の技術を用いた場合も同様である。
ここで、先願3は、サテライト(インク散り)を防止した発明であり、先願4は、安定した階調制御の実現を目的とした発明であるが、複数の発熱素子を設け、各発熱素子を独立して駆動させる点で、先願1と共通する。
これらの先願3や先願4のように、複数の発熱素子のうち、いずれかの(一部の)発熱素子を駆動してインク液滴を吐出することにより、先願3に記載のようにインク液滴を偏向吐出させたり、又は先願4に記載のように階調制御を行うことが可能である。しかし、近年の高解像度化に伴い小型化した発熱素子を設けた場合において、一部の発熱素子のみの駆動によりインク液滴を吐出させようとするときに、安定した吐出ができる程度の電力をその発熱素子に与えると、発熱素子の寿命が低下してしまうという問題が生じる。
さらに、先願4の発明においては、各発熱素子に与える電力量を増加させることは、最小インク液滴量の増大を意味するので、先願4の本来の目的である階調制御が困難になってしまうという問題が生じる。
また逆に、先願4において、各発熱素子に与える電力量を低下させると、上述したように、インク液滴を安定して吐出できなくなるおそれがあるという問題がある。
以上より、高解像度化に伴い小型化した発熱素子を有するヘッドでは、従来の技術や、先願1〜先願4の技術をもっては、上記のスジの発生を防止することはできない。
したがって、本発明が解決しようとする課題は、発熱素子等の気泡発生手段の寿命を低下させることなく安定して液体を吐出できるようにしつつ、液体の飛翔特性又は着弾位置を制御できるようにすること、具体的には、例えば、液体吐出部を複数並設したヘッドを備える液体吐出装置、及び液体吐出部を複数並設したヘッドを用いた液体吐出方法において、液体の吐出方向を制御できるようにすることである。
本発明は、以下の解決手段によって、上述の課題を解決する。
本発明の1つである請求項1に記載の発明は、吐出すべき液体を収容する液室と、前記液室内の少なくとも一壁面の一部を構成するとともに、エネルギーの供給により前記液室内の液体に気泡を発生させる気泡発生領域と、前記気泡発生領域による前記気泡の生成に伴って前記液室内の液体を吐出させるためのノズルとを備える液体吐出装置において、前記気泡発生領域の全域にエネルギーを同時に供給するときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって前記ノズルから吐出される液体の飛翔特性を制御することを特徴とする。
また、請求項5の発明は、吐出すべき液体を収容する液室と、前記液室内の少なくとも一壁面の一部を構成するとともに、エネルギーの供給により前記液室内の液体に気泡を発生させる気泡発生領域と、前記気泡発生領域による前記気泡の生成に伴って前記液室内の液体を吐出させるためのノズルとを備える液体吐出装置において、前記気泡発生領域の全域にエネルギーを同時に供給することで、前記ノズルから液体を吐出させる主操作制御手段と、前記気泡発生領域の全域にエネルギーを供給するときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって、前記主操作制御手段により吐出される液体の飛翔特性と異なる飛翔特性を有する液体を前記ノズルから吐出させる副操作制御手段とを備えることを特徴とする。
(作用)
上記発明においては、気泡発生領域にエネルギーを供給したときの気泡発生領域上のエネルギーの分布に差異を設けることにより、液体の飛翔特性(例えば飛翔方向、飛翔軌道、又は飛翔中のインク液滴が有する回転モーメント等)を制御する。
あるいは、副操作制御手段により、気泡発生領域上のエネルギーの分布に差異を設けることよって、主操作制御手段により吐出される液体の飛翔特性と異なる飛翔特性を有する液体をノズルから吐出させる。
すなわち、第1の飛翔特性を有する液体を吐出させるとともに、上記差異を設けることによって、第1の飛翔特性と異なる飛翔特性を有する第2の飛翔特性を有する液体を吐出させる。このようにして、同一のノズルから吐出される液体に対し、複数の飛翔特性のうち、いずれかの飛翔特性を持たせることができる。
また、請求項9の発明は、請求項1と同様の手段によって、ノズルから吐出される液体を少なくとも2つの異なる位置に着弾させるように制御する。
さらに、請求項10の発明は、請求項5と同様の副操作制御手段によって、主操作制御手段により液体が吐出されたときの液体の着弾位置と異なる位置に着弾させる。
すなわち、第1の位置に液体を着弾させるとともに、上記差異を設けることによって、第1の位置と異なる位置に液体を着弾させる。このようにして、同一のノズルから吐出される液体を、複数の位置のうち、いずれかの位置に着弾させることができる。
さらにまた、例えばラインごとに液体吐出部の液体の吐出方向を偏向させたり、1ライン内で一部の液体吐出部による液体の吐出方向を適当に偏向させることにより、印画品位をさらに向上させることができる。
請求項1、請求項3又は請求項5の発明によれば、第1の飛翔特性を有する液体を吐出させるとともに、エネルギーの分布に差異を設けることによって、第1の飛翔特性と異なる飛翔特性を有する第2の飛翔特性を有する液体を吐出させることができる。したがって、同一のノズルから吐出される液体に対し、複数の飛翔特性のうち、いずれかの飛翔特性を持たせることができる。
また、請求項9又は請求項10の発明によれば、第1の位置に液体を着弾させるとともに、エネルギーの分布に差異を設けることによって、第1の位置と異なる位置に液体を着弾させることができる。したがって、同一のノズルから吐出される液体を、複数の位置のうち、いずれかの位置に着弾させることができる。
また、例えばラインごとに液体吐出部の液体の吐出方向を偏向させたり、1ライン内で一部の液体吐出部による液体の吐出方向を適当に偏向させることにより、印画品位をさらに向上させることができる。
以下、図面等を参照して、本発明の一実施形態について説明する。
図1は、本発明による液体吐出装置を適用したプリンタヘッドチップ11を示す分解斜視図である。図1において、ノズルシート17は、バリア層16上に貼り合わされるが、このノズルシート17を分解して図示している。
プリンタヘッドチップ11は、前述したサーマル方式のものである。プリンタヘッドチップ11において、基板部材14は、シリコン等から成る半導体基板15と、この半導体基板15の一方の面に析出形成された発熱抵抗体13(本発明における気泡発生手段、又は発熱素子に相当するものであって、エネルギーの供給により液体に気泡を発生させるためのもの)とを備えるものである。発熱抵抗体13は、半導体基板15上に形成された導体部(図示せず)を介して外部回路と電気的に接続されている。
また、バリア層16は、例えば、露光硬化型のドライフィルムレジストからなり、半導体基板15の発熱抵抗体13が形成された面の全体に積層された後、フォトリソプロセスによって不要な部分が除去されることにより形成されている。
さらにまた、ノズルシート17は、吐出口を有する複数のノズル18が形成されたものであり、例えば、ニッケルによる電鋳技術により形成され、ノズル18の位置が発熱抵抗体13の位置と合うように、すなわちノズル18が発熱抵抗体13に対向するようにバリア層16の上に貼り合わされている。
インク液室12は、発熱抵抗体13を囲むように、基板部材14とバリア層16とノズルシート17とから構成されたものである。すなわち、基板部材14は、図中、インク液室12の底壁を構成し、バリア層16は、インク液室12の側壁を構成し、ノズルシート17は、インク液室12の天壁を構成する。これにより、インク液室12は、図1中、右側前方面に開口面を有し、この開口面とインク流路(図示せず)とが連通される。
上記の1個のプリンタヘッドチップ11には、通常、100個単位の複数の発熱抵抗体13、及び各発熱抵抗体13を備えたインク液室12を備え、プリンタの制御部からの指令によってこれら発熱抵抗体13のそれぞれを一意に選択して発熱抵抗体13に対応するインク液室12内のインクを、インク液室12に対向するノズル18から吐出させることができる。
すなわち、プリンタヘッドチップ11において、プリンタヘッドチップ11と結合されたインクタンク(図示せず)から、インク液室12にインクが満たされる。そして、発熱抵抗体13に短時間、例えば、1〜3μsecの間パルス電流を流すことにより、発熱抵抗体13が急速に加熱され、その結果、発熱抵抗体13と接する部分に気相のインク気泡が発生し、そのインク気泡の膨張によってある体積のインクが押しのけられる(インクが沸騰する)。これによって、ノズル18に接する部分の上記押しのけられたインクと同等の体積のインクがインク液滴としてノズル18から吐出され、印画紙上に着弾される。
図2は、プリンタヘッドチップ11の発熱抵抗体13の配置をより詳細に示す平面図及び側面の断面図である。図2の平面図では、ノズル18の位置を1点鎖線で併せて示している。
図2に示すように、本実施形態のプリンタヘッドチップ11では、1つのインク液室12内に、2つの発熱抵抗体13が並設されている。すなわち、1つのインク液室12内に、2つに分割された発熱抵抗体13を備えるものである。さらに、分割された2つの発熱抵抗体13の並び方向は、ノズル18の並び方向(図2中、左右方向)である。
このように、1つの発熱抵抗体13を縦割りにした2分割型のものでは、長さが同じで幅が半分になるので、発熱抵抗体13の抵抗値は、倍の値になる。この2つに分割された発熱抵抗体13を直列に接続すれば、2倍の抵抗値を有する発熱抵抗体13が直列に接続されることとなり、抵抗値は4倍となる。
ここで、インク液室12内のインクを沸騰させるためには、発熱抵抗体13に一定の電力を加えて発熱抵抗体13を加熱する必要がある。この沸騰時のエネルギーにより、インクを吐出させるためである。そして、抵抗値が小さいと、流す電流を大きくする必要があるが、発熱抵抗体13の抵抗値を高くすることにより、少ない電流で沸騰させることができるようになる。
これにより、電流を流すためのトランジスタ等の大きさも小さくすることができ、省スペース化を図ることができる。なお、発熱抵抗体13の厚みを薄く形成すれば抵抗値を高くすることができるが、発熱抵抗体13として選定される材料や強度(耐久性)の観点から、発熱抵抗体13の厚みを薄くするには一定の限界がある。このため、厚みを薄くすることなく、分割することで、発熱抵抗体13の抵抗値を高くしている。
また、1つのインク液室12内に2つに分割された発熱抵抗体13を備えた場合には、各々の発熱抵抗体13がインクを沸騰させる温度に到達するまでの時間(気泡発生時間)を同時にするのが通常である。
しかし、分割された2つの発熱抵抗体13は、物理的に全く同一形状ではなく、製造誤差により、厚み等の寸法のばらつきが生じるのが通常である。これにより、2つの分割した発熱抵抗体13に気泡発生時間差を生じることとなる。そして、この気泡発生時間差が生じると、2つの発熱抵抗体13上で同時にインクが沸騰しない場合が生じ得る。
2つの発熱抵抗体13の気泡発生時間に時間差が生じると、インクの吐出角度が垂直でなくなり、インクの着弾位置が本来の位置からずれることとなる。
図3は、本実施形態のような分割した発熱抵抗体13を有する場合に、各々の発熱抵抗体13によるインクの気泡発生時間差と、インクの吐出角度との関係を示すグラフである。このグラフでの値は、コンピュータによるシミュレーション結果である。このグラフにおいて、X方向は、ノズル18の並び方向(発熱抵抗体13の並設方向)であり、Y方向は、X方向に垂直な方向(印画紙の搬送方向)である。
なお、このグラフのデータは、横軸に気泡発生時間差をとっているが、図3に示す例では、この時間差0.04μsecは抵抗差で3%、時間差0.08μsecは抵抗差で6%程度のばらつきに相当する。
このように、気泡発生時間差が生じると、インクの吐出角度が垂直でなくなるので、インク液滴の着弾位置が本来の位置からずれる。
そこで、本実施形態では、この特性を利用し、2つの分割した発熱抵抗体13の気泡発生時間を制御するようにした。
本発明では、1つのインク液室12内の複数の発熱抵抗体13の全てにエネルギーを(一様に)供給することで、ノズル18からインク液滴を吐出させる手段を、「主操作制御手段」と称する。すなわち、本実施形態のように、1つのインク液室12内に2つに分割された発熱抵抗体13を備えた場合には、2分割された発熱抵抗体13に対し、同時に同一量のエネルギー(電力)を供給することで、各々の発熱抵抗体13がインクを沸騰させる温度に到達するまでの時間(気泡発生時間)が理論上同時になるように、いいかえれば、理論上、インクの吐出角度がインクの着弾面に対して垂直になるように、2分割された発熱抵抗体13上のインクを沸騰させて、ノズル18からインク液滴を吐出させる制御を、主操作制御手段と称する。
これに対し、1つのインク液室12内の複数の発熱抵抗体13の全てにエネルギーを供給する点は主操作制御手段と同じであるが、これらの発熱抵抗体13のうち、少なくとも1つの発熱抵抗体13上の液体に気泡が発生するに至る時間と、他の少なくとも1つの発熱抵抗体13上の液体に気泡が発生するに至る時間とが時間差を有するように各発熱抵抗体13にエネルギーを供給する等して、少なくとも1つの発熱抵抗体13と、他の少なくとも1つの発熱抵抗体13とにエネルギーを供給するときのエネルギーの与え方に差異を設けるか、あるいは少なくとも1つの発熱抵抗体13に対するエネルギーの与え方が主操作制御手段によるその発熱抵抗体13に対するエネルギーの与え方と異なるようにし、その差異(あるいは時間差)によって、主操作制御手段により吐出されるインク液滴の飛翔特性(飛翔方向、飛翔軌道、又は飛翔中のインク液滴が有する回転モーメント等)と異なる飛翔特性を有するインク液滴をノズル18から吐出させる手段、別の表現で言えば、ノズル18から吐出されるインク液滴を、主操作制御手段によりインク液滴が吐出されたときのインク液滴の着弾位置と異なる位置に着弾させる手段を、「副操作制御手段」と称する。
これにより、例えば2分割した発熱抵抗体13の抵抗値に誤差があり、同一値でない場合には、2つの発熱抵抗体13に気泡発生時間差が生じるので、主操作制御手段のみを用いると、インクの吐出角度が垂直でなくなり、インク液滴の着弾位置が本来の位置からずれる。しかし、副操作制御手段を用いて2つの分割した発熱抵抗体13の気泡発生時間を制御し、2つの発熱抵抗体13の気泡発生時間を同時にすることで、インク液滴の吐出角度を垂直にすることが可能となる。
次に、インク液滴の吐出角度を、どの程度調整できるように設定するかについて説明する。図4は、ノズル18と、印画紙Pとの関係を示す側面図の断面図である。
図4において、ノズル18の先端と印画紙P(インク液体の着弾面)との間の距離Hは、通常のインクジェットプリンタの場合、上述のように1〜2mm程度であるが、一定に、距離Hを略2mmに保持すると仮定する。ここで、距離Hを略一定に保持する必要があるのは、距離Hが変動してしまうと、インク液滴の着弾位置が変動してしまうからである。すなわち、ノズル18から、印画紙Pの面に垂直にインク液滴が吐出されたときは、距離Hが多少変動しても、インク液滴の着弾位置は変化しない。これに対し、上述のようにインク液滴の飛翔特性を変えて、インク液滴を偏向吐出させた場合には、インク液滴の着弾位置は、距離Hの変動に伴い異なった位置となってしまうからである。
また、プリンタヘッドチップ11の解像度を600DPIとしたときに、インク液滴iの着弾位置間隔(ドット間隔)は、
25.40×1000/600≒42.3(μm)
となる。
そして、その75%、すなわち約30μmをドットの最大移動可能量とすれば、偏向角度θ(deg)は、
tan2θ=30/2000≒0.015
となるので、
θ≒0.43(deg)
となる。
なお、ドットの最大移動可能量を75%としたのは、例えば制御信号に2ビットの信号を用いる場合、ドットを移動させるための制御信号数は、4つとなる。そして、この範囲で隣接するノズル18からのドットと連続させるためには、4つのドット間の距離は、1ドットピッチ(42.3μm)の3/4(=75%)に設定するのが合理的であるので、本実施形態では、最大移動可能量を1ドットピッチの75%に設定した。
ここで、上述の図3で示した結果から、0.43(deg)の偏向角度を得るには、約0.09μsecの気泡発生時間差が必要になる。これは、約6.75%の抵抗値差に相当する。また、上記の距離Hは、好ましくは0.5mm〜5mmの範囲内、さらに好ましくは1mm〜3mmの範囲内で略一定値に保持することが好ましい。
上記距離Hが0.5mmより小さいと、インク液滴の偏向吐出によるドットの最大移動可能量が小さくなり、偏向吐出のメリットを十分に得ることができなくなる。一方、距離Hが5mmを超えると、着弾位置精度が低下してしまう傾向にあるからである(インク液滴の飛翔中にインク液滴の空気抵抗の影響が大きくなるためと推測される。)。
次に、インク液滴の吐出方向を偏向させる場合の例について、より具体的に説明する。
図5は、2つの分割した発熱抵抗体13の気泡発生時間差を設定できるようにした第1実施形態を示す概念図である。この第1実施形態は、異なる量のエネルギーを同時に供給するように制御するものである。すなわち、異なる量のエネルギーを同時に供給することで、インク液滴の安定吐出のために、2分割した発熱抵抗体13に供給される十分な総エネルギー量を確保できるので、インク液滴の吐出方向を制御しつつ、インク液滴の安定吐出を図ることができる。
また、各発熱抵抗体13へのエネルギー供給量は、安定吐出のためのエネルギー量のおよそ半分程度で済むので、従来技術や、先願1、先願3及び先願4で生じた問題は発生しない。これは、本発明は、各発熱抵抗体13を各々独立して駆動するものではなく、各発熱抵抗体13に供給する総エネルギー量を維持しつつも、発熱領域(2分割した発熱抵抗体13上の領域)の発熱分布に変化をもたらすという本発明の特徴に基づくものだからである。
図5において、抵抗Rh−A及びRh−Bは、それぞれ2分割した発熱抵抗体13の抵抗である。また、抵抗Rh−AとRh−Bとの接続経路中(中間点)から電流が流入可能かつ流出可能に構成されている。さらにまた、抵抗Rxは、インク液滴の吐出方向を偏向させるための抵抗である。ここで、抵抗Rx及びスイッチSwbは、抵抗Rh−AとRh−Bとの発熱量を制御するための制御手段としての役割を果たすものである。さらに、電源VHは、各抵抗Rh−A、Rh−B及びRxに電流を流すための電源である。
図5において、抵抗Rxがないと仮定した場合、又はスイッチSwbがいずれの接点にも接続されていない場合においてスイッチSwaをオンにすると、電源VHから抵抗Rh−A及びRh−Bに電流が流れる(抵抗Rxには電流は流れない)。そして、抵抗Rh−A及びRh−Bの抵抗値が同一である場合には、抵抗Rh−A及びRh−Bに発生する熱量は同一になる。
これに対し、スイッチSwbをいずれか一方の接点に接続してスイッチSwaをオンにした場合には、抵抗Rh−A及びRh−Bに流れる電流値が異なるので、両者に発生する熱量が相違する。例えばスイッチSwbを図中、上側の接点に接続した場合には、電流は、抵抗Rh−AとRxとの並列接続部分を通り、さらにこれらの部分を流れた電流が合流して抵抗Rh−Bを通るので、抵抗Rh−Aに流れる電流値は抵抗Rh−Bに流れる電流値より小さくなる。これにより、抵抗Rh−Aが発生する熱量を抵抗Rh−Bが発生する熱量より小さくすることができる。
ここで、抵抗Rxの抵抗値に応じて抵抗Rh−Aと抵抗Rh−Bとがそれぞれ発生する熱量の比率を自在に設定することができる。これにより、抵抗Rh−Aと抵抗Rh−Bとの気泡発生時間に時間差を設けることができるので、これに応じて、インク液滴の吐出方向を偏向させることができる。
なお、上記と同様に、スイッチSwbを図中、下側の接点に接続すれば、上記と逆の関係が成立し、抵抗Rh−Aに流れる電流値を抵抗Rh−Bに流れる電流値より大きくすることができる。
上述の例で説明すれば、6.75%の差を設ける場合には、Rh(=Rh−A=Rh−B)と、Rxとの関係は、
(Rh×Rx)/(Rh×(Rh+Rx))=Rx/(Rh+Rx)
=1−0.0675=0.9325
となるので、
Rx≒13.8×Rh
となる。
よって、図5に示す回路と等価な回路で、2分割した発熱抵抗体13を接続すれば、スイッチSwbの切替えによって、2分割した発熱抵抗体13に流れる電流値を変えることができ、これによって抵抗Rh−Aと抵抗Rh−Bとの気泡発生時間に時間差を設け、インク液滴の吐出方向を偏向させることができる。
図6は、2つの分割した発熱抵抗体13の気泡発生時間差を設定できるようにした第2実施形態を示す概念図である。この第2実施形態は、2分割した発熱抵抗体13に対し、同一量又は略同一量のエネルギーを異なる時間に供給するように制御するものである。
このようにしても、インク液滴の吐出時における発熱抵抗体13に与える総エネルギー量を、インク液滴が安定して吐出できる量に維持することができるので、インク液滴を安定して吐出することができるとともに、各発熱抵抗体13へのエネルギー供給に時間差を設けることで、発熱抵抗体13に供給される総エネルギー量を維持しつつ、発熱領域の発熱分布に変化をもたらすという本発明の特徴を発揮することができる。
図6において、抵抗Rh−A及びRh−Bは、それぞれ2分割した発熱抵抗体13の抵抗である。また、電流は、スイッチSwaのみをオンにしたときには抵抗Rh−Aのみに流れ、スイッチSwbのみをオンにしたときには、抵抗Rh−Bのみに流れるように構成されている。
これにより、例えばスイッチSwaとSwbとを時間差をもってオンにすれば、抵抗Rh−A上とRh−B上とでインク液滴が沸騰するに至る時間に時間差を設けることができる。これにより、時間差に応じて、インク液滴の吐出方向を偏向させることができる。
図7は、2つの分割した発熱抵抗体13の気泡発生時間差を設定できるようにした第3実施形態を示す概念図である。この第3実施形態は、抵抗Rh−Aと抵抗Rh−Bとに流れる電流値差を、4種類に設定できるようにしたことで、4つのインク液滴の吐出方向を設定できるようにしたものである。
図7において、抵抗Rh−Aと抵抗Rh−Bは、それぞれ2分割された発熱抵抗体13の各抵抗であり、本実施形態では、両者の抵抗値は同一値である。また、抵抗Rh−Aと抵抗Rh−Bとの接続経路中(中間点)から電流が流出可能に構成されている。さらにまた、3つの各抵抗Rdは、インク液滴の吐出方向を偏向するための抵抗である。さらに、Qは、抵抗Rh−A及び抵抗Rh−Bのスイッチとして機能するトランジスタである。また、Cは、2値の制御入力信号(電流を流すときのみ「1」)の入力部である。さらにまた、L1及びL2は、それぞれ2値入力のC−MOS・NANDゲートであり、B1及びB2は、それぞれL1及びL2の各NANDゲートの2値信号(「0」又は「1」)の入力部である。なお、NANDゲートL1及びL2は、電源VHから電源が供給される。これらの3つの各抵抗Rd、トランジスタQ、入力部C、B1及びB2、並びにNANDゲートL1及びL2は、抵抗Rh−AとRh−Bとの発熱量を制御するための制御手段としての役割を果たすものである。
ここで、図5に示した抵抗Rxと、図7に示す抵抗Rdとの間には、
Rx=2Rd/3
の関係が成り立つ。
したがって、
Rd≒1.5×13.8×Rh=20.7×Rh
とすれば、6.75%の差を持たせることができる。
先ず、図7において、B1=1かつB2=1を入力するとともに、C=1を入力したとき、NANDゲートL1及びL2の入力値は、ともに「1、1」となるので、その出力値は、ともに「0」となる。よって、抵抗Rdには電流が流れず、電源VHによる電流は、抵抗Rh−A及び抵抗Rh−Bのみに流れる。ここで、抵抗Rh−Aと抵抗Rh−Bとの抵抗値は等しいので、抵抗Rh−A及び抵抗Rh−Bに流れる電流値は等しい。
次いで、B1=0かつB2=1、及びC=1を入力したときには、NANDゲートL1及びL2の各出力値は、それぞれ「1」及び「0」となるので、図中、NANDゲートL1側には電流が流れるが、NANDゲートL2側には電流は流れない。この場合には、抵抗Rh−Bに流れる電流値は、抵抗Rh−Aに流れる電流値を1としたとき、2Rd/(Rh+2Rd)となる。ここで、Rd≒20.7Rhを代入すると、0.977(約2.3%減)となる。
また、B1=1かつB2=0、及びC=1を入力したときには、NANDゲートL1及びL2の各出力値は、それぞれ「0」及び「1」となるので、図中、NANDゲートL1側には電流が流れず、NANDゲートL2側にのみ電流が流れる。この場合には、抵抗Rh−Bに流れる電流値は、抵抗Rh−Aに流れる電流値を1としたとき、Rd/(Rh+Rd)となり、Rd≒20.7Rhを代入すると、0.954(約4.6%減)となる。
さらにまた、B1=0かつB2=0、及びC=1を入力したときには、NANDゲートL1及びL2の各出力値は、ともに「1」となるので、図中、NANDゲートL1側及びL2側の双方に電流が流れる。この場合には、抵抗Rh−Bに流れる電値流は、抵抗Rh−Aに流れる電流値を1としたとき、2Rd/(3Rh+2Rd)となり、Rd≒20.7Rhを代入すると、0.933(約6.7%減)となる。
なお、図7では図示を省略するが、抵抗RdからNANDゲートL1及びL2に流れた電流は、それぞれNANDゲートL1及びL2を駆動させるための電源回路のグラウンド(GND)に流れるように構成されている。
図8は、以上の結果を表にしたものである。このように、B1及びB2の入力値に応じて、抵抗Rh−Aに流れる電流値に対する抵抗Rh−Bに流れる電流値を変えることができる。
そして、図7の例では、B1=1かつB2=1のときをドットの基準位置とすれば、B1=0かつB2=1のときには1ドットピッチの25%、B1=1かつB2=0のときには1ドットピッチの50%、B1=0かつB2=0のときには1ドットピッチの75%に相当する量を移動させることができる。
図9は、2つの分割した発熱抵抗体13の気泡発生時間差を設定できるようにした第4実施形態を示す概念図であり、図7の変形例を示すものである。
図7に示した例では、電源VHの電圧がNANDゲートL1及びL2に印加されるので、これらのNANDゲートL1及びL2は、電源VHの電圧でも使用可能な(高耐圧の)PMOSトランジスタを用いる必要があり、設計上、トランジスタの選択の自由度が狭まる。このため、図9に示すように、トランジスタQ1と同じ種類のトランジスタQ2及びQ3を設け、それぞれ低圧で駆動するようにした。これにより、ゲート(図9ではANDゲート)L1及びL2の駆動電圧を低くすることができる。なお、3つの各抵抗Rd、トランジスタQ1、Q2及びQ3、入力部C、B1及びB2、並びにANDゲートL1及びL2は、抵抗Rh−AとRh−Bとの発熱量を制御するための制御手段としての役割を果たすものである。
また、図7の例では、抵抗Rh−Aと抵抗Rh−Bとの抵抗値を同一にしたが、図9の例では、抵抗Rh−Aの抵抗値を抵抗Rh−Bの抵抗値より小さくした。
この場合において、トランジスタQ2及びQ3が作動しない状態(3つの抵抗Rdに電流が流れない状態)で、それぞれ抵抗Rh−A及びRh−Bに電流が流れたときは、抵抗Rh−AとRh−Bとにそれぞれ流れる電流値は同一である。よって、抵抗Rh−Aの抵抗値が抵抗Rh−Bの抵抗値より小さいので、抵抗Rh−Aの方が抵抗Rh−Bより少ない発熱量となる。そして、この場合に、着弾位置の基準位置からインク液滴の最大移動量の1/2の位置に、インク液滴が着弾するように設定しておく。
図10は、入力B1及びB2の値と、インク液滴の着弾位置とを説明する図である。図10に示すように、本実施形態では、インク液滴の着弾位置を、4つの位置に変えることができるが、B1=0かつB2=0のときに、図中、最も左側にインク液滴が着弾するように設定している(デフォルト)。
そして、B1=1かつB2=0を入力したときには、トランジスタQ3に直列接続されている2つの抵抗Rdにも電流が流れる(トランジスタQ2に接続された抵抗Rdには電流は流れない)。この結果、抵抗Rh−Bに流れる電流値は、B1=0かつB2=0を入力したときよりも小さくなる。ただし、この場合でも、抵抗Rh−Aに流れる電流値は、抵抗Rh−Bに流れる電流値より小さい。
次に、B1=0かつB2=1を入力したときには、トランジスタQ2に接続されている抵抗Rd側に電流が流れる(トランジスタQ3に直列接続された2つの抵抗Rdには電流は流れない)。この結果、抵抗Rh−Bに流れる電流値は、B1=1かつB2=0を入力したときよりもさらに小さくなる。そして、この場合には、抵抗Rh−Bに流れる電流値は、抵抗Rh−Aに流れる電流値より小さくなる。
さらに、B1=1かつB2=1を入力したときには、トランジスタQ2及びQ3に接続されている3つの抵抗Rdに電流が流れる。この結果、抵抗Rh−Bに流れる電流値は、B1=0かつB2=1を入力したときよりもさらに小さくなる。
以上のようにすれば、本来のインク液滴の着弾位置に対し、左右2か所に均等にインク液滴の着弾位置を割り振っておくことができる。そして、B1及びB2の入力値に応じて、任意の位置に着弾位置を設定することができる。
ここで、図7の例では、基準となるインク液滴の着弾位置に対し、1ドットピッチの最大75%を移動させることができるようにしたが、この場合には、上述したように、インク液滴の吐出角度が垂直ラインに対して0.86(deg)の偏向角度を生ずることになる。
なお、図9の例(図7も同様)では、B1及びB2の入力値は、(B1、B2)=(0、0)、(0、1)、(1、0)、(1、1)の2ビットであり、この値に基づいてインク液滴の着弾位置を移動させるときには、1ドットピッチを3分割することになる。すなわち、インク液滴の着弾位置としては4箇所となる。
そして、図9の例においてB1及びB2の入力値が(B1、B2)=(0、0)から、(B1、B2)=(1、1)になったときに、上述したように吐出角度が0.86(deg)だけ変化すれば良く、このときの抵抗差に相当する値は、上述のように6.75%であるので、
Rh−Bの抵抗値=Rh−Aの抵抗値×1.0675
の関係が成り立つ抵抗を用いれば良い。
図11は、上記関係を満足する抵抗Rh−A及びRh−Bを示す平面図である。図11に示すように、抵抗Rh−A及びRh−Bの幅を同一(10μm)とし、長手方向(図中、縦方向)の長さを、一方を20μm、他方を21.4μmとしたものである。
なお、図11では図示を省略するが、[1]は、図9中、電源VHに接続され、[2]は、トランジスタQ1のドレインに接続され、[3]は、各抵抗Rdを介してトランジスタQ2及びQ3のドレインにそれぞれ接続される。
図11の例では、抵抗Rh−BとRh−Aとの面積比は、
21.4/20=約1.0675
となる。
次に、本実施形態を用いて、インク液滴の着弾位置ずれを補正する場合の例について説明する。
図12は、本実施形態を用いた第1応用形態を説明する図であり、プリンタヘッドチップ11におけるインク液滴の着弾位置を示すものである。図中、左右方向がノズル18の並び方向であり、上下方向が印画紙の送り方向である。また、図中、左側は、インク液滴の着弾位置を変更する前の状態を示し、右側は、変更後の状態を示す。
図12において、インク液滴の着弾位置は、上述した例と同様に、左右に4段階([1]〜[4])に移動可能に構成されているものとする。そして、各インク液滴の着弾位置のデフォルトは、[1]〜[4]のうち、[3]に設定されている。さらに、上述した例と同様に、1段階で1ドットピッチの25%だけ着弾位置を移動させることができる。
図12の左側の図では、左側から数えて1列目〜4列目の全てにおいて、上述した主操作制御手段によりインク液滴を着弾させたものである。この場合に、左から3列目のインク液滴の着弾位置は、右側にずれている。したがって、2列目と3列目との間に白スジが発生し、印画品位を損なうことになる。
このような場合は、左から1、2及び4列目のインク液滴の着弾位置を、デフォルトのままにしておくとともに、3列目のインク液滴の着弾位置だけ、左側に移動させれば、2列目と3列目との間の白スジを軽減することができる。図12において、3列目のインク液滴の着弾位置だけ、[3]から[2]に、すなわち1ドットピッチの25%だけ左側に移動させれば、3列目のインク液滴の着弾位置を、2列目と4列目の中央付近に配置することができる。
図12の右側の図は、3列目のインク液滴の着弾位置を[3]から[2]に変更することにより、3列目のインク液滴の着弾位置を、25%だけ左側に移動させたときの状態を示している。このようにすれば、3列目のインク液滴を、2列目と4列目との中央に最も近づけることができる。これにより、2列目と3列目との間に生じていた白スジを目立たなくすることができる。
すなわち、図12の右側の図では、左側から数えて1列目、2列目及び4列目は、主操作制御手段のみによりインク液滴を着弾させたものであるが、左側から数えて3列目は、副操作制御手段により、主操作制御手段によるインク液滴の飛翔特性と異なる飛翔特性を有するインク液滴を吐出させることで、インク液滴の吐出方向を偏向させて、インク液滴の着弾位置を主操作制御手段によるインク液滴の着弾位置(図中、[3])より左側に移動させた位置(図中、[2])に着弾させたものである。
なお、インク液滴の着弾位置が狭く、ドットが重なり合ったスジとして現れてしまう場合には、上述とは逆に、列のインク液滴の着弾間隔が広がる方向にインク液滴の着弾位置を移動すれば良い。
このようにする場合には、プリンタ本体内又はプリンタヘッドチップ11内に、各ノズル18に対応するインク液室12ごとに、インク液滴の着弾位置ずれを補正するためのデータ、例えば上記の例ではB1及びB2の値に関するデータを記憶しておき、その記憶されたデータに従い、各インク液室12の各発熱抵抗体13へのエネルギーの供給を制御すれば良い。
また、例えば図6で示したように構成する場合には、2分割した発熱抵抗体13のうち、一方の発熱抵抗体13上のインク液滴が沸騰するに至る時間と、他方の発熱抵抗体13上のインク液滴が沸騰するに至る時間との時間差に関するデータを、各ノズル18ごとに設定し、それを記憶しておき、その記憶された時間差に関するデータに従い、各インク液室12の各発熱抵抗体13へのエネルギーの供給を制御すれば良い。
このようにすれば、プリンタヘッドチップ11の一部のノズル18でインク液滴の着弾位置ずれがある場合、又はラインヘッドの複数のプリンタヘッドチップ11のうち、一部のプリンタヘッドチップ11でノズル18間のインク液滴の着弾位置ずれがある場合には、その着弾位置ずれを補正することができる。
さらに、ラインヘッドにおいて、図19で示したように、隣接するプリンタヘッドチップ11間でインク液滴の着弾位置ずれがある場合には、その着弾位置ずれを補正することができる。
この場合には、図19を用いて説明すると、N番目のプリンタヘッドチップ1については、全てのノズルからのインク液滴の吐出方向を、所定量だけ右側に偏向し、N+1番目のプリンタヘッドチップ1については、必要であれば、全てのノズルからのインク液滴の吐出方向を、所定量だけ左側に偏向すれば良い。無論、一部のノズルからのインク液滴の吐出方向を偏向させても良い。
続いて、本実施形態を用いて、印画品位を向上させる場合の例について説明する。
ラインヘッドの場合には、各プリンタヘッドチップ11のノズル18の位置が予め固定されているので、1ラインにおける各インク液滴の着弾位置は、予め決定されている。例えば600DPIの解像度のときは、ノズル18の配置間隔は、42.3μmである。
これに対し、シリアルヘッドの場合には、1ラインで複数回ヘッドを移動させることで印画することにより、比較的容易に解像度を変えることができる。
例えば、600DPI(ノズル18の配置間隔が42.3μm)のシリアルヘッドを設けた場合において、1つのラインを印画した後に、同一ラインを再度印画するとともに、この印画時には、先に印画したドットの中間にドットが配置されるようにすれば、1200DPIの解像度の印画が可能となる。
しかし、ラインヘッドにおいては、ラインヘッドを印画紙幅方向に移動させて印画するものではないので、上記のような手法を用いることはできない。
しかし、本実施形態を応用すれば、実質的に解像度を高め、印画品位を向上させることができる。
図13は、本実施形態を用いた第2応用形態を説明する図である。この第2応用形態では、D.I.(Dot-Interleave;各ラインでのドットピッチを一定間隔にするとともに、次のラインでは先行するラインのドットの中間にドットが配置されるようにしたもの)によるドット配置を行った例を示すものである。図13において、図12と同様に[1]〜[4]までの4段階にインク液滴の着弾位置を移動させることが可能であり、かつ[4]がデフォルトに設定されているものとする。
図13において、最初のNラインは、デフォルトである[4]によってインク液滴を着弾させる。
次のN+1ラインでは、全てのインク液滴の着弾位置を[4]から[2]に変えて、1ドットピッチの50%だけ図中、左側に移動させた位置にインク液滴を着弾させる。さらに、次のN+2ラインでは、Nラインと同一位置にインク液滴を着弾させる。すなわち、N、N+2、N+4、・・のライン(偶数ライン)では、主操作制御手段によってインク液滴を吐出し、デフォルトである[4]によってインク液滴を着弾させ、N+1、N+3、N+5、・・のライン(奇数ライン)では、副操作制御手段によってインク液滴を偏向吐出して、[2]によってインク液滴を着弾させる。
このようにすれば、N、N+2、N+4、・・のライン(偶数ライン)では、[4]によってインク液滴が着弾され、N+1、N+3、N+5、・・のライン(奇数ライン)では、[2]によってインク液滴が着弾される。
よって、隣接するラインで交互にインク液滴の着弾位置が1ドットピッチの50%だけずれるようになる。このように印画を行えば、実質上の解像度を高めることができる。
なお、全てのラインごとにインク液滴の着弾位置を移動させるのではなく、数ラインごとに移動させるようにしても良い。また、デフォルトのドット位置に対してどの程度の量を移動させるかについても特に制限されるものではない。
また、上記のように制御する場合には、ラインごとに各発熱抵抗体13へのエネルギーの与え方の差異に関するデータを記憶しておき、その記憶されたデータに従い、各発熱抵抗体13へのエネルギーの供給を制御すれば良い。
図14は、本実施形態を用いた第3応用形態を説明する図であり、ディザーに類似する手法を用いたものである。
ここで、ディザーとは、標本化された画像において画素の空間解像度が十分でないときに生じる不自然さを軽減するために、元の画像を量子化する際に予め入力信号にわずかな雑音や高周波数の信号を重畳して量子化することをいう。
図14で示したものは、厳密にはディザーとは異なるが、ディザーに類似する効果を有するものである。図14において、インク液滴の着弾位置のデフォルトは、[4]に設定されている。なお、図14ではドットサイズが十分に小さいと仮定する。
図14においては、擬似ランダム関数発生器によって2ビット値を出力し、その出力値を、上述のB1及びB2の入力信号に加えるようにしたものである。このようにすれば、インク液滴の着弾位置が適度に振れるようになる。
例えば、Nラインでは、左から1番目及び4番目のインク液滴は、主操作制御手段によりデフォルトである[4]によって着弾されているが、左から2番目及び3番目のインク液滴は、副操作制御手段により[3]によって、すなわちデフォルトの位置から左側に1ドットピッチの25%だけ移動させた位置に着弾されている。
以上のようにしても、印画品位を向上させることが可能となる。
図15は、本実施形態を用いた第4応用形態を説明する図であり、ドットの平均化処理を説明する図である。
図15において、上側の図は、インク液滴を偏向させることなく吐出した状態を示すものであり、主操作制御手段のみによりインク液滴を着弾させたものである。
図15の上側の図では、第4列及び第8列のドット(内部を点の集合で示すドット)は、他の列のドット(内部を斜線で示すドット)よりやや小さい状態を示しており、また、第6列のドット(内部が空白のドット)は、第4列及び第8列のドットよりさらに小さい状態を示している。
このような場合に、ドットの平均化処理を行わないと、第4列、第6列及び第8列には、小さいドットが印画紙の送り方向(図中、上下方向)に連続することとなり、濃度ムラ(縦スジ)となって目立ってしまう。
そこで、このような場合には、副操作制御手段を用いてドットの平均化処理を行うように制御する。
図15の下側の図において、例えば第6列に対応するノズル18(第6列の真上に位置するノズル18)から、第1行目には、主操作制御手段のみにより、図15の上側の図と同じように第6列目にインク液滴を着弾させる。しかし、次の第2行目では、副操作制御手段により、インク液滴の吐出方向を図中、右方向に偏向させて第7列目のドット位置に対応する位置にインク液滴を着弾させる。さらに第3行目では、副操作制御手段により、インク液滴の吐出方向を図中、左方向に偏向させて第5列目のドット位置に対応する位置にインク液滴を着弾させる。
このようにして、第6列に対応するノズル18から、第6列だけでなく、他の列(この例では第5列又は第7列)にインク液滴を着弾させるようにし、かつ連続する行で同一列にインク液滴を着弾させないようにする。これは、第4列及び第8列に対応するノズル18から吐出されるインク液滴についても同様である。
以上のようにドットを配置すれば、第4列、第6列及び第8列に対応するノズル18から吐出されたインク液滴は、連続する行で同一列に着弾されなくなり、濃度ムラを目立たなくすることができ、画質の改善を図ることができる。
図16は、本実施形態を用いた第5応用形態を説明する図であり、高解像度化を説明する図である。図16において、プリンタヘッドチップ11は、600DPIの解像度を有するもの(ノズル18の配置間隔が42.3μm)とする。
図16中、[1]は、主操作制御手段によってインク液滴を着弾させ、ドットを形成した例を示している。このように、主操作制御手段のみを用いた場合のドットピッチは、プリンタヘッドチップ11のノズル18の間隔に等しく、ドットピッチは、42.3μmとなる。
これに対し、[2]〜[4]は、[1]の主操作制御手段により形成したドット間に、副操作制御手段によって新たなドットを補間することで、印画解像度を高めた例を示している。
例えば[2]は、[1]と同様に主操作制御手段によりインク液滴を着弾させるとともに、さらに副操作制御手段を用いて、主操作制御手段で形成したドット間に、さらにドットを形成し、ドット密度を2倍にした例を示すものである。これは、上述の図13で示した方法と同様の方法を用いている。なお、この場合の印画紙の送りピッチは、[1]の半分にする。
また、[3]は、ドット密度を4倍にした例を示すものである。ドット密度を4倍にするには、先ず、主操作制御手段によりインク液滴を着弾させる際、印画紙の送り方向において[1]の2倍の密度でインク液滴を着弾させる(印画紙の送りピッチを[1]の半分にする)。さらに、副操作制御手段によりインク液滴の吐出方向を偏向させて、印画紙の送り方向において、[2]の2倍の密度でインク液滴を着弾させれば良い。
さらにまた、[4]は、ドット密度を8倍にした例を示すものである。主操作制御手段により、印画紙の送り方向において[1]の2倍の密度でインク液滴を着弾させてドットを形成する。この点は、[3]の主操作制御手段によるドットの形成と同様である。
そしてさらに、主操作制御手段により形成されたドット列間に、新たな3列のドット列が配置されるように、副操作制御手段を用いてインク液滴の吐出方向を偏向させてインク液滴を着弾させる。主操作制御手段により形成された2つのドット列間に配置される、副操作制御手段により形成された3列は、例えば、主操作制御手段により形成された2つのドット列のうちの左側のドット列に対応するノズル18から、異なる2つの右方向にそれぞれインク液滴を偏向吐出して3列中の2列を形成するとともに、主操作制御手段により形成された2つのドット列のうちの右側のドット列に対応するノズル18から、左方向にインク液滴を偏向吐出して、3列中の他の1列を形成することが挙げられる。
このように、プリンタヘッドチップ11の物理的な解像度が600DPIである場合に、主操作制御手段のみによって[1]のように600DPIの印画が可能であるが、さらに副操作制御手段によって、[2]のような2倍密(1200DPI)、[3]のような4倍密(2400DPI)、さらには[4]のような8倍密(4800DPI)の印画も可能となる。
以上のような図16に示す高解像度化は、ノズル18の配置間隔より、ドット径が小さい場合に特に有効である。
図17は、本実施形態を用いた第6応用形態を説明する図であり、Wobblingを施した例を示す図である。
図中、[1]は、主操作制御手段のみによるドット形成を示しており、ノズル18の配置間隔と同一の間隔で、ドット列を4列、印画紙の送り方向と平行な方向に並べたものである。
これに対し、[2]は、副操作制御手段を用いて、ドット列を斜め方向に形成した例を示している。例えば第1行目では、[1]と同様に、主操作制御手段を用いてドットを形成する。次の第2行目では、各ノズル18から、インク液滴を図中、右方向に偏向吐出させて、第1行目のドットの右下側にドットを形成する。次の第3行目では、各ノズル18から、第2行目のときよりさらに偏向量を大きくし、第2行目のドットの右下側にドットを形成する。このように、行が進むごとに、徐々にインク液滴の偏向量を大きくしていけば、[2]に示すように、斜めのドット列を形成することができる。そして、このようなドット形成により、スジムラを目立たなくすることができる。
さらに[3]は、[2]と同様に、副操作制御手段を用いて、ドット列を斜め方向に形成した例を示している。[3]では、第1行目では、[1]と同様に、主操作制御手段を用いてドットを形成する。次に、第2行目〜第4行目では、[2]と同様に、各ノズル18から、インク液滴を図中、右方向に偏向吐出させ、上の行のドットの右下側にドットを形成する。さらに次の第5行目〜第7行目までは、第2行目〜第4行目とは逆の方向、すなわちインク液滴を図中、左方向に偏向吐出させ、上の行のドットの左下側にドットを形成する。このようにして、第7行目では、第1行目と同列位置にドットを形成している。第8行目以降は、第2行目以降と同様である。このように、ドット列を三角状(蛇腹状)にすれば、[2]以上に、スジムラを目立たなくすることができる。
なお、何行目まで同一方向にドットを斜行させ、何行目から逆方向にドットを斜行させるかは、任意であり、インク液滴の最大偏向可能量等に応じて決定すれば良い。
図16の[2]や[3]のような印画方法は、シリアル方式のプリンタでは、ヘッドを何度も往復移動させて、いわゆる重ね書きにより実現していた。これに対し、ヘッドが移動しないラインプリンタでは、従来、このようなWobblingを施すことは不可能であったが、本発明では、副操作制御手段を用いることで実現することができる。
以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されることなく、例えば以下のような種々の変形が可能である。
(1)上記実施形態では、発熱抵抗体13に流れる電流値を変更して2分割した発熱抵抗体13上でインク液滴が沸騰するに至る時間(気泡発生時間)に時間差を設けるようにしたが、さらに、これと、2分割した発熱抵抗体13に電流を流す時間に時間差を設けたものとを組み合わせることも可能である。
(2)上記実施形態では、1つのインク液室12内で発熱抵抗体13を2つ並設した例を示したが、2分割としたのは、耐久性を有することが十分に実証されており、かつ回路構成も簡素化できるからである。しかし、これに限らず、1つのインク液室12内において3つ以上の発熱抵抗体13を並設したものを用いることも可能である。
(3)本実施形態ではプリンタに用いられるプリンタヘッドチップ11及びラインヘッドを例に挙げたが、プリンタに限ることなく、種々の液体吐出装置に適用することができる。例えば、生体試料を検出するためのDNA含有溶液を吐出するための装置に適用することも可能である。
(4)本実施形態では発熱抵抗体13を例に挙げて説明したが、抵抗以外のものから構成した発熱素子、あるいはそれ以外のエネルギー発生手段や気泡発生手段を用いても良い。
(5)本実施形態では、2分割した発熱抵抗体13を例に挙げたが、これらの複数の発熱抵抗体13は、必ずしも物理的に分離されている必要はない。
すなわち、1つの基体からなる発熱抵抗体13であっても、その気泡発生領域(表面領域)のエネルギーの分布に差異を設けることができるもの、例えば気泡発生領域全体が均一に発熱せず、一部の領域と他の一部の領域とでインクを沸騰させるためのエネルギーの発生に差を設けることができるものであれば、必ずしも分割されている必要はない。
そして、その気泡発生領域に一様にエネルギーを供給することでノズル18からインク液滴を吐出させる主操作制御手段と、気泡発生領域にエネルギーを供給したときの気泡発生領域上のエネルギーの分布に差異を設け、その差異によって、主操作制御手段により吐出されるインク液滴の飛翔特性と異なる飛翔特性を有するインク液滴をノズル18から吐出させる、別の表現で言えば、ノズル18から吐出されるインク液滴を主操作制御手段によりインク液滴が吐出されたときのインク液滴の着弾位置と異なる位置に着弾させる副操作制御手段とを設ければ良い。
(6)また、気泡発生手段としては、発熱抵抗体13等により、熱エネルギーの供給によりインク液室12のインクに気泡を発生させるようにしたが、これに限らず、例えばインク液室12内のインク(液体)自身が発熱するようなエネルギーの供給方法であっても良い。
本発明による液体吐出装置を適用したプリンタヘッドチップを示す分解斜視図である。 図1のプリンタヘッドチップの発熱抵抗体の配置をより詳細に示す平面図及び側面の断面図である。 分割した発熱抵抗体を有する場合に、各々の発熱抵抗体によるインクの気泡発生時間差とインクの吐出角度との関係を示すグラフである。 ノズルと、印画紙との関係を示す側面図の断面図である。 2つの分割した発熱抵抗体の気泡発生時間差を設定できるようにした第1実施形態を示す概念図である。 2つの分割した発熱抵抗体の気泡発生時間差を設定できるようにした第2実施形態を示す概念図である。 2つの分割した発熱抵抗体の気泡発生時間差を設定できるようにした第3実施形態を示す概念図である。 図7の構成における結果を示す表である。 2つの分割した発熱抵抗体の気泡発生時間差を設定できるようにした第4実施形態を示す概念図である。 図9における入力B1及びB2の値と、インク液滴の着弾位置とを説明する図である。 図9の抵抗の具体的形状を示す平面図である。 本実施形態を用いた第1応用形態を説明する図である。 本実施形態を用いた第2応用形態を説明する図である。 本実施形態を用いた第3応用形態を説明する図である。 本実施形態を用いた第4応用形態を説明する図である。 本実施形態を用いた第5応用形態を説明する図である。 本実施形態を用いた第6応用形態を説明する図である。 従来のラインヘッドを示す平面図である。 図18で示したラインヘッドでの印画状態を示す断面図及び平面図である。
符号の説明
11 プリンタヘッドチップ
12 インク液室
13 発熱抵抗体(発熱素子、気泡発生手段)
14 基板部材
17 ノズルシート
18 ノズル

Claims (17)

  1. 吐出すべき液体を収容する液室と、
    前記液室内の少なくとも一壁面の一部を構成するとともに、エネルギーの供給により前記液室内の液体に気泡を発生させる気泡発生領域と、
    前記気泡発生領域による前記気泡の生成に伴って前記液室内の液体を吐出させるためのノズルと
    を備える液体吐出装置において、
    前記気泡発生領域の全域にエネルギーを同時に供給するときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって前記ノズルから吐出される液体の飛翔特性を制御する
    ことを特徴とする液体吐出装置。
  2. 請求項1に記載の液体吐出装置において、
    前記気泡発生領域の一部から、前記気泡発生領域に供給されているエネルギーの出入りを制御することで、前記気泡発生領域上のエネルギーの分布に差異を設ける
    ことを特徴とする液体吐出装置。
  3. 吐出すべき液体を収容する液室と、
    前記液室内の少なくとも一壁面の一部を構成するとともに、エネルギーの供給により前記液室内の液体に気泡を発生させる気泡発生領域と、
    前記気泡発生領域による前記気泡の生成に伴って前記液室内の液体を吐出させるためのノズルと
    を備える液体吐出装置の液体吐出方法において、
    前記気泡発生領域の全域にエネルギーを同時に供給するときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって前記ノズルから吐出される液体の飛翔特性を制御する
    ことを特徴とする液体吐出方法。
  4. 請求項3に記載の液体吐出方法において、
    前記気泡発生領域の一部から、前記気泡発生領域に供給されているエネルギーの出入りを制御することで、前記気泡発生領域上のエネルギーの分布に差異を設ける
    ことを特徴とする液体吐出方法。
  5. 吐出すべき液体を収容する液室と、
    前記液室内の少なくとも一壁面の一部を構成するとともに、エネルギーの供給により前記液室内の液体に気泡を発生させる気泡発生領域と、
    前記気泡発生領域による前記気泡の生成に伴って前記液室内の液体を吐出させるためのノズルと
    を備える液体吐出装置において、
    前記気泡発生領域の全域にエネルギーを同時に供給することで、前記ノズルから液体を吐出させる主操作制御手段と、
    前記気泡発生領域の全域にエネルギーを供給するときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって、前記主操作制御手段により吐出される液体の飛翔特性と異なる飛翔特性を有する液体を前記ノズルから吐出させる副操作制御手段と
    を備えることを特徴とする液体吐出装置。
  6. 請求項5に記載の液体吐出装置において、
    前記気泡発生領域の一部から、前記気泡発生領域に供給されているエネルギーの出入りを制御することで、前記気泡発生領域上のエネルギーの分布に差異を設ける
    ことを特徴とする液体吐出装置。
  7. 液室内に少なくとも前記液室の一壁面の一部を構成する気泡発生領域を設け、前記気泡発生領域にエネルギーを供給することにより前記液室内に収容した液体に気泡を発生させ、その気泡の生成に伴って前記液室内の液体をノズルから吐出させる液体吐出方法において、
    前記気泡発生領域上のエネルギーの分布が一様になるように前記気泡発生領域の全域にエネルギーを同時に供給することで、前記ノズルから液体を吐出させる主操作制御ステップ、
    及び、
    前記気泡発生領域の全域にエネルギーを同時に供給したときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって前記ノズルから吐出される液体の飛翔特性を、前記主操作制御ステップによる液体の飛翔特性と異ならせる副操作制御ステップ
    を用いることにより、前記ノズルから吐出される液体の飛翔特性を、少なくとも2つの異
    なる特性に制御する
    ことを特徴とする液体吐出方法。
  8. 請求項7に記載の液体吐出方法において、
    前記気泡発生領域の一部から、前記気泡発生領域に供給されているエネルギーの出入りを制御することで、前記気泡発生領域上のエネルギーの分布に差異を設ける
    ことを特徴とする液体吐出方法。
  9. 吐出すべき液体を収容する液室と、
    前記液室内の少なくとも一壁面の一部を構成するとともに、エネルギーの供給により前記液室内の液体に気泡を発生させる気泡発生領域と、
    前記気泡発生領域による前記気泡の生成に伴って前記液室内の液体を吐出させるためのノズルと
    を備える液体吐出装置において、
    前記気泡発生領域の全域にエネルギーを同時に供給したときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって、前記ノズルから吐出される液体を少なくとも2つの異なる位置に着弾させるように制御する
    ことを特徴とする液体吐出装置。
  10. 吐出すべき液体を収容する液室と、
    前記液室内の少なくとも一壁面の一部を構成するとともに、エネルギーの供給により前記液室内の液体に気泡を発生させる気泡発生領域と、
    前記気泡発生領域による前記気泡の生成に伴って前記液室内の液体を吐出させるためのノズルと
    を備える液体吐出装置において、
    前記気泡発生領域の全域にエネルギーを同時に供給することで、前記ノズルから液体を吐出させる主操作制御手段と、
    前記気泡発生領域の全域にエネルギーを同時に供給したときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって、前記ノズルから吐出される液体を、前記主操作制御手段により液体が吐出されたときの液体の着弾位置と異なる位置に着弾させる副操作制御手段と
    を備えることを特徴とする液体吐出装置。
  11. 請求項9又は請求項10に記載の液体吐出装置において、
    前記気泡発生領域の一部から、前記気泡発生領域に供給されているエネルギーの出入りを制御することで、前記気泡発生領域上のエネルギーの分布に差異を設ける
    ことを特徴とする液体吐出装置。
  12. 請求項9又は請求項10に記載の液体吐出装置において、
    前記ノズルの先端と液体の着弾面との間の距離は、略一定に保持されている
    ことを特徴とする液体吐出装置。
  13. 請求項9又は請求項10に記載の液体吐出装置において、
    前記ノズルの先端と液体の着弾面との間の距離は、0.5mm〜5mmの範囲内で略一定値に保持されている
    ことを特徴とする液体吐出装置。
  14. 液室内に少なくとも前記液室の一壁面の一部を構成する気泡発生領域を設け、前記気泡発生領域にエネルギーを供給することにより前記液室内に収容した液体に気泡を発生させ、その気泡の生成に伴って前記液室内の液体をノズルから吐出させる液体吐出方法において、
    前記気泡発生領域上のエネルギーの分布が一様になるように前記気泡発生領域の全域にエネルギーを同時に供給することで、前記ノズルから液体を吐出させる主操作制御ステップ、
    及び、
    前記気泡発生領域の全域にエネルギーを同時に供給したときの前記気泡発生領域上のエネルギーの分布に差異を設け、その差異によって、前記ノズルから吐出される液体を、前記主操作制御ステップにより液体が吐出されたときの液体の着弾位置と異なる位置に着弾させる副操作制御ステップ
    を用いることにより、前記ノズルから吐出される液体の着弾位置を、少なくとも2つの異なる位置に制御する
    ことを特徴とする液体吐出方法。
  15. 請求項14に記載の液体吐出方法において、
    前記気泡発生領域の一部から、前記気泡発生領域に供給されているエネルギーの出入りを制御することで、前記気泡発生領域上のエネルギーの分布に差異を設ける
    ことを特徴とする液体吐出方法。
  16. 請求項14に記載の液体吐出方法において、
    前記ノズルの先端と液体の着弾面との間の距離は、略一定に保持されている
    ことを特徴とする液体吐出方法。
  17. 請求項14に記載の液体吐出方法において、
    前記ノズルの先端と液体の着弾面との間の距離は、0.5mm〜5mmの範囲内で略一定値に保持されている
    ことを特徴とする液体吐出方法。
JP2005364116A 2002-04-16 2005-12-16 液体吐出装置及び液体吐出方法 Pending JP2006088711A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364116A JP2006088711A (ja) 2002-04-16 2005-12-16 液体吐出装置及び液体吐出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002112947 2002-04-16
JP2005364116A JP2006088711A (ja) 2002-04-16 2005-12-16 液体吐出装置及び液体吐出方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002320861A Division JP2004001364A (ja) 2002-04-16 2002-11-05 液体吐出装置及び液体吐出方法

Publications (1)

Publication Number Publication Date
JP2006088711A true JP2006088711A (ja) 2006-04-06

Family

ID=36230110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364116A Pending JP2006088711A (ja) 2002-04-16 2005-12-16 液体吐出装置及び液体吐出方法

Country Status (1)

Country Link
JP (1) JP2006088711A (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111271A (en) * 1979-02-19 1980-08-27 Canon Inc Liquid drop jet recorder
JPS59207262A (ja) * 1983-04-29 1984-11-24 Yokogawa Hewlett Packard Ltd プリント・ヘツド
JPS61100467A (ja) * 1984-10-23 1986-05-19 Seiko Epson Corp インクジエツト記録装置
JPS63122552A (ja) * 1986-11-12 1988-05-26 Matsushita Electric Ind Co Ltd インクジエツト記録装置
JPH02184450A (ja) * 1989-01-11 1990-07-18 Canon Inc 熱バブルインクジェット記録装置
JPH09286105A (ja) * 1996-04-22 1997-11-04 Canon Inc インクジェット記録ヘッド、インクジェットカートリッジ及びインクジェット装置
JPH1071718A (ja) * 1996-06-28 1998-03-17 Canon Inc インクジェット記録方法、インクジェット記録ヘッド及びインクジェット記録装置
JPH11194318A (ja) * 1997-12-26 1999-07-21 Casio Comput Co Ltd 液晶表示装置及び基準電圧生成回路
JP2000172233A (ja) * 1998-12-09 2000-06-23 Seiko Epson Corp 液晶表示装置、液晶表示装置の駆動方法および液晶表示装置を備えた電子機器
JP2000185403A (ja) * 1998-12-21 2000-07-04 Canon Inc インクジェットノズル、インクジェット記録ヘッド、インクジェットカートリッジおよびインクジェット記録装置
JP2001080077A (ja) * 1999-08-30 2001-03-27 Hewlett Packard Co <Hp> 高密度の液滴発生器を有するプリントヘッド
JP2001113736A (ja) * 1999-10-22 2001-04-24 Canon Inc インクジェット記録ヘッドおよびインクジェット記録装置
JP2001205811A (ja) * 2000-01-28 2001-07-31 Kyocera Corp インクジェットヘッド
JP2002192727A (ja) * 2000-12-27 2002-07-10 Canon Inc インクジェット記録ヘッド、インクジェット記録装置およびインクジェット記録方法
JP2002240287A (ja) * 2001-02-20 2002-08-28 Sony Corp プリンタヘッド、プリンタ及びプリンタヘッドの駆動方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111271A (en) * 1979-02-19 1980-08-27 Canon Inc Liquid drop jet recorder
JPS59207262A (ja) * 1983-04-29 1984-11-24 Yokogawa Hewlett Packard Ltd プリント・ヘツド
JPS61100467A (ja) * 1984-10-23 1986-05-19 Seiko Epson Corp インクジエツト記録装置
JPS63122552A (ja) * 1986-11-12 1988-05-26 Matsushita Electric Ind Co Ltd インクジエツト記録装置
JPH02184450A (ja) * 1989-01-11 1990-07-18 Canon Inc 熱バブルインクジェット記録装置
JPH09286105A (ja) * 1996-04-22 1997-11-04 Canon Inc インクジェット記録ヘッド、インクジェットカートリッジ及びインクジェット装置
JPH1071718A (ja) * 1996-06-28 1998-03-17 Canon Inc インクジェット記録方法、インクジェット記録ヘッド及びインクジェット記録装置
JPH11194318A (ja) * 1997-12-26 1999-07-21 Casio Comput Co Ltd 液晶表示装置及び基準電圧生成回路
JP2000172233A (ja) * 1998-12-09 2000-06-23 Seiko Epson Corp 液晶表示装置、液晶表示装置の駆動方法および液晶表示装置を備えた電子機器
JP2000185403A (ja) * 1998-12-21 2000-07-04 Canon Inc インクジェットノズル、インクジェット記録ヘッド、インクジェットカートリッジおよびインクジェット記録装置
JP2001080077A (ja) * 1999-08-30 2001-03-27 Hewlett Packard Co <Hp> 高密度の液滴発生器を有するプリントヘッド
JP2001113736A (ja) * 1999-10-22 2001-04-24 Canon Inc インクジェット記録ヘッドおよびインクジェット記録装置
JP2001205811A (ja) * 2000-01-28 2001-07-31 Kyocera Corp インクジェットヘッド
JP2002192727A (ja) * 2000-12-27 2002-07-10 Canon Inc インクジェット記録ヘッド、インクジェット記録装置およびインクジェット記録方法
JP2002240287A (ja) * 2001-02-20 2002-08-28 Sony Corp プリンタヘッド、プリンタ及びプリンタヘッドの駆動方法

Similar Documents

Publication Publication Date Title
KR100975169B1 (ko) 액체 토출장치 및 액체 토출방법
JP3770252B2 (ja) 液体吐出装置及び液体吐出方法
US7524020B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP4023331B2 (ja) 液体吐出装置及び液体吐出方法
JP4055149B2 (ja) 液体吐出装置及び液体吐出方法
US8172367B2 (en) Liquid-ejecting method and liquid-ejecting apparatus
JP3972363B2 (ja) 液体吐出装置及び液体吐出方法
JP2005001346A (ja) 液体吐出装置及び液体吐出方法
JP3812667B2 (ja) 液体吐出装置及び液体吐出方法
JP3849800B2 (ja) 液体吐出装置及び液体吐出方法
JP2006088711A (ja) 液体吐出装置及び液体吐出方法
JP2004188830A (ja) 液体吐出装置及び液体吐出方法
JP3849801B2 (ja) 液体吐出装置及び液体吐出方法
JP4036082B2 (ja) 液体吐出装置
JP2008049714A (ja) 液体吐出装置及び液体吐出方法
KR20030094080A (ko) 액체 토출 장치 및 액체 토출 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100611

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100702

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620