JP2006028645A - Ultra fine yarn - Google Patents

Ultra fine yarn Download PDF

Info

Publication number
JP2006028645A
JP2006028645A JP2004204288A JP2004204288A JP2006028645A JP 2006028645 A JP2006028645 A JP 2006028645A JP 2004204288 A JP2004204288 A JP 2004204288A JP 2004204288 A JP2004204288 A JP 2004204288A JP 2006028645 A JP2006028645 A JP 2006028645A
Authority
JP
Japan
Prior art keywords
yarn
twa
sea
island
polytrimethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004204288A
Other languages
Japanese (ja)
Other versions
JP4506314B2 (en
Inventor
Hiroshi Suyama
浩史 須山
Toshiaki Shimizu
敏昭 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004204288A priority Critical patent/JP4506314B2/en
Publication of JP2006028645A publication Critical patent/JP2006028645A/en
Application granted granted Critical
Publication of JP4506314B2 publication Critical patent/JP4506314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polytrimethylene terephthalate ultra fine yarn which can give high density woven or knitted fabrics having soft touch, fine touch and colorability that have been achieved by conventional techniques, can be produced in excellent productivity, and gives waste liquids giving small environmental loads, after treated with an alkali. <P>SOLUTION: The ultra fine yarn comprising a yarn substantially composed from polytrimethylene terephthalate is characterized in that a dry heat shrinkage rate (TWA) after an alkali reduction and a single fiber fineness (FDT) after an alkali reduction satisfy all of expression (1): 5≤TWA(%)≤20, and expression (2): 0.01≤FDT(dtex)≤1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高収縮特性を有する極細糸に関し、さらに詳しくは紡糸安定性にも優れ、また従来ない高密度織編物を得ることができ、また優れた精緻感、ソフト感、発色性を付与することができる極細糸に関するものである。   The present invention relates to an ultrafine yarn having a high shrinkage characteristic, more specifically, excellent in spinning stability, can obtain an unprecedented high-density woven or knitted fabric, and imparts excellent fineness, softness and color development. The present invention relates to an ultrafine yarn that can be used.

従来より、ポリエチレンテレフタレートからなる単糸繊度が1dtex以下のポリエステル極細糸はピーチ調織編物やワイピングクロスに用いられている。しかしながら、従来の極細糸では収縮特性が不十分であるために、織編物にした際、フカツキ感が解消することができず、精緻感についても乏しいものであった。そのため、ポリマー自体が高収縮特性を有しているポリトリメチレンテレフタレート(ポリプロピレンテレフタレート)を用いた極細糸が、特開平11−100721号公報(特許文献1)や特開2001−348735号公報(特許文献2)などで提案されている。確かに単糸繊度が細いためソフトな織編物を得ることができるが、これらの糸では織編物を高密度化させることができず、精緻感のあるなめらかな織編物を得ることはできない。   Conventionally, polyester extra fine yarns having a single yarn fineness of 1 dtex or less made of polyethylene terephthalate have been used in peach-woven fabrics and wiping cloths. However, since the shrinkage characteristics of conventional ultrafine yarn are insufficient, the feeling of fluffiness cannot be eliminated when it is made into a woven or knitted fabric, and the feeling of precision is poor. For this reason, extra fine yarns using polytrimethylene terephthalate (polypropylene terephthalate) whose polymer itself has high shrinkage properties are disclosed in Japanese Patent Application Laid-Open No. 11-1000072 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2001-348735 (Patent). It is proposed in the literature 2). Certainly, since the single yarn fineness is thin, a soft woven or knitted fabric can be obtained. However, with these yarns, the density of the woven or knitted fabric cannot be increased, and a smooth woven or knitted fabric with a fine feeling cannot be obtained.

すなわち、前者は海島型複合糸から得られた極細糸ではなく、直接紡糸式であるため、巻き取りパッケージや生機における遅延収縮の問題があり、延伸工程で糸を低収縮化せざるを得ない。   That is, the former is not an ultra-fine yarn obtained from the sea-island type composite yarn, but is a direct spinning type, so there is a problem of delayed shrinkage in the take-up package and the raw machine, and the yarn must be reduced in the drawing process. .

後者については、海島型複合糸から極細糸を得るものではあるが、アルカリ溶出成分として用いられているポリマは有機金属塩を共重合したポリエステルであり、アルカリ溶出時間が長いため、アルカリ減量時に島成分のポリトリメチレンテレフタレートが収縮するのを阻害してしまうという問題がある。さらに、アルカリ溶出時間が長いため、生産性が悪かったり、また、ポリマ溶融温度がポリトリメチレンテレフタレートよりも高いため、紡糸温度を高く保つ必要があり、そのためにポリトリメチレンテレフタレートの熱劣化が進み、操業性が悪く、さらに、満足する原糸強度や風合いが得られないなどの問題があった。
特開平11−100721号公報 特開2001−348735号公報
For the latter, ultrafine yarn is obtained from sea-island type composite yarn, but the polymer used as the alkali elution component is a polyester copolymerized with an organic metal salt, and the alkali elution time is long. There is a problem that the polytrimethylene terephthalate component is prevented from shrinking. Furthermore, since the alkali elution time is long, the productivity is poor, and the polymer melting temperature is higher than that of polytrimethylene terephthalate, so it is necessary to keep the spinning temperature high, which causes the thermal degradation of polytrimethylene terephthalate to progress. There are problems such as poor operability and satisfactory raw yarn strength and texture cannot be obtained.
Japanese Patent Application Laid-Open No. 11-100721 JP 2001-348735 A

本発明は、上記従来技術では達成できなかった、ソフト感、精緻感、、発色性に優れた高密度織編物得ることができ、かつ生産性に優れ、アルカリ処理後の廃液の環境負荷が小さいポリトリメチレンテレフタレート極細糸を提供することにある。   The present invention makes it possible to obtain a high-density woven or knitted fabric excellent in softness, precision, and colorability, which is not achieved with the above-described conventional technology, and is excellent in productivity, and the environmental impact of waste liquid after alkali treatment is small. It is to provide a polytrimethylene terephthalate ultrafine yarn.

上述した目的を達成する本発明の極細糸は、以下の構成からなる。   The ultrafine yarn of the present invention that achieves the above-described object has the following configuration.

実質的にポリトリメチレンテレフタレートで構成されている糸条からなり、乾熱収縮率(TWA)、単繊維繊度(FDT)が下記の式を全て満たすことを特徴とする極細糸。
(1)5≦TWA(%)≦20
(2)0.01≦FDT(dtex)≦1
また、本発明の極細糸において、好ましくは、島成分がポリトリメチレンテレフタレート、海成分ポリ乳酸で構成されている海島型複合糸であって、海成分/島成分の複合比率が10/90〜50/50であることを特徴とするものである。
An ultrafine yarn comprising a yarn substantially composed of polytrimethylene terephthalate, and having a dry heat shrinkage rate (TWA) and a single fiber fineness (FDT) satisfying all of the following formulas.
(1) 5 ≦ TWA (%) ≦ 20
(2) 0.01 ≦ FDT (dtex) ≦ 1
The ultrafine yarn of the present invention is preferably a sea-island type composite yarn in which the island component is composed of polytrimethylene terephthalate and sea component polylactic acid, and the sea component / island component composite ratio is 10/90 to 50/50.

また、本発明の極細糸において、好ましくは、沸騰水収縮率(SWA)とアルカリ減量後の乾熱収縮率(TWA)がTWA(%)/SWA(%)≧1を満たすことを特徴とするものである。   In the ultrafine yarn of the present invention, preferably, the boiling water shrinkage (SWA) and the dry heat shrinkage (TWA) after alkali weight reduction satisfy TWA (%) / SWA (%) ≧ 1. Is.

また、本発明の極細糸において、好ましくは、アルカリ減量前の海島型複合糸の原糸強度が3.0cN/dtex以上であることを特徴とするものである。   In the ultrathin yarn of the present invention, the sea-island type composite yarn before alkali weight reduction preferably has a raw yarn strength of 3.0 cN / dtex or more.

また、本発明の高密度織物は、タテ糸および/またはヨコ糸に前記の極細糸を使用することを特徴とするものである。   Moreover, the high-density fabric of the present invention is characterized by using the above-mentioned ultrafine yarn for warp and / or weft.

本発明によれば、ソフト感、精緻感、、発色性に優れた高密度織編物得ることができ、かつ生産性に優れ、アルカリ処理後の廃液による環境負荷が小さいポリトリメチレンテレフタレート極細糸を提供される。また、高密度織編物にしても布帛にストレッチ性を付与することができる。   According to the present invention, it is possible to obtain a polytrimethylene terephthalate extra fine yarn that can obtain a high-density woven or knitted fabric excellent in softness, fineness, and color development, is excellent in productivity, and has a low environmental impact due to waste liquid after alkali treatment. Provided. Moreover, even if it is a high-density woven or knitted fabric, stretchability can be imparted to the fabric.

さらに、綿などのセルロース系の繊維と相性が良く、綿との交織などファブリケーションに好適である。   Furthermore, it is compatible with cellulosic fibers such as cotton, and is suitable for fabrication such as union with cotton.

本発明の極細糸からなる布帛は、衣料用として、特にワンピース、シャツ、ブラウス、スカートなどの婦人衣料、また防風性にも優れることからレインコート、アスレチックウェア、スキーウェアなどのスポーツ衣料などで、また衣料資材用としてはハンカチ、眼鏡拭き、洗顔タオル、遮光カーテンなどに好適である。   The cloth made of the ultrafine yarn of the present invention is used for clothing, particularly women's clothing such as dresses, shirts, blouses, skirts, and sports clothing such as raincoats, athletic wear, ski wear, etc. For clothing materials, it is suitable for handkerchiefs, wiping glasses, face wash towels, light-shielding curtains, and the like.

以下、更に詳しく本発明について説明する。   Hereinafter, the present invention will be described in more detail.

本発明の極細糸は、実質的にポリトリメチレンテレフタレートで構成されている糸条からなる極細糸である。   The extra fine yarn of the present invention is an extra fine yarn composed of a yarn substantially composed of polytrimethylene terephthalate.

本発明の極細糸は乾熱収縮率(TWA)が下記式(1)を満たすことが重要である。
(1)5≦TWA(%)≦20
アルカリ減量によって極細糸を得る場合、一般的には乾熱収縮率としては、アルカリ減量前の乾熱収縮率で規定していることが通常である。アルカリ減量は繊維表面を溶かすことで、織編物内の交錯点に空隙を生みだし、ソフトでしなやかな風合いを付与するため用いられている。しかし、高密度織編物においてはアルカリ減量を施こすことで、フカツキ感も付与されることが問題となっていた。本発明においては、鋭意検討した結果、アルカリ減量後においても糸に収縮性を付与することで、ソフトで精緻感ある高密度織編物を得ることができる極細糸を得ることができることを見出した。すなわち、アルカリ減量後の、織物を構成する糸の乾熱収縮率(TWA)が、5≦TWA(%)≦20を満たすことで、ソフトで精緻感ある高密度織編物を得ることができる。TWA(%)<5では織物に精緻感を付与することができず、また、TWA(%)>20では、収縮が強すぎて、織物としての粗硬感が強くなってしまう。さらに好ましくは8≦TWA(%)≦20である。
It is important that the ultrafine yarn of the present invention has a dry heat shrinkage rate (TWA) satisfying the following formula (1).
(1) 5 ≦ TWA (%) ≦ 20
When ultrafine yarn is obtained by reducing the alkali, generally, the dry heat shrinkage is generally defined by the dry heat shrinkage before reducing the alkali. Alkali weight loss is used to create a soft and supple texture by melting the fiber surface to create voids at the intersections in the woven or knitted fabric. However, in high-density woven and knitted fabrics, it has been a problem that a feeling of fluffiness is also imparted by performing alkali weight reduction. In the present invention, as a result of intensive studies, it has been found that an ultrafine yarn capable of obtaining a soft and precise high-density woven or knitted fabric can be obtained by imparting shrinkage to the yarn even after alkali weight reduction. That is, when the dry heat shrinkage (TWA) of the yarn constituting the woven fabric after reducing the alkali satisfies 5 ≦ TWA (%) ≦ 20, a soft and precise high-density woven or knitted fabric can be obtained. When TWA (%) <5, it is impossible to impart a fine feeling to the woven fabric, and when TWA (%)> 20, the shrinkage is too strong and the coarseness of the woven fabric becomes strong. More preferably, 8 ≦ TWA (%) ≦ 20.

なお、本発明における乾熱収縮率(TWA)とは、後述する測定方法で測定した値を言う。   In addition, the dry heat shrinkage rate (TWA) in this invention means the value measured with the measuring method mentioned later.

また、本発明の極細糸は、沸騰水収縮率(SWA)と乾熱収縮率(TWA)との比が、TWA(%)/SWA(%)≧1を満たすことが好ましい。乾熱収縮率(TWA)が高い値であっても、沸騰水収縮率(SWA)がそれ以上に高い値であれば、ソフトでしなやかな風合いが減少してしまうからである。さらに好ましくはTWA(%)/SWA(%)≧1.5である。   Moreover, it is preferable that the ratio of the boiling water shrinkage (SWA) and the dry heat shrinkage (TWA) of the ultrafine yarn of the present invention satisfies TWA (%) / SWA (%) ≧ 1. This is because even if the dry heat shrinkage rate (TWA) is a high value, if the boiling water shrinkage rate (SWA) is higher than that, the soft and supple texture is reduced. More preferably, TWA (%) / SWA (%) ≧ 1.5.

なお、本発明における沸騰収縮率(SWA)とは、後述する測定方法で測定した値を言う。   In addition, the boiling shrinkage rate (SWA) in this invention means the value measured with the measuring method mentioned later.

本発明において、沸騰水収縮率(SWA)の好ましい範囲は、染色工程の工程通過性を考慮すると2≦SWA(%)≦15、さらに好ましくは2≦SWA(%)≦10である。     In the present invention, the preferable range of the boiling water shrinkage (SWA) is 2 ≦ SWA (%) ≦ 15, more preferably 2 ≦ SWA (%) ≦ 10 in consideration of the processability of the dyeing process.

さらに本発明の極細糸の単繊維繊度(FDT)は、下記式(2)を満たすことが必要である。
(2)0.01≦FDT(dtex)≦1
0.01≦FDT(dtex)≦1を満たすことで、織編物にした際のソフト感を得ることができる。より好ましい範囲は、0.01≦FDT(dtex)≦0.5である。FDT(dtex)>1であると、織編物にソフト感を付与することはできない。またFDT(dtex)<0.01であると、細すぎて、発色性が低下してしまう。
Furthermore, the single fiber fineness (FDT) of the ultrafine yarn of the present invention must satisfy the following formula (2).
(2) 0.01 ≦ FDT (dtex) ≦ 1
By satisfying 0.01 ≦ FDT (dtex) ≦ 1, it is possible to obtain a soft feeling when a woven or knitted fabric is formed. A more preferable range is 0.01 ≦ FDT (dtex) ≦ 0.5. When FDT (dtex)> 1, a soft feeling cannot be imparted to the woven or knitted fabric. On the other hand, if FDT (dtex) <0.01, it is too thin and the color developability deteriorates.

また極細糸の断面形状は丸断面の他、扁平、三角、中空等の異形断面であっても構わない。   Further, the cross-sectional shape of the ultrafine yarn may be an irregular cross-section such as a flat shape, a triangular shape, and a hollow shape in addition to a round cross-section.

本発明の極細糸をタテ糸および/またはヨコ糸に使用した織物にすることで、精緻感のあるソフトな高密度織編物を得ることができる。     By making the extra fine yarn of the present invention into a woven fabric using warp yarn and / or weft yarn, it is possible to obtain a soft, high-density woven or knitted fabric with a fine feeling.

本発明の極細糸は、島成分がポリトリメチレンテレフタレート、海成分ポリ乳酸で構成された海島型複合糸をアルカリ減量して得られたものであることが好ましい。このような海島型複合糸とすることで、糸パッケージや生機の状態で遅延収縮するといった加工の問題がなくなる。また海成分のポリ乳酸はアルカリ減量速度が速いため、アルカリ減量工程で溶解しやすく、島成分のポリトリメチレンテレフタレート、すなわちポリトリメチレンテレフタレート極細糸がより収縮しやすくなる。   The ultrafine yarn of the present invention is preferably obtained by alkali-reducing a sea-island type composite yarn in which the island component is composed of polytrimethylene terephthalate and the sea component polylactic acid. Such a sea-island type composite yarn eliminates the problem of processing such as delayed shrinkage in the state of the yarn package or the raw machine. In addition, since the sea component polylactic acid has a high alkali weight loss rate, it is easily dissolved in the alkali weight loss process, and the island component polytrimethylene terephthalate, that is, polytrimethylene terephthalate ultrafine yarn, is more likely to shrink.

またポリ乳酸はポリトリメチレンテレフタレートやポリエチレンテレフタレートよりも溶融温度が低いため、溶融温度がポリトリメチレンテレフタレートよりも高い有機金属塩を共重合したポリエチレンテレフタレートを海成分として用いた場合に比べ、紡糸温度を低く押さえることができ、原糸、高次を含めた操業の安定化やポリトリメチレンテレフタレートの熱劣化による風合い低下の防止が可能となる。これらのポリ乳酸の効果により本発明の目的である原糸強度が高く、製糸性、延伸性、分割性が良く、風合いが優れ、且つ環境負荷の小さい海島型複合糸が得ることができる。   Polylactic acid has a lower melting temperature than polytrimethylene terephthalate or polyethylene terephthalate, so the spinning temperature is higher than when polyethylene terephthalate copolymerized with an organometallic salt whose melting temperature is higher than that of polytrimethylene terephthalate is used as the sea component. Can be kept low, and it is possible to stabilize operations including raw yarns and higher orders and to prevent a decrease in texture due to thermal degradation of polytrimethylene terephthalate. Due to the effects of these polylactic acids, it is possible to obtain a sea-island type composite yarn having a high raw yarn strength, a good yarn forming property, stretchability, good splitting property, excellent texture, and a small environmental load.

尚、本発明でいうポリ乳酸は、特に制限されるものではないが、平均分子量5万〜10万が好ましく、かつ純度95.0%〜99.5%のL−乳酸からなるポリ乳酸であれば工程での強度が維持できるほか、適度な生分解性が得られることから溶出した後の廃液の環境負荷が小さく好ましい。   The polylactic acid referred to in the present invention is not particularly limited, but is preferably a polylactic acid composed of L-lactic acid having an average molecular weight of 50,000 to 100,000 and a purity of 95.0% to 99.5%. In addition to being able to maintain strength in the process, moderate biodegradability can be obtained, so that the environmental load of the waste liquid after elution is small and preferable.

また、海成分がポリエチレンテレフタレートの場合、アルカリ減量のみでは完全に溶解するまでに時間がかかり、通常はマレイン酸などの酸性処理をアルカリ減量前に施す必要があり、そのため、綿などのセルロース系の繊維と複合することはできなかったが、海成分をポリ乳酸にすることで、上記問題は解決し、綿との交織などのファブリケーションが可能となる。   In addition, when the sea component is polyethylene terephthalate, it takes time to completely dissolve with alkali weight reduction alone, and it is usually necessary to perform acid treatment such as maleic acid before weight loss with alkali. Although it could not be combined with fiber, the above problem can be solved by using polylactic acid as the sea component, and fabrication such as union with cotton becomes possible.

島成分のポリトリメチレンテレフタレートとは、テレフタル酸を主たる酸成分とし、1,3プロパンジオールを主たるグリコール成分として得られるポリエステルである。ただし、20モル%以下、好ましくは10モル%以下の割合で他のエステル結合を形成可能な共重合成分を含むものであっても良い。共重合可能な化合物として、たとえばイソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸、セバシン酸などのジカルボン酸類、一方、グリコール成分として、例えばエチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコールなどを挙げることができるが、これらに限られるものではない。また、艶消剤として、二酸化チタン、滑剤としてのシリカやアルミナの微粒子、抗酸化剤として、ヒンダードフェノール誘導体、着色顔料などを必要に応じて添加することができる。   The island component polytrimethylene terephthalate is a polyester obtained using terephthalic acid as the main acid component and 1,3 propanediol as the main glycol component. However, it may contain a copolymer component capable of forming another ester bond at a ratio of 20 mol% or less, preferably 10 mol% or less. Examples of copolymerizable compounds include dicarboxylic acids such as isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, dimer acid, and sebacic acid, while glycol components include, for example, ethylene glycol, diethylene glycol, butanediol, neopentyl glycol, and cyclohexanedimethanol. , Polyethylene glycol, polypropylene glycol and the like can be mentioned, but are not limited thereto. Further, titanium dioxide as a matting agent, silica or alumina fine particles as a lubricant, hindered phenol derivatives, coloring pigments and the like as antioxidants can be added as necessary.

本発明の極細糸は、メチレン基の主鎖が伸び縮みするというポリトリメチレンテレフタレート特有の伸縮弾性特性により、高密度織編物にしても布帛にストレッチ性を付与することができる。   The ultrafine yarn of the present invention can impart stretchability to a fabric even in a high-density woven or knitted fabric due to the elastic elasticity characteristic unique to polytrimethylene terephthalate in which the main chain of a methylene group expands and contracts.

また、本発明における複合糸は海成分にポリ乳酸を配することにより、原糸操業性、工程通過性を維持するために必須である原糸強度を高めることが可能であり、海島型複合糸の原糸強度は3.0cN/dtex以上のものであることが好ましい。原糸強度が3.0cN/dtex未満では、原糸強度が低すぎるため原糸操業性が悪化するとともに、高次工程においても単糸切れ、毛羽等の発生により工程通過性、製品品位の低下を生じてしまうのである。原糸操業性、工程通過性をより高めるためには原糸強度は3.3cN/dtex以上であることが好ましい。   In addition, the composite yarn in the present invention can increase the strength of the raw yarn, which is essential for maintaining the raw yarn operability and process passability, by arranging polylactic acid as a sea component. The raw yarn strength is preferably 3.0 cN / dtex or more. If the raw yarn strength is less than 3.0 cN / dtex, the raw yarn strength is too low and the operability of the raw yarn deteriorates. In addition, even in higher-order processes, single yarn breakage, fluff, etc. cause process passability and product quality deterioration. Will occur. In order to further improve the raw yarn operability and process passability, the raw yarn strength is preferably 3.3 cN / dtex or more.

本発明における海島型複合糸の海成分/島成分の複合比率は複合形態の安定性、製糸性、生産性の点から10/90〜50/50(重量比)とするものである。海成分の複合比率が10%未満の場合は、複合異常が発生し分割性不良を生じたり、複合形態が正常であっても海成分の溶解不良による分割性不良を生じ、十分なソフト感を得ることができない。逆に海成分の複合比率が50%を越えると、生産性が低下するとともに、織編物とした際に「ふかつき」が生じ、反発感のない織編物となってしまう。海島型複合繊維の海成分/島成分の複合比率は15/85〜40/60であることがより好ましい。   The sea / island component ratio of the sea-island composite yarn in the present invention is 10/90 to 50/50 (weight ratio) from the viewpoint of stability of the composite form, yarn-making property, and productivity. When the composite ratio of the sea component is less than 10%, a composite abnormality occurs, resulting in poor splitting, or even if the composite form is normal, poor splitting due to poor dissolution of the sea component results in sufficient softness. Can't get. On the other hand, when the composite ratio of the sea components exceeds 50%, the productivity is lowered, and when the woven or knitted fabric is formed, “futsukuki” is generated and the knitted or knitted fabric has no rebound. The sea / island component ratio of the sea-island composite fiber is more preferably 15/85 to 40/60.

また、本発明における複合糸は繊維表面は海成分で完全に覆われていても、島成分が一部露出していてもかまわない。さらに海成分を除去した後の島成分の断面形状についても丸断面の他、扁平、三角等の異形断面であってもよい。   In the composite yarn of the present invention, the fiber surface may be completely covered with the sea component, or the island component may be partially exposed. Further, the cross-sectional shape of the island component after removing the sea component may be a cross-sectional shape such as a flat shape or a triangular shape in addition to the round cross-section.

さらに、本発明における複合糸は、単繊維断面内の島成分数を3〜100とすることで複合異常等による製糸性の悪化を回避でき、併せて島成分の単糸繊度を適当とすることができるため、製糸性とソフト感の両立が容易となる。より好ましい島成分数は6〜80である。アルカリ減量後の極細糸の繊度(0.01≦FDT(dtex)≦1)が希望の値になるよう、これら島成分数と複合糸の繊度を適宜設定すればよい。   Furthermore, the composite yarn in the present invention can avoid the deterioration of the yarn-making property due to composite abnormality or the like by setting the number of island components in the cross section of the single fiber to 3 to 100, and also make the single yarn fineness of the island component appropriate. Therefore, it becomes easy to achieve both the spinning property and the soft feeling. A more preferable island component number is 6-80. The number of island components and the fineness of the composite yarn may be appropriately set so that the fineness (0.01 ≦ FDT (dtex) ≦ 1) of the ultrafine yarn after the alkali weight reduction becomes a desired value.

本発明における複合糸は、複合糸紡糸用の公知の装置を用いて製造することができ、例えば特開昭57−47938号公報の第3図や特開昭57−82526号公報の第2図に示される装置を好適な一例として使用して製造することができる。   The composite yarn in the present invention can be produced using a known apparatus for composite yarn spinning. For example, FIG. 3 of JP-A-57-47938 and FIG. 2 of JP-A-57-82526. Can be manufactured using the device shown in FIG.

本発明における複合糸を製糸するにあたっては、紡糸および延伸工程を連続して行う方法、未延伸糸として一旦巻き取った後、延伸する方法、延伸後に弛緩熱処理する方法、または高速製糸法など何れのプロセスにも適用できる。   In producing the composite yarn in the present invention, any method such as a method in which spinning and drawing processes are continuously performed, a method in which the yarn is once wound as an undrawn yarn and then drawn, a method in which relaxation heat treatment is performed after drawing, or a high-speed yarn making method is used. It can also be applied to processes.

さらに必要に応じて仮撚や空気交絡等の糸加工を施しても良い。   Furthermore, yarn processing such as false twisting and air entanglement may be performed as necessary.

本発明における複合糸で高密度織物を製織するにあたっては、レピア織機、ウォーター織機、エアジェット織機等を使用することができる。   In weaving a high-density fabric with the composite yarn in the present invention, a rapier loom, a water loom, an air jet loom, or the like can be used.

また染色するにあたっては、高密度化させるためリラックス精練工程として、ソフサーリラックスまたは液流リラックス法を用いることが好ましい
アルカリ減量するにあたっては、常法に従い水酸化ナトリウム水溶液を用いて、減量すすることができる。80℃以上に加熱した水酸化ナトリウム水溶液を用いて減量すると、アルカリ減量時間を短くできるので好ましい。また、本発明の高密度織物は複合糸を製織した後に、アルカリ減量を行って極細糸とすることがより好ましい。
When dyeing, it is preferable to use the softer relaxation or liquid flow relaxation method as a relaxation scouring process in order to increase the density. When reducing the alkali, use an aqueous sodium hydroxide solution to reduce the amount. Can do. It is preferable to reduce the amount by using a sodium hydroxide aqueous solution heated to 80 ° C. or higher because the alkali weight loss time can be shortened. Further, it is more preferable that the high-density fabric of the present invention is made into ultrafine yarn by weaving the composite yarn and then performing alkali weight loss.

以下、実施例により本発明をより詳細に説明する。なお、実施例中の各特性値は次の方法で求めた。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, each characteristic value in an Example was calculated | required with the following method.

A.沸騰水収縮率(SWA)
周長0.8mの検尺機に、90mg/dtexの張力下で10回巻回してカセ取りし、10分放置した後、カセ長(L)を測定する。その後、このカセをガーゼで包み、無荷重下で98℃×20分間熱水処理し、2cm以下の棒につり下げ約12時間放置した後、カセ長(L1)測定し、下記式で算出した。
・沸騰水収縮率(SWA)=(L−L1)/L×100
B.乾熱収縮率(TWA)
上記方法で沸騰水処理したカセをガーゼで包み、海島複合糸から極細糸を得る場合のみ無荷重下で98℃の3%水酸化ナトリウム水溶液で海成分が完全に溶解するまで処理する。そのまま常温で約12時間放置した後、160℃の乾燥機内で無荷重下で5分処理する。その後、2cm以下の棒につり下げ約12時間放置した後、カセ長(L2)測定し、下記式で算出した。
・乾熱収縮率(TWA)=(L1−L2)/L2×100
C.単繊維繊度(FDT)
上記方法でカセを沸騰水処理、アルカリ減量処理した後、0.1g/dtexの加重で10cm長にカットし、単繊維の重量を測定することで単繊維繊度を測定した。
A. Boiling water shrinkage (SWA)
Wrap 10 times on a measuring instrument with a circumference of 0.8 m under a tension of 90 mg / dtex, remove the waste, leave it for 10 minutes, and measure the length (L). Then, this case was wrapped with gauze, hydrothermally treated under no load at 98 ° C. for 20 minutes, suspended on a 2 cm or less rod and allowed to stand for about 12 hours, then the case length (L1) was measured and calculated by the following formula: .
・ Boiling water shrinkage (SWA) = (L−L1) / L × 100
B. Dry heat shrinkage (TWA)
The casserole treated with boiling water by the above method is wrapped with gauze, and only when obtaining ultrafine yarn from the sea-island composite yarn, it is treated under no load until it completely dissolves the sea component with a 3% aqueous sodium hydroxide solution at 98 ° C. After leaving it at room temperature for about 12 hours, it is treated in a dryer at 160 ° C. under no load for 5 minutes. Then, after hanging on a rod of 2 cm or less and allowing to stand for about 12 hours, the length of the case (L2) was measured and calculated by the following formula.
-Dry heat shrinkage (TWA) = (L1-L2) / L2 × 100
C. Single fiber fineness (FDT)
After the casserole was treated with boiling water and alkali reduced by the above method, it was cut to a length of 10 cm with a weight of 0.1 g / dtex, and the single fiber fineness was measured by measuring the weight of the single fiber.

D.強度
JIS L1013(1999)に準じオリエンテック社製テンシロンUCT−100を用いて測定した。
D. Strength Measured according to JIS L1013 (1999) using Tensilon UCT-100 manufactured by Orientec Corporation.

E.極限粘度[η]
オルソクロロフェノール10mlに対し試料0.10gを溶解し、温度25℃においてオストワルド粘度計を用いて測定した。
E. Intrinsic viscosity [η]
A sample of 0.10 g was dissolved in 10 ml of orthochlorophenol and measured using an Ostwald viscometer at a temperature of 25 ° C.

なお、実施例における評価は、以下の方法で行なった。   In addition, evaluation in an Example was performed with the following method.

(1)製糸性の評価
紡糸時間24時間における糸切れ回数から製糸性を4段階評価した。
○○:糸切れ無し
○ :糸切れ有り(1〜2回)
△ :糸切れ有り(3〜5回)
× :糸切れ多発(5回以上)
(2)精緻感の評価
実施例、比較例に記載の方法で得た織物の精緻感を触感(きめの細かさ)と見た目(表面のきれいさ)により官能評価した。この際、従来品である比較例3の織物を標準として、以下の基準で4段階評価を行ない、10人のパネラーの評価結果を平均して判定した。
○○:極めて精緻感がある、
○ :やや精緻感がある、
△ :標準織物と同等の風合い、
× :精緻感がない(きめが粗く、表面がきたない)。
(1) Evaluation of yarn-making property The yarn-making property was evaluated in four stages from the number of yarn breakage at a spinning time of 24 hours.
○○: No thread breakage ○: Thread breakage (1 to 2 times)
Δ: Thread breakage (3-5 times)
×: Many yarn breaks (more than 5 times)
(2) Evaluation of elaborate feeling The sensory evaluation of the fine feeling of the woven fabrics obtained by the methods described in Examples and Comparative Examples was performed based on tactile sensation (fineness of texture) and appearance (cleanness of the surface). Under the present circumstances, the textile of the comparative example 3 which is a conventional product was made into a standard, 4-step evaluation was performed on the following references | standards, and the evaluation result of 10 panelists was averaged and determined.
○○: Extremely sophisticated
○: Somewhat elaborate,
Δ: Texture equivalent to standard fabric,
X: There is no fine feeling (the texture is rough and the surface is not messy).

(3)ソフト感の評価
実施例、比較例に記載の方法で得た織物のソフトさを触感により官能評価した。この際、従来品である比較例3の織物を標準として、以下の基準で4段階評価を行ない、10人のパネラーの評価結果を平均して判定した。
○○:極めてソフトな風合い、
○ :ややソフトな風合い、
△ :標準織物と同等の風合い、
× :堅い風合い。
(3) Evaluation of soft feeling The softness of the woven fabrics obtained by the methods described in Examples and Comparative Examples was sensoryly evaluated by tactile sensation. Under the present circumstances, the textile of the comparative example 3 which is a conventional product was made into a standard, 4-step evaluation was performed on the following references | standards, and the evaluation result of 10 panelists was averaged and determined.
○○: Extremely soft texture,
○: Slightly soft texture,
Δ: Texture equivalent to standard fabric,
X: Hard texture.

(4)発色性の評価
実施例、比較例に記載の方法で得た織物の発色性を、見た目により官能評価した。この際、従来品である比較例3の織物を標準として、以下の基準で4段階評価を行ない、10人のパネラーの評価結果を平均して判定した。
○○:極めて発色性が良い、
○ :やや発色性が良い、
△ :標準織物と同等の発色性、
× :発色性が悪い。
(4) Evaluation of color developability The color developability of the fabrics obtained by the methods described in Examples and Comparative Examples was sensory-evaluated by appearance. Under the present circumstances, the textile of the comparative example 3 which is a conventional product was made into a standard, 4-step evaluation was performed on the following references | standards, and the evaluation result of 10 panelists was averaged and determined.
○○: Extremely good color development,
○: Slightly good color development,
Δ: Color development equivalent to standard fabric,
X: Color developability is poor.

実施例1
ジメチルテレフタル酸19.4kg、1,3−プロパンジオール15.2kgにテトラブチルチタネートを触媒として用い、140℃〜230℃でメタノールを留出しつつエステル交換反応を行った後、さらに、250℃温度一定の条件下で3.5時間重合を行い極限粘度[η]が0.96のポリトリメチレンテレフタレートを得た。
Example 1
After transesterification was carried out while distilling methanol at 140 ° C to 230 ° C using tetrabutyl titanate as a catalyst in 19.4 kg of dimethylterephthalic acid and 15.2 kg of 1,3-propanediol, the temperature was kept constant at 250 ° C. Polymerization was conducted for 3.5 hours under the above conditions to obtain polytrimethylene terephthalate having an intrinsic viscosity [η] of 0.96.

上記製法で得たポリトリメチレンテレフタレートを島成分に用い、海成分として光学純度98.0%のポリ−L−乳酸を用い、海/島=20/80(重量比)の複合比率にて、島数70、ホール数12の海島型複合用口金を用いて複合紡糸機にて紡糸温度250℃、引き取り速度1500m/分で巻き取った。続いて、該未延伸糸を通常のホットロール−ホットロール系延伸機を用いて延伸温度80℃、熱セット温度120℃で延伸糸の伸度が35%となるように延伸倍率を合わせて延伸を行い、56dtex−12filの延伸糸を得た。得られた延伸糸の糸物性を表1に示す。   Using polytrimethylene terephthalate obtained by the above production method as an island component, using poly-L-lactic acid with an optical purity of 98.0% as a sea component, at a composite ratio of sea / island = 20/80 (weight ratio), A sea-island type compound base having 70 islands and 12 holes was wound with a compound spinning machine at a spinning temperature of 250 ° C. and a take-up speed of 1500 m / min. Subsequently, the undrawn yarn is drawn using a normal hot roll-hot roll drawing machine at a drawing temperature of 80 ° C. and a heat setting temperature of 120 ° C. so that the drawn yarn has an elongation of 35%. And a 56 dtex-12 fil drawn yarn was obtained. Table 1 shows the yarn physical properties of the obtained drawn yarn.

得られた延伸糸を、経糸および緯糸に使用してタテ密度145(本/inch)、ヨコ密度95(本/inch)の平織物を製織し、95℃の熱水で精練した後、160℃で乾熱セットを行い、さらに98℃の3%水酸化ナトリウム水溶液で海成分が完全に溶解するまで減量加工し、次いで湿熱130℃で染色、乾熱160℃で仕上げセットを行った。得られた織物特性について評価した結果を表1に示す。実施例1では製糸性が良好であり、また得られた織物は精緻感に優れ、ソフト感、発色性が良好なものであった。   The obtained drawn yarn is used for warp and weft to weave a plain fabric having a warp density of 145 (line / inch) and a horizontal density of 95 (line / inch), scouring with hot water at 95 ° C., and then 160 ° C. Then, a dry heat set was performed, and the weight was reduced with a 98% 3% aqueous sodium hydroxide solution until the sea components were completely dissolved. Table 1 shows the results of evaluation of the obtained fabric characteristics. In Example 1, the spinning property was good, and the obtained woven fabric was excellent in fineness, softness, and good color developability.

実施例2
実施例2は実施例1と同様に延伸糸を用いて、ヒータ温度130℃、オーバーフィード率10%で弛緩熱処理を実施した以外は実施例1と同様の方法で製織、加工を行い、織物を得た。延伸糸物性と織物について評価した結果を表1に示す。実施例2で得られた織物は精緻感に優れ、ソフト感、発色性が良好なものであった。
Example 2
In Example 2, weaving and processing were performed in the same manner as in Example 1 except that a relaxed heat treatment was performed at a heater temperature of 130 ° C. and an overfeed rate of 10% using a drawn yarn in the same manner as in Example 1. Obtained. Table 1 shows the results of evaluating the properties of the drawn yarn and the woven fabric. The fabric obtained in Example 2 was excellent in fineness, softness, and good color development.

比較例1
比較例1は実施例1と同様のポリトリメチレンテレフタレートを用い、ホール数250の口金を用いて、通常紡糸機にて紡糸温度250℃、引き取り速度1500m/分で巻き取った。得られた延伸糸をアルカリ減量率を20%に設定した以外は実施例1と同様の方法で製織、加工を行い織物を得た。延伸糸物性と織物について評価した結果を表1に示す。比較例1では、製糸性が悪く、糸切れが多発した。また、得られた織物は表面が粗く、精緻感に欠けたものであった。
Comparative Example 1
In Comparative Example 1, the same polytrimethylene terephthalate as in Example 1 was used, and a winding having a hole number of 250 was used to wind up with a normal spinning machine at a spinning temperature of 250 ° C. and a take-up speed of 1500 m / min. A woven fabric was obtained by weaving and processing the obtained drawn yarn in the same manner as in Example 1 except that the alkali weight loss rate was set to 20%. Table 1 shows the results of evaluating the properties of the drawn yarn and the woven fabric. In Comparative Example 1, the yarn-making property was poor and the yarn breakage occurred frequently. Further, the obtained woven fabric had a rough surface and lacked a sense of precision.

比較例2
比較例2では島成分として実施例1と同様のポリトリメチレンテレフタレート、海成分として5−ナトリウムスルホイソフタル酸4.5モル%共重合した極限粘度[η]が0.56のポリエチレンテレフタレートを用い、実施例1と同様の口金、複合紡糸機を用いて紡糸温度280℃、引き取り速度1500m/分で巻き取り、得られた未延伸糸を実施例1と同様の方法で延伸糸を得た。得られた延伸糸を実施例1と同様の方法で製織、加工を行い織物を得た。延伸糸物性と織物について評価した結果を表1に示す。比較例2では、製糸性が悪く、糸切れが多発した。また、得られた織物はきめがが粗く、精緻感に欠けたものであった。
Comparative Example 2
In Comparative Example 2, polytrimethylene terephthalate similar to Example 1 was used as the island component, and polyethylene terephthalate having an intrinsic viscosity [η] of 0.56 copolymerized with 4.5 mol% of 5-sodium sulfoisophthalic acid was used as the sea component. Using the same die and compound spinning machine as in Example 1, the yarn was wound at a spinning temperature of 280 ° C. and a take-up speed of 1500 m / min, and the obtained undrawn yarn was obtained in the same manner as in Example 1. The obtained drawn yarn was woven and processed in the same manner as in Example 1 to obtain a woven fabric. Table 1 shows the results of evaluating the properties of the drawn yarn and the woven fabric. In Comparative Example 2, the yarn-making property was poor and yarn breakage occurred frequently. Further, the obtained woven fabric had a rough texture and lacked a sense of precision.

比較例3
比較例3では島成分として極限粘度[η]が0.55のポリエチレンテレフタレートを用い、海成分として比較例2と同様の共重合ポリエチレンテレフタレートを用い、比較例2と同様方法で巻き取り、延伸糸を得た。得られた延伸糸を実施例1と同様の方法で製織、加工を行い織物を得た。延伸糸物性と織物について評価した結果を表1に示す。比較例3では、発色性も乏しく、かさかさした風合いであった。
Comparative Example 3
In Comparative Example 3, polyethylene terephthalate having an intrinsic viscosity [η] of 0.55 was used as the island component, and copolymer polyethylene terephthalate similar to that in Comparative Example 2 was used as the sea component. Got. The obtained drawn yarn was woven and processed in the same manner as in Example 1 to obtain a woven fabric. Table 1 shows the results of evaluating the properties of the drawn yarn and the woven fabric. In Comparative Example 3, the color developability was poor and the texture was bulky.

実施例3〜4、比較例4
繊度構成、海/島複合比率、島数を表2に示すように変更し、実施例1と同様の方法にて延伸糸および織物を得た。得られた延伸糸物性、織物評価の結果を表2に示す。
Examples 3-4, Comparative Example 4
The fineness composition, the sea / island composite ratio, and the number of islands were changed as shown in Table 2, and drawn yarn and woven fabric were obtained in the same manner as in Example 1. Table 2 shows the properties of the obtained drawn yarn and the evaluation of the fabric.

実施例2および3では製糸性が良好であり、得られた織物は精緻感、ソフト感、発色性が良好なものであった。   In Examples 2 and 3, the yarn-making property was good, and the resulting woven fabric was good in fineness, softness and color development.

一方、比較例4は、海成分の複合比率60%と高いため、製糸性が若干劣ると共に、海成分除去によって繊維間の空隙が大きく形成されることによってふかついたタッチの織物しか得られなかった。   On the other hand, in Comparative Example 4, since the sea component composite ratio is as high as 60%, the yarn-making property is slightly inferior, and only a touched fabric is obtained by forming a large gap between the fibers by removing the sea component. It was.

比較例5
延伸工程の熱セット温度を90℃にした以外は全て実施例1と同様の方法にて延伸糸及び織物を得た。得られた延伸糸物性、織物評価の結果を表2に示す。比較例5では収縮が強すぎて、かたい風合いであった。
Comparative Example 5
A drawn yarn and a woven fabric were obtained in the same manner as in Example 1 except that the heat setting temperature in the drawing process was 90 ° C. Table 2 shows the properties of the obtained drawn yarn and the evaluation of the fabric. In Comparative Example 5, the shrinkage was too strong and the texture was hard.

Figure 2006028645
Figure 2006028645

Figure 2006028645
Figure 2006028645

Claims (5)

実質的にポリトリメチレンテレフタレートで構成されている糸条からなり、乾熱収縮率(TWA)、単繊維繊度(FDT)が下記の式を全て満たすことを特徴とする極細糸。
(1)5≦TWA(%)≦20
(2)0.01≦FDT(dtex)≦1
An ultrafine yarn comprising a yarn substantially composed of polytrimethylene terephthalate, and having a dry heat shrinkage rate (TWA) and a single fiber fineness (FDT) satisfying all of the following formulas.
(1) 5 ≦ TWA (%) ≦ 20
(2) 0.01 ≦ FDT (dtex) ≦ 1
島成分がポリトリメチレンテレフタレート、海成分ポリ乳酸で構成されており、海成分/島成分の複合比率が10/90〜50/50である海島型複合糸をアルカリ減量して得られることを特徴とする請求項1に記載の極細糸。 The island component is composed of polytrimethylene terephthalate and sea component polylactic acid, and is obtained by alkali reduction of a sea island type composite yarn having a sea component / island component ratio of 10/90 to 50/50. The ultrathin yarn according to claim 1. 沸騰水収縮率(SWA)とアルカリ減量後の乾熱収縮率(TWA)がTWA(%)/SWA(%)≧1を満たすことを特徴とする請求項1または2に記載の極細糸。 The ultrafine yarn according to claim 1 or 2, wherein the boiling water shrinkage (SWA) and the dry heat shrinkage (TWA) after alkali reduction satisfy TWA (%) / SWA (%) ≥1. 海島型複合糸の原糸強度が3.0cN/dtex以上であることを特徴とする請求項2または3に記載の極細糸。 The ultrathin yarn according to claim 2 or 3, wherein the sea-island composite yarn has an original yarn strength of 3.0 cN / dtex or more. タテ糸および/またはヨコ糸に請求項1〜4いずれかに記載の極細糸を使用することを特徴とする高密度織物。
A high-density fabric using the ultrafine yarn according to any one of claims 1 to 4 for warp and / or weft.
JP2004204288A 2004-07-12 2004-07-12 Extra fine thread Active JP4506314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204288A JP4506314B2 (en) 2004-07-12 2004-07-12 Extra fine thread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204288A JP4506314B2 (en) 2004-07-12 2004-07-12 Extra fine thread

Publications (2)

Publication Number Publication Date
JP2006028645A true JP2006028645A (en) 2006-02-02
JP4506314B2 JP4506314B2 (en) 2010-07-21

Family

ID=35895344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204288A Active JP4506314B2 (en) 2004-07-12 2004-07-12 Extra fine thread

Country Status (1)

Country Link
JP (1) JP4506314B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231468A (en) * 2006-03-02 2007-09-13 Toray Ind Inc Sheet-shaped material, method for producing the sheet-shaped material, interior and clothing products by using the sheet-shaped material
WO2007148392A1 (en) * 2006-06-22 2007-12-27 Toray Industries, Inc. Sea-island type composite fiber and process for producing the same
WO2008056406A1 (en) * 2006-11-07 2008-05-15 Toray Industries, Inc. High-density woven fabric and production process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220032A (en) * 1999-01-28 2000-08-08 Toray Ind Inc Ultrafine polyester multifilament yarn, combined filament yarn and woven or knitted fabric
JP2001064829A (en) * 1999-08-25 2001-03-13 Toray Ind Inc Ultrafine polyester fiber, combined filament yarn and cloth therefrom
JP2003306878A (en) * 2002-04-10 2003-10-31 Alcantara Spa Method for producing microfibrous suede non-woven fabric and method related to the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220032A (en) * 1999-01-28 2000-08-08 Toray Ind Inc Ultrafine polyester multifilament yarn, combined filament yarn and woven or knitted fabric
JP2001064829A (en) * 1999-08-25 2001-03-13 Toray Ind Inc Ultrafine polyester fiber, combined filament yarn and cloth therefrom
JP2003306878A (en) * 2002-04-10 2003-10-31 Alcantara Spa Method for producing microfibrous suede non-woven fabric and method related to the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231468A (en) * 2006-03-02 2007-09-13 Toray Ind Inc Sheet-shaped material, method for producing the sheet-shaped material, interior and clothing products by using the sheet-shaped material
WO2007148392A1 (en) * 2006-06-22 2007-12-27 Toray Industries, Inc. Sea-island type composite fiber and process for producing the same
WO2008056406A1 (en) * 2006-11-07 2008-05-15 Toray Industries, Inc. High-density woven fabric and production process

Also Published As

Publication number Publication date
JP4506314B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP3859672B2 (en) Composite fiber and method for producing the same
JP2006336162A (en) Woven fabric and method for producing the same
JP2007009395A (en) Ultrafine false-twist polytrimethylene terephthalate yarn and method for producing the same
KR20010081027A (en) Polyester yarn and method of manufacturing the same
JP2006214056A (en) Woven fabric
JP2010095813A (en) Woven and knitted fabric of multilayer structure and textile product
JP2001348735A (en) Sea-island conjugate yarn and combined filament yarn
JP4506314B2 (en) Extra fine thread
JP5495286B2 (en) Method for producing hair knitted fabric, hair knitted fabric and textile product
JP4221801B2 (en) Composite fiber, blended yarn and woven / knitted fabric
JP4329515B2 (en) Sea-island type composite fiber
JPH05106111A (en) Ethylene-vinyl alcohol copolymer hollow fiber and its production
JPS623270B2 (en)
JP2001040537A (en) Polyester fiber yarn and fabric
JP4691885B2 (en) Method for producing dyed yarn
JP2003253554A (en) Method for producing cotton-like polyester-based fabric
JP2016180189A (en) Commingled yarn, suede tone woven or knitted fabric and method for producing suede tone woven or knitted fabric
JP4985358B2 (en) Shrinkage difference mixed yarn
JP2007031882A (en) Method for producing woven fabric
JP2001295173A (en) Method for producing refreshing material
JP3484822B2 (en) Polyester multifilament composite yarn and method for producing the same
JP6638437B2 (en) Mixed yarn, woven or knitted fabric using the same, and suede-like woven or knitted fabric
JP2006336119A (en) Union cloth and method for producing the same
JP2005082908A (en) Dyed yarn and method for producing the same
JP2000234228A (en) Structural bulk-textured yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4506314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3