JP2006088588A - 画像形成装置、プリントヘッドの点灯制御装置、プリントヘッド - Google Patents

画像形成装置、プリントヘッドの点灯制御装置、プリントヘッド Download PDF

Info

Publication number
JP2006088588A
JP2006088588A JP2004278332A JP2004278332A JP2006088588A JP 2006088588 A JP2006088588 A JP 2006088588A JP 2004278332 A JP2004278332 A JP 2004278332A JP 2004278332 A JP2004278332 A JP 2004278332A JP 2006088588 A JP2006088588 A JP 2006088588A
Authority
JP
Japan
Prior art keywords
light emitting
lighting
clock
line
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004278332A
Other languages
English (en)
Inventor
Michio Taniwaki
道夫 谷脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004278332A priority Critical patent/JP2006088588A/ja
Publication of JP2006088588A publication Critical patent/JP2006088588A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

【課題】 スペクトラム拡散方式にて作成されたクロックにてプリントヘッドを駆動する際に、発生する画像むらを目立たなくする。
【解決手段】 LPH14において点灯信号を作成するのに用いられるクロックはスペクトラム拡散方式によって作成される。これにより、電磁波輻射によるノイズを低減することができる。また、スペクトラム拡散方式によってクロックを作成するに際して、周波数変調されるクロックの変動周期をライン同期信号の周期(ライン周期)の2倍に設定する。これにより、作成される画像(静電潜像)の濃淡を副走査方向のライン毎に逆転させることが可能となり、クロックの周波数を変動させることに伴って発生する画像むらを目立たなくすることができる。
【選択図】 図3

Description

本発明は、複写機やプリンタ等の画像形成装置に係り、より詳しくは、装置内で発生する電波放射ノイズを低減することのできる画像形成装置に関する。
電子写真方式を採用した画像形成装置では、一様に帯電された感光体上に、画像情報を光記録手段によって照射することにより静電潜像を得た後、この静電潜像にトナーを付加して可視化し、記録紙上に転写して定着することによって画像形成が行なわれる。かかる光記録手段として、レーザを用いて主走査方向にレーザ光を走査させて露光する光走査方式の他、近年では、装置の小型化の要請を受けてLED(Light Emitting Diode:発光ダイオード)を主走査方向に多数、配列してなるLEDプリントヘッド(LPH:LED Print Head)を用いた光記録手段が採用されている。
LPHは、一般に、多数のLEDをライン状に配列したLEDブロックが複数配置されたLEDアレイと、LEDから出力された光を感光体(感光体ドラム)表面に結像させるために多数のロッドレンズが配列されたセルフォック(登録商標)レンズとを含んで構成されている。画像形成装置では、入力される画像データに基づいてLPHの各LEDを駆動させ、感光体へ向けて光を出力し、セルフォックレンズによって感光体表面に光を結像させる。そして、感光体とLPHとを相対移動させることにより副走査方向に静電潜像を形成している。
この種のLPHとして、最近、自己走査型LED(SLED)を適用したものが提案されている(特許文献1参照)。このSLEDでは、例えばスイッチ素子としてサイリスタを用い、入力されてくるライン同期信号(Lsync)に同期して、各スイッチ素子を順次オン状態とすることにより、各LEDブロックを構成するLEDを主走査方向に順次点灯可能に制御している。
また、特許文献1では、各LEDを点灯させるために出力する点灯信号をパルス幅変調方式にて作成し、各LEDに出力する点灯パルス数すなわち点灯時間の長さを調整することで、全ドットの露光量を一律に補正し、且つ、各ドットの露光量を個別に補正している。
特開2002−36628号公報(第7−8頁、図12)
ところで、最近、画像形成装置など電子機器の高速化、高密度化に伴って、電子機器から発せられる電磁波輻射(Electromagnetic Interference:EMI)が問題となってきている。ここで、上記特許文献1のLPHにおいても、パルス幅変調を行う際に高周波のクロックを使用しているため、このような電磁波輻射の問題が生じ得る。
このような電磁波輻射の問題を解決するため、スペクトラム拡散方式を用いて、クロックの周波数をわずかに(例えば中心周波数に対して±1〜3%程度)変動させながら発振させる(周波数変調する) スペクトラム拡散クロックジェネレータ(Spread Spectrum Clock Generator:SSCG)が提案されている。このSSCGでは、発振周波数を変動させることにより電磁波輻射が発生する周波数を分散させることができ、電磁波輻射によるピークを例えば4〜5dB程度低く抑えることが可能である。
しかしながら、このようなSSCGを上記特許文献1のLPHに適用した場合、次のような問題が生じる。
上述したLPHでは、パルス幅変調方式にて各LEDを点灯させるための点灯信号を作成している。したがって、パルス変調に用いるクロックの周波数が変動すると、同じ点灯パルス数であっても、LEDの点灯時間が変わってしまう。このため、感光体上に形成される静電潜像のレベル(および感光体上に形成されるトナー像の濃度)に若干のむらが生じてしまう。
ここで、一般的なSSCGの変調周期は15〜50μs程度である。一方、LEDブロック1つあたり128個のLEDが設けられたLEDアレイを用いた場合に、副走査方向の解像度を4800dpi(dot per inch)とし、200mm/sのプロセス速度で印字動作を行うものとすると、ライン同期信号の発生周期(LEDブロックを構成する各LEDを順次点灯させるのに必要な時間:1ライン周期と呼ぶ)は26μs(25.4/200/4800≒26μs)程度となる。つまり、LEDブロックの1ライン周期がSSCGの変調周期に近くなる。
例えばLEDブロックの1ライン周期とSSCGの変調周期とが略一致していると、LEDブロック内で生じる主走査方向のむらの分布が、副走査方向に対してほとんど変動しなくなる。つまり、前のラインで暗かったところは次のラインでも暗くなり、一方、前のラインで明るかったところは次のラインでも明るくなってしまう。その結果、例えば全面同一濃度で画像形成(潜像形成)を行った場合に、副走査方向に対して濃淡によるスジが現れてしまう。また、主走査方向の解像度を例えば1200dpiとした場合、128個のLEDにて構成されるLEDブロックの主走査方向長さは2.7mm程度となるため、副走査方向に現れるスジが目立ちやすくなりやすい。
本発明は、かかる技術的課題を解決するためになされたものであって、その目的とするところは、スペクトラム拡散方式にて作成されたクロックにてプリントヘッドを駆動する際に、発生する画像むらを目立たなくすることにある。
かかる目的のもと、本発明が適用される画像形成装置は、複数の発光素子を備えた発光ブロックが複数配列される発光ヘッドと、入力されるライン同期信号に同期して、発光ブロックにおける複数の発光素子を順次点灯可能にする順次点灯手段と、順次点灯手段に対してライン同期信号を出力するライン同期信号出力手段と、入力されるクロックを用いて画像信号を変調し、複数の発光ブロックにおける複数の発光素子に対する点灯信号を発生する点灯信号発生手段と、点灯信号発生手段に対してスペクトラム拡散方式にて周波数変調されたクロックを出力するスペクトラム拡散クロック出力手段とを含み、スペクトラム拡散クロック出力手段は、ライン同期信号の周期であるライン周期とクロックの変調周期とが、
ライン周期=変調周期×2N(Nは整数)
となるクロックを出力することを特徴としている。
ここで、順次点灯手段は、隣接する発光ブロックの走査方向が互いに反転するように発光ブロックにおける複数の発光素子を点灯可能にすることを特徴とすることができる。また、点灯信号発生手段は、クロックを用いて画像信号をパルス幅変調することにより複数の記録素子に対する点灯信号を発生することを特徴とすることができる。さらに、スペクトラム拡散クロック出力手段は、ライン周期の半分となるようにクロックの変調周期を決定することを特徴とすることができる。
また、他の観点から捉えると、本発明は、複数の発光素子が配列されてなるプリントヘッドの点灯動作を制御するプリントヘッドの点灯制御装置であって、プリントヘッドに複数の発光素子の点灯タイミングを制御するためのライン同期信号を出力するライン同期信号出力部と、プリントヘッドに複数の発光素子の点灯量を制御するためのクロックを出力するクロック出力部とを含み、クロック出力部は、スペクトラム拡散方式にて周波数変調を行うと共に、ライン同期信号の周期であるライン周期とクロックの変調周期とが、
ライン周期=変調周期×2N(Nは整数)
となるクロックを出力することを特徴としている。
ここで、複数の発光素子が自己走査型発光素子からなることを特徴とすることができる。また、クロックにライン同期信号を同期させる同期設定部をさらに含むことを特徴とすることができる。
さらに、他の観点から捉えると、本発明が適用されるプリントヘッドは、複数の発光素子を備えた発光ブロックが複数配列される発光ヘッドと、入力されるライン同期信号に同期して、発光ブロックにおける複数の発光素子を順次点灯可能にする順次点灯手段と、入力される周波数変調されたクロックを用いて画像信号を変調し、複数の発光ブロックにおける複数の発光素子に対する点灯信号を発生する点灯信号発生手段とを含み、発光ブロックによる1ライン分の点灯動作が終了しライン同期信号が更新される毎に、周波数変調されたクロックの位相が180°反転していることを特徴としている。
本発明によれば、スペクトラム拡散方式にて作成されたクロックにてプリントヘッドを駆動する際に、発生する画像むらを目立たなくすることができる。
以下、添付図面を参照して、本発明を実施するための最良の形態(以下、実施の形態という)について詳細に説明する。
図1は本実施の形態が適用される画像形成装置の全体構成を示した図であり、所謂タンデム型の画像形成装置を示している。図1に示す画像形成装置は、本体1に、各色の階調データに対応して画像形成を行う画像プロセス系10、画像プロセス系10を含む画像形成装置全体を制御する制御部20を備えている。そして、本実施の形態では、制御部20に、例えばパーソナルコンピュータ(PC)2、画像読取装置(IIT)3、FAXモデム4等が接続されており、制御部20は、これらから受信された画像データに対して所定の画像処理を施している。
画像プロセス系10は、水平方向に一定の間隔を置いて並列的に配置される複数のエンジンからなる画像形成ユニット11を備えている。この画像形成ユニット11は、イエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)の4つの画像形成ユニット11Y,11M,11C,11Kから構成されており、夫々、静電潜像を形成してトナー像を担持させる像担持体(感光体)である感光体ドラム12、感光体ドラム12の表面を一様に帯電する帯電器13、帯電器13によって帯電された感光体ドラム12を露光するLEDプリントヘッド(LPH)14、LPH14によって得られた潜像を現像する現像器15を備えている。また、画像プロセス系10は、各画像形成ユニット11Y,11M,11C,11Kの感光体ドラム12にて画像形成された各色のトナー像を記録用紙に多重転写させるために、この記録用紙を搬送する用紙搬送ベルト16、用紙搬送ベルト16を駆動させるロールである駆動ロール17、感光体ドラム12のトナー像を記録用紙に転写させる転写ロール18を備えている。
各画像形成ユニット11Y,11M,11C,11Kは、現像器15に収納されたトナーを除き、ほぼ同様な構成を備えている。PC2、IIT3、FAXモデム4から入力された画像信号は、制御部20によって画像処理が施され、インタフェースを介して各画像形成ユニット11Y,11M,11C,11Kに供給される。画像プロセス系10は、制御部20から供給された同期信号等の制御信号に基づいて動作する。まず、イエローの画像形成ユニット11Yでは、帯電器13により帯電された感光体ドラム12の表面に、制御部20から得られた画像信号に基づき、LPH14によって静電潜像を形成する。形成された静電潜像に対して現像器15によってイエローのトナー像を形成し、形成されたイエローのトナー像は、図の矢印方向に回動する用紙搬送ベルト16上の記録用紙に転写ロール18を用いて転写される。同様にして、マゼンタ、シアン、黒のトナー像が各々の感光体ドラム12上に形成され、用紙搬送ベルト16上の記録用紙に転写ロール18を用いて多重転写される。多重転写された記録用紙上のトナー像は、定着器19に搬送されて、熱および圧力によって記録用紙に定着される。
図2は、LEDプリントヘッド(LPH)14の構成を示した断面図である。LPH14は、発光素子として多数の発光ダイオード(LED)が配列された発光ヘッドとしての自己走査型LEDアレイ(SLEDアレイ)31、SLEDアレイ31を支持すると共にSLEDアレイ31の駆動を制御するための駆動回路40(後段の図3参照)が形成されたプリント基板32、各発光ダイオードから出射された光ビームを感光体ドラム12上に結像させる工学手段としてのセルフォック(登録商標)レンズアレイ(SLA)33を備え、プリント基板32およびセルフォックレンズアレイ33は、ハウジング34に保持されている。ここで、SLEDアレイ31は、発光ダイオードが主走査方向に画素数分、配列されたものからなる。そして、本実施の形態では、A3ノビに対応して1200dpiの解像度で光書き込み(潜像形成)が行えるようになっており、約21.1μm毎に15360個のLEDが精度良く配列されている。
図3は、LPH14の回路構成を示した回路ブロック図である。このLPH14は、上述したSLEDアレイ31および駆動回路40、SLEDアレイ31および駆動回路40の間に設けられたレベルシフト回路50、そして、EEPROM60を備えている。
SLEDアレイ31は、120個のSLEDブロック35を直列に配列して構成されている。これら各SLEDブロック35には、後述するように、それぞれ128個の発光ダイオードが直線状に並べられており、さらに、これら発光ダイオードを点灯させるためのスイッチ素子として機能する128個のサイリスタが設けられている。
また、駆動回路40は、順次点灯手段としてのサイリスタ転送信号発生部41、点灯信号発生手段としてのPWM DATA GEN回路42、補正メモリ43、PLL(Phase Locked Loop)回路44、複数のPWM(Pulse Width Modulation)回路45を有している。
サイリスタ転送信号発生部41は、制御部20から入力されるライン同期信号Lsyncを基準としてSLEDアレイ31を構成する各SLEDブロック35の各サイリスタに対して転送信号を発生する。PWM DATA GEN回路42は、制御部20から入力されるライン同期信号Lsyncに同期して、制御部20から入力される画像データVDATAを、SLEDアレイ31を構成する各SLEDブロック35内の各発光ダイオードに対応した点灯データ(PWM DATA)に変換して出力する。補正メモリ43は、各発光ダイオードに対する光量補正値を格納しており、この光量補正値をPWM DATA GEN回路42に出力している。そして、PWM DATA GEN回路42では、補正メモリ43から読み出された光量補正値を用いて各発光ダイオードの点灯データを補正しながら点灯データを作成している。さらに、PLL回路44は、パルス幅変調に使用するクロックPWM CLKを生成し、各PWM回路45に出力する。PWM回路45は、SLEDブロック35に対応する数(本実施の形態では120個)設けられている。PWM回路45では、PWM DATA GEN回路42から出力されてくるPWM DATAを、PLL回路44から出力されてくるクロックPWM CLKを用いてパルス幅変調し、対応するSLEDブロック35にPWM信号を出力している。
また、制御部20とサイリスタ転送信号発生部41、PWM DATA GEN回路42、補正メモリ43、PLL回路44、PWM回路45、EEPROM60との間では、Serial DATAにより双方向通信を行うことが可能となっている。
ここで、補正メモリ43に格納される光量補正値は、元々EEPROM60に格納されており、例えば電源投入時等において、EEPROM60から補正メモリ43にダウンロードされる。また、PLL回路44におけるクロックPWM CLKは、制御部20によって周波数の変更が可能となっている。これは、感光体ドラム12の感度変化や現像器15内のトナー濃度変化等に応じて、全発光ダイオードの光量を可変するためである。また、後述するように、単一のクロック周波数を用いることによって生じる電磁波輻射の影響を低減するためでもある。
また、駆動回路40に設けられたPWM回路45と対応する各SLEDブロック35との間には、両者の間に流れる電流量を制限するための転送電流制限抵抗RIDが接続されている。
そして、駆動回路40に設けられたサイリスタ転送信号発生部41と各SLEDブロック35との間に設けられるレベルシフト回路50は、駆動回路40のサイリスタ転送信号発生部41から出力されてくるサイリスタ転送信号のレベルをシフトさせる機能を有している。
図4は、制御部20の構成を示したブロック図である。この制御部20は、ライン同期信号Lsync_p、画像データVDATA_p、クロックCLK_pを出力するライン同期信号出力手段としての画像制御部21、画像制御部21から出力されてくるライン同期信号Lsync_pに基づき、スペクトラム拡散方式を用いて、周波数をわずかに変動させながら変調したクロックCLKをLPH14および後述する非同期受け渡し用FIFO23に出力するスペクトラム拡散クロック出力手段としてのスペクトラム拡散クロックジェネレータ(Spread Spectrum Clock Generator:SSCG)22、画像制御部21から出力されてくるライン同期信号Lsync_p、画像データVDATA_p、クロックCLK_pを一時的に格納し、SSCG22から出力されてくるクロックCLKに同期させながら先入れ先出しにてライン同期信号Lsyncおよび画像データVDATAを出力する非同期受け渡し用FIFO(First-In First-Out)23を備えている。
また、図5は、制御部20に設けられたSSCG22の回路構成を示したブロック図である。SSCG22は、基本的に公知のPLL(Phase Locked Loop)回路にて構成されている。SSCG22は、二系統の入力信号の位相を比較する位相比較器(Phase Frequency Detector:PFD)24、PFD24において位相比較した結果を後段へ出力するチャージポンプ(Charge Pomp:CP)25、PFD24からCP25を介して入力されるリップルを含んだ直流信号を平均化し、交流成分の少ないきれいな直流信号に変換するループフィルタ(Loop Filter:LF)26、LF26から入力されてくる直流信号に応じて発振周波数を制御する可変周波数発信器(Voltage Controlled Oscillator:VCO)27、VCO27からの出力を1ライン周期の1/Nの周波数に分割してPFD24に入力する比較分周器(Div_PLL)28、VCO27から出力を分割してLPH14へ出力する分周器(Div)29を備えている。
ここで、PFD24に入力されるRef clkは、1ライン周期の1/N(Nは30程度)周波数を変調するための分周比Div[7:0]をRef clkに合わせて、例えばある1ラインでは1ずつ増加し、次の1ラインでは1ずつ減少するようになっている。つまり、図6の下側に示すように、階段状となっている。
そして、この階段状の信号は、PFD24やLF26等を介することにより、出力されるクロック(Clk_out)すなわちLPH14に入力されるCLKは、図6の上側に示すように緩やかな曲線となり、且つ、1ライン周期の2倍の周期を1周期(変調周期)として出力されることになる。
なお、VCO27から出力される信号の周波数は、Ref clk×Div[7:0]となるため、かなり高周波数となる。例えば、N=30、1ライン周期=26μs、Div[7:0]=200とすると、30/N×200=230MHzとなることから、後段に設けられた分周器29により1/4程度に分周して出力を行っている。
図7は、LPH14における駆動回路40、レベルシフト回路50およびSLEDアレイ31の構成を示した回路図である。なお、SLEDアレイ31は、上述したように120個のSLEDブロック35を直列に配置することによって構成されているが、図7においては、これらのうち一つのSLEDブロック35を代表的に示している。
SLEDブロック35は、スイッチ素子としての128個のサイリスタS1〜S128、発光素子としての128個の発光ダイオード(LED)L1〜L128、128個のダイオードD1〜D128、128個の抵抗R1〜R128、さらには信号線に過剰な電流が流れるのを防止する転送電流制限抵抗R1A,R2Aで構成されている。なお、他のSLEDブロック35も同様に構成されている。
また、以下の説明では、発光ダイオードL1〜L128への電流の供給を制御するサイリスタS1〜S128とダイオードD1〜D128とで主に構成される部分を転送部とよぶ。
SLEDブロック35において、各サイリスタS1〜S128のアノード端子(入力端)A1〜A128は、電源ライン36に接続されている。この電源ライン36には図示しない電源より電源電圧VDD(VDD=3.3V)が供給される。
また、奇数番目サイリスタS1,S3,…,S127のカソード端子(出力端)K1,K3,…,K127には、駆動回路40のサイリスタ転送信号発生部41からレベルシフト回路50を通じて出力される転送信号CK1が、転送電流制限抵抗R1Aを介して送信される。一方、偶数番目サイリスタS2,S4,…,S128のカソード端子(出力端)K2,K4,…,K128には、駆動回路40のサイリスタ転送信号発生部41からレベルシフト回路50を通じて出力される転送信号CK2が、転送電流制限抵抗R2Aを介して送信される。
他方、各サイリスタS1〜S128のゲート端子(制御端)G1〜G128は、各サイリスタS1〜S128に対応して設けられた抵抗R1〜R128を介して電源ライン37に各々接続されている。なお、電源ライン37は接地(GND)されている。
また、各サイリスタS1〜S128のゲート端子G1〜G128と、各サイリスタS1〜S128に対応して設けられた発光ダイオードL1〜L128のゲート端子とは各々接続される。さらに、各サイリスタS1〜S128のゲート端子G1〜G128には、ダイオードD1〜D128のカソード端子が接続されている。そして、サイリスタS1〜S127のゲート端子G1〜G127には、次段のダイオードD2〜D128のアノード端子が各々接続されている。すなわち、各ダイオードD2〜D128はゲート端子G2〜G127を挟んで直列接続されている。
また、ダイオードD1のアノード端子は転送電流制限抵抗R2Aおよびレベルシフト回路50を介して駆動回路40のサイリスタ転送信号発生部41に接続され、転送信号CK2が送信される。また、発光ダイオードL1〜L128のカソード端子は、SLEDブロック35の外部に設けられた転送電流制限抵抗RIDを介して駆動回路40のPWM回路45に接続されおり、このPWM回路45より点灯信号ΦIが送信されるようになっている。
また、駆動回路40に設けられたサイリスタ転送信号発生部41は、転送信号CK1を作成するのに用いられる転送信号CK1Rを出力するトライステートバッファB1R、同じく転送信号CK1を作成するのに用いられる転送信号CK1Cを出力するトライステートバッファB1Cを備えている。さらに、サイリスタ転送信号発生部41は、転送信号CK2を作成するのに用いられる転送信号CK2Rを出力するトライステートバッファB2R、同じく転送信号CK2を作成するのに用いられる転送信号CK2Cを出力するトライステートバッファB2Cを備えている。なお、これらトライステートバッファB1R、B1C、B2R、B2Cは、H(1)、L(0)を出力できる他に、High−Z(以下の説明ではHizと表記する)の状態をとることのできる3ステート出力回路にて構成されている。ここで、Hiz状態とは、出力が実質的にオープン状態であることを意味する。
一方、レベルシフト回路50には、奇数番目サイリスタS1,S3,…,S127のカソード端子K1,K3,…,K127が、転送電流制限抵抗R1Aを介して接続されている。レベルシフト回路50のこの部位には、トライステートバッファB1Rに繋がる抵抗R1Bが接続された信号線とトライステートバッファB1Cに繋がるコンデンサC1が接続された信号線とを並列に分岐した回路が形成されている。また、レベルシフト回路50には、偶数番目サイリスタS2,S4,…,S128のカソード端子K2,K4,…,K128およびダイオードD1のアノード端子が、転送電流制限抵抗R2Aを介して接続されている。レベルシフト回路50のこの部位には、トライステートバッファB2Rに繋がる抵抗R2Bが接続された信号線とトライステートバッファB2Cに繋がるコンデンサC2が接続された信号線とを並列に分岐した回路が形成されている。
次に、画像形成動作におけるLPH14の駆動(点灯動作)について、図8に示すタイミングチャートを参照しながら説明する。なお、図8に示すタイミングチャートでは、すべての発光ダイオードL1〜L128が光書き込みを行う(発光する)場合について表記している。
(1)まず、制御部20から駆動回路40に図示しないリセット信号(RST)が入力されることによって、駆動回路40のサイリスタ転送信号発生部41では、トライステートバッファB1Rをハイレベル「H」(以下、単に「H」と表記する)とすることにより転送信号CK1Rが「H」として出力され、トライステートバッファB1Cを「H」とすることにより転送信号CK1Cが「H」として出力される。レベルシフト回路50では、これを受けて、転送信号CK1が「H」に設定される。一方、駆動回路40のサイリスタ転送信号発生部41では、トライステートバッファB2Rをローレベル(以下、単に「L」と表記する)とすることにより転送信号CK2Rが「L」として出力され、トライステートバッファB2Cを「L」とすることにより転送信号CK2Cが「L」として出力される。レベルシフト回路50では、これを受けて、転送信号CK2が「L」に設定され、出力される。その結果、すべてのサイリスタS1〜S128がオフの状態に設定される(図8(a))。
なお、この状態では、制御部20から駆動回路40に画像データVDATAが入力されていないことから、点灯信号ΦIは「H」に設定されている(図8(H))。
(2)リセット信号(RST)に続いて、制御部20から出力されるライン同期信号Lsyncが所定期間だけ「H」になることで(図8(a))、SLEDアレイ31(各SLEDブロック35)の動作が開始される。そして、このライン同期信号Lsyncに同期して、サイリスタ転送信号発生部41では、図8(E),(F)に示すように、トライステートバッファB2CおよびトライステートバッファB2Rを「H」とすることにより、転送信号CK2Cおよび転送信号CK2Rを「H」に設定する。そして、レベルシフト回路50では、これを受けて、図8(G)に示すように、転送信号CK2が「H」に設定される(図8(b))。
(3)次に、図8(C)に示すように、サイリスタ転送信号発生部41において、トライステートバッファB1Rを「L」に設定することにより転送信号CK1RをLにすると(図8(c))、レベルシフト回路50では、コンデンサC1に蓄積された電荷が抵抗R1Bに向かう方向に流れ、やがて、転送信号CK1の電位がGNDになる。ここで、転送信号CK1Cの電位は3.3Vに設定されているため、コンデンサC1の両端電位は3.3V(=VDD)となる。
(4)これに続いて、図8(B)に示すように、サイリスタ転送信号発生部41のトライステートバッファB1Cを「L」とすることにより転送信号CK1CをLにすると(図8(d))、転送信号CK1の電位は、コンデンサC1に電荷が蓄積されているため、約−3.3Vになる。また、ゲート端子G1の電位(Vg1)は、Vg1=CK2電位−Vf=約1.9Vとなる。ここで、転送信号CK2電位は約3.3V、VfはAlGaAsからなるダイオードD1の順方向電圧であって約1.4Vである。さらに、Φ1電位=G1電位(Vg1)−Vf=0.5Vとなる。このとき、点灯信号ΦIの電位は0Vであるため、点灯信号ΦIと転送信号CK1との間に約3.8Vの電位差が生じる。
この状態においては、ゲート端子G1→信号線Φ1→転送信号CK1のルートで、サイリスタS1のゲート電流が流れ始める。その際に、サイリスタ転送信号発生部41のライステートバッファB1Rをハイインピーダンス(Hiz)にすることで、電流の逆流防止を行う。
その後、サイリスタS1に流れるゲート電流により、サイリスタS1がオンし始め、ゲート電流が徐々に増加する。それと共に、レベルシフト回路50のコンデンサC1に電流が流れ込むことで、転送信号CK1の電位も徐々に上昇する。
(5)所定時間(転送信号CK1電位がGND近傍になる時間)の経過後、駆動回路40のトライステートバッファB1Rを「L」に設定し、転送信号CK1Rを「L」にする(図8(e))。すると、ゲート端子G1電位が上昇することによって信号線Φ1電位の上昇および転送信号CK1電位の上昇が生じ、これに伴いレベルシフト回路50の抵抗R1B側に電流が流れ始める。その一方で、転送信号CK1電位が上昇するのに従い、レベルシフト回路50のコンデンサC1に流れ込む電流は徐々に減少する。
そして、サイリスタS1が完全にオンし、定常状態となると、サイリスタS1のオン状態を保持するための電流がレベルシフト回路50の抵抗R1Bに流れるが、コンデンサには流れなくなる。なお、転送信号CK1電位は、CK1電位=(3.3−Vf)×R1B/(R1A+R1B)である。
そして、トライステートバッファB1Rを「L」に設定する際、図8(B)に示すように、駆動回路40のトライステートバッファB1Cをハイインピーダンス(Hiz)に設定する(図8(e))。
(6)サイリスタS1が完全にオンした状態で、図8(H)に示すように、制御部20から出力されたビデオデータに基づいて作成されPWM DATA GEN回路42から出力される点灯信号ID(ΦI)が「L」に設定される(図8(f))。このとき、ゲート端子G1電位>ゲート端子G2電位(ゲート端子G1電位−ゲート端子G2電位=1.4V)であるため、サイリスタ構造の発光ダイオードL1の方が早くオンし、点灯する。発光ダイオードL1がオンするのに伴って、信号線Φ1電位が上昇し、信号線Φ1電位=ゲート端子G2電位=1.9Vとなるため、発光ダイオードL2以降の発光ダイオードがオンすることはない。すなわち、発光ダイオードL1,L2,L3,…の中で、最もゲート電圧の高い発光ダイオードL1のみがオン(点灯)することになる。
(7)次に、図8(F)に示すように、サイリスタ転送信号発生部41のトライステートバッファB2Rを「L」に設定することで転送信号CK2Rを「L」にすると(図8(g))、図8(c)の場合と同様に電流が流れ、レベルシフト回路50のコンデンサC2の両端に電圧が発生する。図8(g)の終了直前の定常状態において、ゲート端子G2電位が1.9Vであるため、各点の電位は図8(c)の場合とは若干異なるが、動作上影響はない。これは、図8(g)の終了直前の定常状態では、信号線Φ2電位=ゲート端子G2電位−Vf=1.9−1.4=約0.5V程度であるため、サイリスタS2にゲート電流が流れるのであるが、この量がわずかであるためにサイリスタS2がオンしないからである。なお、この場合の転送信号CK2電位は、CK2電位=0.5×R2B/(R2A+R2B)=約0.15V程度である。
(8)図8(E)に示すように、この状態でサイリスタ転送信号発生部41のトライステートバッファB2Cを「L」に設定することで転送信号CK2Cを「L」にすると(図8(h))、サイリスタS2がターンオンする。
(9)そして、図8(B),(C)に示すように、サイリスタ転送信号発生部41のトライステートバッファB1C、B1Rを同時に「H」に設定することで転送信号CK1C、CK1Rを同時にHにすると(図8(i))、転送信号CK1が「H」となる。転送信号CK1が「H」となることによりサイリスタS1はターンオフし、抵抗R1を通って放電することによってゲート端子G1電位は徐々に下降する。その際、サイリスタS2のゲート端子G2電位は3.3Vになり、完全にオンする。
(10)サイリスタS2が完全にオンした状態で、図8(H)に示すように、点灯信号ID(ΦI)が「L」となる。したがって、点灯信号端子IDからの画像データに対応した点灯信号ΦIをL/Hに設定することで、発光ダイオードL2を点灯/非点灯させることが可能となる。なお、この場合、ゲート端子G1電位はすでにゲート端子G2電位より低くなっているため、発光ダイオードL1がオンすることはない。
また、図8(B)に示すように、サイリスタ転送信号発生部41のトライステートバッファB1Cがハイインピーダンス(Hiz)に設定されているので(図8(e)〜(h))、CK1電位=(3.3−Vf)×R1B/(R1A+R1B)ではあるが、レベルシフト回路50のコンデンサC1はあまり充電されず、コンデンサC1には大きな電位差が生じることはない。このため、転送信号CK1C,CK1Rを同時にHにした際に(図8(i))、転送信号CK1に大きなスパイク電位が生じることを抑制することができるので、抵抗R1Bを通って駆動回路40に瞬間的に大きな電流が流れることはなく、駆動回路40に過大な負荷がかかることを抑制することができる。
すなわち、図8(i)での転送信号CK1,CK2を同時にHにする前に、転送信号CK1CがLに設定されていると、レベルシフト回路50のコンデンサC1の両端には、転送信号CK1電位と同じ電位、具体的には、(3.3−Vf)×R1B/(R1A+R1B)が発生する。この状態で、転送信号CK1C,CK1Rを同時にHにすると(図8(i))、抵抗R1Bを通って駆動回路40に瞬間的に流れる大きな電流が発生して、駆動回路40に過大な負荷がかかってしまうことになる。
これに対し、本実施の形態では、図8(i)での転送信号CK1C,CK1Rを同時にHにする前において、駆動回路40のトライステートバッファB1Cがハイインピーダンス(Hiz)に設定されているので、コンデンサC1には電流が流れ込まなくなり、大きな電位差が生じることはない。このため、転送信号CK1において大きなスパイク電位の発生が抑制されるので、駆動回路40に大きな電流が流れ込むことを防止することができる。
(11)以後、他の発光ダイオードL3〜L128に対しても、同様の制御を行うことによって順次点灯させることができる、そして、最後の発光ダイオードL128が消灯した後、次のリセット信号(RST)が入力され、その後次のライン同期信号Lsyncが入力されて、同様のプロセスにて発光ダイオードL1〜L128の点灯がなされる。
ここで、本実施の形態では、各発光ダイオードL1〜L128の点灯信号ΦIを作成するにあたり、SSCG22にて作成される周波数変調されたクロックclkを用いている。
図9は、単一周波数のクロックを用いた場合におけるスペクトル波形(図中破線で示す)と、本実施の形態のようにスペクトル拡散された周波数のクロックを用いた場合におけるスペクトル波形(図中実線で示す)を示している。単一の周波数のクロックを用いた場合、そのスペクトル波形は中心周波数fcでピークが立つのに対し、スペクトル拡散された周波数のクロックを用いた場合、そのスペクトル波形は中心周波数fcを中心としたブロードなものとなり、ピークレベルが低下する。
つまり、本実施の形態では、スペクトル拡散された周波数のクロックを用いることにより、放射ノイズの低減を図ることができる。
また、図10は、上述したLPH14の点灯動作における制御部20の動作を示すタイミングチャートである。なお、図10には、画像制御部21から出力されるライン同期信号Lsync_pおよびSSCG22から出力されるクロックclkのみを示している。ここで、クロックclkは、中心周波数fcを中心に、のこぎり状に周波数が変化するようになっている。
また、ライン同期信号Lsync_pは非同期受け渡し用FIFO23からLPH14に出力されるライン同期信号Lsyncと基本的に同じである。なお、図10において、ライン同期信号Lsync_p(Lsync)の周期をライン周期TLと呼び、また、クロックclkの変調周期をクロック変調周期TCと呼ぶ。
本実施の形態では、クロック変調周期TCが、図10(a)に示すように、ライン周期TLの2倍に設定されている。つまり、あるライン(例えば奇数ライン)周期では、クロックclkの周波数が低い状態から高い状態へと遷移し、次のライン(例えば偶数ライン)周期では、クロックclkの周波数が高い状態から低い状態へと遷移する。そして、以後、奇数ラインと偶数ラインとで、交互にこの状態が継続されていく。また、別の観点から見れば、ライン同期信号Lsyncから次のライン同期信号Lsyncに移るとき(1ライン分の点灯動作が終了しライン同期信号Lsyncが更新される毎)、クロックclkの位相は180°反転しているともいえる。なお、ここでは、クロック変調周期TCをライン周期TLの2倍としているが、これに限られるものではなく、ライン周期TLの2N倍(Nは整数)であればよい。また、図10(a)では、ライン周期TLの開始点と終了点とが、それぞれクロックclkのピークに一致しているが、別に一致している必要はなく、ずれていてもよい。
一方、図10(b)には、比較例として、例えばクロック変調周期TCがライン周期TLと同じに設定された例を示している。この場合、あるラインにおいて、クロックclkの周波数が低い状態から高い状態へと遷移した後、更にクロックclkの周波数が高い状態から低い状態へと遷移する。そして、次のラインにおいても全く同じ状態が継続される。つまり、奇数ライン、偶数ラインに関係なく、常に同じ傾向をとる。
図11は、本実施の形態に係る制御部20およびLPH14によって形成される全面ハーフトーンの画像を示しており、図11(a)は図10(a)に示すTC=2TLの条件にて作成された例を、図11(b)は図10(b)に示すTC=TLの条件にて作成された例を、それぞれ示している。なお、本実施の形態では、SLEDアレイ31を用いて静電潜像を形成する際、隣接するSLEDブロック35の走査方向(主走査方向)が互いに反転するように制御されている。
図11(a)に示すTC=2TLの場合、各ライン内においてクロックの変動に伴って生じるビートノイズにより、画像に濃淡が現れているものの、この濃淡の出現位置が、副走査方向の奇数ライン(例えば1ライン目、3ライン目)と偶数ライン(例えば2ライン目)とで逆転していることがわかる。これは、図10(a)に示したように、1ライン毎にクロックの周波数の高低の流れが変わり、また、SLEDブロック35毎に走査方向が反転しているために、これに対応して1ライン毎に画像(静電潜像)の濃淡が変化するためである。
ここで、このLPH14の副走査方向の解像度を例えば4800dpiとした場合には、1ラインの副走査方向長さは5.3μm程度になる。したがって、微視的にみれば濃淡があるといえるものの、巨視的にみれば、比視感度としては非常に小さくなるため、目に見える画像としてはむらのない均一なものとなる。
一方、図11(b)に示すTC=TLの場合、各ライン内においてクロックの変動に伴って生じるビートノイズにより発生する画像の濃淡の出現位置が、奇数ライン、偶数ラインに関係なく同一になっている。この場合、ここで、主走査方向の解像度を1200dpiとした場合、128個のLEDにて構成されるSLEDブロック35の主走査方向長さは2.7mm程度となるため、比視感度としても敏感になり、副走査方向に現れるスジが非常に目立つことになってしまう。
これらから、クロック変調周期TCをライン周期TLの2倍あるいは2N倍に設定することの利点が理解される。
以上説明したように、本実施の形態では、スペクトラム拡散方式によって、LPH14で静電潜像を形成するのに用いられるクロックclkを作成するようにした。これにより、電磁波輻射によるノイズを低減することができる。
また、本実施の形態では、スペクトラム拡散方式によってクロックclkを作成するに際して、周波数変調されるクロックclkのクロック変調周期TCをライン周期TLの2倍(2N倍)に設定した。これにより、作成される画像(静電潜像)の濃淡をライン毎に逆転させることが可能となり、クロックclkの周波数を変動させることに伴って発生するビートノイズすなわち画像むらを目立たなくすることができる。
本実施の形態が適用されるLEDプリントヘッド(LPH)が装着された画像形成装置を示す図である。 LPHの構成を説明する断面図である。 LPHの回路構成を示す図である。 制御部の構成を示す図である。 スペクトラム拡散クロックジェネレータ(SSCG)の構成を説明する図である。 SSCGによる発振動作を説明するための図である。 駆動回路および自己走査型LEDアレイ(SLEDアレイ)の回路構成を示す図である。 画像形成動作におけるLPHの駆動を説明するタイミングチャートである。 単一周波数のクロックを用いた場合におけるスペクトル波形と、スペクトル拡散された周波数のクロックを用いた場合におけるスペクトル波形を示す図である。 LPHの点灯動作における制御部の動作を示すタイミングチャートである。 制御部およびLPHによって形成される全面ハーフトーンの画像例を示す図である。
符号の説明
1…本体、10…画像プロセス系、11(11Y,11M,11C,11K)…画像形成ユニット、12…感光体ドラム、13…帯電器、14…LEDプリントヘッド(LPH)、15…現像器、16…用紙搬送ベルト、17…駆動ロール、18…転写ロール、19…定着器、20…制御部、21…画像制御部、22…スペクトラム拡散クロックジェネレータ(SSCG)、23…非同期受け渡し用FIFO、24…位相比較器(PFD)、25…チャージポンプ(CP)、26…ループフィルタ(FILTER)、27…可変周波数発信器(VCO)、28…比較分周器、29…分周器、31…自己走査型LEDアレイ(SLEDアレイ)、32…プリント基板、33…セルフォックレンズアレイ(SLA)、34…ハウジング、35…SLEDブロック、40…駆動回路、41…サイリスタ転送信号発生部、42…PWM DATA GEN回路、43…補正メモリ、44…PLL回路、45…PWM回路、50…レベルシフト回路、60…EEPROM

Claims (8)

  1. 複数の発光素子を備えた発光ブロックが複数配列される発光ヘッドと、
    入力されるライン同期信号に同期して、当該発光ブロックにおける当該複数の発光素子を順次点灯可能にする順次点灯手段と、
    前記順次点灯手段に対して前記ライン同期信号を出力するライン同期信号出力手段と、
    入力されるクロックを用いて画像信号を変調し、前記複数の発光ブロックにおける前記複数の発光素子に対する点灯信号を発生する点灯信号発生手段と、
    前記点灯信号発生手段に対してスペクトラム拡散方式にて周波数変調されたクロックを出力するスペクトラム拡散クロック出力手段とを含み、
    前記スペクトラム拡散クロック出力手段は、前記ライン同期信号の周期であるライン周期と前記クロックの変調周期とが、
    ライン周期=変調周期×2N(Nは整数)
    となる当該クロックを出力することを特徴とする画像形成装置。
  2. 前記順次点灯手段は、隣接する前記発光ブロックの走査方向が互いに反転するように当該発光ブロックにおける前記複数の発光素子を点灯可能にすることを特徴とする請求項1記載の画像形成装置。
  3. 前記点灯信号発生手段は、前記クロックを用いて前記画像信号をパルス幅変調することにより前記複数の記録素子に対する点灯信号を発生することを特徴とする請求項1記載の画像形成装置。
  4. 前記スペクトラム拡散クロック出力手段は、前記ライン周期の半分となるように前記クロックの変調周期を決定することを特徴とする請求項1記載の画像形成装置。
  5. 複数の発光素子が配列されてなるプリントヘッドの点灯動作を制御するプリントヘッドの点灯制御装置であって、
    前記プリントヘッドに前記複数の発光素子の点灯タイミングを制御するためのライン同期信号を出力するライン同期信号出力部と、
    前記プリントヘッドに前記複数の発光素子の点灯量を制御するためのクロックを出力するクロック出力部とを含み、
    前記クロック出力部は、スペクトラム拡散方式にて周波数変調を行うと共に、前記ライン同期信号の周期であるライン周期と当該クロックの変調周期とが、
    ライン周期=変調周期×2N(Nは整数)
    となる当該クロックを出力することを特徴とするプリントヘッドの点灯制御装置。
  6. 前記複数の発光素子が自己走査型発光素子からなることを特徴とする請求項5記載のプリントヘッドの点灯制御装置。
  7. 前記クロックに前記ライン同期信号を同期させる同期設定部をさらに含むことを特徴とする請求項5記載のプリントヘッドの点灯制御装置。
  8. 複数の発光素子を備えた発光ブロックが複数配列される発光ヘッドと、
    入力されるライン同期信号に同期して、前記発光ブロックにおける前記複数の発光素子を順次点灯可能にする順次点灯手段と、
    入力される周波数変調されたクロックを用いて画像信号を変調し、前記複数の発光ブロックにおける前記複数の発光素子に対する点灯信号を発生する点灯信号発生手段とを含み、
    前記発光ブロックによる1ライン分の点灯動作が終了し前記ライン同期信号が更新される毎に、前記周波数変調された前記クロックの位相が180°反転していることを特徴とするプリントヘッド。
JP2004278332A 2004-09-24 2004-09-24 画像形成装置、プリントヘッドの点灯制御装置、プリントヘッド Pending JP2006088588A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278332A JP2006088588A (ja) 2004-09-24 2004-09-24 画像形成装置、プリントヘッドの点灯制御装置、プリントヘッド

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278332A JP2006088588A (ja) 2004-09-24 2004-09-24 画像形成装置、プリントヘッドの点灯制御装置、プリントヘッド

Publications (1)

Publication Number Publication Date
JP2006088588A true JP2006088588A (ja) 2006-04-06

Family

ID=36230003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278332A Pending JP2006088588A (ja) 2004-09-24 2004-09-24 画像形成装置、プリントヘッドの点灯制御装置、プリントヘッド

Country Status (1)

Country Link
JP (1) JP2006088588A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093896A (ja) * 2006-10-10 2008-04-24 Fuji Xerox Co Ltd 露光装置および画像形成装置
JP2008279684A (ja) * 2007-05-11 2008-11-20 Shinko Electric Co Ltd プリンタ、プリンタの制御方法、プリンタの制御プログラム
JP2010006023A (ja) * 2008-06-30 2010-01-14 Casio Comput Co Ltd 露光装置及び画像形成装置
CN102205708A (zh) * 2010-03-18 2011-10-05 株式会社理光 成像设备、电气设备和记录控制方法
JP2015157393A (ja) * 2014-02-24 2015-09-03 富士ゼロックス株式会社 プリントヘッドの発光制御装置、プリントヘッド及び画像形成装置
JP2015229246A (ja) * 2014-06-03 2015-12-21 ブラザー工業株式会社 露光装置および画像形成装置
JP2016043518A (ja) * 2014-08-20 2016-04-04 富士ゼロックス株式会社 発光装置および画像形成装置
US9651890B2 (en) 2014-09-30 2017-05-16 Brother Kogyo Kabushiki Kaisha Exposing device
JP2019006121A (ja) * 2018-08-21 2019-01-17 ブラザー工業株式会社 露光装置および画像形成装置
US10379459B2 (en) 2017-04-27 2019-08-13 Konica Minolta, Inc. Image forming device
JP2020175580A (ja) * 2019-04-18 2020-10-29 キヤノン株式会社 画像形成装置
JP2021138069A (ja) * 2020-03-06 2021-09-16 東芝テック株式会社 信号生成回路及び画像形成装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093896A (ja) * 2006-10-10 2008-04-24 Fuji Xerox Co Ltd 露光装置および画像形成装置
JP2008279684A (ja) * 2007-05-11 2008-11-20 Shinko Electric Co Ltd プリンタ、プリンタの制御方法、プリンタの制御プログラム
JP2010006023A (ja) * 2008-06-30 2010-01-14 Casio Comput Co Ltd 露光装置及び画像形成装置
CN102205708A (zh) * 2010-03-18 2011-10-05 株式会社理光 成像设备、电气设备和记录控制方法
JP2015157393A (ja) * 2014-02-24 2015-09-03 富士ゼロックス株式会社 プリントヘッドの発光制御装置、プリントヘッド及び画像形成装置
US9658560B2 (en) 2014-06-03 2017-05-23 Brother Kogyo Kabushiki Kaisha Exposing device and image forming apparatus
JP2015229246A (ja) * 2014-06-03 2015-12-21 ブラザー工業株式会社 露光装置および画像形成装置
JP2016043518A (ja) * 2014-08-20 2016-04-04 富士ゼロックス株式会社 発光装置および画像形成装置
US9651890B2 (en) 2014-09-30 2017-05-16 Brother Kogyo Kabushiki Kaisha Exposing device
US10379459B2 (en) 2017-04-27 2019-08-13 Konica Minolta, Inc. Image forming device
JP2019006121A (ja) * 2018-08-21 2019-01-17 ブラザー工業株式会社 露光装置および画像形成装置
JP2020175580A (ja) * 2019-04-18 2020-10-29 キヤノン株式会社 画像形成装置
JP2021138069A (ja) * 2020-03-06 2021-09-16 東芝テック株式会社 信号生成回路及び画像形成装置
US11567421B2 (en) 2020-03-06 2023-01-31 Toshiba Tec Kabushiki Kaisha Signal generation circuit and image forming apparatus

Similar Documents

Publication Publication Date Title
KR100863530B1 (ko) 노광 장치, 노광 시스템 및 화상 형성 장치
JP2007125785A (ja) プリントヘッド、プリントヘッドの点灯制御装置、画像形成装置
JP2019217653A (ja) 画像形成装置
JP5023648B2 (ja) プリントヘッドおよびプリントヘッドにおける副走査方向ずれ補正値の設定方法
JP2006088588A (ja) 画像形成装置、プリントヘッドの点灯制御装置、プリントヘッド
JP2020175580A (ja) 画像形成装置
JP2007098772A (ja) ドライバおよび画像形成装置
JP5034209B2 (ja) プリントヘッドおよび画像形成装置
JP5092359B2 (ja) プリントヘッド
JP4816006B2 (ja) プリントヘッドおよび画像形成装置
US8207994B2 (en) Light-emitting device, exposure device, image forming apparatus and signal supply method
US8743169B2 (en) Pulse-modulation-signal generating device, light-source device, and optical scanning device
JP2005059356A (ja) 発光装置および画像形成装置
JP5109325B2 (ja) 露光装置および画像形成装置
JP5315618B2 (ja) 記録装置の発光量調整装置、記録装置の発光量調整方法
JP2007098767A (ja) プリントヘッド
WO2020004422A1 (ja) 画像形成装置
JP5343311B2 (ja) 露光装置および画像形成装置
JP4548064B2 (ja) 発光素子アレイ駆動装置、プリントヘッド
US11841633B2 (en) Image forming apparatus
JP7094800B2 (ja) 画像形成装置
JP4797554B2 (ja) プリントヘッドおよび画像形成装置
US6563526B1 (en) Image formation apparatus
JP4802657B2 (ja) プリントヘッドおよび画像形成装置
WO2020004480A1 (ja) 画像形成装置