WO2008056406A1 - High-density woven fabric and production process - Google Patents
High-density woven fabric and production process Download PDFInfo
- Publication number
- WO2008056406A1 WO2008056406A1 PCT/JP2006/322137 JP2006322137W WO2008056406A1 WO 2008056406 A1 WO2008056406 A1 WO 2008056406A1 JP 2006322137 W JP2006322137 W JP 2006322137W WO 2008056406 A1 WO2008056406 A1 WO 2008056406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sea
- density
- yarn
- fabric
- island
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/36—Matrix structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
- D03D13/008—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/292—Conjugate, i.e. bi- or multicomponent, fibres or filaments
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/30—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
- D03D15/33—Ultrafine fibres, e.g. microfibres or nanofibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/30—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
- D03D15/37—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments with specific cross-section or surface shape
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
Definitions
- the present invention relates to a high-density woven fabric excellent in windproof property, ie, polytrimethylene terephthalate ultrafine yarn force, and a method for producing the same. More specifically, a high-density fabric having excellent windproof properties obtained by using a sea-island type composite fiber composed of polylactic acid and polytrimethylene terephthalate, which can produce polytrimethylene terephthalate ultrafine yarn by dissolution treatment, and It relates to the manufacturing method.
- these ultrafine fibers have been used in the past to improve the hard texture.
- polyester ultrafine fibers having a single fiber fineness of 0.5 dtex or less are pitch-woven. Used for knitting.
- the ultrafine fiber yarn made of polyethylene terephthalate has a high refractive index of about 1.6, so the color developability of the ultrafine fiber is not sufficient. Or because the polymer itself has a high hang rate, it was unable to give a sufficient soft feeling.
- ultrafine fibers made of polyethylene terephthalate many methods for producing ultrafine fibers of polyethylene terephthalate such as sea-island type composite fibers or split type composite fibers have been proposed. These composite fibers are made into ultrafine fibers made of polyethylene terephthalate by reducing or eluting one of the components by alkali treatment at the time of division.
- the weight loss on the polyethylene terephthalate side which should be made of ultrafine fibers, also proceeds at the same time as the weight loss force, the strength is reduced and may not be able to withstand practical use. For this reason, if the weight reduction processing conditions are relaxed, division processing may not be performed completely, which may lead to a reduction in product quality.
- the above-mentioned fiber made of polytrimethylene terephthalate has an excellent elastic recovery rate, a low Young's modulus, a good dyeing property, a chemically stable property, and has been known for a long time.
- Patent Document 3 and Patent Document 4 a method for producing ultrafine fibers of polytrimethylene terephthalate such as sea-island type composite fibers or split type composite fibers has also been proposed (see Patent Document 5 and Patent Document 6).
- the polymer used as an easily eluting component in Patent Document 5 and Patent Document 6 is a polyester copolymerized with an organic metal salt, and has a long elution time and poor productivity.
- Patent Document 1 Japanese Patent Laid-Open No. 11-200174
- Patent Document 2 Japanese Patent Laid-Open No. 2001-55644
- Patent Document 3 Japanese Patent Laid-Open No. 52-5320
- Patent Document 4 Japanese Patent Laid-Open No. 52-8124
- Patent Document 5 JP-A-11-123330
- Patent Document 6 Japanese Patent Laid-Open No. 2001-348735
- Patent Document 7 JP-A-11-302926
- the object of the present invention is an ultrafine fiber made of polytrimethylene terephthalate, which has an unattainable power that can not be achieved by the above-described prior art, and is excellent in softness and color development when used as a woven fabric for clothing.
- the object is to provide a high-density woven fabric having excellent windproof properties.
- Another object of the present invention is to provide a method for producing a high-density fabric excellent in windproof property, which is composed of ultrafine fibers made of the above polytrimethylene terephthalate. Means for solving the problem
- the object of the present invention can be achieved by adopting the following configuration.
- the high-density fabric of the present invention is a fabric formed by using multifilaments having a single fiber fineness of 0.01 to 0.5 dtex made of polytrimethylene terephthalate for warp yarn and Z or horizontal yarn, warp yarn and ® co yarn total force bar rates in 1700 than 3500 or less, and air permeability is as high fabric than 1. 0ccZcm 2 'S.
- the air permeability is less than 0.8 cc / cm 2 ′ s, the average of the multifilament monofilaments comprising the polytrimethylene terephthalate
- the degree of irregularity is 1.05 or more and 5.0 or less, and the above-mentioned multifilament made of polytrimethylene terephthalate has crimps.
- the method for producing a high-density fabric of the present invention is a sea-island type composite fiber in which the sea component polymer is composed of polylactic acid, and the island component polymer is composed of polytrimethylene terephthalate.
- Sea island type composite fiber with island component composite ratio of 10Z90 ⁇ 50Z50 and island component single fiber fineness of 0.01 ⁇ 0.5dtex obtained by dissolution treatment is used for warp yarn and Z or horizontal yarn Then, after weaving the woven fabric, polylactic acid is eluted by dissolution treatment.
- a monofilament made of polytrimethylene terephthalate, which is an island component polymer is dissolved after the polylactic acid of the sea component polymer is dissolved in a dissolution treatment. It may be mentioned that the shrinkage is 3% or more, and that the above-mentioned dissolution treatment is performed by using an alkaline solution.
- FIG. 1 is a surface photograph of a high-density fabric obtained in Example 1 of the present invention.
- FIG. 2 is a photograph of the surface of the fabric obtained in Comparative Example 1.
- the high-density woven fabric of the present invention it is necessary to use multifilaments having a single fiber fineness of 0.01-0.5 dtex made of polytrimethylene terephthalate for warp yarn and Z or horizontal yarn.
- the reason is to improve the hardness of the high-density fabric composed of multifilaments made of conventional polyethylene terephthalate and the insufficient color development when made into ultrafine fibers. It is to do. If the single fiber fineness is less than 0. Oldtex, the accuracy of one single fiber will be reduced, causing quality problems such as fluffing. On the other hand, if the single fiber fineness exceeds 0.5 dtex, the target software will be I can't get a feeling. A more preferable single fiber fineness is 0.05-0.2d tex.
- the multifilament having a single fiber fineness of 0.01-0.5 dtex used in the present invention is preferably employed in a range of 33-168 dtex in total fineness.
- the high-density woven fabric of the present invention is a warp yarn and a Z- or Yoko yarn that is a multi-filament made of polytrimethylene terephthalate of 0.01-0.5dtex.
- the fibers made of polyethylene terephthalate may have a so-called irregular cross section such as a triangle or a flat shape.
- the polytrimethylene terephthalate is preferably used in a weight ratio of preferably 30% or more, and more preferably 40% or more.
- the weave structure is a plain structure (1Z1 flat mat, etc.) having a high binding force at the weaving intersection.
- the total bar ratio of the warp yarn and the horizontal yarn constituting the high-density fabric is 1700 or more and 3500 or less, and
- the air permeability of the high-density fabric must be less than 1. OccZcm 2 ⁇ s.
- the total force bar ratio of the warp yarn and the horizontal yarn is a factor representing the fineness of the warp yarn and the horizontal yarn constituting the fabric. Wind resistance and water repellency are not sufficient if the total bar ratio is less than 1700. On the other hand, fabrics with a total bar ratio exceeding 3500 are not preferable because they are a region that cannot be stably obtained in industrial production. A more preferable range of the total power bar rate is 2000 or more and 3000 or less. The total power bar rate mentioned here is calculated by the following equation.
- Total power bar rate Cover rate of warp yarn + Cover rate of horizontal thread
- the air permeability is a measured value representing the windproof and water repellency performances of the present invention.
- the air permeability of the high density fabric of the present invention must be less than 1. OccZcm 2's , Preferably less than 0.8 cc Zcm 2 's. Such air permeability is necessary to exhibit functionality when a high-density fabric is used as clothing.
- This air permeability is a force that can be reduced relatively easily by applying a high-temperature and high-pressure press, which is usually called “calendar” processing, when creating the fabric.
- a high-temperature and high-pressure press which is usually called “calendar” processing
- the texture of the high-density fabric obtained becomes paper-like. For this reason, it is desirable to keep the processing under light conditions even if the adoption is poor.
- a method of thinly coating polyurethane surface with a polyurethane-based resin can also be adopted as a means for reducing the air permeability.
- the air permeability in the present invention is a value measured according to 8.27.1 A method (fragile method) of JIS L1096 (1999 edition).
- the air permeability here can also provide a secondary performance of force that represents windproof and water repellency performance.
- the high-density fabric of the present invention is dense, it is possible to make the powder or particles such as pollen difficult to stick by applying the fabric as it is or with a light water-repellent treatment. It can also be used for allergies such as clothing.
- the filament made of polytrimethylene terephthalate constituting the high-density fabric in the present invention preferably has an irregular cross section in which the average irregularity of the single fiber is 1.05 or more and 5.0 or less. Due to the bending moment characteristics of irregular cross-section fibers, there is a direction in which one single fiber tends to bend, and as an extreme example, flat cross-section fibers tend to bend in the short axis direction of the cross section, but the long axis direction of the cross section It is hard to bend. This property affects the opening state of the multifilament when it becomes a woven fabric.
- Fibers with irregular cross-sections tend to have better spreadability than fibers with uniform round cross-sections, and it is even better if there are variations in the degree of irregularity between the constituent single fibers.
- This high fiber-opening effect has the effect of reducing the gap between the crossing point of the fabric where the warp yarn and the horizontal yarn cross and the adjacent crossing point, which are necessary to improve windproof and water repellency. There is.
- the average profile of the filament cross section is preferably 1.05 or more and 5.0 or less.
- the average degree of irregularity means taking a photograph of the fiber cross section, measuring the diameter n of the maximum inscribed circle of the cross sectional shape and the maximum width m of the cross section, and calculating the degree of irregularity of the single fiber by the following formula. This is the average of the cross sections of individual fibers.
- the average degree of profile is less than 1.05, it is difficult to obtain the desired effect of improving the spreadability.
- the average profile exceeds 5.0, the yarn will be very flat and the bending direction will be constant, and the single fibers will be lined up in the same direction on the fabric. There is a tendency to get worse.
- Such a modified cross-section fiber sets the spinneret, changes the island component polymer arrangement of the sea-island type composite fiber, the number of island components, the composite ratio of the sea component polymer and the island component polymer, and the like. By this, it can be obtained as a fiber having a deformed cross section.
- the multifilament made of polytrimethylene terephthalate used in the high-density fabric of the present invention has crimps. This is due to the fact that the multifilament has crimps, so that when it is made into a woven fabric, the effect of reducing the gap between the crossing point of the fabric where the warp yarn and the horizontal yarn cross each other and the adjacent crossing point is improved. This is because the property and water repellency are improved.
- a general false twisting caloe method or the like can be employed as a method for imparting crimps to the multifilament.
- the force of the high-density woven fabric of the present invention is composed of ultrafine fibers made of polytrimethylene terephthalate.
- This ultrafine fiber can be suitably obtained by the so-called sea-island type composite fiber force. Specifically, weaving a fabric using sea-island type composite fibers using polylactic acid polymer as the sea component and polytrimethylene terephthalate polymer as the island component, and there is a dyeing process after weaving. Then, the polylactic acid, a sea component, is dissolved and removed to form polytrimethylene terephthalate ultrafine fibers.
- the ultrafine fiber obtained here is a multifilament because it has a cross-sectional structure in which a plurality of island components are scattered in the sea component.
- polylactic acid has a lower melting temperature than polytrimethylene terephthalate and polyethylene terephthalate, so the melting temperature is higher than that of polytrimethylene terephthalate V, compared to the case where polyethylene terephthalate copolymerized with an organic metal salt is used as the sea component.
- the spinning temperature can be kept low. This makes it possible to stabilize the operation in the process from the raw yarn production stage to the higher heating stage and to prevent the texture from being lowered due to thermal degradation of the island component polytrimethylene terephthalate.
- polylactic acid generally has a higher alkali dissolution rate than a polyester copolymerized with an organic metal salt, but sea-island type composite fiber further comprising polylactic acid as a sea component and polytrimethylene terephthalate as an island component. By doing so, the orientation of polylactic acid is suppressed and the alkali elution rate of polylactic acid becomes faster.
- the sea-island type composite fiber in which polylactic acid and polytrimethylene terephthalate are combined as described above is composed of polytrimethylene terephthalate divided as island components after the polylactic acid as a sea component is removed by alkali treatment or the like. It is possible to impart a unique phenomenon of leaving the shrinkage to the ultrafine fibers. For this reason, after forming the ultrafine fibers, it is possible to increase the weave density of the fabric and further densify it.
- polyester sea-island type composite fibers generally use polyethylene terephthalate obtained by copolymerizing a sea component with an organic metal salt having a high alkali elution rate, and ordinary polyethylene terephthalate is used for the island component.
- the sea components are eluted after the sea-island type composite fiber is knitted into a knitted fabric.
- the sea-island composite fiber using polyethylene terephthalate copolymerized with this organometallic salt has almost the same heat setting property as the sea component and the island component, so that the sea-island component shows uniform shrinkage after spinning Z drawing. Become.
- the elution failure tends to occur only with alkali treatment, and the alkali elution rate between the sea component and the island component is high.
- the knitted woven fabric is treated with a high-temperature acid to crack the interface between the sea component and the sheath component.
- seawater components are eluted during processing. For this reason, the island component after eluting the sea component has almost no shrinkage.
- polyethylene terephthalate copolymerized with organic metal salts of the prior art In comparison, polylactic acid has a rapid alkali hydrolysis, that is, alkali elution, while island trimer polytrimethylene terephthalate has a slower alkali hydrolysis, that is, alkali elution, than ordinary polyethylene terephthalate. Therefore, when sea components are eluted as in the prior art described above, sea components can be stably eluted only by a relatively low temperature alkali treatment without prior high-temperature acid treatment.
- the shrinkage performance remains in the polytrimethylene terephthalate, which is an island component, so that the density of the dough can be further refined after the sea component is eluted.
- the shrinkage imparting rate of the ultrafine fiber made of polytrimethylene terephthalate after elution of polylactic acid, which is a sea component depends on! Therefore, although it cannot be generally stated, it is possible to increase the density of the fabric by shrinking 3% or more.
- the productivity of polytrimethylene terephthalate which is the object of the present invention, is excellent in softness and color development when used as a woven fabric for clothing. It is possible to provide a high-density fabric excellent in windproof properties that has ultrafine fiber strength.
- the polylactic acid referred to in the present invention is not particularly limited, but L-lactic acid having a number average molecular weight of 50,000 to 100,000 is preferred and the purity is 95.0% to 99.5%.
- Polylactic acid consisting of Such polylactic acid can maintain the strength in each manufacturing process and obtain a suitable biodegradability, so the environmental impact of the waste liquid after elution is small.
- the polylactic acid may be a copolymerized polylactic acid obtained by copolymerizing L-lactic acid or D-lactic acid with other components having ester forming ability.
- Particularly preferable polylactic acid includes, from the viewpoint of high melting point and low refractive index, polylactic acid which is a polyester mainly composed of L-lactic acid and polyglycolic acid which is a polyester mainly composed of glycolic acid.
- polylactic acid which is a polyester mainly composed of L-lactic acid
- polyglycolic acid which is a polyester mainly composed of glycolic acid.
- L-lactic acid as a main component means that 60% by weight or more of the constituent components are made of L-lactic acid, and it is a polyester containing D-lactic acid in a V and range not exceeding 40% by weight.
- Other components copolymerizable with polylactic acid include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid.
- boronic acids compounds containing multiple hydroxyl groups in their molecules, such as ethylene glycol, propylene glycol, butanediol, neopentyl dallicol, polyethylene glycol, glycerin and pentaerythritol, or their derivatives, adipic acid, sebacic acid , Fumaric acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid and 5-tetrabutylphosphoro-isophthalic acid, etc. Or a derivative thereof.
- the number average molecular weight of polylactic acid is preferably as high as it does not exceed 300,000.
- the number average molecular weight is preferably 50,000 or more, and more preferably 100,000 or more.
- the number average molecular weight By setting the number average molecular weight to 50,000 or more, it is possible to obtain fiber strength properties at a level that can be used for production, and by setting the number average molecular weight to 300,000 or less, an increase in the viscosity of the polymer is suppressed. Therefore, the spinning temperature can be kept low, and therefore, thermal decomposition of the polymer can be prevented and stable spinning can be performed.
- aliphatic polyester polymers such as polystrength prolataton, polybutylene succinate, and polyethylene succinate can be used as an internal plasticizer or as an external plasticizer.
- inorganic fine particles and organic compounds can be added as necessary, such as a defoaming agent, deodorant, flame retardant, yarn friction reducing agent, antioxidant and coloring pigment.
- Polytrimethylene terephthalate used as an island component is a polyester obtained using terephthalic acid as a main acid component and 1,3-propanediol as a main glycol component.
- the polytrimethylene terephthalate is most preferably 100 mol%, but it may contain a copolymer component capable of forming another ester bond at a ratio of 20 mol% or less, preferably 10 mol% or less.
- Examples of the copolymerizable compound include dicarboxylic acids such as isophthalic acid, cyclohexane dicarboxylic acid, adipic acid, dimer acid, and sebacic acid, while the glycol component includes, for example, ethylene glycol, Powers that can include diethylene glycol, butanediol, neopentyl glycol, cyclohexane dimethanol, polyethylene glycol and polypropylene glycol. It is not limited.
- titanium dioxide as a quenching agent
- fine particles such as silica and alumina as a lubricant, hindered phenol derivatives as an antioxidant, and coloring pigments may be added as necessary. Can do.
- the composite ratio of the sea component Z island component of the sea island type composite fiber used in the present invention is the composite ratio of the sea component Z island component of the sea island type composite fiber used in the present invention.
- the composite ratio of the sea component is less than 10%, a composite abnormality occurs, resulting in poor partitioning, or even when the composite form is normal, poor splitting due to poor dissolution of the sea component results in sufficient softness. There are things you can't get.
- the composite ratio of the sea components exceeds 50%, productivity is lowered, which is not preferable.
- Sea component of sea-island type composite fiber A more preferable composite ratio of the island component is 15 to 85 to 40 to 60 (weight ratio).
- the single fiber fineness of the island component after removing the sea component is 0.01 to 0.5 dtex. This is to improve the hardness of the high-density fabric made of conventional polyethylene terephthalate and the insufficient color development when made into ultrafine fibers. If the single fiber fineness is less than 0. Oldtex, the single fiber Since the accuracy of each one is reduced, quality problems are likely to occur. On the other hand, if the single fiber fineness is larger than 0.5 dtex, the desired soft feeling cannot be obtained, which is not desirable. A more preferable single fiber fineness is 0.05 to 0.2 dtex.
- the cross-sectional shape of the sea-island composite fiber used in the present invention may be an irregular cross-section such as flat, hollow, and triangular in addition to a round cross-section.
- the island surface is completely covered with the sea component on the fiber surface of the sea-island type composite fiber, or even if the island component is partially exposed!
- the cross-sectional shape of the island component after the sea component is removed may be an irregular cross-section such as a flat or triangular shape in addition to the round cross-section.
- the sea-island type composite fibers used in the present invention are shown in, for example, FIG. 3 described in Japanese Patent Laid-Open No. 57-47938 and FIG. 2 described in Japanese Patent Laid-Open No. 57-82526. It can be manufactured using the device shown as a preferred example. That is, after the polymer that is the sea component and the polymer that is the island component are filtered through separate polymer introduction pipes in the respective filtration chambers, This can be obtained by using a composite spinneret that can associate (join) in a split flow state with the die pores through the gold inflow hole.
- sea-island type composite fiber used in the present invention In producing the sea-island type composite fiber used in the present invention, a method in which spinning and drawing processes are continuously performed, a method in which the yarn is unwound and then drawn and then drawn, or high-speed yarn production. Any method such as a method can be applied. Furthermore, the sea-island type composite fiber used in the present invention may be subjected to yarn processing such as false twisting and air entanglement as necessary.
- the sea-island type composite fiber is used for weaving.
- a conventional structure can be used, and a loom used for weaving and a conventional loom with conventional power can be used.
- Weaving should be performed so that the total bar ratio of the warp and weft yarns is 1700 or more and 3500 or less and the air permeability is less than 1.0 ccZcm 2 's.
- the woven fabric of the sea-island type composite fiber obtained by weaving the sea-island type composite fiber is subjected to a dissolution treatment (Al force re-elution treatment).
- the sea component dissolution treatment can be performed in an alkaline solution of preferably 10 to: LOOgZl, more preferably 20 to 80 gZl.
- an alkaline solution preferably 10 to: LOOgZl, more preferably 20 to 80 gZl.
- a sodium hydroxide solution is usually used, and the treatment may be performed at a temperature of 60 to 120 ° C. That is, a normal alkali elution process can be employed.
- the high-density woven fabric of the present invention is suitably used for sportswear and casual wear that are vibrant in terms of windproof and water repellency, and for outer fabrics such as down jackets and batting jackets that are active in high density.
- Total power bar rate Cover rate of warp yarn + Cover rate of horizontal yarn
- the filament strength was measured in accordance with JIS L1013 (1999 edition) 8.5.1 (standard test).
- the unit is cNZdtex.
- Dimethino terephthalenolic acid 19.4 kg, 1,3 Prononde 1 15.2 kg ⁇ This tetrabutino retitanate is used as a catalyst to perform ester exchange reaction while distilling methanol at a temperature of 140 ° C to 230 ° C. Then, polymerization was further performed for 3.5 hours under the condition of a constant temperature of 250 ° C. to obtain polytrimethylene terephthalate having an intrinsic viscosity [r?] Of 0.96.
- sea Z island 20Z80 (weight ratio)
- the unspun yarn was wound with a compound spinning machine at a spinning temperature of 250 ° C and a take-up speed of 1500 mZ.
- the undrawn yarn was drawn at a temperature of 80 ° C using a normal hot roll hot roll drawing machine, and the heat setting temperature 1 Stretching was performed at 20 ° C so that the stretched yarn had an elongation of 35%, and a stretched yarn of 66 dtex-36 filament was obtained.
- the drawn yarn had a strength of 3.7 cNZdtex and a boiling water shrinkage of 10.0%.
- weaving a plain fabric with a warp density of 145 (main Z inch) and a horizontal yarn density of 95 (main Z inch), and then hydrated sodium hydroxide 30 (Treatment in warm water of 80 ° C with gZD concentration for 60 minutes yielded a fabric that eluted the sea component polylactic acid and also had ultra-fine fiber (multifilament) force.
- a sample of the fabric was obtained.
- This high density fabric strength was 1.26 when the multifilament was disassembled, a section of the fiber cross section was taken and a cross section photograph was taken to calculate the average degree of deformity.
- Fig. 1 shows a photograph of the surface of the resulting high-density fabric.
- polyethylene terephthalate with an intrinsic viscosity [7?] Of 0.56 copolymerized with 4.5 mol% of 5-sodium sulfoisophthalic acid, and polyethylene terephthalate with no third component copolymerized with the island component Using the same base and composite spinning machine as in Example 1, the fiber was wound at a spinning temperature of 280 ° C and a take-up speed of 1500 mZ, and the resulting undrawn yarn was drawn in the same manner as in Example 1 to obtain a drawn yarn. It was. The obtained drawn yarn was 66 dtex-36 filament, the strength was 2.5 cNZdtex, and the boiling water shrinkage was 8.0%.
- the resulting drawn yarn is used for warp and horizontal yarns, and a plain fabric with a warp yarn density of 145 (main Z inch) and a horizontal yarn density of 95 (main Z inch) is woven, and sodium hydroxide 30 ( Attempted to elute the copolyester of sea component by treating in warm water at 80 ° C with gZD concentration for 60 minutes, cut the sample of the fabric after alkali treatment and observed the cross section of the fabric with a scanning electron microscope (SEM) However, the sea component is completely It was confirmed that it was poorly resolved.
- SEM scanning electron microscope
- the obtained raw machine is first treated with acetic acid l (gZl) at 130 ° C in hot water for 30 minutes, washed with neutralized Z water, and again with sodium hydroxide 30 (gZD at 80 ° C in warm water).
- the sample was processed for 60 minutes to try to elute the copolyester of the sea component, cut the fabric sample after alkali treatment, and observed the cross section of the fabric with a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the resulting fabric is a fabric with a warp density of 153 (lines Z inches) and a weft density of 100 (lines Z inches), and the air permeability is 6. although 7ccZcm 2 's and windproof is higher Nag soft texture, color development was poor. coverage warp yarn in this case 111 2, coverage ® co yarn is 727, the total force bars ratio was 1839. Showing a photograph of the surface of the resultant woven product in Figure 2.
- the warp yarn is a 56 dtex-l 44 filament polyethylene terephthalate false twist yarn
- the warp density is 199 (in Z inches)
- a woven fabric consisting of ultrafine fibers (multifilaments) was obtained, and after presetting at a temperature of 150 ° C, dyeing Z was reduced and washed at a temperature of 130 ° C using a liquid dyeing machine.
- the resulting fabric was a high-density fabric with a warp yarn density of 238 (lines Z inches) and a weft yarn density of 129 (lines Z inches) with an air permeability of 0.8 ccZcm. 2 'were those high S and windproof. coverage warp at this time is 1781, ® co yarn coverage Is 937, the all-out bar rate was 2718.
- the high-density fabric using the fiber yarn made of polyethylene terephthalate according to the present invention can achieve higher density than ever, and can be used widely for sports fabrics having windproof and water repellency. It is.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Woven Fabrics (AREA)
Abstract
A high-density woven fabric having excellent wind breaking properties which is a woven fabric comprising, as the warps and/or the wefts, polytrimethylene terephthalate multifilaments having a single-fiber fineness of 0.01-0.5 dtex, characterized in that the total cover factor of the warps and wefts is 1,700-3,500 and the air permeability is less than 1.0 cc/cm2·s. This high-density woven fabric can be obtained by weaving a fabric out of sea-island type composite fibers in which the sea-component polymer is constituted of polylactic acid and the island-component polymer is constituted of polytrimethylene terephthalate and then subjecting the woven fabric to a dissolution treatment to dissolve away the polylactic acid.
Description
明 細 書 Specification
高密度織物および製造方法 High density fabric and manufacturing method
技術分野 Technical field
[0001] 本発明は、ポリトリメチレンテレフタレート極細糸力 なる防風性に優れた高密度織 物およびその製造方法に関するものである。さらに詳しくは、溶解処理によってポリト リメチレンテレフタレート極細糸を製造することができるポリ乳酸とポリトリメチレンテレ フタレートとからなる海島型複合繊維を用いて得られる、優れた防風性を有する高密 度織物およびその製造方法に関するものである。 TECHNICAL FIELD [0001] The present invention relates to a high-density woven fabric excellent in windproof property, ie, polytrimethylene terephthalate ultrafine yarn force, and a method for producing the same. More specifically, a high-density fabric having excellent windproof properties obtained by using a sea-island type composite fiber composed of polylactic acid and polytrimethylene terephthalate, which can produce polytrimethylene terephthalate ultrafine yarn by dissolution treatment, and It relates to the manufacturing method.
背景技術 Background art
[0002] 従来より、ポリエチレンテレフタレートからなる繊維糸を用いた高密度織物は、防風 性や撥水性を有するスポーツ織物として幅広く使用されている。しかし、十分な防風 性や撥水性を得るためには高密度化が必要となるため、通常のポリエチレンテレフタ レートからなる原糸を用いて製織時の織物密度を多くして製織すると、製織上のトラ ブルが発生し易ぐかつ得られた織物は高密度化により風合いの硬いものであった。 また、この高密度化による製織上の問題を解決するために使用する原糸の熱収縮率 を上げたものは、生機密度は下げることができるものの、糸収縮が高いため、染色カロ ェ後の生地が非常にペーパーライクで風合いが硬くなるという問題点があった。 Hitherto, high density fabrics using fiber yarns made of polyethylene terephthalate have been widely used as sports fabrics having windproof and water repellency. However, in order to obtain sufficient windproof and water repellency, it is necessary to increase the density, so if weaving with a normal yarn made of polyethylene terephthalate and increasing the fabric density during weaving, weaving The resulting woven fabric was hard and textured due to high densification. In addition, when the thermal shrinkage rate of the raw yarn used to solve the problem of weaving due to this high densification is increased, the raw machinery density can be lowered, but the yarn shrinkage is high. The fabric was very paper-like and the texture was hard.
[0003] これら風合いの硬さを改善する手段として、ポリエチレンテレフタレートよりもヤング 率が低いポリトリメチレンテレフタレートからなる繊維糸を使用した高密度織物が提案 されている(特許文献 1および特許文献 2参照)力 いずれもソフト感の付与にはある 程度貢献すると考えられるが、なお十分なレベルとは言えず、さらに防風性 (通気度) は不満足なレベルのものである。 [0003] As means for improving the hardness of these textures, high-density fabrics using fiber yarns made of polytrimethylene terephthalate having a Young's modulus lower than that of polyethylene terephthalate have been proposed (see Patent Document 1 and Patent Document 2). ) Power is considered to contribute to a certain degree of softness, but it is still not enough, and wind resistance (breathability) is unsatisfactory.
[0004] 一方、防風性や撥水性を向上させるためには、織物のタテ糸とョコ糸が交差した織 物交錯点とその隣の交錯点との間に生じる隙間を小さくすることが必要である。このよ うな構造の織物を得るためには繊維糸の構成本数を多くすることが望ましく、さらに風 合いのソフトィ匕の相乗効果を狙って、極細繊維が活用されている。このような極細繊 維を得る方法として、直接細い糸を製造する方法と、耐薬品性が異なる 2種類以上の
ポリマーを複合紡糸した後に 1種類のポリマーを溶出したり、分割を施すことで得る方 法とがある。しかし、従来の後者のポリマーを溶出する方法では、ポリマーの溶出時 に形成される単繊維間空隙の影響で、満足できる防風性や撥水性を得ることができ ない。一方、前者の直接紡糸による極細繊維の製造の場合には、得られる単繊維繊 度に限界のあるのが現状である。 [0004] On the other hand, in order to improve windproof and water repellency, it is necessary to reduce the gap formed between the intersection of the fabric where the warp and weft of the fabric intersect and the adjacent intersection It is. In order to obtain a woven fabric having such a structure, it is desirable to increase the number of fiber yarns, and ultrafine fibers are used for the synergistic effect of the texture softness. As a method for obtaining such ultrafine fibers, a method for directly producing thin yarns and two or more types having different chemical resistance are used. There are methods that can be obtained by eluting one type of polymer after composite spinning and dividing it. However, in the conventional method of eluting the latter polymer, satisfactory windproof properties and water repellency cannot be obtained due to the influence of the inter-fiber spacing formed when the polymer is eluted. On the other hand, in the former case of producing ultrafine fibers by direct spinning, there is a limit to the single fiber fineness obtained.
[0005] これらの極細繊維は、前述のように硬い風合いを改善するために従来力 使用され ているものであり、特に単繊維繊度が 0. 5dtex以下のポリエステル極細繊維は、ピ 一チ調織編物などに用いられている。しかし、ポリエチレンテレフタレートからなる極 細繊維糸は屈折率が約 1. 6と高 、ため極細繊維にした際の発色性が十分でなく、 特に濃色での発色性が劣るため商品展開に制限があったり、またポリマー自体のャ ング率が高いため十分なソフト感を付与することが出来な力つた。 [0005] As described above, these ultrafine fibers have been used in the past to improve the hard texture. Particularly, polyester ultrafine fibers having a single fiber fineness of 0.5 dtex or less are pitch-woven. Used for knitting. However, the ultrafine fiber yarn made of polyethylene terephthalate has a high refractive index of about 1.6, so the color developability of the ultrafine fiber is not sufficient. Or because the polymer itself has a high hang rate, it was unable to give a sufficient soft feeling.
[0006] また、ポリエチレンテレフタレートからなる極細繊維の製造方法として、海島型複合 繊維あるいは分割型複合繊維カゝらポリエチレンテレフタレートの極細繊維を製造する 方法が数多く提案されている。これらの複合繊維では、分割の際にアルカリ処理によ り、一方の成分を減量'溶出加工することによってポリエチレンテレフタレートからなる 極細繊維とするものである。しかし、減量力卩ェの際に極細繊維とすべきポリエチレン テレフタレート側の減量も同時に進行してしまうため、強度低下が生じ、実用に耐えら れない場合があったり、逆に強度低下を抑制するために、減量加工条件を緩やかに すると分割処理が完全に行われないことがあり、製品品位の低下を招くことがあった。 [0006] Further, as a method for producing ultrafine fibers made of polyethylene terephthalate, many methods for producing ultrafine fibers of polyethylene terephthalate such as sea-island type composite fibers or split type composite fibers have been proposed. These composite fibers are made into ultrafine fibers made of polyethylene terephthalate by reducing or eluting one of the components by alkali treatment at the time of division. However, since the weight loss on the polyethylene terephthalate side, which should be made of ultrafine fibers, also proceeds at the same time as the weight loss force, the strength is reduced and may not be able to withstand practical use. For this reason, if the weight reduction processing conditions are relaxed, division processing may not be performed completely, which may lead to a reduction in product quality.
[0007] 一方、前述したポリトリメチレンテレフタレートからなる繊維は、伸長弾性回復率が優 れ、ヤング率が低ぐ染色性が良好で、化学的にも安定しており、古くから知られてい る (特許文献 3および特許文献 4参照)。さらに、海島型複合繊維あるいは分割型複 合繊維カゝらポリトリメチレンテレフタレートの極細繊維を製造する方法も提案されてい る(特許文献 5および特許文献 6参照)。しカゝしながら、これら特許文献 5および特許 文献 6で易溶出成分として用いられて 、るポリマーは、有機金属塩を共重合したポリ エステルであり、溶出時間が長ぐ生産性が悪い。また、ポリマー溶融温度がポリトリメ チレンテレフタレートよりも高いため、紡糸温度を高く保つ必要があり、そのためにポリ トリメチレンテレフタレートの熱劣化が進み、操業性が悪ぐさらに、満足する原糸強
度や風合 、が得られな 、などの問題があった。 [0007] On the other hand, the above-mentioned fiber made of polytrimethylene terephthalate has an excellent elastic recovery rate, a low Young's modulus, a good dyeing property, a chemically stable property, and has been known for a long time. (See Patent Document 3 and Patent Document 4). Furthermore, a method for producing ultrafine fibers of polytrimethylene terephthalate such as sea-island type composite fibers or split type composite fibers has also been proposed (see Patent Document 5 and Patent Document 6). However, the polymer used as an easily eluting component in Patent Document 5 and Patent Document 6 is a polyester copolymerized with an organic metal salt, and has a long elution time and poor productivity. In addition, since the polymer melting temperature is higher than that of polytrimethylene terephthalate, it is necessary to keep the spinning temperature high.Therefore, the thermal degradation of polytrimethylene terephthalate advances and the operability deteriorates. There were problems such as inability to obtain degree and texture.
[0008] さらに、従来の海島型複合繊維あるいは分割型複合繊維は、易溶出成分に共重合 系のポリエステルを使用し、これをアルカリ処理で加水分解して除去させるものが主 流のため、加水分解後の廃液が環境に悪影響を及ぼすことが懸念されている。この 廃液の環境影響を軽減させるため、溶出成分にポリ乳酸を使用した複合繊維が提案 されている(特許文献 7参照)。これにより、確かに環境への影響は軽減されると考え られるものの前記のとおり、ポリ乳酸を溶出後単繊維間に形成される単繊維間空隙 の影響で、満足できる防風性や撥水性を得ることが出来ないものである。 [0008] Furthermore, conventional sea-island type composite fibers or split type composite fibers use a copolymerized polyester as an easily-eluting component, and are mainly hydrolyzed and removed by alkali treatment. There is a concern that the waste liquid after decomposition has an adverse effect on the environment. In order to reduce the environmental impact of this waste liquid, a composite fiber using polylactic acid as an elution component has been proposed (see Patent Document 7). Although this will certainly reduce the impact on the environment, as described above, satisfactory windproof and water repellency can be obtained due to the effects of inter-single-fiber voids formed between single fibers after elution of polylactic acid. It cannot be done.
特許文献 1:特開平 11― 200174号公報 Patent Document 1: Japanese Patent Laid-Open No. 11-200174
特許文献 2:特開 2001— 55644号公報 Patent Document 2: Japanese Patent Laid-Open No. 2001-55644
特許文献 3:特開昭 52— 5320号公報 Patent Document 3: Japanese Patent Laid-Open No. 52-5320
特許文献 4:特開昭 52— 8124号公報 Patent Document 4: Japanese Patent Laid-Open No. 52-8124
特許文献 5:特開平 11— 123330号公報 Patent Document 5: JP-A-11-123330
特許文献 6:特開 2001 - 348735号公報 Patent Document 6: Japanese Patent Laid-Open No. 2001-348735
特許文献 7:特開平 11― 302926号公報 Patent Document 7: JP-A-11-302926
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0009] そこで本発明の目的は、上記従来技術では達成できな力つた、生産性に優れ、衣 料用織物としたときのソフト感と発色性に優れたポリトリメチレンテレフタレートからなる 極細繊維で構成された防風性に優れた高密度織物を提供することである。 [0009] Therefore, the object of the present invention is an ultrafine fiber made of polytrimethylene terephthalate, which has an unattainable power that can not be achieved by the above-described prior art, and is excellent in softness and color development when used as a woven fabric for clothing. The object is to provide a high-density woven fabric having excellent windproof properties.
[0010] また、本発明の他の目的は、上記のポリトリメチレンテレフタレートからなる極細繊維 で構成された防風性に優れた高密度織物を製造する方法を提供することにある。 課題を解決するための手段 [0010] Another object of the present invention is to provide a method for producing a high-density fabric excellent in windproof property, which is composed of ultrafine fibers made of the above polytrimethylene terephthalate. Means for solving the problem
[0011] 上記本発明の目的は、以下の構成を採用することによって達成することができる。 The object of the present invention can be achieved by adopting the following configuration.
すなわち、本発明の高密度織物は、タテ糸および Zまたはョコ糸に、ポリトリメチレン テレフタレートからなる単繊維繊度が 0. 01-0. 5dtexのマルチフィラメントを使用し てなる織物であって、タテ糸とョコ糸の総力バー率が 1700以上 3500以下で、かつ 通気度が 1. 0ccZcm2' S未満の高密度織物である。
[0012] そして、本発明の高密度織物の好ましい態様としては、前記の通気度は 0. 8cc/c m2' s未満であること、前記のポリトリメチレンテレフタレートからなるマルチフィラメント の単繊維の平均異形度が 1. 05以上 5. 0以下であること、また、前記のポリトリメチレ ンテレフタレートからなるマルチフィラメントは捲縮を有して 、ること、が挙げられる。 That is, the high-density fabric of the present invention is a fabric formed by using multifilaments having a single fiber fineness of 0.01 to 0.5 dtex made of polytrimethylene terephthalate for warp yarn and Z or horizontal yarn, warp yarn and ® co yarn total force bar rates in 1700 than 3500 or less, and air permeability is as high fabric than 1. 0ccZcm 2 'S. And, as a preferred embodiment of the high-density fabric of the present invention, the air permeability is less than 0.8 cc / cm 2 ′ s, the average of the multifilament monofilaments comprising the polytrimethylene terephthalate The degree of irregularity is 1.05 or more and 5.0 or less, and the above-mentioned multifilament made of polytrimethylene terephthalate has crimps.
[0013] また、本発明の高密度織物の製造方法は、海成分ポリマーがポリ乳酸で構成され、 島成分ポリマーがポリトリメチレンテレフタレートで構成されている海島型複合繊維で あって、海成分 Z島成分の複合比率が 10Z90〜50Z50であり、溶解処理によって 得られる島成分の単繊維繊度が 0. 01〜0. 5dtexである海島型複合繊維を、タテ糸 および Zまたはョコ糸に使用して織物を製織後、溶解処理によりポリ乳酸を溶出させ ることを特徴とする高密度織物の製造方法である。 [0013] The method for producing a high-density fabric of the present invention is a sea-island type composite fiber in which the sea component polymer is composed of polylactic acid, and the island component polymer is composed of polytrimethylene terephthalate. Sea island type composite fiber with island component composite ratio of 10Z90 ~ 50Z50 and island component single fiber fineness of 0.01 ~ 0.5dtex obtained by dissolution treatment is used for warp yarn and Z or horizontal yarn Then, after weaving the woven fabric, polylactic acid is eluted by dissolution treatment.
[0014] そして、本発明の高密度織物の製造方法の好ましい態様としては、前記の海成分 ポリマーのポリ乳酸を溶解処理で溶出後、島成分ポリマーであるポリトリメチレンテレ フタレートからなる単繊維を 3%以上収縮させること、また、前記の溶解処理がアル力 リ溶液〖こよるちのであることが挙げられる。 [0014] And, as a preferred embodiment of the method for producing a high-density fabric of the present invention, a monofilament made of polytrimethylene terephthalate, which is an island component polymer, is dissolved after the polylactic acid of the sea component polymer is dissolved in a dissolution treatment. It may be mentioned that the shrinkage is 3% or more, and that the above-mentioned dissolution treatment is performed by using an alkaline solution.
発明の効果 The invention's effect
[0015] 本発明によれば、衣料用織物としたときのソフト感と発色性に優れた、ポリトリメチレン テレフタレートからなる極細繊維を用いてなる防風性に優れた高密度織物が得られる 図面の簡単な説明 [0015] According to the present invention, a high-density fabric excellent in windproof property using an ultrafine fiber made of polytrimethylene terephthalate, which is excellent in softness and color developability when used as a woven fabric for clothing, is obtained. easy explanation
[0016] [図 1]図 1は、本発明の実施例 1で得られた高密度織物の表面写真である。 FIG. 1 is a surface photograph of a high-density fabric obtained in Example 1 of the present invention.
[図 2]図 2は、比較例 1で得られた織物の表面写真である。 FIG. 2 is a photograph of the surface of the fabric obtained in Comparative Example 1.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の高密度織物とその製造方法を実施するための最良の形態について 、詳細に説明する。 Hereinafter, the best mode for carrying out the high-density fabric of the present invention and the method for producing the same will be described in detail.
本発明の高密度織物では、タテ糸および Zまたはョコ糸に、ポリトリメチレンテレフタ レートからなる単繊維繊度が 0. 01-0. 5dtexのマルチフィラメントを使用することが 必要である。その理由は、従来のポリエチレンテレフタレートからなるマルチフィラメン トで構成された高密度織物の硬さと、極細繊維にした際の発色性の不十分さを改善
するためである。単繊維繊度が 0. Oldtex未満であると単繊維 1本 1本の精度が低 下するため毛羽発生等の品質問題を起こしやすぐ一方、単繊維繊度が 0. 5dtexを 超えると目的とするソフト感が得られない。より好ましい単繊維繊度は、 0. 05-0. 2d texであ 。 In the high-density woven fabric of the present invention, it is necessary to use multifilaments having a single fiber fineness of 0.01-0.5 dtex made of polytrimethylene terephthalate for warp yarn and Z or horizontal yarn. The reason is to improve the hardness of the high-density fabric composed of multifilaments made of conventional polyethylene terephthalate and the insufficient color development when made into ultrafine fibers. It is to do. If the single fiber fineness is less than 0. Oldtex, the accuracy of one single fiber will be reduced, causing quality problems such as fluffing. On the other hand, if the single fiber fineness exceeds 0.5 dtex, the target software will be I can't get a feeling. A more preferable single fiber fineness is 0.05-0.2d tex.
[0018] 本発明で用いられる単繊維繊度が 0. 01-0. 5dtexのマルチフィラメントは、トータ ル繊度で 33〜 168dtexの範囲で好ましく採用される。 [0018] The multifilament having a single fiber fineness of 0.01-0.5 dtex used in the present invention is preferably employed in a range of 33-168 dtex in total fineness.
[0019] 本発明の高密度織物は、タテ糸および Zまたはョコ糸に 0. 01-0. 5dtexのポリト リメチレンテレフタレートからなるマルチフィラメントを使用して構成される力 別の繊 維として、ポリエチレンテレフタレートからなる繊維などの合成繊維や天然繊維等が 一部に含まれていても問題なぐかつポリエチレンテレフタレートからなる繊維が三角 や扁平等のいわゆる異形断面を有するものであっても良い。ここで本発明の防風性 に優れた高密度織物を得るためには、前記ポリトリメチレンテレフタレートが重量比で 好ましくは 30%以上、さらに好ましくは 40%以上使用されていることが良い。また、織 物組織としては織交錯点の拘束力の大きい平系組織(1Z1平ゃ片マット等)が望ま しい。 [0019] The high-density woven fabric of the present invention is a warp yarn and a Z- or Yoko yarn that is a multi-filament made of polytrimethylene terephthalate of 0.01-0.5dtex. There may be no problem even if synthetic fibers such as fibers made of polyethylene terephthalate or natural fibers are partially contained, and the fibers made of polyethylene terephthalate may have a so-called irregular cross section such as a triangle or a flat shape. Here, in order to obtain a high-density fabric excellent in windproof property of the present invention, the polytrimethylene terephthalate is preferably used in a weight ratio of preferably 30% or more, and more preferably 40% or more. In addition, it is desirable that the weave structure is a plain structure (1Z1 flat mat, etc.) having a high binding force at the weaving intersection.
次に、本発明では、本発明の目的とする防風性に優れた高密度織物を得るために、 高密度織物を構成するタテ糸とョコ糸の総力バー率が 1700以上 3500以下で、かつ 高密度織物の通気度が 1. OccZcm2 · s未満であることが必要である。 Next, in the present invention, in order to obtain a high-density fabric excellent in windproof property, which is the object of the present invention, the total bar ratio of the warp yarn and the horizontal yarn constituting the high-density fabric is 1700 or more and 3500 or less, and The air permeability of the high-density fabric must be less than 1. OccZcm 2 · s.
[0020] タテ糸とョコ糸の総力バー率は、織物を構成するタテ糸とョコ糸の緻密さを表したフ アクターである。総力バー率が 1700に満たなければ防風性と撥水性が十分でなぐ 一方、総力バー率が 3500を超える織物は、工業生産上安定して得られない領域で あり好ましくない。また、さらに好ましい総力バー率の範囲は 2000以上 3000以下で ある。ここで言う総力バー率は、次式により算出されるものである。 [0020] The total force bar ratio of the warp yarn and the horizontal yarn is a factor representing the fineness of the warp yarn and the horizontal yarn constituting the fabric. Wind resistance and water repellency are not sufficient if the total bar ratio is less than 1700. On the other hand, fabrics with a total bar ratio exceeding 3500 are not preferable because they are a region that cannot be stably obtained in industrial production. A more preferable range of the total power bar rate is 2000 or more and 3000 or less. The total power bar rate mentioned here is calculated by the following equation.
[0021] 総力バー率 =タテ糸のカバー率 +ョコ糸のカバー率 [0021] Total power bar rate = Cover rate of warp yarn + Cover rate of horizontal thread
タテ糸のカバー率 =タテ糸密度 (本 Zインチ) X (タテ糸繊度 (dtex) ) 1/2 ョコ糸のカバー率 =ョコ糸密度 (本 Zインチ) X (ョコ糸繊度 (dtex) ) 1/2 また、通気度は、本発明の目的とする防風性および撥水性の性能を表す計測値で ある。本発明の高密度織物の通気度は 1. OccZcm2 ' s未満であることが必要であり
、好ましくは 0. 8ccZcm2' s未満である。かかる通気度は、高密度織物を衣料として 使用したときの機能性を発揮するために必要である。この通気度は、織物を作成する 際に通常「カレンダー」加工と呼ばれる高温高圧プレスを掛けると比較的容易に小さ くできるものである力 本発明では得られる高密度織物の風合いがペーパーライクに なるため採用は好ましくなぐ採用するにしても軽条件での処理に留めることが望まし い。また、前記カレンダー加工の他に、ポリウレタン系の榭脂を織物表面に薄く皮膜 コーティングさせる方法も通気度を小さくする手段として採用することが出来る。なお 、本発明における通気度は、 JIS L1096 (1999年度版)の 8. 27. 1 A法 (フラジー ル法)に従って測定したものを言う。 Cover rate of warp thread = Warp yarn density (Z inch) X (Vertical yarn fineness (dtex)) 1/2 Cover rate of horizontal thread = Horizontal thread density (Z inch) X (Horizontal yarn fineness (dtex) )) 1/2 Further , the air permeability is a measured value representing the windproof and water repellency performances of the present invention. The air permeability of the high density fabric of the present invention must be less than 1. OccZcm 2's , Preferably less than 0.8 cc Zcm 2 's. Such air permeability is necessary to exhibit functionality when a high-density fabric is used as clothing. This air permeability is a force that can be reduced relatively easily by applying a high-temperature and high-pressure press, which is usually called “calendar” processing, when creating the fabric. In the present invention, the texture of the high-density fabric obtained becomes paper-like. For this reason, it is desirable to keep the processing under light conditions even if the adoption is poor. In addition to the calendering, a method of thinly coating polyurethane surface with a polyurethane-based resin can also be adopted as a means for reducing the air permeability. In addition, the air permeability in the present invention is a value measured according to 8.27.1 A method (fragile method) of JIS L1096 (1999 edition).
[0022] ここでの通気度は、防風性や撥水性の性能を表すものである力 2次的な性能も付 与することができる。すなわち、本発明の高密度織物は緻密であるため、生地そのま まあるいは軽い撥水加工等を施すことで花粉などの粉体や粒体がつきにくくさらに落 ちゃすくすることができ、花粉症等のアレルギー対策衣類等にも利用が可能である。 [0022] The air permeability here can also provide a secondary performance of force that represents windproof and water repellency performance. In other words, since the high-density fabric of the present invention is dense, it is possible to make the powder or particles such as pollen difficult to stick by applying the fabric as it is or with a light water-repellent treatment. It can also be used for allergies such as clothing.
[0023] ここで、本発明における高密度織物を構成するポリトリメチレンテレフタレートからな るフィラメントは、その単繊維の平均異形度が 1. 05以上 5. 0以下の異形断面である ことが好ましい。異形断面繊維はその曲げモーメントの特性上、単繊維 1本には曲が り易い方向があり、極端な例として扁平断面繊維はその断面の短軸方向には曲がり 易いが、断面の長軸方向には曲がりにくい。この特性は、織物となった際のマルチフ イラメントの開繊状態に影響を与える。異形断面の繊維の方が均一な丸断面繊維より も開繊性が良い傾向にあり、さらに構成単繊維間で異形度にバラツキがあるとさらに 良い。この開繊性の高さは、防風性や撥水性を向上させるために必要となるタテ糸と ョコ糸が交差した織物交錯点とその隣の交錯点との間に生じる隙間を小さくする効果 がある。この効果を得るため、フィラメントの断面の平均異形度は、 1. 05以上 5. 0以 下であることが好ましい。ここで、平均異形度とは、繊維断面を写真撮影して断面形 状の最大内接円の直径 nと断面の最大巾 mを測定し、次式で単繊維の異形度を算 出し、 10個の繊維断面を平均したものを言う。 [0023] Here, the filament made of polytrimethylene terephthalate constituting the high-density fabric in the present invention preferably has an irregular cross section in which the average irregularity of the single fiber is 1.05 or more and 5.0 or less. Due to the bending moment characteristics of irregular cross-section fibers, there is a direction in which one single fiber tends to bend, and as an extreme example, flat cross-section fibers tend to bend in the short axis direction of the cross section, but the long axis direction of the cross section It is hard to bend. This property affects the opening state of the multifilament when it becomes a woven fabric. Fibers with irregular cross-sections tend to have better spreadability than fibers with uniform round cross-sections, and it is even better if there are variations in the degree of irregularity between the constituent single fibers. This high fiber-opening effect has the effect of reducing the gap between the crossing point of the fabric where the warp yarn and the horizontal yarn cross and the adjacent crossing point, which are necessary to improve windproof and water repellency. There is. In order to obtain this effect, the average profile of the filament cross section is preferably 1.05 or more and 5.0 or less. Here, the average degree of irregularity means taking a photograph of the fiber cross section, measuring the diameter n of the maximum inscribed circle of the cross sectional shape and the maximum width m of the cross section, and calculating the degree of irregularity of the single fiber by the following formula. This is the average of the cross sections of individual fibers.
異形度 =mZn X 100 (%) Deformity = mZn X 100 (%)
平均異形度が 1. 05未満であると、目的とする開繊性の向上効果が得られ難ぐま
た平均異形度が 5. 0を超えると逆に非常に扁平度の高い原糸となるため曲がりやす い方向が一定になり、織物上で同一方向に単繊維が並んでしまうため開繊性が悪く なる傾向がある。 If the average degree of profile is less than 1.05, it is difficult to obtain the desired effect of improving the spreadability. On the other hand, if the average profile exceeds 5.0, the yarn will be very flat and the bending direction will be constant, and the single fibers will be lined up in the same direction on the fabric. There is a tendency to get worse.
[0024] このような異形断面繊維は、紡糸口金を設定したり、海島型複合繊維の島成分ポリ マーの配列、島成分の数、海成分ポリマーと島成分ポリマーの複合比率等を変更す ることによって、断面を異形とした繊維として得ることができる。 [0024] Such a modified cross-section fiber sets the spinneret, changes the island component polymer arrangement of the sea-island type composite fiber, the number of island components, the composite ratio of the sea component polymer and the island component polymer, and the like. By this, it can be obtained as a fiber having a deformed cross section.
[0025] また、本発明の高密度織物に使用するポリトリメチレンテレフタレートからなるマルチ フィラメントは、捲縮を有していることも好ましい態様である。これはマルチフィラメント が捲縮を有することで、織物とした際、タテ糸とョコ糸が交差した織物交錯点とその隣 の交錯点との間に生じる隙間を小さくする効果が向上し、防風性および撥水性が向 上するためである。マルチフィラメントへの捲縮付与方法としては、一般的な仮撚カロ ェ方法等を採用することができる。 [0025] It is also a preferred aspect that the multifilament made of polytrimethylene terephthalate used in the high-density fabric of the present invention has crimps. This is due to the fact that the multifilament has crimps, so that when it is made into a woven fabric, the effect of reducing the gap between the crossing point of the fabric where the warp yarn and the horizontal yarn cross each other and the adjacent crossing point is improved. This is because the property and water repellency are improved. As a method for imparting crimps to the multifilament, a general false twisting caloe method or the like can be employed.
[0026] 次に、本発明の高密度織物の製造方法について説明する。 [0026] Next, a method for producing a high-density fabric of the present invention will be described.
[0027] 本発明の高密度織物は、ポリトリメチレンテレフタレートからなる極細繊維で構成さ れているものである力 この極細繊維はいわゆる海島型複合繊維力 好適に得られ るものである。具体的には、海成分にポリ乳酸ポリマーを用い、島成分にポリトリメチレ ンテレフタレートポリマーを用いた海島型複合繊維を使用して織物を製織し、製織後 の染色工程ある 、はこれに付随する工程で、海成分のポリ乳酸を溶解し除去して、 ポリトリメチレンテレフタレートの極細繊維とするものである。ここで得られる極細繊維 は、海成分中に複数の島成分が点在する断面構造であるために、マルチフィラメント として得られる。 [0027] The force of the high-density woven fabric of the present invention is composed of ultrafine fibers made of polytrimethylene terephthalate. This ultrafine fiber can be suitably obtained by the so-called sea-island type composite fiber force. Specifically, weaving a fabric using sea-island type composite fibers using polylactic acid polymer as the sea component and polytrimethylene terephthalate polymer as the island component, and there is a dyeing process after weaving. Then, the polylactic acid, a sea component, is dissolved and removed to form polytrimethylene terephthalate ultrafine fibers. The ultrafine fiber obtained here is a multifilament because it has a cross-sectional structure in which a plurality of island components are scattered in the sea component.
[0028] 本発明の製造方法で用いられる海島型複合繊維は、海成分としてポリ乳酸を配す ることが肝要である。ポリ乳酸は、ポリトリメチレンテレフタレートやポリエチレンテレフ タレートよりも溶融温度が低いため、溶融温度がポリトリメチレンテレフタレートよりも高 V、有機金属塩を共重合したポリエチレンテレフタレートを海成分として用いた場合に 比べ、紡糸温度を低く押さえることができる。これにより、原糸の製造段階から高次加 ェ段階を含めた工程での操業の安定化や、島成分のポリトリメチレンテレフタレートの 熱劣化による風合い低下の防止が可能となる。
[0029] また、ポリ乳酸は、一般的に有機金属塩を共重合したポリエステルよりもアルカリ溶 出速度が速いが、さらにポリ乳酸を海成分としポリトリメチレンテレフタレートを島成分 とする海島型複合繊維とすることで、ポリ乳酸の配向が抑制され、ポリ乳酸のアルカリ 溶出速度がより速くなる。 [0028] It is important for the sea-island type composite fiber used in the production method of the present invention to dispose polylactic acid as a sea component. Polylactic acid has a lower melting temperature than polytrimethylene terephthalate and polyethylene terephthalate, so the melting temperature is higher than that of polytrimethylene terephthalate V, compared to the case where polyethylene terephthalate copolymerized with an organic metal salt is used as the sea component. The spinning temperature can be kept low. This makes it possible to stabilize the operation in the process from the raw yarn production stage to the higher heating stage and to prevent the texture from being lowered due to thermal degradation of the island component polytrimethylene terephthalate. [0029] In addition, polylactic acid generally has a higher alkali dissolution rate than a polyester copolymerized with an organic metal salt, but sea-island type composite fiber further comprising polylactic acid as a sea component and polytrimethylene terephthalate as an island component. By doing so, the orientation of polylactic acid is suppressed and the alkali elution rate of polylactic acid becomes faster.
[0030] さらに、このようにポリ乳酸とポリトリメチレンテレフタレートとを組み合わせた海島型 複合繊維は、海成分のポリ乳酸をアルカリ処理等で除去後、島成分として分割された ポリトリメチレンテレフタレートからなる極細繊維に、収縮性を残すという特異な現象を 付与することが可能であり、このため極細繊維となった後に生地織物の織密度を上 げさらに緻密化させることができる。 [0030] Further, the sea-island type composite fiber in which polylactic acid and polytrimethylene terephthalate are combined as described above is composed of polytrimethylene terephthalate divided as island components after the polylactic acid as a sea component is removed by alkali treatment or the like. It is possible to impart a unique phenomenon of leaving the shrinkage to the ultrafine fibers. For this reason, after forming the ultrafine fibers, it is possible to increase the weave density of the fabric and further densify it.
[0031] この点についてさらに説明する。従来のポリエステル系海島型複合繊維は、海成分 にアルカリ溶出速度の速い有機金属塩を共重合したポリエチレンテレフタレートを用 い、島成分には通常のポリエチレンテレフタレートを用いることが一般的である。この ような海島型複合繊維を編織物に製編織した後に、海成分を溶出するものである。こ の有機金属塩を共重合したポリエチレンテレフタレートを用いた海島複合繊維は、海 成分と島成分の熱セット性がほぼ同じであるため、紡糸 Z延伸後に海島成分が均一 な収縮性を示すものとなる。また、編織物形成後に有機金属塩を共重合したポリェチ レンテレフタレートを確実に溶出させるためには、アルカリ処理のみでは溶出不良と なり易いことと、海成分と島成分との間のアルカリ溶出速度が比較的近いことから、選 択的に海成分のみを分解させるためには、あら力じめ編織物を高温の酸で処理して 海成分と鞘成分との界面に亀裂を入れた後、アルカリ処理で海成分を溶出する工程 を取ることが多い。このため、海成分を溶出した後の島成分には既に収縮性がほとん ど残っていない。 [0031] This point will be further described. Conventional polyester sea-island type composite fibers generally use polyethylene terephthalate obtained by copolymerizing a sea component with an organic metal salt having a high alkali elution rate, and ordinary polyethylene terephthalate is used for the island component. The sea components are eluted after the sea-island type composite fiber is knitted into a knitted fabric. The sea-island composite fiber using polyethylene terephthalate copolymerized with this organometallic salt has almost the same heat setting property as the sea component and the island component, so that the sea-island component shows uniform shrinkage after spinning Z drawing. Become. In addition, in order to ensure the elution of polyethylene terephthalate copolymerized with an organometallic salt after formation of the knitted fabric, the elution failure tends to occur only with alkali treatment, and the alkali elution rate between the sea component and the island component is high. Because it is relatively close, in order to selectively decompose only the sea component, the knitted woven fabric is treated with a high-temperature acid to crack the interface between the sea component and the sheath component. Often, seawater components are eluted during processing. For this reason, the island component after eluting the sea component has almost no shrinkage.
[0032] 一方、本発明の製造方法のように、海成分にポリ乳酸ポリマーを用い、島成分にポ リトリメチレンテレフタレートポリマーを使用した海島型複合繊維の場合は、まず、ポリ 乳酸とポリトリメチレンテレフタレートの熱セット性の違いが特筆される。ポリ乳酸は、比 較的低温で熱セットされるのに対し、ポリトリメチレンテレフタレートはポリ乳酸に比較 して高温でなければ熱セットされず、ポリ乳酸を熱セットできる温度では収縮性が残る ものとなる。また、従来技術の有機金属塩を共重合したポリエチレンテレフタレートに
比較し、ポリ乳酸はアルカリ加水分解、すなわちアルカリ溶出が早ぐ一方、島成分の ポリトリメチレンテレフタレートは通常のポリエチレンテレフタレートに比較してアルカリ 加水分解、すなわちアルカリ溶出が遅い。そのため、前記の従来技術のように海成 分を溶出する際、あらかじめ高温の酸処理等を施さなくとも、比較的低温のアルカリ 処理のみで安定して海成分の溶出が可能である。さらに、海成分であるポリ乳酸を溶 出後も島成分のポリトリメチレンテレフタレートには収縮性能が残っており、海成分を 溶出後さらに生地の密度を緻密化させることができるものとなる。 On the other hand, in the case of a sea-island type composite fiber using a polylactic acid polymer as a sea component and a polytrimethylene terephthalate polymer as an island component as in the production method of the present invention, first, polylactic acid and polytrimethylene are used. The difference in the heat setting property of terephthalate is noted. Polylactic acid is heat-set at a relatively low temperature, whereas polytrimethylene terephthalate is not heat-set unless the temperature is high compared to polylactic acid, and shrinkage remains at a temperature at which polylactic acid can be heat-set. It becomes. In addition, polyethylene terephthalate copolymerized with organic metal salts of the prior art In comparison, polylactic acid has a rapid alkali hydrolysis, that is, alkali elution, while island trimer polytrimethylene terephthalate has a slower alkali hydrolysis, that is, alkali elution, than ordinary polyethylene terephthalate. Therefore, when sea components are eluted as in the prior art described above, sea components can be stably eluted only by a relatively low temperature alkali treatment without prior high-temperature acid treatment. Furthermore, even after the polylactic acid, which is a sea component, is dissolved, the shrinkage performance remains in the polytrimethylene terephthalate, which is an island component, so that the density of the dough can be further refined after the sea component is eluted.
[0033] 具体的に、海成分であるポリ乳酸を溶出後のポリトリメチレンテレフタレートからなる 極細繊維の収縮付与率は、織組織や織密度のような!/ヽゎゆる織物設計に左右される ために一概に言えないものの、 3%以上収縮させることで生地織物の緻密化を図るこ とがでさる。 [0033] Specifically, the shrinkage imparting rate of the ultrafine fiber made of polytrimethylene terephthalate after elution of polylactic acid, which is a sea component, depends on! Therefore, although it cannot be generally stated, it is possible to increase the density of the fabric by shrinking 3% or more.
[0034] これらのポリ乳酸とポリトリメチレンテレフタレートとの組み合わせ効果により、本発明 の目的である生産性に優れ、衣料用織物としたときのソフト感と発色性に優れた、ポリ トリメチレンテレフタレートの極細繊維力もなる防風性に優れた高密度織物が提供で きるのである。 [0034] Due to the combined effect of these polylactic acid and polytrimethylene terephthalate, the productivity of polytrimethylene terephthalate, which is the object of the present invention, is excellent in softness and color development when used as a woven fabric for clothing. It is possible to provide a high-density fabric excellent in windproof properties that has ultrafine fiber strength.
[0035] 本発明でいうポリ乳酸は、特に制限されるものではないが、数平均分子量は 5万〜 10万のものが好ましぐかつ純度が 95. 0%〜99. 5%の L 乳酸からなるポリ乳酸 が好ましい。このようなポリ乳酸であれば、各製造工程での強度を維持できるほか、 適度な生分解性が得られることから溶出した後の廃液の環境負荷が小さい。また、さ らに、ポリ乳酸としては、 L—乳酸や D—乳酸のほかにエステル形成能を有するその 他の成分を共重合した共重合ポリ乳酸であってもよ 、。 [0035] The polylactic acid referred to in the present invention is not particularly limited, but L-lactic acid having a number average molecular weight of 50,000 to 100,000 is preferred and the purity is 95.0% to 99.5%. Polylactic acid consisting of Such polylactic acid can maintain the strength in each manufacturing process and obtain a suitable biodegradability, so the environmental impact of the waste liquid after elution is small. Further, the polylactic acid may be a copolymerized polylactic acid obtained by copolymerizing L-lactic acid or D-lactic acid with other components having ester forming ability.
[0036] 特に好ましいポリ乳酸としては、高融点と低屈折率の観点から、 L 乳酸を主成分 とするポリエステルであるポリ乳酸、およびグリコール酸を主成分とするポリエステル であるポリグリコール酸を挙げることができる。 L 乳酸を主成分とするとは、構成成 分の 60重量%以上が L 乳酸よりなっていることを意味しており、 40重量%を超えな V、範囲で D—乳酸を含有するポリエステルであってもよ!/、。 [0036] Particularly preferable polylactic acid includes, from the viewpoint of high melting point and low refractive index, polylactic acid which is a polyester mainly composed of L-lactic acid and polyglycolic acid which is a polyester mainly composed of glycolic acid. Can do. “L-lactic acid as a main component” means that 60% by weight or more of the constituent components are made of L-lactic acid, and it is a polyester containing D-lactic acid in a V and range not exceeding 40% by weight. Anyway!
[0037] ポリ乳酸に共重合可能な他の成分としては、グリコール酸、 3 ヒドロキシ酪酸、 4 ヒドロキシ酪酸、 4ーヒドロキシ吉草酸、 6—ヒドロキシカプロン酸などのヒドロキシカル
ボン酸類の他、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペン チルダリコール、ポリエチレングリコール、グリセリンおよびペンタエリスリトール等の分 子内に複数の水酸基を含有する化合物類またはそれらの誘導体、アジピン酸、セバ シン酸、フマル酸、テレフタル酸、イソフタル酸、 2, 6—ナフタレンジカルボン酸、 5— ナトリウムスルホイソフタル酸および 5—テトラブチルホスホ-ゥムイソフタル酸等の分 子内に複数のカルボン酸基を含有する化合物類、またはそれらの誘導体が挙げられ る。 [0037] Other components copolymerizable with polylactic acid include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid. In addition to boronic acids, compounds containing multiple hydroxyl groups in their molecules, such as ethylene glycol, propylene glycol, butanediol, neopentyl dallicol, polyethylene glycol, glycerin and pentaerythritol, or their derivatives, adipic acid, sebacic acid , Fumaric acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid and 5-tetrabutylphosphoro-isophthalic acid, etc. Or a derivative thereof.
[0038] ポリ乳酸の数平均分子量は 30万を超えない程度に高いほど好ましぐより好ましい 数平均分子量は 5万以上であり、さらに好ましい数平均分子量は 10万以上である。 [0038] The number average molecular weight of polylactic acid is preferably as high as it does not exceed 300,000. The number average molecular weight is preferably 50,000 or more, and more preferably 100,000 or more.
[0039] 数平均分子量を 5万以上とすることで、製造に供し得るレベルの繊維の強度物性を 得ることができ、また数平均分子量を 30万以下とすることでポリマーの粘度の上昇を 抑えることができるので紡糸温度も低めに抑えることができ、従ってポリマーの熱分解 を防ぎ、安定した紡糸を行うことができる。 [0039] By setting the number average molecular weight to 50,000 or more, it is possible to obtain fiber strength properties at a level that can be used for production, and by setting the number average molecular weight to 300,000 or less, an increase in the viscosity of the polymer is suppressed. Therefore, the spinning temperature can be kept low, and therefore, thermal decomposition of the polymer can be prevented and stable spinning can be performed.
[0040] また、溶融粘度を低減させるため、ポリ力プロラタトン、ポリブチレンサクシネート、お よびポリエチレンサクシネートのような脂肪族ポリエステルポリマーを内部可塑剤とし て、あるいは外部可塑剤として用いることができる。さらには、艷消し剤、消臭剤、難 燃剤、糸摩擦低減剤、抗酸化剤および着色顔料等として無機微粒子や有機化合物 を必要に応じて添加することができる。 [0040] In order to reduce the melt viscosity, aliphatic polyester polymers such as polystrength prolataton, polybutylene succinate, and polyethylene succinate can be used as an internal plasticizer or as an external plasticizer. Furthermore, inorganic fine particles and organic compounds can be added as necessary, such as a defoaming agent, deodorant, flame retardant, yarn friction reducing agent, antioxidant and coloring pigment.
[0041] また、島成分として用いられるポリトリメチレンテレフタレートとは、テレフタル酸を主 たる酸成分とし、 1, 3プロパンジオールを主たるグリコール成分として得られるポリエ ステルである。ポリトリメチレンテレフタレートが 100モル%でることが最も好ましいが、 20モル%以下、好ましくは 10モル%以下の割合で他のエステル結合を形成可能な 共重合成分を含むものであっても良い。 [0041] Polytrimethylene terephthalate used as an island component is a polyester obtained using terephthalic acid as a main acid component and 1,3-propanediol as a main glycol component. The polytrimethylene terephthalate is most preferably 100 mol%, but it may contain a copolymer component capable of forming another ester bond at a ratio of 20 mol% or less, preferably 10 mol% or less.
共重合可能な化合物としては、酸成分として、例えば、イソフタル酸、シクロへキサン ジカルボン酸、アジピン酸、ダイマ酸およびセバシン酸などのジカルボン酸類が挙げ られ、一方、グリコール成分として、例えば、エチレングリコール、ジエチレングリコー ル、ブタンジオール、ネオペンチルグリコール、シクロへキサンジメタノール、ポリェチ レンダリコールおよびポリプロピレングリコールなどを挙げることができる力、これらに
限られるものではない。 Examples of the copolymerizable compound include dicarboxylic acids such as isophthalic acid, cyclohexane dicarboxylic acid, adipic acid, dimer acid, and sebacic acid, while the glycol component includes, for example, ethylene glycol, Powers that can include diethylene glycol, butanediol, neopentyl glycol, cyclohexane dimethanol, polyethylene glycol and polypropylene glycol. It is not limited.
[0042] また、艷消剤としての二酸ィ匕チタン、滑剤としてのシリカやアルミナ等の微粒子、抗 酸化剤としてのヒンダードフエノール誘導体等、および着色顔料などを必要に応じて 添カロすることができる。 [0042] In addition, titanium dioxide as a quenching agent, fine particles such as silica and alumina as a lubricant, hindered phenol derivatives as an antioxidant, and coloring pigments may be added as necessary. Can do.
また、本発明において使用される海島型複合繊維の海成分 Z島成分の複合比率は In addition, the composite ratio of the sea component Z island component of the sea island type composite fiber used in the present invention is
、複合形態の安定性、製糸性および生産性の点から、好ましくは 10Z90〜50Z50 (重量比)とするものである。海成分の複合比率が 10%未満の場合は、複合異常が 発生し分割性不良を生じたり、複合形態が正常であっても海成分の溶解不良による 分割性不良を生じ、十分なソフト感を得ることができないことがある。逆に、海成分の 複合比率が 50%を超えると、生産性が低下するために好ましくない。海島型複合繊 維の海成分 Ζ島成分のより好ましい複合比率は、 15Ζ85〜40Ζ60 (重量比)であ る。 From the viewpoint of the stability of the composite form, yarn production and productivity, it is preferably 10Z90 to 50Z50 (weight ratio). When the composite ratio of the sea component is less than 10%, a composite abnormality occurs, resulting in poor partitioning, or even when the composite form is normal, poor splitting due to poor dissolution of the sea component results in sufficient softness. There are things you can't get. On the other hand, when the composite ratio of the sea components exceeds 50%, productivity is lowered, which is not preferable. Sea component of sea-island type composite fiber A more preferable composite ratio of the island component is 15 to 85 to 40 to 60 (weight ratio).
[0043] また、本発明で用いられる海島型複合繊維においては、海成分を除去した後の島 成分の単繊維繊度は 0. 01〜0. 5dtexであることが好ましい。これは従来のポリェチ レンテレフタレートで構成される高密度織物の硬さと、極細繊維にした際の発色性の 不十分さを改善するためであり、単繊維繊度が 0. Oldtex未満であると単繊維 1本 1 本の精度が低下するため品質問題を起こしやすい。一方、単繊維繊度が 0. 5dtex より大きくなると目的とするソフト感が得られないため望ましくない。さらに好ましい単 繊維繊度は、 0. 05〜0. 2dtexである。 [0043] In addition, in the sea-island type composite fiber used in the present invention, it is preferable that the single fiber fineness of the island component after removing the sea component is 0.01 to 0.5 dtex. This is to improve the hardness of the high-density fabric made of conventional polyethylene terephthalate and the insufficient color development when made into ultrafine fibers. If the single fiber fineness is less than 0. Oldtex, the single fiber Since the accuracy of each one is reduced, quality problems are likely to occur. On the other hand, if the single fiber fineness is larger than 0.5 dtex, the desired soft feeling cannot be obtained, which is not desirable. A more preferable single fiber fineness is 0.05 to 0.2 dtex.
[0044] 本発明で用いられる海島型複合繊維の断面形状は、丸断面の他、扁平、中空およ び三角等の異形断面であってもよい。また、海島型複合繊維の繊維表面は、島成分 が海成分で完全に覆われて 、てもよ 、し、島成分が一部露出して 、ても力まわな!/、。 さらに、海成分を除去した後の島成分の断面形状も、丸断面の他、扁平や三角等の 異形断面であってもよい。 [0044] The cross-sectional shape of the sea-island composite fiber used in the present invention may be an irregular cross-section such as flat, hollow, and triangular in addition to a round cross-section. In addition, the island surface is completely covered with the sea component on the fiber surface of the sea-island type composite fiber, or even if the island component is partially exposed! Furthermore, the cross-sectional shape of the island component after the sea component is removed may be an irregular cross-section such as a flat or triangular shape in addition to the round cross-section.
[0045] また、本発明で用いられる海島型複合繊維は、例えば、特開昭 57— 47938号公 報に記載の第 3図や、特開昭 57— 82526号公報に記載の第 2図に示される装置を 好適な一例として使用して製造することができる。すなわち、海成分となるポリマーと 島成分となるポリマーを別々のポリマー導入管から各々の濾過室で濾過した後、口
金流入孔を介して口金細孔に分割流の状態で会合 (合流)させることが可能な複合 紡糸口金を使用することで得ることが出来る。 [0045] The sea-island type composite fibers used in the present invention are shown in, for example, FIG. 3 described in Japanese Patent Laid-Open No. 57-47938 and FIG. 2 described in Japanese Patent Laid-Open No. 57-82526. It can be manufactured using the device shown as a preferred example. That is, after the polymer that is the sea component and the polymer that is the island component are filtered through separate polymer introduction pipes in the respective filtration chambers, This can be obtained by using a composite spinneret that can associate (join) in a split flow state with the die pores through the gold inflow hole.
[0046] 本発明で用いられる海島型複合繊維を製糸するにあたっては、紡糸および延伸ェ 程を連続して行う方法、未延伸糸として一且卷き取った後、延伸する方法、または高 速製糸法など何れの方法も適用することができる。さらに、本発明で用いられる海島 型複合繊維については、必要に応じて仮撚ゃ空気交絡等の糸加工を施しても良い。 [0046] In producing the sea-island type composite fiber used in the present invention, a method in which spinning and drawing processes are continuously performed, a method in which the yarn is unwound and then drawn and then drawn, or high-speed yarn production. Any method such as a method can be applied. Furthermore, the sea-island type composite fiber used in the present invention may be subjected to yarn processing such as false twisting and air entanglement as necessary.
[0047] 以上のようにして海島型複合繊維を得た後、該海島型複合繊維を用いて製織する 。織物の組織としては従来カゝらある組織を採用することができ、製織に用いる織機も 従来力もある通常の織機を用いることができる。タテ糸とョコ糸の総力バー率が 1700 以上 3500以下、かつ通気度が 1. 0ccZcm2' s未満となるように製織すればよい。 [0047] After obtaining the sea-island type composite fiber as described above, the sea-island type composite fiber is used for weaving. As the fabric structure, a conventional structure can be used, and a loom used for weaving and a conventional loom with conventional power can be used. Weaving should be performed so that the total bar ratio of the warp and weft yarns is 1700 or more and 3500 or less and the air permeability is less than 1.0 ccZcm 2 's.
[0048] 次に、海島型複合繊維を製織して得た海島型複合繊維の織物に溶解処理 (アル力 リ溶出処理)を施す。 [0048] Next, the woven fabric of the sea-island type composite fiber obtained by weaving the sea-island type composite fiber is subjected to a dissolution treatment (Al force re-elution treatment).
[0049] 海成分の溶解処理は、好ましくは 10〜: LOOgZl、さらに好ましくは 20〜80gZlのァ ルカリ溶液中で行うことができる。アルカリ溶液としては、通常、水酸化ナトリウム溶液 を用い、 60〜120°Cの温度で処理すれば良い。すなわち、通常のアルカリ溶出処理 を採用することができる。 [0049] The sea component dissolution treatment can be performed in an alkaline solution of preferably 10 to: LOOgZl, more preferably 20 to 80 gZl. As the alkaline solution, a sodium hydroxide solution is usually used, and the treatment may be performed at a temperature of 60 to 120 ° C. That is, a normal alkali elution process can be employed.
[0050] 溶解処理後は、使用用途に応じて、染色処理や熱セット処理等を行うことができる。 [0050] After the dissolution treatment, a dyeing treatment, a heat setting treatment, or the like can be performed according to the intended use.
また、得られた高密度織物に、撥水加工等を施しても力まわない。 Further, even if the obtained high-density woven fabric is subjected to water repellent treatment or the like, there is no problem.
[0051] 本発明の高密度織物は、防風性や撥水性を活力ゝしたスポーツウエアやカジュアル ウェア、また高密度を活力したダウンジャケットや中綿ジャケット等の表地などに好適 に用いられる。 [0051] The high-density woven fabric of the present invention is suitably used for sportswear and casual wear that are vibrant in terms of windproof and water repellency, and for outer fabrics such as down jackets and batting jackets that are active in high density.
実施例 Example
[0052] 以下実施例により本発明をより詳細に説明する。なお実施例中の各特性値は次の 方法で求めた。 [0052] The present invention will be described in more detail with reference to the following examples. Each characteristic value in the examples was obtained by the following method.
[0053] A.極限粘度 [ 7? ] [0053] A. Intrinsic viscosity [7?]
オルソクロロフエノール 10mlに対し試料 0. 10gを溶解し、温度 25°Cにおいてォスト ワルド粘度計を用いて測定した。 0.10 g of a sample was dissolved in 10 ml of orthochlorophenol and measured using a Ostwald viscometer at a temperature of 25 ° C.
[0054] B.通気度
JIS L1096 (1999年度版)の 8. 27. 1 A法 (フラジール法)に準じて測定した。 [0054] B. Air permeability Measured in accordance with JIS L1096 (1999 edition) 8.27.1 A method (Fragile method).
[0055] C.平均異形度 [0055] C. Average profile
繊維断面の切片を作成して写真撮影して観察し、断面形状の最大内接円の直径 n と断面の最大巾 mを測定し、次式で個々の単繊維の異形度を算出して、 10個の繊 維断面の平均異形度を求めた。 Create a section of the fiber cross-section, take a picture and observe it, measure the diameter n of the maximum inscribed circle of the cross-sectional shape and the maximum width m of the cross-section, calculate the degree of irregularity of each single fiber by the following formula, The average profile of 10 fiber sections was determined.
異形度 =mZn X 100 (%) Deformity = mZn X 100 (%)
D.織物の糸密度、カバー率 D. Woven yarn density and coverage
JIS L1096 (1999年度版)の 8. 6. 1に準じて、タテ糸密度およびョコ糸密度をそ れぞれ測定した。 In accordance with 8.6.1 of JIS L1096 (1999 edition), the warp yarn density and the horizontal yarn density were measured respectively.
[0056] 得られたタテ糸密度およびョコ糸密度力 以下の式によりカバー率を計算した。 [0056] The obtained warp yarn density and horizontal yarn density force The cover ratio was calculated by the following equation.
総力バー率 =タテ糸のカバー率 +ョコ糸のカバー率 Total power bar rate = Cover rate of warp yarn + Cover rate of horizontal yarn
タテ糸のカバー率 =タテ糸密度 (本 Zインチ) X (タテ糸繊度 (dtex) ) 1/2 ョコ糸のカバー率 =ョコ糸密度 (本 Zインチ) X (ョコ糸繊度 (dtex) ) 1/2 Cover rate of warp thread = Warp yarn density (Z inch) X (Vertical yarn fineness (dtex)) 1/2 Cover rate of horizontal thread = Horizontal thread density (Z inch) X (Horizontal yarn fineness (dtex) )) 1/2
E.フィラメント強度、沸騰水収縮率 E. Filament strength, boiling water shrinkage
フィラメント強度は、 JIS L1013 (1999年度版)の 8. 5. 1 (標準時試験)に準じて 引張強度を測定した。ただし、単位は cNZdtexとした。 The filament strength was measured in accordance with JIS L1013 (1999 edition) 8.5.1 (standard test). The unit is cNZdtex.
[0057] 沸騰水収縮率は、 JIS L1013 (1999年度版)の 8. 18. 1 A法 (かせ収縮率)に 準じて測定した。 [0057] The boiling water shrinkage was measured in accordance with 8.18.1 A method (skein shrinkage) of JIS L1013 (1999 edition).
[0058] (実施例 1) [Example 1]
ジメチノレテレフタノレ酸 19. 4kg、 1, 3 プロノ ンジ才一ノレ 15. 2kg【こテトラブチノレチ タネートを触媒として用い、 140°C〜230°Cの温度でメタノールを留出しつつエステ ル交換反応を行った後、さらに、 250°Cの一定温度の条件下で 3. 5時間重合を行い 、極限粘度 [ r? ]が 0. 96のポリトリメチレンテレフタレートを得た。上記の製法で得ら れたポリトリメチレンテレフタレートを島成分に用い、海成分として光学純度 98. 0% のポリ— L 乳酸を用い、海 Z島 = 20Z80 (重量比)の複合比率にて、島成分数 8 本、ホール数 36の海島型複合用口金を用いて複合紡糸機にて紡糸温度 250°Cで、 引き取り速度 1500mZ分で巻き取り未延伸糸を得た。続いて、該未延伸糸を、通常 のホットロール ホットロール系延伸機を用いて延伸温度を 80°Cとし、熱セット温度 1
20°Cで延伸糸の伸度が 35%となるように延伸倍率を合わせて延伸を行い、 66dtex —36フィラメントの延伸糸を得た。得られた延伸糸の強度は 3. 7cNZdtexであり、 沸騰水収縮率は 10. 0%であった。得られた延伸糸をタテ糸およびョコ糸に用い、タ テ糸密度 145 (本 Zインチ)、ョコ糸密度 95 (本 Zインチ)の平織物を製織し、次いで 水酸ィ匕ナトリウム 30 (gZD濃度の 80°C温水中で 60分間処理して、海成分のポリ乳 酸を溶出し、極細繊維 (マルチフィラメント)力もなる織物を得た。この段階で、得られ た織物のサンプルをカットし走査型電子顕微鏡 (SEM)で織物断面を観察し、完全 に海成分が溶出していることを確認した。引き続き、 150°Cの温度でプレセット後、液 流染色機を使用して Dianix Navy Blue BE— SFを2%owf濃度で用ぃ、 120°C の温度で染色 Z還元洗浄し、 140°Cの温度で仕上げセットした。得られた織物は、タ テ糸密度 170 (本 Zインチ)、ョコ糸密度 108 (本 Zインチ)の高密度織物で、通気度 は 0. 5ccZcm2'sと防風性が高ぐかつソフトな手触りと優れた発色性を有するもの であった。このときのタテ糸のカバー率は 1235であり、ョコ糸のカバー率は 785であ り、総力バー率は 2020であった。 Dimethino terephthalenolic acid 19.4 kg, 1,3 Prononde 1 15.2 kg 【This tetrabutino retitanate is used as a catalyst to perform ester exchange reaction while distilling methanol at a temperature of 140 ° C to 230 ° C. Then, polymerization was further performed for 3.5 hours under the condition of a constant temperature of 250 ° C. to obtain polytrimethylene terephthalate having an intrinsic viscosity [r?] Of 0.96. Using polytrimethylene terephthalate obtained by the above manufacturing method as island component, using poly-L lactic acid with optical purity of 98.0% as sea component, sea Z island = 20Z80 (weight ratio) Using a sea-island type compound base with 8 island components and 36 holes, the unspun yarn was wound with a compound spinning machine at a spinning temperature of 250 ° C and a take-up speed of 1500 mZ. Subsequently, the undrawn yarn was drawn at a temperature of 80 ° C using a normal hot roll hot roll drawing machine, and the heat setting temperature 1 Stretching was performed at 20 ° C so that the stretched yarn had an elongation of 35%, and a stretched yarn of 66 dtex-36 filament was obtained. The drawn yarn had a strength of 3.7 cNZdtex and a boiling water shrinkage of 10.0%. Using the obtained drawn yarn for warp and horizontal yarn, weaving a plain fabric with a warp density of 145 (main Z inch) and a horizontal yarn density of 95 (main Z inch), and then hydrated sodium hydroxide 30 (Treatment in warm water of 80 ° C with gZD concentration for 60 minutes yielded a fabric that eluted the sea component polylactic acid and also had ultra-fine fiber (multifilament) force. At this stage, a sample of the fabric was obtained. Cut and observed the cross section of the fabric with a scanning electron microscope (SEM), and it was confirmed that the sea components were completely eluted.After presetting at a temperature of 150 ° C, using a liquid dyeing machine. Dianix Navy Blue BE— SF was used at a concentration of 2% owf, dyed at a temperature of 120 ° C, Z-reduced, and finished and set at a temperature of 140 ° C. Z inch), high-density fabric ® co yarn density 108 (the Z-inch), the air permeability is 0. 5ccZcm 2 's and windproof is Kogu and soft Tesawa Had an excellent color forming property and. Coverage warp at this time is 1235, coverage ® co yarn Ri 785 der, the all-out bar rate was 2020.
[0059] この高密度織物力もマルチフィラメントを分解し、繊維断面の切片を採取して断面 写真を撮影して平均異形度を算出したところ 1. 26であった。得られた高密度織物の 表面写真を図 1に示す。 [0059] This high density fabric strength was 1.26 when the multifilament was disassembled, a section of the fiber cross section was taken and a cross section photograph was taken to calculate the average degree of deformity. Fig. 1 shows a photograph of the surface of the resulting high-density fabric.
[0060] (比較例 1) [0060] (Comparative Example 1)
海成分として 5—ナトリウムスルホイソフタル酸 4. 5モル%共重合した極限粘度 [ 7? ] が 0. 56のポリエチレンテレフタレートを用い、島成分に第 3成分を共重合していない ポリエチレンテレフタレートを用い、実施例 1と同様の口金と複合紡糸機を用いて紡 糸温度 280°C、引き取り速度 1500mZ分で巻き取り、得られた未延伸糸を実施例 1 と同様の方法で延伸し延伸糸を得た。得られた延伸糸は 66dtex - 36フィラメントで 、強度は 2. 5cNZdtexであり、沸騰水収縮率は 8. 0%であった。得られた延伸糸を タテ糸およびョコ糸に用い、タテ糸密度 145 (本 Zインチ)、ョコ糸密度 95 (本 Zイン チ)の平織物を製織し、水酸ィ匕ナトリウム 30 (gZD濃度の 80°C温水中で 60分間処 理して海成分の共重合ポリエステルの溶出を試み、アルカリ処理後の織物のサンプ ルをカットし走査型電子顕微鏡 (SEM)で織物断面を観察したところ、海成分が完全
には溶出せず、分割不良であることを確認した。このため、得られた生機をまず酢酸 l (gZl)濃度の 130°C熱水条件で 30分間酸処理後、中和 Z水洗し、再度水酸化ナ トリウム 30 (gZD濃度の 80°C温水中で 60分間処理して海成分の共重合ポリエステ ルの溶出を試み、アルカリ処理後の織物のサンプルをカットし走査型電子顕微鏡 (S EM)で織物断面を観察したところ、海成分が完全に溶出していることを確認した。引 き続き 150°Cの温度でプレセット後、液流染色機を使用して Dianix Navy Blue BE— SFを 2%owf濃度で用い、 130°Cの温度で染色 Z還元洗浄し、 140°Cの温度 で仕上げセットした。得られた織物はタテ糸密度が 153 (本 Zインチ)で、ョコ糸密度 が 100 (本 Zインチ)の織物で、通気度は 6. 7ccZcm2' sと防風性は高くなぐソフト な手触りであるものの、発色が悪いものであった。このときのタテ糸のカバー率は 111 2であり、ョコ糸のカバー率は 727であり、総力バー率は 1839であった。得られた織 物の表面写真を図 2に示す。 As the sea component, polyethylene terephthalate with an intrinsic viscosity [7?] Of 0.56 copolymerized with 4.5 mol% of 5-sodium sulfoisophthalic acid, and polyethylene terephthalate with no third component copolymerized with the island component, Using the same base and composite spinning machine as in Example 1, the fiber was wound at a spinning temperature of 280 ° C and a take-up speed of 1500 mZ, and the resulting undrawn yarn was drawn in the same manner as in Example 1 to obtain a drawn yarn. It was. The obtained drawn yarn was 66 dtex-36 filament, the strength was 2.5 cNZdtex, and the boiling water shrinkage was 8.0%. The resulting drawn yarn is used for warp and horizontal yarns, and a plain fabric with a warp yarn density of 145 (main Z inch) and a horizontal yarn density of 95 (main Z inch) is woven, and sodium hydroxide 30 ( Attempted to elute the copolyester of sea component by treating in warm water at 80 ° C with gZD concentration for 60 minutes, cut the sample of the fabric after alkali treatment and observed the cross section of the fabric with a scanning electron microscope (SEM) However, the sea component is completely It was confirmed that it was poorly resolved. For this reason, the obtained raw machine is first treated with acetic acid l (gZl) at 130 ° C in hot water for 30 minutes, washed with neutralized Z water, and again with sodium hydroxide 30 (gZD at 80 ° C in warm water). The sample was processed for 60 minutes to try to elute the copolyester of the sea component, cut the fabric sample after alkali treatment, and observed the cross section of the fabric with a scanning electron microscope (SEM). Next, after presetting at a temperature of 150 ° C, dyeing at a temperature of 130 ° C using Dianix Navy Blue BE—SF at a 2% owf concentration using a flow dyeing machine. Z-reduced and finished and set at a temperature of 140 ° C. The resulting fabric is a fabric with a warp density of 153 (lines Z inches) and a weft density of 100 (lines Z inches), and the air permeability is 6. although 7ccZcm 2 's and windproof is higher Nag soft texture, color development was poor. coverage warp yarn in this case 111 2, coverage ® co yarn is 727, the total force bars ratio was 1839. Showing a photograph of the surface of the resultant woven product in Figure 2.
[0061] (実施例 2) [Example 2]
実施例 1で用いたものと同じ海島型複合繊維をョコ糸に用い、タテ糸に 56dtex—l 44フィラメントのポリエチレンテレフタレートの仮撚カ卩ェ糸を用い、タテ糸密度 199 ( 本 Zインチ)、ョコ糸密度 111 (本 Zインチ)の平織物を製織し、次いで水酸ィ匕ナトリウ ム 30 (gZD濃度の 80°C温水中で 60分間処理して ョコ糸の海成分のポリ乳酸を溶 出し極細繊維 (マルチフィラメント)からなる織物を得た。引き続き 150°Cの温度でプ レセット後、液流染色機を使用して 130°Cの温度で染色 Z還元洗浄し、 160°Cでの 温度仕上げセットした。得られた織物は、タテ糸密度が 238 (本 Zインチ)であり、ョコ 糸密度が 129 (本 Zインチ)の高密度織物で、その通気度は 0. 8ccZcm2' Sと防風 性の高いものであった。このときのタテ糸のカバー率は 1781であり、ョコ糸のカバー 率は 937であり、総力バー率は 2718であった。 The same sea-island type composite fiber as used in Example 1 is used for the horizontal thread, the warp yarn is a 56 dtex-l 44 filament polyethylene terephthalate false twist yarn, and the warp density is 199 (in Z inches) Weaving a plain weave with a weft yarn density of 111 (in Z inches), and then treating with 30% hydrous acid sodium hydrate (gZD concentration in 80 ° C warm water for 60 minutes) A woven fabric consisting of ultrafine fibers (multifilaments) was obtained, and after presetting at a temperature of 150 ° C, dyeing Z was reduced and washed at a temperature of 130 ° C using a liquid dyeing machine. The resulting fabric was a high-density fabric with a warp yarn density of 238 (lines Z inches) and a weft yarn density of 129 (lines Z inches) with an air permeability of 0.8 ccZcm. 2 'were those high S and windproof. coverage warp at this time is 1781, ® co yarn coverage Is 937, the all-out bar rate was 2718.
産業上の利用可能性 Industrial applicability
[0062] 本発明のポリエチレンテレフタレートからなる繊維糸を用いた高密度織物は、今ま で以上に高密度化を図ることができ、防風性や撥水性を有するスポーツ織物等に幅 広く使用でき有用である。
[0062] The high-density fabric using the fiber yarn made of polyethylene terephthalate according to the present invention can achieve higher density than ever, and can be used widely for sports fabrics having windproof and water repellency. It is.
Claims
[1] タテ糸および Zまたはョコ糸にポリトリメチレンテレフタレートからなる単繊維繊度が [1] The single fiber fineness of polytrimethylene terephthalate on warp and Z or horizontal
0. 01-0. 5dtexのマルチフィラメントを使用してなる織物であって、タテ糸とョコ糸 の総力バー率が 1700以上 3500以下で、かつ通気度が 1. 0ccZcm2' s未満である ことを特徴とする高密度織物。 0. 01-0. Woven fabric made of 5dtex multifilament, the total bar ratio of warp and horizontal yarn is 1700 or more and 3500 or less, and air permeability is less than 1.0ccZcm 2's A high-density fabric characterized by that.
[2] 通気度が 0. 8ccZcm2' S未満であることを特徴とする請求項 1記載の高密度織物 [2] The high-density fabric according to claim 1, wherein the air permeability is less than 0.8 cc Zcm 2 ′ S.
[3] ポリトリメチレンテレフタレートからなるマルチフィラメントの単繊維の平均異形度が 1 . 05以上 5. 0以下であることを特徴とする請求項 1または 2に記載の高密度織物。 [3] The high-density woven fabric according to claim 1 or 2, wherein the average degree of irregularity of the multifilament single fiber made of polytrimethylene terephthalate is 1.05 or more and 5.0 or less.
[4] ポリトリメチレンテレフタレートからなるマルチフィラメントが捲縮を有して 、ることを特 徴とする請求項 1に記載の高密度織物。 [4] The high-density fabric according to [1], wherein the multifilament made of polytrimethylene terephthalate has crimps.
[5] 海成分ポリマーがポリ乳酸で構成され、島成分ポリマーがポリトリメチレンテレフタレー トで構成されている海島型複合繊維であって、海成分 Z島成分の複合比率が 10Z9 0〜50Z50であり、溶解処理によって得られる島成分の単繊維繊度が 0. 01〜0. 5 dtexである海島型複合繊維を、タテ糸および Zまたはョコ糸に使用して織物を製織 後、溶解処理によりポリ乳酸を溶出させることを特徴とする高密度織物の製造方法。 [5] A sea-island composite fiber in which the sea component polymer is composed of polylactic acid and the island component polymer is composed of polytrimethylene terephthalate, and the composite ratio of the sea component Z island component is 10Z90 to 50Z50 Yes, weaving the woven fabric using sea-island type composite fibers with an island component single fiber fineness of 0.01 to 0.5 dtex obtained by dissolution treatment in warp yarn and Z or horizontal yarn, and then by dissolution treatment A method for producing a high-density fabric, wherein polylactic acid is eluted.
[6] 海成分ポリマーのポリ乳酸を溶解処理で溶出後、島成分ポリマーであるポリトリメチレ ンテレフタレートからなる単繊維を 3%以上収縮させることを特徴とする請求項 5記載 の高密度織物の製造方法。 [6] The method for producing a high-density fabric according to claim 5, wherein after the polylactic acid of the sea component polymer is eluted by a dissolution treatment, a single fiber composed of polytrimethylene terephthalate that is the island component polymer is contracted by 3% or more. .
[7] 溶解処理がアルカリ溶液によるものであることを特徴とする請求項 5または 6記載の 高密度織物の製造方法。
7. The method for producing a high-density fabric according to claim 5 or 6, wherein the dissolution treatment is performed with an alkaline solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/322137 WO2008056406A1 (en) | 2006-11-07 | 2006-11-07 | High-density woven fabric and production process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/322137 WO2008056406A1 (en) | 2006-11-07 | 2006-11-07 | High-density woven fabric and production process |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008056406A1 true WO2008056406A1 (en) | 2008-05-15 |
Family
ID=39364235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/322137 WO2008056406A1 (en) | 2006-11-07 | 2006-11-07 | High-density woven fabric and production process |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008056406A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2642003A1 (en) * | 2010-11-18 | 2013-09-25 | Teijin Frontier Co., Ltd. | Fabric and clothing |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11100721A (en) * | 1997-09-24 | 1999-04-13 | Asahi Chem Ind Co Ltd | Ultrafine multifilament and its production |
WO2001066838A1 (en) * | 2000-03-03 | 2001-09-13 | E.I. Du Pont De Nemours And Company | Fine denier yarn from poly(trimethylene terephthalate) |
JP2001348735A (en) * | 2000-06-06 | 2001-12-21 | Toray Ind Inc | Sea-island conjugate yarn and combined filament yarn |
WO2002008504A1 (en) * | 2000-07-25 | 2002-01-31 | Asahi Kasei Kabushiki Kaisha | Stretchable high-density woven fabric |
JP2006028645A (en) * | 2004-07-12 | 2006-02-02 | Toray Ind Inc | Ultra fine yarn |
JP2006057219A (en) * | 2004-08-23 | 2006-03-02 | Toray Ind Inc | High-density woven fabric and its production |
JP2006274501A (en) * | 2005-03-30 | 2006-10-12 | Toray Ind Inc | Splittable conjugate fiber |
-
2006
- 2006-11-07 WO PCT/JP2006/322137 patent/WO2008056406A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11100721A (en) * | 1997-09-24 | 1999-04-13 | Asahi Chem Ind Co Ltd | Ultrafine multifilament and its production |
WO2001066838A1 (en) * | 2000-03-03 | 2001-09-13 | E.I. Du Pont De Nemours And Company | Fine denier yarn from poly(trimethylene terephthalate) |
JP2001348735A (en) * | 2000-06-06 | 2001-12-21 | Toray Ind Inc | Sea-island conjugate yarn and combined filament yarn |
WO2002008504A1 (en) * | 2000-07-25 | 2002-01-31 | Asahi Kasei Kabushiki Kaisha | Stretchable high-density woven fabric |
JP2006028645A (en) * | 2004-07-12 | 2006-02-02 | Toray Ind Inc | Ultra fine yarn |
JP2006057219A (en) * | 2004-08-23 | 2006-03-02 | Toray Ind Inc | High-density woven fabric and its production |
JP2006274501A (en) * | 2005-03-30 | 2006-10-12 | Toray Ind Inc | Splittable conjugate fiber |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2642003A1 (en) * | 2010-11-18 | 2013-09-25 | Teijin Frontier Co., Ltd. | Fabric and clothing |
EP2642003A4 (en) * | 2010-11-18 | 2014-04-23 | Teijin Frontier Co Ltd | Fabric and clothing |
TWI601860B (en) * | 2010-11-18 | 2017-10-11 | Teijin Frontier Co Ltd | Fabric and clothing |
US9970133B2 (en) | 2010-11-18 | 2018-05-15 | Teijin Frontier Co., Ltd. | Woven fabric and garment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007262610A (en) | Combined filament yarn | |
JP2006336162A (en) | Woven fabric and method for producing the same | |
JP2011047068A (en) | Water-repelling polyester blended yarn | |
JP2007009395A (en) | Ultrafine false-twist polytrimethylene terephthalate yarn and method for producing the same | |
JP4419503B2 (en) | Pile fiber and pile fabric | |
JP4556551B2 (en) | High density fabric and manufacturing method | |
WO2008056406A1 (en) | High-density woven fabric and production process | |
JP4639889B2 (en) | Polytrimethylene terephthalate extra fine yarn | |
JP2002105796A (en) | Light-shielding woven fabric | |
JP2844680B2 (en) | Different fineness / different shrinkage mixed fiber and method for producing the same | |
JP5071097B2 (en) | Sea-island polyester composite fiber | |
JP2000226734A (en) | Conjugate fiber, combined filament yarn and woven or knitted fabric | |
JP4479394B2 (en) | Woven knitting | |
JP2006336119A (en) | Union cloth and method for producing the same | |
JP4691885B2 (en) | Method for producing dyed yarn | |
JP4329515B2 (en) | Sea-island type composite fiber | |
JP3333831B2 (en) | Polyester thick yarn | |
JP4708851B2 (en) | Polylactic acid fiber knitted fabric and production method thereof | |
JP2016180189A (en) | Commingled yarn, suede tone woven or knitted fabric and method for producing suede tone woven or knitted fabric | |
JP2001214335A (en) | Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof | |
JP2002138342A (en) | Polylactate fiber structure | |
JP2007009396A (en) | Union cloth and method for producing the same | |
JP2006207057A (en) | Needle resistant woven fabric | |
JP2007284835A (en) | Union cloth and method for producing the same | |
JP2001172836A (en) | Low-shrinkage polyester yarn and polyester combined filament yarn comprising the same yarn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06823050 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06823050 Country of ref document: EP Kind code of ref document: A1 |