JP2006024294A - 磁気ヘッド及びその製造方法、並びにこれを搭載した磁気ディスク装置 - Google Patents

磁気ヘッド及びその製造方法、並びにこれを搭載した磁気ディスク装置 Download PDF

Info

Publication number
JP2006024294A
JP2006024294A JP2004202343A JP2004202343A JP2006024294A JP 2006024294 A JP2006024294 A JP 2006024294A JP 2004202343 A JP2004202343 A JP 2004202343A JP 2004202343 A JP2004202343 A JP 2004202343A JP 2006024294 A JP2006024294 A JP 2006024294A
Authority
JP
Japan
Prior art keywords
film
refill
magnetoresistive
etching
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202343A
Other languages
English (en)
Inventor
Hiroshi Shintani
拓 新谷
Nobuo Yoshida
伸雄 芳田
Kenichi Meguro
賢一 目黒
Katsuro Watanabe
克朗 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2004202343A priority Critical patent/JP2006024294A/ja
Priority to US11/177,967 priority patent/US20060007603A1/en
Publication of JP2006024294A publication Critical patent/JP2006024294A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • G11B5/3932Magnetic biasing films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】磁気再生ヘッドの製造工程において、磁気抵抗効果膜のトラック幅方向側壁面又は素子高さ方向側壁面に付着した再付着物の除去を容易にし、高出力の磁気再生ヘッドを得る。
【解決手段】トラック幅方向リフィル膜又は素子高さ方向リフィル膜6のうち最初に形成するリフィル膜を、磁気抵抗効果膜3に接している層14はエッチングレートが遅いが、熱処理による特性劣化を抑えることのできる材料で形成し、磁気抵抗効果膜に接している層以外の層15はエッチングレートの速い材料で形成する。
【選択図】 図11

Description

本発明は、磁気的に記録された情報を再生する磁気ヘッドとその製造方法、及びこれを搭載した磁気記録再生装置に関し、特に高い再生出力を有する磁気ヘッド、及びこれを搭載した磁気記録再生装置に関する。
外部磁界の変化に応じて電気抵抗が変化する磁気抵抗効果を利用した磁気抵抗センサは、優れた磁界センサとして知られており、磁気記録再生装置の主要な部品である磁気ヘッドにおいて磁気記録媒体からの信号磁界を検出するための再生素子として実用化されている。
磁気記録再生装置における記録密度は著しい向上を続けており、磁気ヘッドは、トラック幅の狭小化と同時に記録・再生の両特性に関し高性能化が求められている。再生特性については、磁気抵抗効果を利用したMRヘッドを発展させることにより高感度化が進められている。数Gb/in2の低記録密度では異方性磁気抵抗効果(AMR)を用いて記録媒体上の磁気的信号を電気信号に変換していたが、これを超える高記録密度になると、より高感度な巨大磁気抵抗効果(GMR)が採用されている。
更に高記録密度化の要求に対しては、上部磁気シールド層と下部磁気シールド層との間の距離(再生ギャップ長)の狭小化に伴い、高感度化に際して有利となる膜面に略垂直な方向に検出電流を流す方式(CPP方式)の研究開発が行われており、CPP−GMRや、トンネル磁気抵抗効果(TMR)を利用した磁気再生ヘッドが報告されている。
図1、図2を用いてCPP方式の磁気再生ヘッドの基本的な構造を説明する。図1は、CPP方式の磁気再生ヘッドの媒体対向面に平行な断面(素子高さ方向に垂直な断面)を示すものである。図1中のX軸・Y軸・Z軸は、ぞれぞれトラック幅方向、素子高さ方向、磁気抵抗効果膜の膜厚方向を示している。以下の図においてX軸・Y軸・Z軸は、ぞれぞれ図1に示すX軸・Y軸・Z軸と同一軸を表すものとする。トラック幅方向リフィル膜1は磁気抵抗効果膜3のトラック幅方向側壁面に接して設けられている。縦バイアス印加層又はサイドシールド層5は無くても構わない。なお、図1において2は上部磁気シールド層、4は下部磁気シールド層を示す。図2は、図1におけるaa’線で切断した時のCPP方式の磁気再生ヘッドの素子高さ方向の断面図である。図2においては右側が磁気再生ヘッドの媒体対向面13となる。トラック幅方向と同様、素子高さ方向リフィル膜6は磁気抵抗効果素子の壁面に接して設けられている。トラック幅方向リフィル膜1及び素子高さ方向リフィル膜6には、絶縁膜であるアルミナが主に用いられている。
CPP方式の磁気再生ヘッドでは、再生ギャップ長をできるだけ小さくするため、通常は上下の磁気シールド層2,4と磁気抵抗効果膜3が電気的に接するように作成される。上部磁気シールド層2及び下部磁気シールド層4は、磁気抵抗効果膜3に電流を流すための電極を兼ねる。このとき磁気抵抗効果膜3以外に上下の磁気シールド層2,4間を電気的にショートさせる回路が存在すると、これが検知電流のリーク経路となるため出力が落ちることになる。
ショート回路の形成が懸念される場所の1つとして、磁気抵抗効果膜3そのものの側壁面があげられる。これは磁気再生ヘッドの形成方法に関係がある。図3に、CPP方式の磁気再生ヘッドの2種類の工程フロー図を示す。磁気再生ヘッドの製造工程は下部磁気シールド層の形成工程、磁気抵抗効果膜の成膜工程、磁気抵抗効果膜のパターニング工程、上部磁気シールド層の形成工程からなり、図3(a)(b)に示した2つの工程フローの違いは、磁気抵抗効果膜の素子高さを形成する工程と、トラック幅を形成する工程の順序だけであり、この順番は状況によって異なり、どちらを先に行っても良い。
磁気抵抗効果膜をパターニングして素子高さを形成する工程及びトラック幅を形成する工程では、図4に示すように、磁気抵抗効果膜3は所定の大きさのレジストマスク8又は11などで保護され(図4(b))、不要な領域がエッチングされる(図4(c))。このエッチング工程では一般には、Arイオンによるイオンビームエッチング法や塩素系ガスやCO系ガスによるRIE法によるエッチングが用いられる。エッチングの後、素子高さ方向リフィル膜6又はトラック幅方向リフィル膜1を成膜し(図4(d))、これをリフトオフ法によってレジストマスク8又は11と余分なリフィル膜を除去することによって(図4(e))、磁気抵抗効果膜の素子高さ又はトラック幅がそれぞれ形成される。
なお、図4では図示していないが、トラック幅を形成する工程ではトラック幅方向リフィル膜1の上に更に、サイドシールド膜又は縦バイアス印加層5が成膜される場合がある。このエッチングの際(図4(c))に、被エッチング物が磁気抵抗効果膜3の壁面に再び付着する再付着と呼ばれる現象が生じる。この再付着物は磁気抵抗効果膜3或いは下部磁気シールド層4を形成する金属からなる積層膜であり、導電性のあるものであるから上述した検知電流のリーク経路となる恐れがある。
この再付着物による検知電流のリークを防ぐ手段として、特開2003-86861号公報にはトラック幅形成工程を行う際、エッチング後に再付着物を酸化することによって、磁気抵抗効果膜3のトラック幅方向の壁面に付着した再付着による検知電流のリークを防ぐ方法が開示されている。この方法は酸化することによって、再付着物をトラック幅方向リフィル膜の一部として活用する点に特徴がある。
また、特開2002-26423号公報には、図4(c)に示したエッチングにおいて、図5に示すように、下部シールド層4上に成膜された磁気抵抗効果膜3に対して、トラック幅形成用のレジストマスク8又は素子高さ形成用のレジストマスク11で所定の形状にマスクし、第1の入射角度θ1でイオンビームを入射しエッチングを行った後に、この第1のエッチングの入射角度よりも磁気抵抗効果膜3に対して斜めとなる第2の入射角度θ2(θ2>θ1)でイオンビームを入射してエッチングを行う事によって磁気抵抗効果膜3の壁面に付着した再付着物を除去する方法が開示されている。なお、ここで入射角度とは基板の法線に対する入射イオンのなす角度と定義する。
特開2003-86861号公報 特開2002-26423号公報
しかしながら、上記のような2段階のエッチングを用いても、リフィル膜の影になり、イオンビームが十分に当たらない箇所が存在するため、再付着層の除去が不十分となり、検知電流のリークが生じる可能性がある。リフィル膜の影となる部分は、磁気抵抗効果膜3のトラック幅の形成工程と素子高さの形成工程の順番によって異なる。
まず、素子高さの形成工程をトラック幅の形成工程よりも先に行う場合(図3(a))について説明する。この場合では、トラック幅を形成するエッチングにおいて素子高さ方向リフィル膜6の影となるエリアが生じる。図6は、素子高さの形成工程をトラック幅の形成工程よりも先に行う場合のトラック幅形成時の第1のエッチング前(図6(a))と第1のエッチング後の状態を、素子高さ方向の奥部近傍を媒体対向面側から俯瞰した概略図である。図6において、手前側(+Y方向)が磁気再生ヘッドの浮上面となる方向にあたる。素子高さを形成した後、磁気抵抗効果膜3と素子高さ方向リフィル膜6はリフトオフマスク8によってマスクされ(図6(a))、マスクされている部分以外は第1のエッチングによって除去されている(図6(b))。境界面7は磁気抵抗効果膜3と素子高さ方向リフィル膜6との境界面を示しており、この境界面は素子高さ形成工程のエッチングによって形成される。
第1のエッチングにおいては、磁気抵抗効果膜3と素子高さ方向リフィル膜6の間にエッチングレートの差があることから、図6(b)に示すように磁気抵抗効果膜3の両側において素子高さ方向リフィル膜6に段差Aが生じる。素子高さ方向リフィル膜6による段差Aのために、磁気抵抗効果膜3、レジストマスク8と素子高さリフィル膜6に囲まれた部分に、この直後に行う第2のエッチングおいて影となるエリア10ができる。第2のエッチングは、第1のエッチングを行った際に磁気抵抗効果膜3のトラック幅方向側壁面9に付着した再付着物を除去することを目的に、第1のエッチングの入射角度よりも素子に対して斜めとなる入射角度で行う。このとき、エリア10は、図6(b)において左側は磁気抵抗効果膜3及びレジストマスク8によって、奥側は素子高さ方向リフィル膜6によって囲まれており、イオンビームが入射できるのは図の右側と手前側の2つの方向のみ限定されるため、再付着物の除去が不十分となる。
次に、トラック幅を形成する工程を素子高さの形成工程よりも先に行う場合(図3(b))について述べる。この場合には、素子高さを形成するエッチングにおいてトラック幅方向リフィル膜1によって影となるエリアが生じる。図7は、トラック幅形成工程を素子高さ形成工程よりも先に行う場合において、トラック幅形成後の素子高さ形成時の第1のエッチング前(図7(a))と第1のエッチング後(図7(b))の状態を、素子高さ方向の奥部近傍を媒体対向面の反対側から俯瞰した概略図である。図7において、奥側(+Y方向)が磁気再生ヘッドの媒体対向面となる方向にあたる。トラック幅を形成した後、図7(a)に示すように、磁気抵抗効果膜3とトラック幅方向リフィル膜1及びサイドシールド膜又は縦バイアス印加層5はレジスト11によってマスクされ、そののち図7(b)に示すように、マスクされている部分以外は第1のエッチングによって除去される。
この時、第1のエッチングにおいては、磁気抵抗効果膜3とトラック幅方向リフィル膜1の間にエッチングレートの差があることから、図7(b)に示すように磁気抵抗効果膜3の素子高さ方向の奥側(−Y方向)においてトラック幅方向リフィル膜1による壁が形成される。このトラック幅方向リフィル膜1による壁のために、磁気抵抗効果膜3、サイドシールド膜又は縦バイアス印加層5、レジストマスク11、及び両側のトラック幅方向リフィル膜1に囲まれたエリア12は、この直後に行う第2のエッチング時においてイオンビームが照射されにくくなる。第2のエッチングは、第1のエッチングを行った際に磁気抵抗効果膜3の素子高さ方向側壁面に付着した再付着物を除去することを目的に、第1のエッチングの入射角度よりも磁気抵抗効果膜3に対して斜めとなる入射角度で行う。このとき、図7(b)に示された磁気抵抗効果膜3の素子高さ方向側壁面は、磁気抵抗効果膜3、縦バイアス印加層5及びレジストマスク11、トラック幅方向リフィル膜1によって囲まれているので、イオンビームが入射しにくい状況となり、再付着物の除去が不十分となる。
このように従来の磁気再生ヘッドの製造方法は、磁気抵抗効果膜をトラック幅方向又は素子高さ方向にエッチングによりパターニングを行う際の、磁気抵抗効果膜側壁面に付着する再付着物を除去するための2段階のエッチングにおいて、第2のエッチング時にイオンビームが入射されにくいエリアが生じ、再付着物の除去が不十分となり、その結果として磁気再生ヘッドの出力が小さくなる問題がある。
本発明は、このような従来技術の問題点を解消し、磁気抵抗効果膜側壁面に再付着物が無い高出力の磁気再生ヘッド及びその製造方法を提供することである。
第2のエッチング時にイオンビームが入射されにくいエリアが生じ、再付着物の除去が不十分となる問題を解決するには、トラック幅方向リフィル膜又は素子高さ方向リフィル膜のうち最初に形成するリフィル膜をエッチングレートの速い材料、例えばSiO2等で形成すればよい。しかしながら、このような材料を用いると、後述するようにプロセス中の熱処理によって、磁気抵抗効果膜の特性が劣化することがわかった。
そこで、リフィル膜を複層膜によって形成し、磁気抵抗効果膜に接している層以外の層のエッチングレートが、磁気抵抗効果膜に接している層のエッチングレートよりも速くなるようにリフィル膜材料を選択する。すなわち、トラック幅方向リフィル膜又は素子高さ方向リフィル膜のうち最初に形成するリフィル膜を、磁気抵抗効果膜に接している層はエッチングレートが遅いが、熱処理による特性劣化を抑えることのできる材料で形成し、磁気抵抗効果膜に接している層以外の層はエッチングレートの速い材料で形成する。これによって、熱処理による特性劣化を抑えつつ、第2のエッチング時にイオンビームが入射されにくい状況となるエリアを無くし、再付着物の除去を十分に行えるようになる。
本発明によると、製造工程中のエッチング工程において磁気抵抗効果膜壁面に付着した再付着物の除去を容易に行うことができるため、検知電流のリークが少なく、高出力の磁気再生ヘッドを実現することができる。また、本発明の磁気再生ヘッドを搭載することによって、高い記録密度を持つ磁気記録再生装置を実現できる。
磁気抵抗効果膜側壁面の再付着物を除去するための第2のエッチングの際にイオンビームが入射されにくい箇所が生じる理由として、リフィル膜として一般的に用いられるアルミナの第1のエッチング時におけるエッチングレートが、磁気抵抗効果膜を形成する各金属材料のエッチングレートよりも遅い事が挙げられる。そこで、エッチングレートが速いリフィル膜材料の候補を選択するため、主だった材料のArイオンによるエッチング法によるエッチングレートの比較を行った。
図8に、加速電圧を350V、イオン電流を0.20A、アーク電圧を70Vとしてエッチングレートの比較を行った結果を示す。図8において、横軸は被エッチング試料の法線方向に対してイオンビームが入射する角度を示し、縦軸は各材料のエッチングレートを示す。通常、第1のエッチングではイオンビームの入射角度は0〜20度であり、この範囲においては、磁気抵抗効果膜に使われるNi−Fe合金等の金属材料に比べてアルミナ(Al23)のエッチングレートはおよそ3分の1であることがわかる。一方、Si酸化物(SiO2)のエッチングレートはNiFeとほぼ同等である。このことから、リフィル膜としてSi酸化物(SiO2)を用いたほうが、エッチングレートの違いによって段差や壁が形成される事が無く、第2のエッチングの際にリフィル膜によってイオンビームが遮られる部分が生じにくいので、イオンビームが照射されやすく、再付着層の除去が容易になると考えられる。
CPP方式の磁気再生ヘッドにおいては、磁気抵抗効果膜側壁面にリフィル膜が接触するため、リフィル膜の材料が磁気抵抗効果膜の特性に及ぼす影響を調べる必要がある。ここでは、磁気再生ヘッド作成プロセス中の熱処理を想定し、250度、3時間の熱処理前後での磁気抵抗効果素子の抵抗値及び抵抗変化率の変化を調べた。図9及び図10に実験結果を示す。なお、この実験では磁気抵抗効果膜としてTMR膜を用いている。図の縦軸は、抵抗値及び抵抗変化率の各々について、熱処理後の値を熱処理前の値で規格化した値となっており、横軸は、磁気抵抗効果素子の素子面積である。図9及び図10に示すように、アルミナ(Al23)の方がSi酸化物(SiO2)に比べて熱による磁気抵抗効果膜の特性劣化を抑える効果があり、特に磁気抵抗効果膜の素子面積が小さい時に、その効果は顕著であるといえる。このことから、熱による特性劣化を抑えるためには、リフィル膜としてアルミナ(Al23)を用いた方が望ましいといえる。
以上の2つの実験結果から、リフィル膜にAl23又はSiO2を用いた場合にはそれぞれ次のような問題があることがわかる。アルミナ(Al23)を用いた場合、熱による磁気抵抗効果膜の特性劣化を最小限に抑えることができるが、エッチングレートが遅いために、上述したようにリフィル膜がイオンビームの入射方向を限定してしまうことによって、再付着物を除去するための第2のエッチングの際にイオンビームが磁気抵抗効果膜の壁面に入射されにくいエリアが生じてしまう。一方、Si酸化物(SiO2)の場合、磁気抵抗効果膜とのエッチングレート差が小さいために、第2のエッチングの際にイオンビームが入射されにくい箇所は生じにくいが、熱による磁気抵抗効果膜の特性劣化が大きい。
この問題を解決するため、リフィル膜を複層膜で形成し、これらのうち磁気抵抗効果膜に接している層以外の層を、磁気抵抗効果膜に接している層のエッチングレートよりも速い材料で構成し、磁気抵抗効果膜に接している層を熱処理の際に磁気抵抗効果膜の特性に及ぼす影響の小さい材料とすればよい。例えば、複層膜で構成されたリフィル膜のうち、磁気抵抗効果膜に接している層以外の層をSi酸化物(SiO2)で形成し、磁気抵抗効果膜に接している層をアルミナ(Al23)で形成することによって、上述した熱による磁気抵抗効果膜の特性劣化の問題を最小限に抑え、かつ、第2のエッチングの際にイオンビームが入射されにくい箇所が生じにくい構造を作る事ができる。
次に、図面を用いて本発明の実施例を説明する。
図11は、本発明による磁気再生ヘッドの一例のセンサ部分を示す素子高さ方向断面図である。図12はその製造方法を説明する図であり、各工程における素子高さ方向の断面を示している。
図11に示した構造をもつ磁気再生ヘッド磁気再生ヘッドの製造方法について、図12を用いて説明する。なお本実施例における磁気再生ヘッドは、図3(a)のように、素子高さの形成工程をトラック幅の形成工程よりも先に行う方法によって作成されるものである。まずアルミナチタンカーバイド等などからなる基板表面にAl23等の絶縁体を被膜し、化学的機械研磨法(CMP)などによる精密研磨を施した後に下部磁気シールド層4を形成する。これは、例えばスパッタリング法、イオンビームスパッタリング法、あるいはめっき法で作製したNi−Fe系合金からなる膜を、所定の形状にパターニングすることによって形成される。この上にAl23を成長させてCMPを施すことによって,基板表面は下部磁気シールド層4とAl23が平坦化された面となる。更に、後の工程において磁気抵抗効果膜3を形成する場所から離れた部分に引き出し電極膜(図示せず)を形成する。これは例えば、TaとAuとTaの積層膜によって構成される。
この下部磁気シールド4上に、例えばスパッタリング法あるいはイオンビームスパッタリング法にて磁気抵抗効果膜3を作製する(図12(a))。磁気抵抗効果膜は、例えばCo−Fe系合金の強磁性体を含む層から構成される固定層、Al−O又はCuなどからなる中間層、Ni−Fe系合金あるいはCo−Fe系合金等を含む層からなる自由層を備えて構成される。
次に、素子高さ方向の形成を行う。まず、磁気抵抗効果膜3上にレジストを塗布し、露光装置により露光した後、これを現像液で現像することにより、所望の形状にパターニングし、これをリフトオフマスク11とする(図12(b))。このリフトオフマスク11はレジストの下にポリ・ジメチル・グルタル・イミドを塗布し、レジストと同時にパターニングした2層構造としても構わない。次に、磁気抵抗効果膜3に対して、イオンビームエッチング、反応性イオンエッチング(RIE)等のドライエッチングを行い、素子高さ方向についてのパターンをエッチングによって形成する(図12(c))。このエッチングに続いて、図5に示したように入射角が第1のエッチングよりも基板に対して斜めとなる第2の入射角度で再びイオンビームエッチングを行う事によって、第1のエッチング時に素子壁面に付着した再付着物を除去することが可能である。第2のエッチングの入射角度は60度〜80度が望ましい。また、第1のエッチングと第2のエッチングを交互に複数回繰り返すことにより、素子高さ方向の形成を行ってもよく、第1のエッチングと第2のエッチングの間に、第1のエッチング及び第2のエッチングと異なる手法又は異なるイオン入射角度を用いたエッチングを行っても良い。
次に複層から構成される素子高さ方向リフィル膜6をスパッタリング法あるいはイオンビームスパッタリング法にて成膜する。トラック幅を形成するエッチング工程の第1のエッチングにおいて、素子高さ方向リフィル膜6と磁気抵抗効果膜3がエッチングされる深さが、等しくなるように、素子高さ方向リフィル膜6の構成及び膜厚を設計する事が望ましい。これは、上述したように、この後に行うトラック幅を形成する工程において、再付着を除去するための第2のエッチングを行う際にイオンビームが入射されにくい箇所が生じないようにするためである。
この素子高さ方向リフィル膜6のうち磁気抵抗効果膜3に直接接する第1のリフィル膜14は絶縁膜であり、上述した熱による磁気抵抗効果膜の特性劣化を抑えるためアルミナで形成する事が最も望ましい。
素子高さ方向リフィル膜6のうち第1のリフィル膜14の上に成膜される第2のリフィル膜15は絶縁材料であっても金属材料であっても構わないが、上述したようにこの後に行うトラック幅を形成する工程において、再付着を除去するための第2のエッチングを行う際にイオンビームが入射されにくい箇所が生じないようにするため、トラック幅を形成する工程における第1のエッチングのエッチングレートが第1のリフィル膜14に対して速い材料とする必要がある。
例えば、トラック幅を形成する工程における第1のエッチングにおいてイオンビームエッチングを考えた場合、エッチングレートの大小は硬度に関係するものであるから、第2のリフィル膜15の硬度が第1のリフィル膜14の硬度に比べ低いことが重要である。すなわち、第1のリフィル膜14は硬度の高い絶縁材料が望ましく、具体的にはアルミナ、Ti酸化物などが考えられる。硬度は、例えばビッカース硬度で比較することができる。上述した熱による磁気抵抗効果膜の特性劣化を考慮して、第1のリフィル膜14にアルミナを用いた場合、第2のリフィル膜15として具体的に考えられる材料として、Ni酸化物、Si酸化物、Si窒化物、Al窒化物、Zr酸化物、Ta酸化物等がある。また、アルミナとNi酸化物、Si酸化物、Si窒化物、Al窒化物、Zr酸化物、Ta酸化物のいずれかの材料の混合物、又はSi酸化物とNi酸化物、Si窒化物、Al窒化物、Zr酸化物、Ta酸化物のいずれかの材料の混合物なども第2のリフィル膜15の候補となりうる。更に、Ni−Fe合金、Rh、Ru、Au、Cr、Ni−Cr合金、Ni−Cr−Fe合金、Cu、Taなどの金属材料でも構わない。
また、トラック幅を形成する工程における第1のエッチングにおいてCO+NH3系ガスや塩素系ガスによる反応性エッチングを考えた場合、エッチングレートの大小は反応生成物の蒸気圧に関係するものであるから、第2のリフィル膜15の反応生成物の蒸気圧が第1のリフィル膜14の反応生成物の蒸気圧に比べ高いことが重要である。例えば、CO系ガスによるエッチングを用いた場合、Alのカルボニル化合物の蒸気圧に比べ、Si,Ni,Fe等のカルボニル化合物の蒸気圧は5〜6桁くらい高いので、第1のリフィル膜14にアルミナ、第2のリフィル膜15にSi酸化物、Ni酸化物、Ni−Fe合金等を用いればよい。また、塩素ガスによるエッチングを用いた場合、室温でのAl塩化物及びSi塩化物の蒸気圧がそれぞれ1×10-2Torr程度、1×102Torr程度であることから、アルミナを第1のリフィル膜14に、Si酸化物、Si窒化物などのSi系材料を第2のリフィル膜15に用いることができる。
以上では2層で構成した素子高さ方向リフィル膜について述べたが、更に第2のリフィル膜15の上に第3、第4・・・のリフィル膜を成膜し、更なる複層構造を形成しても構わない。ただし、これら第3、第4のリフィル膜はすべて第2のリフィル膜15と同様に、トラック幅を形成する工程における第1のエッチングのエッチングレートが第1のリフィル膜14に対して速い材料とする必要がある。また、この後に行うトラック幅形成工程におけるパターン形成を容易にするため、図12(d)に示す素子高さ方向リフィル膜6の厚さBは、図12(d)に示す磁気抵抗効果膜3の厚さCに近いことが望まれる。次に、有機溶剤を用いてリフトオフマスク11を除去し、図12(e)に示すような形状が出来上がる。
この工程の後、トラック幅の形成を行う(図示せず)。このトラック幅の形成に当たっては、素子高さ形成と同様に、レジスト、又はレジストとPMGIを用いてレジストマスクを作成し、磁気抵抗効果膜3に対して、イオンビームエッチング、反応性イオンエッチング(RIE)等のドライエッチングを行い、トラック幅をエッチングによって形成する。このエッチングに続いて、図5に示したように、入射角が第1のエッチングよりも基板に対してより斜めとなる第2の入射角度でエッチングを行う事によって、第1のエッチング時に素子側壁面に付着した再付着物を除去することが可能である。
イオンビームエッチングを行う場合、第1のエッチングのイオン入射角度は、0〜45度が望ましい。第1のエッチングにイオンビームエッチング、反応性イオンエッチング(RIE)のどちらを選んだ場合でも、第2のエッチングにはイオンビームエッチングを用い、その入射角度を60度〜80度とすることが望ましい。また、第1のエッチングと第2のエッチングを交互に複数回ずつ行い、トラック幅の形成を行ってもよく、第1のエッチングと第2のエッチングの間に、第1のエッチング及び第2のエッチングと異なる手法又は異なるイオン入射角度を用いたエッチングを行っても良い。
この時、素子高さ方向リフィル膜6を複層構造とし、第2のリフィル膜15を第1のリフィル膜14よりもエッチングレートの速い材料によって形成したことによって、図6に示した段差Aは無くなっているか小さくなっており、図6に示すエリア10のように素子高さリフィル膜6によってイオンビームが遮られて照射されにくくなるエリアは無く、第2のエッチングの際に素子側壁面にイオンビームが十分に照射され、再付着層の除去も十分に行われる。
磁気抵抗効果膜3をエッチングした後、トラック幅方向リフィル膜1を成膜する。このトラック幅方向リフィル膜1は磁気抵抗効果膜3に直接接する材料が絶縁材料であれば、複層構造であってもなくても構わない。このトラック幅方向リフィル膜1のうち少なくとも磁気抵抗効果膜3に直接接する層はアルミナで構成されている事が望ましい。更に、このトラック幅方向リフィル膜1の上に、縦バイアス印加層又はサイドシールド層5を成膜することも可能であるが、この縦バイアス印加層又はサイドシールド層5は必ずしも必要ではない。最後に、有機溶剤を用いてレジストマスクを除去しトラック幅方向の形成は完成する。
この後、磁気抵抗効果膜3の上部に軟磁性体からなる上部磁気シールド層2を形成する(図12(f))。この上部磁気シールド層2を形成するにあたっては、下地層としてTa、NiCrなどの金属を磁気抵抗効果膜3の上部に成膜した後、上部磁気シールド層2を形成しても良い。この後、引き出し端子の積み上げ工程、もしくは媒体に情報を記録するための記録素子を作成する工程を経た後、スライダー形成工程により媒体対向面13を形成することによって、本発明に係る磁気再生ヘッドを得る(図12(g))。
図13、図14は、本発明の磁気再生ヘッドと記録素子を組み合わせた磁気ヘッドの概略断面図である。図13は面内磁気記録方式の磁気ヘッド、図14は垂直磁気記録方式の磁気ヘッドを示している。図13に示すように、面内磁気記録方式の磁気ヘッドの場合、記録素子は下部磁極18、上部磁極19、コイル20、コイル絶縁膜21、ギャップ22から構成される。また図14に示すように、垂直磁気記録方式の磁気ヘッドの場合、記録素子としては補助磁極23、主磁極24及びコイル20、コイル絶縁膜21から構成される単磁極ヘッドが用いられる。
図15は、本発明による磁気再生ヘッド組み込んだ磁気ヘッド25を備える磁気記録再生装置の概略図である。この磁気記録再生装置は、モータ29によって回転駆動される磁気記録媒体27、記録ヘッドと再生ヘッドを搭載した磁気ヘッド25、ボイスコイルモータ(アクチュエータ)28、信号処理回路30を備える。磁気ヘッド25はジンバル26の先端に装着され、ボイスコイルモータ28によって磁気記録媒体27に対して相対的に駆動されて所望のトラック上に位置決めされる。ホストから送信されてきた記録信号は、信号処理回路30を介して磁気ヘッド25の記録ヘッドに送られ、磁気記録媒体27に磁化反転を生じさせて記録される。また、磁気記録媒体27の記録磁化による漏洩磁界は磁気ヘッド25の再生ヘッドによって検出され、検出された信号は信号処理回路30で処理された後、再生信号としてホストに送信される。
次に、本実施例の磁気再生ヘッドと従来の磁気再生ヘッドとの比較実験を行った。本実施例の磁気再生ヘッドとしては、素子高さ方向リフィル膜6は2層構造、具体的には、磁気抵抗効果膜3に直接接する第1のリフィル膜14にはビッカース硬度1750のアルミナ、その上に成膜される第2のリフィル膜15にはビッカース硬度650のSiO2を用いた。また、素子高さ形成及びトラック幅形成の各々の第1のエッチングにはイオンビームエッチングを用いた。従来の磁気再生ヘッドは、素子高さ方向リフィル膜6をアルミナの単層構造とした他は本実施例の磁気再生ヘッドと同様に作製した。なお、磁気抵抗効果膜3としてはTMR膜を用いている。
この比較実験では、印加電圧20mVにおいて最大10kOeの磁界を印加してトランスファーカーブを測定した。図16は各々の磁気再生ヘッドの出力を比較したものである。図16から、従来の磁気再生ヘッドは素子高さが小さくなるにつれて出力が下がっていることがわかる。これは、図6のエリア10に示された部分に再付着層が残り、検知電流がリークしている事が原因と考えられる。すなわち、素子高さが小さくなるにつれて検知電流のうち出力に寄与しない再付着部分を流れる電流成分が大きくなっているからである。一方、本実施例による磁気再生ヘッドは、素子高さに関わらず出力がほぼ一定であることがわかる。
素子の高さは、磁気記録再生装置における記録密度の向上のため、今後ますます小さくなっていくことが予想される。これは磁気抵抗効果膜3が最も感磁しやすい媒体対向面13の表面近傍にのみ配置することによって磁気抵抗変化率を向上させ、記録密度を向上させるためにトラック幅及びシールド間距離を小さくしても、必要な出力を保つ磁気再生ヘッドを実現するためである。このため、図6のエリア10に示された部分に再付着層が存在すると、素子高さを小さくするほど磁気抵抗変化に寄与しない電流が大きくなり、センサとしての出力が小さくなってしまう。図16に示した結果から、本実施例による磁気再生ヘッドは素子高さを小さくした場合においても検知電流の損失が少なく、高い出力を実現した磁気再生ヘッドであることがわかる。
なお、上記においては、磁気抵抗効果膜3として、Co−Fe系合金の強磁性体を含む層から構成される固定層、Al−Oなどからなる絶縁障壁層、Ni−Fe系合金あるいはCo−Fe系合金等を含む層からなる自由層で構成されるトンネル磁気抵抗効果膜を用いて説明したが、これは単なる一例であり、これに限定されるものではない。Co−Fe系合金の強磁性体を含む層から構成される固定層、Cuなどからなる中間層、Ni−Fe系合金あるいはCo−Fe系合金等を含む層からなる自由層で構成される巨大磁気抵抗効果膜を用いてもよい。あるいは、例えば、固定層あるいは自由層に高分極率材料を用いた磁気抵抗効果膜、固定層や中間層や自由層に電流狭窄層を設けた磁気抵抗効果膜、更には、磁性半導体を用いた磁気抵抗効果膜、偏極スピンの拡散や蓄積現象を利用した磁気抵抗効果膜なども用いることができ、磁気抵抗効果膜を構成する材料の膜面に対して略垂直な方向に検知電流を流すデバイスであれば、本発明の効果は変わるものではない。
また、上記では、磁気抵抗効果膜3が媒体対向面13に露出するように配置された磁気再生ヘッドについて述べたが、図20に示すように、磁気抵抗効果膜3の一部のみが媒体対向面13に露出するように配置された磁気再生ヘッドや、図21に示すように、磁気抵抗効果膜3が媒体対向面から離れたところに配置された磁気再生ヘッドでも同様の効果が得られる。
図17は、本発明による磁気再生ヘッドの他の例のセンサ部分を示すトラック幅方向断面図である。図18は、その製造方法を説明する図であり、各工程におけるトラック幅方向の断面を示している。
図17に示した構造をもつ磁気再生ヘッドの製造方法について、図18を用いて説明する。まずアルミナチタンカーバイド等などからなる基板表面にAl23等の絶縁体を被膜し、化学的機械研磨法(CMP)などによる精密研磨を施した後に、下部磁気シールド層4を形成する。これは、例えばスパッタリング法、イオンビームスパッタリング法、あるいはめっき法で作製したNi−Fe系合金からなる膜を、所定の形状にパターニングすることによって形成される。この上にAl23を成長させてCMPを施すことによって、基板表面は下部磁気シールド層4とAl23が平坦化された面となる。更に、後の工程において磁気抵抗効果膜3を形成する場所から離れた部分に引き出し電極膜(図示せず)を形成する。これは例えば、TaとAuとTaの積層膜によって構成される。
この下部磁気シールド4上に、例えばスパッタリング法あるいはイオンビームスパッタリング法にて磁気抵抗効果膜3を作製する(図18(a))。磁気抵抗効果膜3は、例えばCo−Fe系合金の強磁性体を含む層から構成される固定層、Al−O又はCuなどからなる中間層、Ni−Fe系合金あるいはCo−Fe系合金等を含む層からなる自由層を備えて構成される。
次にトラック幅方向の形成を行う。まず、磁気抵抗効果膜3上に、レジストを塗布し、露光装置により露光した後、これを現像液で現像することにより、所望の形状にパターニングし、これをリフトオフマスク8とする(図18(b))。このリフトオフマスク8はレジストの下にポリ・ジメチル・グルタル・イミドを塗布し、レジストと同時にパターニングした2層構造としても構わない。次に、磁気抵抗効果膜3に対して、イオンビームエッチング、反応性イオンエッチング(RIE)等のドライエッチングを行い、トラック幅方向についてのパターンをエッチングによって形成する(図18(c))。このエッチングに続いて、入射角がより斜めとなる第2の入射角度で再びイオンビームエッチングを行う事によって、第1のエッチング時に素子壁面に付着した再付着物を除去することが可能である。第2のエッチングの入射角度は60度〜80度が望ましい。また、第1のエッチングと第2のエッチングを交互に複数回繰り返すことにより、トラック幅方向の形成を行ってもよく、第1のエッチングと第2のエッチングの間に、第1のエッチング及び第2のエッチングと異なる手法又は異なるイオン入射角度を用いたエッチングを行っても良い。
次に、複層から構成されるトラック幅方向リフィル膜1をスパッタリング法あるいはイオンビームスパッタリング法にて成膜する。素子高さを形成するエッチング工程の第1のエッチングにおいて、トラック幅方向リフィル膜1と磁気抵抗効果膜3がエッチングされる深さが等しくなるように、トラック幅方向リフィル膜1の構成及び膜厚を設計する事が望ましい。これは、上述したように、この後に行う素子高さを形成する工程において、再付着を除去するための第2のエッチングを行う際にイオンビームが入射されにくい箇所が生じないようにするためである。
このトラック幅方向リフィル膜1のうち磁気抵抗効果膜3に直接接する第1のリフィル膜16は絶縁膜であり、上述した熱による磁気抵抗効果膜の特性劣化を抑えるためアルミナで形成する事が最も望ましい。
トラック幅方向リフィル膜1のうち第1のリフィル膜16の上に成膜される第2のリフィル膜17は、絶縁材料であっても金属材料であっても構わないが、上述したようにこの後に行う素子高さを形成する工程において、再付着物を除去するための第2のエッチングを行う際にイオンビームが入射されにくい箇所が生じないようにするため、素子高さを形成する工程における第1のエッチングのエッチングレートが第1のリフィル膜16に対して速い材料とする必要がある。
例えば、トラック幅を形成する工程における第1のエッチングにおいてイオンビームエッチングを考えた場合、エッチングレートの大小は硬度に関係するものであるから、第2のリフィル膜17の硬度が第1のリフィル膜16の硬度に比べ低いことが重要である。すなわち、第1のリフィル膜16は硬度の高い絶縁材料が望ましく、具体的にはアルミナ、Ti酸化物などが考えられる。硬度は、例えばビッカース硬度で比較することができる。上述した熱による磁気抵抗効果膜の特性劣化を考慮して、第1のリフィル膜16にアルミナを用いた場合、第2のリフィル膜17として具体的に考えられる材料として、Ni酸化物、Si酸化物Si窒化物、Al窒化物、Zr酸化物、Ta酸化物等がある。また、アルミナとNi酸化物、Si酸化物、Si窒化物、Al窒化物、Zr酸化物、Ta酸化物のいずれかの材料の混合物、又はSi酸化物とNi酸化物、Si窒化物、Al窒化物、Zr酸化物、Ta酸化物のいずれかの材料の混合物なども第2のリフィル膜17の候補となりうる。更に、Ni−Fe合金、Rh、Ru、Au、Cr、Ni−Cr合金、Ni−Cr−Fe合金、Cu、Taなどの金属材料でも構わない。
また、トラック幅を形成する工程における第1のエッチングにおいてCO+NH3系ガスや塩素系ガスによる反応性エッチングを考えた場合、エッチングレートの大小は反応生成物の蒸気圧に関係するものであるから、第2のリフィル膜17の反応生成物の蒸気圧が第1のリフィル膜16の反応生成物の蒸気圧に比べ高いことが重要である。例えば、CO+NH3系ガスによるエッチングを用いた場合、Alのカルボニル化合物の物の蒸気圧に比べ、Si,Ni,Fe等のカルボニル化合物の蒸気圧は5〜6桁くらい高いので、第1のリフィル膜16にアルミナ、第2のリフィル膜17にSi酸化物、Ni酸化物、Ni−Fe合金等を用いればよい。また、塩素ガスによるエッチングを用いた場合、室温でのAl塩化物及びSi塩化物の蒸気圧がそれぞれ1×10-2Torr程度、1×102Torr程度であることから、アルミナを第1のリフィル膜16に、Si酸化物、Si窒化物などのSi系材料を第2のリフィル膜17に用いることができる。
以上では2層で構成されたトラック幅方向リフィル膜について述べたが、更に第2のリフィル膜17の上に第3、第4・・・のリフィル膜を成膜し、更なる複層構造を形成しても構わない。ただし、これら第3、第4のリフィル膜はすべて第2のリフィル膜17と同様に、素子高さを形成する工程における第1のエッチングのエッチングレートが第1のリフィル膜16に対して速い材料とする必要がある。更に、このトラック幅方向リフィル膜1の上に、縦バイアス印加層又はサイドシールド層5を成膜する場合もある(図18(d))。次に、有機溶剤を用いてリフトオフマスク8を除去し、図18(e)に示すような形状が出来上がる。
この工程の後、素子高さの形成を行う(図示せず)。この素子高さの形成に当たってはトラック幅方向と同様に、レジスト、又はレジストとPMGIを用いてレジストマスクを作成し、磁気抵抗効果膜3に対して、イオンビームエッチング、反応性イオンエッチング(RIE)等のドライエッチングを行い、素子高さをエッチングによって形成する。このエッチングに続いて、入射角がより斜めとなる第2の入射角度でエッチングを行う事によって、第1のエッチング時に素子側壁面に付着した再付着物を除去することが可能である。
イオンビームエッチングを行う場合、第1のエッチングの入射角度は、0〜45度が望ましい。第1のエッチングにイオンビームエッチング、反応性イオンエッチング(RIE)のどちらを選んだ場合でも、第2のエッチングにはイオンビームエッチングを用い、その入射角度を60度〜80度とすることが望ましい。また、第1のエッチングと第2のエッチングを交互に複数回ずつ行い、素子高さの形成を行ってもよく、第1のエッチングと第2のエッチングの間に、第1のエッチング及び第2のエッチングと異なる手法又は異なるイオン入射角度を用いたエッチングを行っても良い。
この時、トラック幅方向リフィル膜1を複層構造とし第2のリフィル膜17を第1のリフィル膜16よりもエッチングレートの速い材料によって形成したことによって、図7に示したエリア12のようにリフィル膜の影となるエリアが無く、第2のエッチングの際にイオンビームが、図7に示された磁気抵抗効果膜3の素子高さ方向側壁面にも十分に照射され再付着層の除去を十分に行うことができる。
磁気抵抗効果膜3をエッチングした後、素子高さ方向リフィル膜6を成膜する。この素子高さ方向リフィル膜6は、磁気抵抗効果膜3に直接接する材料が絶縁材料であれば、複層構造であってもなくても構わない。この素子高さ方向リフィル膜6のうち少なくとも磁気抵抗効果膜3に直接接する層はアルミナで構成されている事が望ましい。最後に、有機溶剤を用いてレジストマスクを除去し素子高さ方向の形成は完成する。
この後、磁気抵抗効果膜3の上部に軟磁性体からなる上部磁気シールド層2を形成する(図18(f))。この上部磁気シールド層2を形成するにあたっては、下地層としてTa、NiCrなどの金属を磁気抵抗効果膜3の上部に成膜した後、上部磁気シールド層2を形成しても良い。その後、引き出し端子の積み上げ工程、もしくは媒体に情報を記録するための記録素子を作成する工程を経た後、スライダー形成工程により媒体対向面13を形成することによって、本発明に係る磁気再生ヘッドを得る。
本実施例の磁気再生ヘッドと記録ヘッドを組み合わせた磁気ヘッドは、図13、図14に示したとおりである。また、本実施例の磁気再生ヘッドを組み込んだ磁気ヘッドを備える磁気記録再生装置の概略構成は図15に示したとおりである。詳細は実施例1に述べたとおりであるため、ここでは説明を省略する。
次に、本実施例の磁気再生ヘッドと従来の磁気再生ヘッドとの比較実験を行った。本実施例の磁気再生ヘッドとしては、トラック幅方向リフィル膜1は2層構造、具体的には、磁気抵抗効果膜3に直接接する第1のリフィル膜16にはビッカース硬度1750のアルミナ、その上に成膜される第2のリフィル膜17にはビッカース硬度650のSiO2を用いた。また、素子高さ形成及びトラック幅形成の各々の第1のエッチングにはイオンビームエッチングを用いた。従来の磁気再生ヘッドは、トラック幅方向リフィル膜1をアルミナの単層構造とした他は本実施例の磁気再生ヘッドと同様に作成した。なお、磁気抵抗効果膜3としてはTMR膜を用いている。
この比較実験では、印加電圧20mVにおいて最大10kOeの磁界を印加してトランスファーカーブを測定した。図19は、各々の磁気再生ヘッドの出力を比較したものである。図19から、従来の磁気再生ヘッドは素子高さが小さくなるにつれて出力が下がっていることがわかる。これは、図7に示したように、磁気抵抗効果膜3のトラック幅方向側壁面に再付着層が残り、検知電流がリークしている事が原因と考えられる。すなわち、素子高さが小さくなるにつれて検知電流のうち出力に寄与しない再付着部分を流れる電流成分が大きくなっているからである。一方、本実施例による磁気再生ヘッドは素子高さに関わらず出力がほぼ一定であることがわかる。
素子の高さは、磁気記録再生装置における記録密度の向上のため、今後ますます小さくなっていくことが予想される。これは磁気抵抗効果膜3が最も感磁しやすい媒体対向面13の表面近傍にのみ配置することによって磁気抵抗変化率を向上させ、記録密度を向上させるためにトラック幅及びシールド間距離を小さくしても、必要な出力を保つ磁気再生ヘッドを実現するためである。このため、図7に示したように磁気抵抗効果膜3のトラック幅方向側壁面に再付着層が存在すると、素子高さを小さくするほど磁気抵抗変化に寄与しない電流が大きくなり、センサとしての出力が小さくなってしまう。図19に示した結果から、本実施例による磁気再生ヘッドは素子高さを小さくした場合においても検知電流の損失が少なく、高い出力を実現した磁気再生ヘッドであることがわかる。
なお、上記においては、磁気抵抗効果膜3として、Co−Fe系合金の強磁性体を含む層から構成される固定層、Al−Oなどからなる絶縁障壁層、Ni−Fe系合金あるいはCo−Fe系合金等を含む層からなる自由層で構成されるトンネル磁気抵抗効果膜を用いて説明したが、これは単なる一例であり、これに限定されるものではない。Co−Fe系合金の強磁性体を含む層から構成される固定層、Cuなどからなる中間層、Ni−Fe系合金あるいはCo−Fe系合金等を含む層からなる自由層で構成される巨大磁気抵抗効果膜を用いてもよい。あるいは、例えば、固定層あるいは自由層に高分極率材料を用いた磁気抵抗効果膜、固定層や中間層や自由層に電流狭窄層を設けた磁気抵抗効果膜、更には、磁性半導体を用いた磁気抵抗効果膜、偏極スピンの拡散や蓄積現象を利用した磁気抵抗効果膜なども用いることができ、磁気抵抗効果膜を構成する材料の膜面に対して略垂直な方向に検知電流を流すデバイスであれば、本発明の効果は変わるものではない。
また、上記では、磁気抵抗効果膜3が媒体対向面13に露出するように配置された磁気再生ヘッドについて述べたが、図20のように、磁気抵抗効果膜3の一部のみが媒体対向面に露出するように配置された磁気再生ヘッドや、図21のように、磁気抵抗効果膜3が媒体対向面から離れたところに配置された磁気再生ヘッドでも同様の効果が得られる。
CPP方式磁気再生ヘッドのトラック幅方向断面の概略図。 CPP方式磁気再生ヘッドの素子高さ方向断面の概略図。 CPP方式磁気再生ヘッドの製造工程を示したフロー図。 従来の磁気再生ヘッドの製造工程を表すトラック幅方向断面又は素子高さ方向断面を表す概略図。 2段階エッチングを説明するための概略図。 従来のCPP方式磁気再生ヘッドの問題点を説明するための概略図。 従来のCPP方式磁気再生ヘッドの問題点を説明するための概略図。 各材料のエッチングレートのイオン入射角度依存性を示したグラフ。 熱処理前後での磁気抵抗効果素子の抵抗値の変化を示したグラフ。 熱処理前後での磁気抵抗効果素子の磁気抵抗変化率の変化を示したグラフ。 本発明の実施例1による磁気再生ヘッドの素子高さ方向断面の概略図。 本発明の実施例1による磁気再生ヘッドの製造工程を表す素子高さ方向断面の概略図。 面内記録用記録素子を搭載した磁気再生ヘッドの概略断面図。 垂直記録用記録素子を搭載した磁気再生ヘッドの概略断面図。 磁気記録再生装置の概略図。 本発明の実施例1による磁気再生ヘッドと従来の磁気再生ヘッドの出力を比較したグラフ。 本発明の実施例2による磁気再生ヘッドのトラック幅方向断面の概略図。 本発明の実施例2による磁気再生ヘッドの製造工程を表すトラック幅方向断面の概略図。 本発明の実施例2による磁気再生ヘッドと従来の磁気再生ヘッドの出力を比較したグラフ。 磁気抵抗効果膜の一部のみが媒体対向面に露出するように配置された磁気再生ヘッドの素子高さ方向断面の概略図。 磁気抵抗効果膜が媒体対向面から離れたところに配置された磁気再生ヘッドの素子高さ方向断面の概略図。
符号の説明
1:トラック幅方向リフィル膜、2:上部磁気シールド層、3:磁気抵抗効果膜、4:下部磁気シールド層、5:縦バイアス印加層又はサイドシールド層、6:素子高さ方向リフィル膜、8:トラック幅形成用のレジストマスク、9:磁気抵抗効果膜のトラック幅方向側壁面、10:イオンビームが照射されにくいエリア、11:素子高さ形成用のレジストマスク、12:イオンビームが照射されにくいエリア、13:媒体対向面、14:素子高さ方向の第1のリフィル膜、15:素子高さ方向の第2のリフィル膜、16:トラック幅方向の第1のリフィル膜、17:トラック幅方向の第2のリフィル膜、18:下部磁極、19:上部磁極、20:コイル、21:コイル絶縁膜、22:ギャップ、23:補助磁極、24:主磁極、25:磁気ヘッド、26:ジンバル、27:記録媒体、28:ボイスコイルモータ、29:モータ、30:信号処理回路

Claims (28)

  1. 下部磁気シールド層と、
    上部磁気シールド層と、
    前記下部磁気シールド層と上部磁気シールド層の間に形成された磁気抵抗効果膜と、
    前記磁気抵抗効果膜の浮上面とは反対側の面に接するように配された素子高さ方向リフィル膜と、
    前記磁気抵抗効果膜の膜厚方向に電流を流す手段とを含み、
    前記素子高さ方向リフィル膜は積層膜であり、前記磁気抵抗効果膜に接する第1のリフィル膜と、前記第1のリフィル膜上に形成された第2のリフィル膜とを有し、前記第2のリフィル膜のエッチングレートが前記第1のリフィル膜のエッチングレートより速いことを特徴とする磁気ヘッド。
  2. 請求項1記載の磁気ヘッドにおいて、前記第2のリフィル膜のビッカース硬度が前記第1のリフィル膜のビッカース硬度より低いことを特徴とする磁気ヘッド。
  3. 請求項1記載の磁気ヘッドにおいて、前記第2のリフィル膜のカルボニル化合物の蒸気圧が前記第1のリフィル膜のカルボニル化合物の蒸気圧より高いことを特徴とする磁気ヘッド。
  4. 請求項1記載の磁気ヘッドにおいて、前記第1のリフィル膜はアルミナによって形成されていることを特徴とする磁気ヘッド。
  5. 請求項1記載の磁気ヘッドにおいて、前記第1のリフィル膜はアルミナによって形成され、前記第2のリフィル膜はNi酸化物、Si酸化物、Si窒化物、Ta酸化物、Al窒化物、又はZr酸化物を含有して形成されていることを特徴とする磁気ヘッド。
  6. 請求項1記載の磁気ヘッドにおいて、前記第1のリフィル膜はアルミナによって形成され、前記第2のリフィル膜はNi−Fe合金、Rh、Ru、Au、Cr、Ni−Cr合金、Ni−Cr−Fe合金、Cu、Taのうち少なくとも1種類の材料を含む金属材料によって形成されていることを特徴とする磁気ヘッド。
  7. 請求項1記載の磁気ヘッドにおいて、前記素子高さ方向リフィル膜を構成するすべての層が絶縁材料によって形成されていることを特徴とする磁気ヘッド。
  8. 請求項1記載の磁気ヘッドにおいて、前記第1のリフィル膜が絶縁材料によって形成され、前記第2のリフィル膜は金属材料によって形成されていることを特徴とする磁気ヘッド。
  9. 請求項1記載の磁気ヘッドにおいて、前記磁気抵抗効果膜は自由層、中間層、固定層を備える巨大磁気抵抗効果膜であることを特徴とする磁気ヘッド。
  10. 請求項1記載の磁気ヘッドにおいて、前記磁気抵抗効果膜は自由層、絶縁障壁層、固定層を備えるトンネル磁気抵抗効果膜であることを特徴とする磁気ヘッド。
  11. 下部磁気シールド層と、
    上部磁気シールド層と、
    前記下部磁気シールド層と上部磁気シールド層の間に形成された磁気抵抗効果膜と、
    前記磁気抵抗効果膜のトラック幅方向側面に接するように配されたトラック幅方向リフィル膜と、
    前記磁気抵抗効果膜の膜厚方向に電流を流す手段とを含み、
    前記トラック幅方向リフィル膜は積層膜であり、前記磁気抵抗効果膜に接する第1のリフィル膜と、前記第1のリフィル膜上に形成された第2のリフィル膜とを有し、前記第2のリフィル膜のエッチングレートが前記第1のリフィル膜のエッチングレートより速いことを特徴とする磁気ヘッド。
  12. 請求項11記載の磁気ヘッドにおいて、前記第2のリフィル膜のビッカース硬度が前記第1のリフィル膜のビッカース硬度より低いことを特徴とする磁気ヘッド。
  13. 請求項11記載の磁気ヘッドにおいて、前記第2のリフィル膜のカルボニル化合物の蒸気圧が前記第1のリフィル膜のカルボニル化合物の蒸気圧より高いことを特徴とする磁気ヘッド。
  14. 請求項11記載の磁気ヘッドにおいて、前記第1のリフィル膜はアルミナによって形成されていることを特徴とする磁気ヘッド。
  15. 請求項11記載の磁気ヘッドにおいて、前記第1のリフィル膜はアルミナによって形成され、前記第2のリフィル膜はNi酸化物、Si酸化物、Si窒化物、Ta酸化物、Al窒化物、又はZr酸化物を含有して形成されていることを特徴とする磁気ヘッド。
  16. 請求項11記載の磁気ヘッドにおいて、前記第1のリフィル膜はアルミナによって形成され、前記第2のリフィル膜はNi−Fe合金、Rh、Ru、Au、Cr、Ni−Cr合金、Ni−Cr−Fe合金、Cu、Taのうち少なくとも1種類の材料を含む金属材料によって形成されていることを特徴とする磁気ヘッド。
  17. 請求項11記載の磁気ヘッドにおいて、前記トラック幅方向リフィル膜を構成するすべての層が絶縁材料によって形成されていることを特徴とする磁気ヘッド。
  18. 請求項11記載の磁気ヘッドにおいて、前記第1のリフィル膜が絶縁材料によって形成され、前記第2のリフィル膜は金属材料によって形成されていることを特徴とする磁気ヘッド。
  19. 請求項11記載の磁気ヘッドにおいて、前記磁気抵抗効果膜は自由層、中間層、固定層を備える巨大磁気抵抗効果膜であることを特徴とする磁気ヘッド。
  20. 請求項11記載の磁気ヘッドにおいて、前記磁気抵抗効果膜は自由層、絶縁障壁層、固定層を備えるトンネル磁気抵抗効果膜であることを特徴とする磁気ヘッド。
  21. 下部磁気シールド層と、上部磁気シールド層と、前記下部磁気シールド層と上部磁気シールド層の間に形成された磁気抵抗効果膜と、前記磁気抵抗効果膜の浮上面とは反対側の面に接するように配された素子高さ方向リフィル膜と、前記磁気抵抗効果膜のトラック幅方向側面に接するように配されたトラック幅方向リフィル膜と、前記磁気抵抗効果膜の膜厚方向に電流を流す手段とを備える磁気ヘッドの製造方法において、
    下部磁気シールド層の上に磁気抵抗効果膜を形成する工程と、
    前記磁気抵抗効果膜の上に第1のリフトオフマスク材を形成する工程と、
    前記第1のリフトオフマスク材をマスクとしてエッチングによって前記磁気抵抗効果膜の素子高さを形成する工程と、
    前記磁気抵抗効果膜の素子高さ方向側面に第1のリフィル膜を形成し、その上に前記第1のリフィル膜よりエッチングレートの速い第2のリフィル膜を形成して、多層の素子高さ方向リフィル膜を形成する工程と、
    前記第1のリフトオフマスク材をリフトオフする工程と、
    前記磁気抵抗効果膜の上に第2のリフトオフマスク材を形成する工程と、
    前記第2のリフトオフマスク材をマスクとしてエッチングによって前記磁気抵抗効果膜のトラック幅を形成する工程と、
    前記磁気抵抗効果膜のトラック幅方向側面にトラック幅方向リフィル膜を形成する工程と、
    前記第2のリフトオフマスク材をリフトオフする工程と、
    を有することを特徴とする磁気ヘッドの製造方法。
  22. 請求項21記載の磁気ヘッドの製造方法において、
    前記磁気抵抗効果膜の素子高さを形成する工程では、イオン入射角度を0〜45度としてイオンミリング法による第1のエッチングを行った後、更にイオン入射角度を60〜80度としてイオンミリング法による第2のエッチングを行い、
    前記磁気抵抗効果膜のトラック幅を形成する工程では、イオン入射角度を0〜45度としてイオンミリング法による第1のエッチングを行った後、更にイオン入射角度を60〜80度としてイオンミリング法による第2のエッチングを行うことを特徴とする磁気ヘッドの製造方法。
  23. 請求項21記載の磁気ヘッドの製造方法において、前記第1のリフィル膜をアルミナによって形成し、前記第2のリフィル膜をNi酸化物、Si酸化物、Si窒化物、Ta酸化物、Al窒化物、又はZr酸化物を含有する材料によって形成することを特徴とする磁気ヘッドの製造方法。
  24. 下部磁気シールド層と、上部磁気シールド層と、前記下部磁気シールド層と上部磁気シールド層の間に形成された磁気抵抗効果膜と、前記磁気抵抗効果膜の浮上面とは反対側の面に接するように配された素子高さ方向リフィル膜と、前記磁気抵抗効果膜のトラック幅方向側面に接するように配されたトラック幅方向リフィル膜と、前記磁気抵抗効果膜の膜厚方向に電流を流す手段とを備える磁気ヘッドの製造方法において、
    下部磁気シールド層の上に磁気抵抗効果膜を形成する工程と、
    前記磁気抵抗効果膜の上に第1のリフトオフマスク材を形成する工程と、
    前記第1のリフトオフマスク材をマスクとしてエッチングによって前記磁気抵抗効果膜のトラック幅を形成する工程と、
    前記磁気抵抗効果膜のトラック幅方向側面に第1のリフィル膜を形成し、その上に前記第1のリフィル膜よりエッチングレートの速い第2のリフィル膜を形成して、多層のトラック幅方向リフィル膜を形成する工程と、
    前記第1のリフトオフマスク材をリフトオフする工程と、
    前記磁気抵抗効果膜の上に第2のリフトオフマスク材を形成する工程と、
    前記第2のリフトオフマスク材をマスクとしてエッチングによって前記磁気抵抗効果膜の素子高さを形成する工程と、
    前記磁気抵抗効果膜の素子高さ方向側面に素子高さ方向リフィル膜を形成する工程と、
    前記第2のリフトオフマスク材をリフトオフする工程と、
    を有することを特徴とする磁気ヘッドの製造方法。
  25. 請求項24記載の磁気ヘッドの製造方法において、
    前記磁気抵抗効果膜のトラック幅を形成する工程では、イオン入射角度を0〜45度としてイオンミリング法による第1のエッチングを行った後、更にイオン入射角度を60〜80度としてイオンミリング法による第2のエッチングを行い、
    前記磁気抵抗効果膜の素子高さを形成する工程では、イオン入射角度を0〜45度としてイオンミリング法による第1のエッチングを行った後、更にイオン入射角度を60〜80度としてイオンミリング法による第2のエッチングを行うことを特徴とする磁気ヘッドの製造方法。
  26. 請求項24記載の磁気ヘッドの製造方法において、前記第1のリフィル膜をアルミナによって形成し、前記第2のリフィル膜をNi酸化物、Si酸化物、Si窒化物、Ta酸化物、Al窒化物、又はZr酸化物を含有する材料によって形成することを特徴とする磁気ヘッドの製造方法。
  27. 磁気記録媒体と、前記磁気記録媒体を駆動するモータと、記録ヘッドと再生ヘッドを搭載した磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体に対して相対的に駆動するアクチュエータと、前記記録ヘッドに送られる記録信号及び前記再生ヘッドからの再生信号を処理する信号処理部とを有し、
    前記再生ヘッドは、下部磁気シールド層と、上部磁気シールド層と、前記下部磁気シールド層と上部磁気シールド層の間に形成された磁気抵抗効果膜と、前記磁気抵抗効果膜の浮上面とは反対側の面に接するように配された素子高さ方向リフィル膜と、前記磁気抵抗効果膜の膜厚方向に電流を流す手段とを含み、前記素子高さ方向リフィル膜は積層膜であって前記磁気抵抗効果膜に接する第1のリフィル膜と、前記第1のリフィル膜上に形成された第2のリフィル膜とを有し、前記第2のリフィル膜のエッチングレートが前記第1のリフィル膜のエッチングレートより速いことを特徴とする磁気記録再生装置。
  28. 磁気記録媒体と、前記磁気記録媒体を駆動するモータと、記録ヘッドと再生ヘッドを搭載した磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体に対して相対的に駆動するアクチュエータと、前記記録ヘッドに送られる記録信号及び前記再生ヘッドからの再生信号を処理する信号処理部とを有し、
    前記再生ヘッドは、下部磁気シールド層と、上部磁気シールド層と、前記下部磁気シールド層と上部磁気シールド層の間に形成された磁気抵抗効果膜と、前記磁気抵抗効果膜のトラック幅方向側面に接するように配されたトラック幅方向リフィル膜と、前記磁気抵抗効果膜の膜厚方向に電流を流す手段とを含み、前記トラック幅方向リフィル膜は積層膜であって前記磁気抵抗効果膜に接する第1のリフィル膜と、前記第1のリフィル膜上に形成された第2のリフィル膜とを有し、前記第2のリフィル膜のエッチングレートが前記第1のリフィル膜のエッチングレートより速いことを特徴とする磁気記録再生装置。
JP2004202343A 2004-07-08 2004-07-08 磁気ヘッド及びその製造方法、並びにこれを搭載した磁気ディスク装置 Pending JP2006024294A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004202343A JP2006024294A (ja) 2004-07-08 2004-07-08 磁気ヘッド及びその製造方法、並びにこれを搭載した磁気ディスク装置
US11/177,967 US20060007603A1 (en) 2004-07-08 2005-07-08 Magnetoresistive sensor with refill film, fabrication process, and magnetic disk storage apparatus mounting magnetoresistive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202343A JP2006024294A (ja) 2004-07-08 2004-07-08 磁気ヘッド及びその製造方法、並びにこれを搭載した磁気ディスク装置

Publications (1)

Publication Number Publication Date
JP2006024294A true JP2006024294A (ja) 2006-01-26

Family

ID=35541104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202343A Pending JP2006024294A (ja) 2004-07-08 2004-07-08 磁気ヘッド及びその製造方法、並びにこれを搭載した磁気ディスク装置

Country Status (2)

Country Link
US (1) US20060007603A1 (ja)
JP (1) JP2006024294A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146538A (ja) * 2007-12-17 2009-07-02 Hitachi Ltd 磁気再生ヘッド、磁気ヘッドおよび磁気記憶装置
US8023230B2 (en) 2008-10-27 2011-09-20 Tdk Corporation Magnetoresistive element including a pair of ferromagnetic layers coupled to a pair of shield layers
US8149549B2 (en) 2008-06-19 2012-04-03 Hitachi, Ltd. Magnetoresistive head including magnetoresistive effect film of fixed layer, non-magnetic layer, insulating barrier layer and free layer, and magnetic recording device with magnetoresistive head

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098463B2 (en) * 2008-07-30 2012-01-17 Hitachi Global Storage Technologies Netherlands, B.V. Current perpendicular to plane magnetoresistance read head design using a current confinement structure proximal to an air bearing surface
US8011084B2 (en) * 2008-07-31 2011-09-06 Hitachi Global Storage Technologies Netherlands B.V. Method for fabricating narrow magnetic read width TMR/CPP sensors
US8797694B2 (en) 2011-12-22 2014-08-05 HGST Netherlands B.V. Magnetic sensor having hard bias structure for optimized hard bias field and hard bias coercivity
US20140293472A1 (en) * 2013-03-26 2014-10-02 HGST Netherlands B.V. Read head sensor with a tantalum oxide refill layer
US10410658B1 (en) 2017-05-29 2019-09-10 Western Digital Technologies, Inc. Magnetic recording write head with spin-torque oscillator (STO) and extended seed layer
US10263179B2 (en) * 2017-07-18 2019-04-16 Nxp B.V. Method of forming tunnel magnetoresistance (TMR) elements and TMR sensor element
US11170803B1 (en) 2019-04-05 2021-11-09 Western Digital Technologies, Inc. Magnetic recording write head with spin-torque oscillator (STO) and extended seed layer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229512A (ja) * 2000-02-10 2001-08-24 Tdk Corp 薄膜磁気ヘッドおよびその製造方法
JP2002208118A (ja) * 2001-01-04 2002-07-26 Tdk Corp 薄膜磁気ヘッド装置
US6870712B2 (en) * 2001-06-05 2005-03-22 Western Digital (Fremont), Inc. Inductive writer with flat top pole and pedestal defined zero throat
JP3793051B2 (ja) * 2001-07-05 2006-07-05 Tdk株式会社 磁気抵抗効果型素子、および、その製造方法、それを用いた薄膜磁気ヘッド、磁気ヘッド装置、及び磁気ディスク装置
JP3795841B2 (ja) * 2002-06-27 2006-07-12 Tdk株式会社 磁気抵抗効果素子、磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US7031109B1 (en) * 2002-12-11 2006-04-18 Seagate Technology Llc Semiconductor materials used in magnetic recording head assemblies to prevent damage from electrostatic discharge
JP3944120B2 (ja) * 2003-06-04 2007-07-11 アルプス電気株式会社 磁気ヘッド

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146538A (ja) * 2007-12-17 2009-07-02 Hitachi Ltd 磁気再生ヘッド、磁気ヘッドおよび磁気記憶装置
US8625237B2 (en) 2007-12-17 2014-01-07 Hitachi, Ltd. Magnetic head and magnetic recording system
US8149549B2 (en) 2008-06-19 2012-04-03 Hitachi, Ltd. Magnetoresistive head including magnetoresistive effect film of fixed layer, non-magnetic layer, insulating barrier layer and free layer, and magnetic recording device with magnetoresistive head
US8023230B2 (en) 2008-10-27 2011-09-20 Tdk Corporation Magnetoresistive element including a pair of ferromagnetic layers coupled to a pair of shield layers

Also Published As

Publication number Publication date
US20060007603A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US7522392B2 (en) Magnetoresistive sensor based on spin accumulation effect with terminal connection at back end of sensor
US6631055B2 (en) Tunnel valve flux guide structure formed by oxidation of pinned layer
JP4634489B2 (ja) 磁気ヘッド
US20060007603A1 (en) Magnetoresistive sensor with refill film, fabrication process, and magnetic disk storage apparatus mounting magnetoresistive sensor
US7346977B2 (en) Method for making a magnetoresistive read head having a pinned layer width greater than the free layer stripe height
JP2006179051A (ja) 磁気抵抗センサ及びその製造方法
JP2006302421A (ja) 磁気ヘッドの製造方法及び磁気ヘッド
JP2001283412A (ja) 磁気抵抗効果素子及びその製造方法
JP2014225318A (ja) 幅を低減した上部電極及び下部電極を有する平面垂直通電(cpp)磁気抵抗センサ並びにその製造方法
JP2007042245A (ja) 磁気ヘッド及びその製造方法、並びにそれを搭載した磁気記録再生装置
JP2010134997A (ja) Cpp構造の磁気抵抗効果型ヘッド
US20010026425A1 (en) Magnetoresistive head, manufacture there of, and magnetic recording/reproducing apparatus with such magnetic head
US8537503B2 (en) CPP structure magnetoresistive head
JP5097527B2 (ja) 磁気再生ヘッド、磁気ヘッドおよび磁気記憶装置
JP2005018836A (ja) 磁気ヘッド及びその製造方法
US6999270B2 (en) Magnetic head and a magnetic disk drive
US20040240121A1 (en) Magnetic recording head and method for manufacturing
JP2001223412A (ja) リードヘッド素子及びその製造方法
JP2004140362A (ja) 反応性イオンエッチングによる磁気抵抗センサキャップの除去方法
JP2002260204A (ja) 磁気ヘッド
US20030223158A1 (en) Magnetoresistive device and method of manufacturing same, and thin-film magnetic head and method of manufacturing same
JP2003060266A (ja) 磁気抵抗効果素子の製造方法、薄膜磁気ヘッドの製造方法およびヘッド装置の製造方法
JP2003006817A (ja) 磁気ヘッド及び磁気再生装置
US20100214699A1 (en) Magnetoresistive sensor with overlaid combined leads and shields
JP2004014578A (ja) 磁気抵抗効果膜、スピンバルブ再生ヘッドおよびその製造方法