JP2006057536A - シリンダブロック - Google Patents

シリンダブロック Download PDF

Info

Publication number
JP2006057536A
JP2006057536A JP2004240311A JP2004240311A JP2006057536A JP 2006057536 A JP2006057536 A JP 2006057536A JP 2004240311 A JP2004240311 A JP 2004240311A JP 2004240311 A JP2004240311 A JP 2004240311A JP 2006057536 A JP2006057536 A JP 2006057536A
Authority
JP
Japan
Prior art keywords
cylinder
piston
cylinder block
liners
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004240311A
Other languages
English (en)
Other versions
JP4572622B2 (ja
Inventor
Hirobumi Michioka
博文 道岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004240311A priority Critical patent/JP4572622B2/ja
Publication of JP2006057536A publication Critical patent/JP2006057536A/ja
Application granted granted Critical
Publication of JP4572622B2 publication Critical patent/JP4572622B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0019Cylinders and crankshaft not in one plane (deaxation)

Abstract

【課題】ピストンスラップをより好適に低減することのできるシリンダブロックを提供する。
【解決手段】シリンダブロック11は、ピストンが往復動可能に収容されるシリンダライナ21〜24を複数備える。各ピストンを、コネクティングロッドを介してクランクシャフト16のクランクピンに連結する。ピストンの上死点を基準として、ピストンが上死点に達する前にクランクピンが位置する側をスラスト側とし、ピストンが上死点に達した後にクランクピンが位置する側を反スラスト側とする。全てのシリンダライナ21〜24を対象として、それらの中心線Lがクランクシャフト16の回転中心Rに交差、又は同回転中心Rよりも反スラスト側に偏心される。全てのシリンダライナ21〜24は、回転中心Rからの中心線Lの偏心量e1〜e4が互いに異なる少なくとも2種類のシリンダライナからなる。
【選択図】 図4

Description

本発明は、エンジンのシリンダブロックに関するものである。
エンジンの一形態として、ピストンのシリンダライナ内での往復運動をクランク機構によって回転運動に変換して、クランクシャフトを回転させるいわゆるレシプロエンジンがある。こうしたタイプのエンジンに用いられるシリンダブロックとして、例えば特許文献1には、複数のシリンダライナをクランクシャフトの回転中心の左右に偏心させた状態でジクザグ配置し、各シリンダライナの周囲の全周に冷却水通路を設けたものが記載されている。このシリンダブロックによれば、複数のシリンダライナをクランクシャフトに沿って一直線状に配置した場合に比べ、エンジンの全長を短縮化することができる。また、隣合うシリンダライナの間隔が広がることから、各シリンダライナの周囲に十分に大きな冷却水通路を設けることが可能となる。
ところが、複数のシリンダライナのうちスラスト側に配置されたものではピストンの側圧が高くなり、同ピストンがシリンダライナのシリンダボア壁のスラスト側部分に強く衝突してピストンスラップと呼ばれる打音を発する。ここで、スラスト側とは、ピストンの上死点(TDC)を基準として、それよりも前(BTDC)にクランクピンが位置する側である。
これに対しては、クランクシャフトの回転中心をシリンダライナの中心線に対しスラスト側へ僅かに偏心させることで、ピストンが下降するときのコネクティングロッドの傾斜角度を大きくして(傾斜を急にして)、シリンダボア壁のスラスト側部分に作用するピストンの側圧を弱めることが知られている。例えば、特許文献2では、シリンダライナの中心線が略水平となるようにエンジン本体を寝かせた状態で車体に搭載される水平型のエンジンにおいて、クランクシャフトの回転中心をシリンダライナの中心線から下方に僅かに偏心させている。
実開昭64−21229号公報 特開平11−324697号公報
上記特許文献2によると、ピストンの側圧を弱めてピストンスラップを低減することが可能である。しかし、クランクシャフトの回転中心に対するシリンダライナの中心線の偏心量が全てのシリンダライナについて同一であることから、次の問題が新たに生ずる。それは、シリンダブロック本体において、各シリンダライナの近傍の剛性が必ずしも全てのシリンダライナについて均等というわけではなく、むしろシリンダライナ間で異なっている場合が多いことによる。例えば、シリンダライナの配列方向の両端部分に位置するものでは、その前(又は後ろ)及び左右にシリンダブロック本体の外壁部が位置するのに対し、同配列方向の中間部分に位置するシリンダライナでは、その左右に外壁部が位置するだけである。そのため、両端部分に位置するシリンダライナの近傍の剛性が、中間部分に位置するシリンダライナの近傍の剛性よりも高い。
一方、シリンダライナの近傍の剛性とピストンスラップとの間には相関関係があり、一般には剛性が高いほどピストンスラップが小さい。従って、上記のようにシリンダライナの近傍の剛性がシリンダライナ間で異なると、それに応じてピストンスラップの程度もシリンダライナ間で異なってくる。
このような状況のもと、上記のように全てのシリンダライナについて偏心量が同一であると、どのシリンダライナを基準にして偏心量が設定されたとしても、いずれかのシリンダライナについては必要以上に大きな偏心量となるか、又はその逆に必要な偏心量に満たずピストンスラップを十分に低減することができない。例えば、剛性の最も低い部分のシリンダライナを基準に偏心量が設定されれば、全てのシリンダライナについてピストンスラップを低減することができる反面、剛性の高い部分のシリンダライナは必要以上に偏心させられてしまう。これに対し、剛性の最も高い部分のシリンダライナを基準に偏心量が設定されれば、シリンダライナによっては、すなわち剛性の低い部分のシリンダライナでは偏心量が足りずピストンスラップを十分に低減することができない。
本発明はこのような実情に鑑みてなされたものであって、その目的は、ピストンスラップをより好適に低減することのできるシリンダブロックを提供することにある。
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明では、ピストンが往復動可能に収容されるシリンダライナを複数備え、各ピストンがコネクティングロッドを介してクランクシャフトのクランクピンに連結されるシリンダブロックにおいて、前記ピストンの上死点を基準として、前記ピストンが上死点に達する前に前記クランクピンが位置する側をスラスト側とし、前記ピストンが上死点に達した後に前記クランクピンが位置する側を反スラスト側とした場合に、全ての前記シリンダライナを対象として、それらの中心線が前記クランクシャフトの回転中心に交差、又は同回転中心よりも反スラスト側に偏心されるとともに、全ての前記シリンダライナは、前記回転中心からの前記中心線の偏心量が互いに異なる少なくとも2種類のシリンダライナからなるとする。
上記の構成によれば、ピストンがシリンダライナ内で往復動すると、その往復動がコネクティングロッドを通じてクランクピンに伝達され、クランクシャフトが回転する。この往復動の過程でピストンは、上死点の近くで、混合気の燃焼に伴い上昇する筒内圧力を受ける。上死点後には、クランクピンが反スラスト側に位置することから、コネクティングロッドがピストン側ほど、シリンダボア壁のスラスト側部分に近づくように傾斜する。この傾斜により、上記筒内圧力が、コネクティングロッドの長さ方向に向う成分と、コネクティングロッドに直交する成分(側圧)とに分解される。この側圧により、ピストンがシリンダボア壁のスラスト側部分に衝突してピストンスラップが発生する。
ここで、請求項1に記載の発明では、全てのシリンダライナについて、それらの中心線がクランクシャフトの回転中心に交差するか、又は同回転中心よりも反スラスト側に偏心している。このため、同中心線が回転中心よりもスラスト側に偏心している場合に比べ、上記コネクティングロッドの傾斜角度が大きく(傾斜が急に)なる。上述したコネクティングロッドに直交する成分(側圧)が小さくなって、ピストンスラップが低減される。
また、請求項1に記載の発明では、全てのシリンダライナは、回転中心からの中心線の偏心量が互いに異なる少なくとも2種類のシリンダライナからなる。上記コネクティングロッドに直交する成分(側圧)は偏心量の種類毎に異なる。同側圧は、偏心量の増加に伴い小さくなる。従って、ピストンスラップの程度がシリンダブロックの部分に応じて異なる場合であっても、偏心量を異ならせることでピストンスラップを同レベルまで低減することが可能となる。
請求項2に記載の発明では、請求項1に記載の発明において、前記偏心量は、前記シリンダライナを取囲むシリンダブロック本体について、同シリンダライナ近傍の剛性に応じて設定されているとする。
シリンダブロックにおいて、シリンダライナ近傍の剛性がシリンダライナ間で異なっていると、上記側圧が同一であったとしても、発生するピストンスラップの程度が異なる。従って、上記請求項2に記載の発明によるように、シリンダライナ近傍の剛性を考慮して偏心量を設定することで、上記側圧の大きさを剛性に応じたものにし、どのシリンダライナであってもピストンスラップを同レベルまで低減することが可能となる。
請求項3に記載の発明では、請求項2に記載の発明において、前記剛性の高い部分のシリンダライナについては、剛性の低い部分のシリンダライナよりも前記偏心量が少なく設定されているとする。
一般に、シリンダブロック本体の剛性の低い部分に設けられたシリンダライナについてはピストンスラップが大きく、剛性の高い部分に設けられたシリンダライナについてはピストンスラップが小さくなる傾向にある。従って、上記請求項3に記載の発明による剛性及び偏心量についての関係が成立するように同偏心量を設定することで、剛性の高い部分のシリンダライナについては少ない偏心量でピストンスラップを低減することが可能となる。また、剛性の低い部分のシリンダライナについては、多い偏心量でピストンスラップを確実に低減することが可能となる。
請求項4に記載の発明では、請求項3に記載の発明において、前記複数のシリンダライナは列をなして配置されており、その配列方向の両端部分に位置するシリンダライナについては、同配列方向の中間部分に位置するシリンダライナよりも前記偏心量が少なく設定されているとする。
一般に、シリンダブロック本体においてシリンダライナの近傍の剛性は、シリンダライナの配列方向における両端部分で高く中間部分で低い。これは、中間部分では、シリンダブロック本体の外壁部のうち、シリンダライナの配列方向に沿うものが同シリンダライナの近傍に位置するのみであるのに対し、両端部分では、外壁部のうち上記配列方向の端に対応するものがさらに位置するからである。
従って、上記請求項4に記載の発明による関係を満たすように偏心量が設定されることで、配列方向の両端部分に位置するシリンダライナでは少ない偏心量でありながらピストンスラップを十分に低減することができる。また、配列方向の中間部分に位置するシリンダライナでは、その近傍部分の剛性が低いものの、多くの偏心量の設定により、ピストンスラップを確実に低減することができる。
請求項5に記載の発明では、請求項1〜4のいずれか1つに記載の発明において、外壁部を有するシリンダブロック本体をさらに備え、全ての前記シリンダライナは、アッパデッキ部にて互いに連結されたシリンダ構造体として、前記シリンダブロック本体とは別に形成されており、前記シリンダ構造体は、前記外壁部により囲まれた空間に前記シリンダライナが収容され、かつ前記アッパデッキ部が前記外壁部上に載置された状態で、前記シリンダブロック本体に組付けられるものであるとする。
上記の構成によれば、シリンダブロックは、シリンダブロック本体とシリンダ構造体とに分割された分割構造を有している。シリンダブロックが一体構造を有するものである場合には、全体の形状が複雑となるのに対し、分割構造では、シリンダブロック本体及びシリンダ構造体の各部の形状が上記一体構造の場合よりも単純となる。
また、分割構造の場合には、シリンダブロック本体及びシリンダ構造体が別々に製造される。そのため、シリンダブロック本体の製造に際しては、シリンダ構造体からの影響を受けにくい。また、シリンダ構造体の製造に際しては、シリンダブロック本体からの影響を受けにくい。
従って、分割構造の場合には、上述したように一体構造の場合に比べて形状が単純となることに加え、シリンダブロック本体及びシリンダ構造体の一方の製造に際し他方からの影響を受けにくいことから、より高い精度をもって各部を形成することが可能となる。
なお、分割構造を有するものでは、シリンダブロック本体の外壁部によって囲まれた空間に全てのシリンダライナが収容される。そして、アッパデッキ部が外壁部上に載置された状態で、シリンダ構造体がシリンダブロック本体に組付けられることにより、所望のシリンダブロックが得られる。
以下、本発明を多気筒レシプロエンジンに用いられるシリンダブロックに具体化した一実施形態について、図面を参照して説明する。レシプロエンジンは、ピストンの往復運動をクランク機構によって回転運動に変換して、出力軸であるクランクシャフトを回転させるタイプのエンジンである。
図1〜図3に示すように、シリンダブロック11はシリンダブロック本体12及びシリンダ構造体13を備えて構成されている。シリンダブロック本体12はシリンダブロック11の多くの部分を占めるものであり、スカート部14及び外壁部15を備えている。スカート部14はシリンダブロック本体12の下部を構成するものであり、その下端部には、クランクシャフト16を回転可能に支持するためのジャーナル部17が設けられている。外壁部15はシリンダブロック本体12の上部を構成するものであり、略四角環状をなしている。ここでは、外壁部15の各部を区別するために、クランクシャフト16の回転中心Rに対し略平行なものを側壁部15A,15Bという。また、両側壁部15A,15Bの前端部(図2の左端部)同士を繋ぐものを前壁部15Cといい、後端部(図2の右端部)同士を繋ぐものを後壁部15Dというものとする。シリンダブロック本体12は、アルミニウム合金、マグネシウム合金等の比較的比重の小さな金属材料を用い、ダイカスト、中圧鋳造、低圧鋳造等の鋳造法により一体に形成されている。
シリンダ構造体13は、複数(ここでは4つ)のシリンダライナ21,22,23,24と、それらに共通のアッパデッキ部25とを備える。各シリンダライナ21〜24は上下両端が開放された円筒状をなしており、クランクシャフト16の回転中心Rに沿って列をなすように配置されている。アッパデッキ部25は板状をなし、全てのシリンダライナ21〜24の上端部に一体に設けられている。全てのシリンダライナ21〜24はアッパデッキ部25によって相互に連結されている。こうした構成のシリンダ構造体13は、鋳鉄等の耐摩耗性に優れた金属材料によって形成されている。
シリンダ構造体13におけるシリンダライナ21〜24は、上述した外壁部15により囲まれた空間に収容され、アッパデッキ部25は外壁部15上に載置される。アッパデッキ部25上にはシリンダヘッドガスケット26を介してシリンダヘッド27が載置される。シリンダブロック本体12にシリンダ構造体13、シリンダヘッドガスケット26及びシリンダヘッド27を締結するために、次の締結構造が採用されている。
外壁部15の複数箇所には、その外壁部15の上面において開口するボルト穴28が設けられている。また、アッパデッキ部25、シリンダヘッドガスケット26及びシリンダヘッド27において、前記ボルト穴28に対応する箇所にはそれぞれ貫通孔31,32,33が設けられている。そして、シリンダヘッド27の上方から、これらの貫通孔33,32,31を通じてヘッドボルト34が挿通され、外壁部15の対応するボルト穴28に螺入される。このヘッドボルト34が締付けられることにより、シリンダブロック本体12にシリンダ構造体13が締結されてシリンダブロック11が構成されるとともに、同シリンダブロック11上にシリンダヘッドガスケット26を介してシリンダヘッド27が締結される。
上記シリンダブロック11において、シリンダ構造体13とシリンダブロック本体12とによって囲まれた挟まれた空間は、ウォータジャケット35として機能する。ウォータジャケット35は、シリンダブロック本体12、シリンダライナ21〜24等を冷却するための冷却水の通路である。
図5に示すように、上記各シリンダライナ21〜24の内部にはピストン38が往復動可能に収容されている。また、各シリンダライナ21〜24内においてピストン38よりも上側の空間は、燃料及び空気の混合気を燃焼するための燃焼室39となる。
各ピストン38の往復運動をクランクシャフト16の回転運動に変換するために、両者38,16がコネクティングロッド41によって連結されている。コネクティングロッド41は、クランクピン42によりクランクシャフト16に接続され、ピストンピン43によりピストン38に接続されている。
ここで、ピストン38(ピストンピン43)の動きは、シリンダライナ21〜24によって上下方向に規制される。これに対し、クランクピン42は、クランクシャフト16の回転中心Rを自身の中心とする円Cに沿って変位する。従って、ピストン38の往復動に伴い、コネクティングロッド41が左右に揺動しながら上下動する。このコネクティングロッド41の動きがクランクピン42に伝達され、その結果、クランクシャフト16が図5において矢印Xで示す方向(時計回り方向)へ回転する。
こうしたクランク機構では、ピストン38が2往復してクランクシャフト16が2回転する間に、吸気行程、圧縮行程、膨張行程及び排気行程という一連の4行程からなる燃焼サイクルが行われる。吸気行程及び膨張行程はピストン38の下降に伴い行われ、圧縮行程及び排気行程はピストン38の上昇に伴い行われる。
さらに、本実施形態では、図4及び図5に示すように全てのシリンダライナ21〜24が次の条件(1),(2)を満たす箇所に配置されている。条件(1)は、各シリンダライナ21〜24の中心線Lがクランクシャフト16の回転中心Rに交差するか、又はその回転中心Rよりも反スラスト側に偏心していることである。条件(2)は、全てのシリンダライナ21〜24が、中心線Lの回転中心Rからの偏心量e1〜e4が互いに異なる少なくとも2種類のシリンダライナからなることである。従って、全てのシリンダライナ21〜24について、偏心量が均一であるものは除外される。また、条件(2)中の偏心量e1〜e4には「0」も含まれるものとする。
ここでは、中心線Lが回転中心Rに直交する場合において、各ピストン38の上死点TDCを基準として、ピストン38が上死点TDCに達する前(BTDC)にクランクピン42が位置する側(図5の左側)を「スラスト側」としている。また、ピストン38が上死点TDCに達した後(ATDC)にクランクピン42が位置する側(図5の右側)を「反スラスト側」としている。
上記の条件(1),(2)をともに満たすように、本実施形態では、全てのシリンダライナ21〜24は、それらの中心線Lがクランクシャフト16の回転中心Rよりも反スラスト側に偏心した箇所に配置されている。また、シリンダライナ21〜24のうち、それらの配列方向の両端部分に位置するもの(21,24)の偏心量e1,e4は、上記配列方向の中間部分に位置するもの(22,23)の偏心量e2,e3よりも少なく設定されている。
シリンダライナ21,24とシリンダライナ22,23とで偏心量e1〜e4を異ならせているのは、次の理由による。一般に、シリンダブロック本体12についてシリンダライナ21〜24の近傍の剛性は、同シリンダライナ21〜24の配列方向における両端部分で高く、中間部分で低い。これは、中間部分では、シリンダブロック本体12の外壁部15のうち、相対向する側壁部15A,15Bがシリンダライナ22,23の近傍に位置するのみであるのに対し、両端部分では、両側壁部15A,15Bに加え、前壁部15C又は後壁部15Dがさらに位置するからである。
上記シリンダブロック11が組込まれたエンジンではピストンスラップが低減される。次に、このピストンスラップの低減作用について、全てのシリンダライナ21〜24の中心線Lがクランクシャフト16の回転中心Rよりもスラスト側に偏心されている場合、及び同中心線Lが回転中心Rに対し偏心されていない場合と比較しながら説明する。
<スラスト側に偏心されている場合>
図6(A)は、ピストン38の圧縮上死点前(BTDC)の状態を示している。この状態では、クランクピン42がスラスト側に位置し、また、ピストンピン43がスラスト側に位置する。クランクピン42がピストンピン43よりもスラスト側に位置する限り、コネクティングロッド41が上側ほどシリンダボア壁37の反スラスト側部分に近づくように傾斜する。この傾斜により、ピストン38に加わる筒内圧力Pが、コネクティングロッド41の長さ方向に向う成分(分圧P1)と、コネクティングロッド41に直交する成分(分圧P2)とに分解される。分圧P2は、シリンダボア壁37側に向う圧力であることから側圧ということもできる。この分圧P2により、ピストン38がシリンダボア壁37の反スラスト側部分に押付けられながら上昇する。
上記分圧P2はピストン38の上昇に伴い小さくなってゆく。コネクティングロッド41の傾斜角度が大きくなる(傾斜が急になる)からである。ピストン38の上昇途中で点火が行われて、混合気が燃焼され、筒内圧力Pが上昇する。上死点TDCの直前にクランクピン42がシリンダライナ21〜24の中心線L上に位置すると、コネクティングロッド41が垂直状態となり、分圧P2は略0となる。
圧縮上死点後(ATDC)には、図6(B)に示すように、コネクティングロッド41が上記圧縮上死点前(BTDC)とは逆方向に傾斜する。すなわち、コネクティングロッド41は、その上側ほどシリンダボア壁37のスラスト側部分に近づくように傾斜する。この傾斜により、ピストン38に加わる高い筒内圧力Pが分圧P1と分圧P2とに分解される。この際、シリンダライナ21〜24の中心線Lが回転中心Rに対しスラスト側に偏心されていることから、偏心されていない場合に比べてコネクティングロッド41の傾斜角度が小さくなり(傾斜が緩くなり)、それに伴い分圧P2も大きくなる。この大きな分圧P2により、ピストン38がシリンダボア壁37のスラスト側部分に強く衝突して、大きなピストンスラップが発生する。
なお、図6(A)では、筒内圧力Pが図6(B)と同程度の大きさに描かれているが、実際には図6(B)に比べて小さい。後述する図7(A)及び図8(A)についても同様である。筒内圧力Pは、ピストン38の上昇に伴い高くなり、混合気の燃焼によってさらに高くなり、一般には、上死点TDCを少し過ぎた時点で最大となる。筒内圧力Pは、その後はピストン38の下降に従い低くなる。
<スラスト側にも反スラスト側にも偏心されていない場合>
図7(A)は、ピストン38の圧縮上死点前(BTDC)の状態を示しており、上述した図6(A)に対応している。円C上におけるクランクピン42の位置は図6(A)と同じである。これに対し、ピストンピン43は、クランクシャフト16の回転中心Rの上方に位置する。そのため、コネクティングロッド41の傾斜角度が小さく(傾斜が緩くなり)、分圧P2が図6(A)の場合よりも若干大きくなる。この分圧P2により、ピストン38がシリンダボア壁37の反スラスト側部分に押付けられた状態で上昇する。
上記分圧P2はピストン38の上昇に伴い小さくなってゆく。そのピストン38の上昇途中で点火が行われて、混合気が燃焼され、筒内圧力Pが上昇する。ピストン38が上死点TDCに位置すると、コネクティングロッド41が垂直状態となり、分圧P2は略0となる。
図7(B)は、ピストン38の圧縮上死点後(ATDC)の状態を示しており、上述した図6(B)に対応している。円C上におけるクランクピン42の位置は図6(B)と同じである。これに対し、ピストンピン43は、クランクシャフト16の回転中心Rの上方に位置する。そのため、コネクティングロッド41の傾斜角度が大きくなり(傾斜が急になり)、分圧P2が図6(B)の場合よりも小さくなる。ピストン38がシリンダボア壁37のスラスト側部分に衝突する際の衝撃が小さくなり、ピストンスラップが小さくなる。
<反スラスト側に偏心されている場合>
図8(A)は、ピストン38の圧縮上死点前(BTDC)の状態を示しており、上述した図7(A)に対応している。円C上におけるクランクピン42の位置は図7(A)と同じである。これに対し、ピストンピン43はクランクシャフト16の回転中心Rに対し反スラスト側に偏心した箇所に位置する。そのため、コネクティングロッド41の傾斜角度が小さくなり(傾斜が緩くなり)、分圧P2が図7(B)の場合よりも大きくなる。この分圧P2により、ピストン38がシリンダボア壁37の反スラスト側に押付けられた状態で上昇する。
上記分圧P2はピストン38の上昇に伴い小さくなってゆく。そのピストン38の上昇途中で点火が行われて、混合気が燃焼され、筒内圧力Pが上昇する。上死点TDCの直後にクランクピン42がシリンダライナ21〜24の中心線L上に位置すると、コネクティングロッド41が垂直状態となり、分圧P2は略0となる。
図8(B)は、さらにピストン38が下降した状態を示しており、上述した図7(B)に対応している。円C上におけるクランクピン42の位置は図7(B)と同じである。これに対し、ピストンピン43はクランクシャフト16の回転中心Rよりも反スラスト側に位置する。そのため、コネクティングロッド41の傾斜角度が大きくなり(傾斜が急になり)、分圧P2が図7(B)の場合よりもさらに小さくなる。そのため、ピストン38がシリンダボア壁37のスラスト側部分に衝突する際の衝撃が小さくなり、ピストンスラップが一層小さくなる。
本実施形態では、上述したように、全てのシリンダライナ21〜24について、それらの中心線Lがクランクシャフト16の回転中心Rよりも反スラスト側に偏心した箇所に配置されている(図4参照)。そのため、どのシリンダライナ21〜24についても、上記<反スラスト側に偏心されている場合>と同様にして、ピストンスラップが低減される。
また、上記反スラスト側への偏心量e1〜e4が多くなるに従い、圧縮上死点後(ATDC)のコネクティングロッド41の傾斜角度が大きくなり(傾斜が急になり)、分圧P2が小さくなってピストンスラップの低減効果が大きくなる。一方、シリンダブロック11において、シリンダライナ21〜24の近傍の剛性がシリンダライナ21〜24間で異なっていると、上記分圧P2が同一であったとしても、発生するピストンスラップの程度が異なる。一般には、剛性が低い場合よりも高い場合の方がピストンスラップが小さくなる傾向にある。本実施形態のシリンダブロック本体12にあっては、シリンダライナ21〜24の配列方向における中間部分が剛性の低い部分に相当し、同配列方向における両端部分が剛性の高い部分に相当する。
この点、本実施形態では、反スラスト側への偏心量が、シリンダブロック本体12において、シリンダライナ21〜24近傍の剛性に応じて設定されている。すなわち剛性の高い部分(両端部分)のシリンダライナ21,24の偏心量e1,e4が、剛性の低い部分(中間部分)のシリンダライナ22,23の偏心量e2,e3よりも少なく設定されている。剛性が低くピストンスラップの発生しやすい部分では、多くの偏心量の設定により分圧P2の減少度合いが大きくされて、ピストンスラップの低減効果が大きくなる。また、剛性が高く、上記ほど大きなピストンスラップが発生しない部分では、少ない偏心量の設定により、分圧P2の減少度合いが小さくされて、ピストンスラップの低減効果が小さくなる。
以上詳述した本実施形態によれば、次の効果が得られる。
(1)全てのシリンダライナ21〜24について、それらの中心線Lがクランクシャフト16の回転中心Rよりも反スラスト側に偏心されている。このため、同中心線Lを回転中心Rよりもスラスト側に偏心させた場合に比べ、圧縮上死点後(ATDC)のコネクティングロッド41の傾斜角度を大きくして(傾斜を急にして)、分圧P2を小さくしてピストンスラップを低減することができる。また、ピストンスラップによる振動や騒音を低減することができる。さらに、分圧P2が小さくなることから、シリンダボア壁37及びピストン38間のフリクションを低減することもできる。
(2)シリンダブロック本体12において剛性の高い部分のシリンダライナ21,24の偏心量e1,e4を、剛性の低い部分のシリンダライナ22,23の偏心量e2,e3よりも少なくしている。そのため、剛性が低く、もともと大きなピストンスラップが発生しやすい部分であっても、剛性が高く、上記ほど大きなピストンスラップが発生しない部分であっても、上記偏心量e1〜e4の設定により、ピストンスラップを同レベルまで好適に低減することができる。
(3)シリンダブロック11の構造として、シリンダブロック本体12とシリンダ構造体13とに分割した分割構造を採用している。シリンダブロックが一体構造の場合には全体の形状が複雑となるのに対し、分割構造では、シリンダブロック本体12及びシリンダ構造体13の各部の形状が上記一体構造の場合よりも単純となる。
また、分割構造の場合には、シリンダブロック本体12及びシリンダ構造体13が別々に製造される。そのため、シリンダブロック本体12の製造に際しては、シリンダ構造体13からの影響を受けにくい。また、シリンダ構造体13の製造に際しては、シリンダブロック本体12からの影響を受けにくい。
従って、分割構造の場合には、上述したように、一体構造の場合に比べて形状が単純となることに加え、シリンダブロック本体12及びシリンダ構造体13の一方の製造に際し他方からの影響を受けにくいことから、より高い精度をもって各部を形成することができる。この効果は、シリンダライナ21〜24間で偏心量e1〜e4が異なる本実施形態では特に有効である。
なお、本発明は次に示す別の実施形態に具体化することができる。
・上述した条件(1)及び条件(2)を満たす範囲内で各シリンダライナ21〜24の位置を変更してもよい。例えば、シリンダライナ21〜24のうちの一部については、その中心線Lがクランクシャフト16の回転中心Rに交差する箇所に配置してもよい。
・回転中心Rからの偏心量が互いに異なるシリンダライナは、少なくとも2種類あればよい。従って、例えば、シリンダライナ21〜24の各々について偏心量を互いに異ならせてもよい。この場合には、偏心量が互いに異なるシリンダライナの種類は4種類となる。
また、2種類であっても、その内容を前記実施形態と異なるものに変更してもよい。例えば、4つのシリンダライナのうち3つについては偏心量を同一(0を含む)とし、残り1つについての偏心量を、上記3つのシリンダライナの偏心量と異ならせてもよい。
・シリンダブロック本体12の各部の剛性は、リブの有無、ブローバイガス通路の有無、オイル通路の有無、エンジンマウントブラケットの取付け部の有無等に応じても異なる。そのため、このような剛性の相違を考慮して、シリンダライナ21〜24の偏心量e1〜e4を設定することが好ましい。この場合にも、剛性の高い部分のシリンダライナについては偏心量を少なくし、剛性の低い部分のシリンダライナについては偏心量を多くする。
・上記実施形態では、「シリンダブロック本体12におけるシリンダライナ21〜24近傍の剛性」に基づいて偏心量e1〜e4を設定したが、上記「剛性」に他の要素を加え、両者に基づいて偏心量を設定してもよい。また、上記「剛性」を他の要素に代え、この要素に基づいて偏心量を設定してもよい。
・本発明は、4気筒エンジンに限らず2つ以上の気筒を有するエンジンであれば広く適用可能である。
本発明を具体化した一実施形態において、シリンダブロックが組込まれたエンジンの部分破断斜視図。 シリンダブロック本体、シリンダ構造体及びシリンダヘッドガスケットの斜視図。 シリンダブロックの斜視図。 シリンダブロックの平面図。 図4の5−5線における断面図。 (A),(B)は、シリンダライナの中心線がクランクシャフトの回転中心に対してスラスト側に偏心されている場合において、ピストンスラップの発生状況を示す説明図。 (A),(B)は、シリンダライナの中心線がクランクシャフトの回転中心に対して偏心されていない場合において、ピストンスラップの発生状況を示す説明図。 (A),(B)は、シリンダライナの中心線がクランクシャフトの回転中心に対して反スラスト側に偏心されている場合において、ピストンスラップの発生状況を示す説明図。
符号の説明
11…シリンダブロック、12…シリンダブロック本体、13…シリンダ構造体、15…外壁部、16…クランクシャフト、21,22,23,24…シリンダライナ、25…アッパデッキ部、38…ピストン、41…コネクティングロッド、42…クランクピン、e1,e2,e3,e4…偏心量、L…中心線、R…回転中心、TDC…上死点。

Claims (5)

  1. ピストンが往復動可能に収容されるシリンダライナを複数備え、各ピストンがコネクティングロッドを介してクランクシャフトのクランクピンに連結されるシリンダブロックにおいて、
    前記ピストンの上死点を基準として、前記ピストンが上死点に達する前に前記クランクピンが位置する側をスラスト側とし、前記ピストンが上死点に達した後に前記クランクピンが位置する側を反スラスト側とした場合に、全ての前記シリンダライナを対象として、それらの中心線が前記クランクシャフトの回転中心に交差、又は同回転中心よりも反スラスト側に偏心されるとともに、全ての前記シリンダライナは、前記回転中心からの前記中心線の偏心量が互いに異なる少なくとも2種類のシリンダライナからなることを特徴とするシリンダブロック。
  2. 前記偏心量は、前記シリンダライナを取囲むシリンダブロック本体について、同シリンダライナ近傍の剛性に応じて設定されている請求項1に記載のシリンダブロック。
  3. 前記剛性の高い部分のシリンダライナについては、剛性の低い部分のシリンダライナよりも前記偏心量が少なく設定されている請求項2に記載のシリンダブロック。
  4. 前記複数のシリンダライナは列をなして配置されており、その配列方向の両端部分に位置するシリンダライナについては、同配列方向の中間部分に位置するシリンダライナよりも前記偏心量が少なく設定されている請求項3に記載のシリンダブロック。
  5. 外壁部を有するシリンダブロック本体をさらに備え、全ての前記シリンダライナは、アッパデッキ部にて互いに連結されたシリンダ構造体として、前記シリンダブロック本体とは別に形成されており、
    前記シリンダ構造体は、前記外壁部により囲まれた空間に前記シリンダライナが収容され、かつ前記アッパデッキ部が前記外壁部上に載置された状態で、前記シリンダブロック本体に組付けられるものである請求項1〜4のいずれか1つに記載のシリンダブロック。
JP2004240311A 2004-08-20 2004-08-20 シリンダブロック Expired - Fee Related JP4572622B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240311A JP4572622B2 (ja) 2004-08-20 2004-08-20 シリンダブロック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240311A JP4572622B2 (ja) 2004-08-20 2004-08-20 シリンダブロック

Publications (2)

Publication Number Publication Date
JP2006057536A true JP2006057536A (ja) 2006-03-02
JP4572622B2 JP4572622B2 (ja) 2010-11-04

Family

ID=36105219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240311A Expired - Fee Related JP4572622B2 (ja) 2004-08-20 2004-08-20 シリンダブロック

Country Status (1)

Country Link
JP (1) JP4572622B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339604A1 (de) * 2016-12-20 2018-06-27 DEUTZ Aktiengesellschaft Brennkraftmaschine mit teilweiser kolbenschränkung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421229U (ja) * 1987-07-29 1989-02-02
JPH0544493A (ja) * 1991-08-20 1993-02-23 Yamaha Motor Co Ltd 4サイクルエンジン
JP2002039386A (ja) * 2000-07-31 2002-02-06 Nippon Piston Ring Co Ltd 乾式シリンダライナ
JP2006002666A (ja) * 2004-06-17 2006-01-05 Yanmar Co Ltd Ohv型レシプロ式内燃機関

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421229U (ja) * 1987-07-29 1989-02-02
JPH0544493A (ja) * 1991-08-20 1993-02-23 Yamaha Motor Co Ltd 4サイクルエンジン
JP2002039386A (ja) * 2000-07-31 2002-02-06 Nippon Piston Ring Co Ltd 乾式シリンダライナ
JP2006002666A (ja) * 2004-06-17 2006-01-05 Yanmar Co Ltd Ohv型レシプロ式内燃機関

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339604A1 (de) * 2016-12-20 2018-06-27 DEUTZ Aktiengesellschaft Brennkraftmaschine mit teilweiser kolbenschränkung
US10480450B2 (en) 2016-12-20 2019-11-19 Deutz Aktiengesellschaft Internal combustion engine with partial piston twisting

Also Published As

Publication number Publication date
JP4572622B2 (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
US7412958B2 (en) Internal combustion engine
JP6167246B2 (ja) シリンダブロック及びそれを備えたエンジン
EP1533495B1 (en) Internal combustion engine
JPWO2018092176A1 (ja) 内燃機関
US20050051128A1 (en) Piston structure for reducing friction losses
JP4572622B2 (ja) シリンダブロック
JP2010230102A (ja) 内燃機関のコネクティングロッド
JP4262756B2 (ja) 多気筒エンジン
JP2006242099A (ja) シリンダブロック
JP2007120506A5 (ja)
JP6586986B2 (ja) エンジン
JP2003214160A (ja) オフセット内燃機関のピストン冷却構造
JP2003172101A (ja) 内燃機関のクランク機構
JP2008309118A (ja) ピストン及び内燃機関
JP2018197539A (ja) 内燃機関のピストン
JP4244770B2 (ja) エンジンのブローバック抑制構造の製造方法
JP4195060B2 (ja) 内燃機関の作動パラメータを決定する方法
AU2020100333A4 (en) Tumbler Piston
US10480450B2 (en) Internal combustion engine with partial piston twisting
Tomita et al. Compact and long-stroke multiple-link VCR engine mechanism
JP6614231B2 (ja) 多気筒エンジン
JP2005315115A (ja) シリンダブロック
JPH0324857Y2 (ja)
JPH05157005A (ja) 内燃機関のシリンダブロック
JP2006257887A (ja) 内燃機関用ピストン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees