JP2006017078A - 内燃機関における触媒の劣化判定装置 - Google Patents

内燃機関における触媒の劣化判定装置 Download PDF

Info

Publication number
JP2006017078A
JP2006017078A JP2004198214A JP2004198214A JP2006017078A JP 2006017078 A JP2006017078 A JP 2006017078A JP 2004198214 A JP2004198214 A JP 2004198214A JP 2004198214 A JP2004198214 A JP 2004198214A JP 2006017078 A JP2006017078 A JP 2006017078A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
catalyst
value
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004198214A
Other languages
English (en)
Inventor
Masaru Murata
大 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2004198214A priority Critical patent/JP2006017078A/ja
Publication of JP2006017078A publication Critical patent/JP2006017078A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】 三元触媒の劣化判定のための空燃比強制設定制御の際に、触媒下流側のZ出力特性を有するO2センサの異常判定も行えるようにして、エミッションやドライバビリティの悪化を全体的に抑制する。
【解決手段】 排気通路に備えられた三元触媒の劣化を判定するために、触媒上流側の制御目標空燃比を設定リーン空燃比abyfLean又は設定リッチ空燃比abyfRichに設定し、触媒下流側の空燃比が当初のリッチ又はリーンな空燃比からしきい値を跨いでリーン又はリッチに切り換わったことをO2センサで検出して、これをもとに三元触媒の劣化の有無を判定する。また、このときにO2センサの検出値の変化率Δv/Δtを調べ、O2センサの検出値がしきい値を跨がずに安定した値を示していた場合はそれを検出し、O2センサの故障であるとして空燃比強制設定制御を直ちに中止する。
【選択図】 図3

Description

本発明は、排気通路に触媒を備えた内燃機関における当該触媒の劣化の有無を判定する劣化判定装置に関する。
従来より、内燃機関の排気ガスを浄化するための三元触媒(本明細書においては単に「触媒」と称することもある)が、その排気通路に配設されている。この触媒は酸素を貯蔵(吸蔵)するO2ストレージ機能(酸素貯蔵機能ないし吸蔵機能)を有していて、流入するガスの空燃比がリッチである場合には貯蔵している酸素によりHC,CO等の未燃成分を酸化するとともに、流入するガスの空燃比がリーンである場合には窒素酸化物(NOx)を還元して同NOxから奪った酸素を内部に貯蔵する。これにより三元触媒は、機関の空燃比が理論空燃比から偏移した場合でも、未燃成分や窒素酸化物を効率よく浄化することができる。従って、三元触媒が貯蔵し得る酸素量の最大値が大きいほど、三元触媒の浄化能力は高くなる。
一方、触媒は使用するにつれて、燃料中に含まれる鉛や硫黄等による被毒、あるいは触媒に加わる熱により劣化し、この劣化の程度に応じて前記最大酸素吸蔵量は変化する。従って、触媒の最大酸素吸蔵量が精度良く算出・推定できれば、同触媒が劣化したか否かを、この推定した最大酸素吸蔵量に基づいて判定することができることになる。
特許文献1は、上記の触媒の劣化の度合いと最大酸素吸蔵量との関連性を指摘するとともに、最大酸素吸蔵量の測定を以下のようにして行う装置を開示する。
即ち、排気管に備えられた触媒の最大酸素吸蔵量を算出するために、特許文献1の装置はアクティブ制御を行うように構成している。このアクティブ制御では、触媒の下流側に設けられた酸素センサ(下流側空燃比センサ)の検出値がリッチ/リーンで反転する毎に、混合気の目標空燃比が、所定のリッチ目標値と所定のリーン目標値との間で反転される。
この結果、触媒が酸素を一杯に吸蔵した状態と、吸蔵酸素を完全に放出した状態とが繰り返し実現される。従って、それらの期間内に、触媒に流入した酸素量を積算すれば、或いは、触媒に流入した排気ガス中の酸素不足量を積算すれば、触媒の酸素吸蔵能力Cmaxを計算により求めることができる。そして、上記の手法で算出したCmaxに基づいて、触媒の劣化の状態を検知することができる。
なお、触媒下流側に設けられた前記酸素センサは、高温の排気ガス中という悪条件下で使用されるため、故障の可能性を有し、この故障を早期に発見することが望ましい。上記特許文献1はこの点も併せて指摘し、酸素センサの異常を早期に発見できる検出装置を開示している。
即ち、前述のアクティブ制御を行ったとしても、酸素センサが異常を呈していると、その検出値は、触媒下流側の空燃比の変化に応じて反転できなくなる。このときは、前述の積算が不当に長い間に渡って実行されるため、計算上の酸素吸蔵能力Cmaxは、不当に大きな値となる。特許文献1はこのことを利用して、計算上の酸素吸蔵能力Cmaxが所定の値(触媒の酸素吸蔵能力の初期値)αを超えたことをもって、酸素センサが異常であると判定し、アクティブ制御を中止させることとしている。
特開2004−19542(アクティブ制御について0027、図3、酸素吸蔵能力の積算と触媒劣化の検知について0038、0039、酸素センサの異常の判定について0043、0044、0054、図4)
しかし、上記特許文献1では、酸素センサの異常時において、積算されていく酸素吸蔵能力Cmaxが触媒の酸素吸蔵能力の初期値を超えるまでは、酸素センサを異常であると判定できず、その時点の酸素吸蔵能力を超えてアクティブ制御が継続され、浄化しきれない排気ガスが排出される。特に、触媒の劣化が進み、酸素吸蔵能力が落ちるほど、浄化しきれず排出される排気ガスが増加するという問題を有する。
本発明はこの点に鑑みてされたものであり、その目的は、触媒下流側の空燃比センサの劣化判定も併せて行う触媒劣化判定装置において、触媒下流側の空燃比センサの異常をより早期に発見でき、エミッションやドライバビリティの悪化を抑制できる構成を提供することにある。
課題を解決するための手段及び効果
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
◆本発明の観点によれば、以下のように構成する、内燃機関の排気通路に備えられた触媒の劣化の有無を判定する触媒劣化判定装置が提供される。前記触媒の下流側に配置されるZ出力特性のO2センサよりなる下流側空燃比検出手段と、前記触媒の上流側の目標空燃比を所定のリッチ空燃比と所定のリーン空燃比との間で切り換えつつ設定可能な目標値設定手段と、前記目標値設定手段で設定された目標空燃比となるように前記触媒の上流側の空燃比を制御する上流側空燃比制御手段と、前記目標空燃比が前記リッチ空燃比又は前記リーン空燃比から前記リーン空燃比又は前記リッチ空燃比へ切り換えられた後、前記下流側空燃比検出手段の検出空燃比がリッチ又はリーンな空燃比から所定のしきい値を跨いでリーン又はリッチな空燃比に変化することを用いて、前記触媒の劣化の有無を判定する、触媒劣化判定手段と、前記目標空燃比が前記リーン空燃比又は前記リッチ空燃比に設定された後に、前記下流側空燃比検出手段の検出空燃比が当初のリッチ又はリーンな空燃比から前記しきい値を跨がずに安定した値を示したことをもって、前記下流側空燃比検出手段が異常であると判定する下流側空燃比検出異常判定手段と、を備える。
これにより、下流側空燃比検出手段の検出値がしきい値を跨がずに安定した値を示したことをもって異常と判定するので、下流側空燃比検出手段の異常を的確に且つ短時間で判定できる。
◆前記の触媒劣化判定装置においては、前記下流側空燃比検出異常判定手段は、前記下流側空燃比検出手段の検出空燃比の変化率がゼロ近傍であることをもって、当該検出空燃比が安定した値を示していると判断することが好ましい。
これにより、簡単な計算で下流側空燃比検出手段の異常の有無を判定できる。また、下流側空燃比検出手段の電圧縮小異常のほか、断線、ショートなどの幅広い異常態様を的確に検出できる。
◆前記の触媒劣化判定装置においては、前記下流側空燃比検出異常判定手段は、前記下流側空燃比検出手段の検出空燃比が、前記しきい値から当初のリッチ側又はリーン側にオフセットした第2しきい値と、前記しきい値との間に、所定時間以上とどまっていることをもって、当該検出空燃比が安定した値を示していると判断することが好ましい。
これにより、下流側空燃比検出手段の異常を簡単に判定できる。
◆前記の触媒劣化判定装置においては、前記触媒劣化判定手段は、触媒劣化判定時において前記下流側空燃比検出手段が異常であると前記下流側空燃比検出異常判定手段によって判定されると、触媒劣化判定を直ちに中止して前記目標空燃比を理論空燃比又はその付近に戻すことが好ましい。
これにより、下流側空燃比検出手段が異常であると直ちに空燃比強制設定制御を中止して通常の制御に戻すので、下流側空燃比検出手段の異常を短時間で検出できることとあいまって、エミッションの悪化、ドライバビリティの悪化を著しく抑制できる。
以下、本発明による三元触媒の劣化判定装置の実施形態について図面を参照しつつ説明する。図1は、この劣化判定装置を火花点火式多気筒(4気筒)内燃機関に適用したシステムの概略構成を、ブロック図として示している。
図1において、機関本体1は吸気ポート2と排気ポート3とを有している。各吸気ポート2は、対応する枝管4を通じてサージタンク5に連結され、サージタンク5は吸気ダクト6及びエアフローメータ7を介してエアクリーナ8に連結される。吸気ダクト6内にはスロットルバルブ9が配置される。前記枝管4には、それぞれECU20の出力信号に基づいて制御される燃料噴射弁12が配置される。一方、各排気ポート3は、排気マニホールド10を介して、三元触媒(以下、単に「触媒」と称することがある。)を内蔵した触媒コンバータ11に接続される。
ECU20は、ROM(リードオンリーメモリ)22、RAM(ランダムアクセスメモリ)23、ECU20の電源がOFFとされてもその記憶内容を保持可能なEPROM34、CPU(セントラルプロセッシングユニット)24、入力ポート25及び出力ポート26を具備し、これらは双方向バスによって相互に接続されている。なお、前記のEPROM34の代わりに、電源を切ってもその記憶内容がバックアップされるバックアップRAMを用いても良い。エアフローメータ7は吸入空気量に比例した出力電圧を発生し、この出力電圧がADコンバータ27を介して入力ポート25に入力される。
スロットルバルブ9には、当該スロットルバルブ9がアイドリング位置にあるときにONとなるアイドル検出スイッチ13が設けられ、このアイドル検出スイッチ13の出力信号が入力ポート25に入力される。また、機関本体1には機関冷却水温に応じた出力電圧を発生する水温センサ14が取り付けられて、この水温センサ14の出力電圧がADコンバータ28を介して入力ポート25に入力される。更に、入力ポート25には、機関回転数に相当する出力パルスを発生する回転数センサ15が接続される。
触媒コンバータ11上流の排気通路(本実施形態では、排気マニホールド10内)には、空燃比センサ(上流側空燃比検出手段)16が配置される。この空燃比センサ16としては、例えば限界電流式の酸素濃度センサを用いることが考えられる。一方、触媒コンバータ11下流の排気通路17にはZ出力特性を有するO2センサ18が配置される。このO2センサ18としては、例えば起電力式(濃淡電池式)の酸素濃度センサを用いることが考えられる。これら空燃比センサ16及びO2センサ18の発生する信号は、それぞれ対応するAD変換器31,32を介して、入力ポート25に入力される。また、出力ポート26は駆動回路33を介して燃料噴射弁12に接続されるとともに、触媒の劣化度やO2センサ18の劣化度を表示する表示装置35に接続される。
(通常時の空燃比制御の概要)
次に、上記のように構成された内燃機関の空燃比制御装置が通常行う空燃比制御の概要について説明する。
触媒コンバータ11の内蔵する三元触媒は、酸素を貯蔵(吸蔵)するO2ストレージ機能(酸素貯蔵機能)を有し、この酸素貯蔵機能により、空燃比が理論空燃比からある程度まで偏移したとしても、HC,CO,及びNOxを浄化することができる。即ち、機関の空燃比がリーンとなって、触媒に流入するガス中の酸素及びNOxが増加すると、酸素の一部を触媒が吸蔵することで、還元雰囲気を作り出し、NOxの還元・浄化を促進する。また、機関の空燃比がリッチになって触媒に流入するガスにHC,COが多量に含まれると、三元触媒は内部に吸蔵している酸素分子を放出し、これらのHC,COに酸素分子を与え、酸化・浄化を促進する。
従って、触媒が連続的に流入する多量のHC,COを効率的に浄化するためには、当該触媒が酸素を多量に貯蔵していなければならず、逆に連続的に流入する多量のNOxを効率的に浄化するためには、触媒が酸素を十分に貯蔵し得る状態になければならないことになる。以上のことから、空燃比がリッチまたはリーンに偏っている時の触媒の浄化能力は、当該触媒が貯蔵し得る最大の酸素量(最大酸素吸蔵量)に依存する。
一方、三元触媒は燃料中に含まれる鉛や硫黄等による被毒、あるいは触媒に加わる熱により劣化し、これに伴い最大酸素吸蔵量が次第に低下してくる。このように最大酸素吸蔵量が低下した場合であってもエミッションを良好に維持するには、触媒に流入するガスの空燃比が長時間リッチ又はリーンに偏らないように制御する必要がある。
そこで、本実施形態のECU20は、内燃機関の排気に関する状態量の一つである触媒下流側のO2センサ18の出力が理論空燃比に略相当する目標値となるように、触媒下流側のO2センサ18の出力(即ち、触媒下流の空燃比)に応じて機関に供給される混合気の空燃比(即ち、機関の空燃比)をフィードバック制御する。注記すると、機関の空燃比と触媒の上流側におけるガスの空燃比(以下、単に「触媒上流側空燃比」とも称する場合がある。)は等しいので、ECU20は触媒上流側空燃比をフィードバック制御しているとも言える。
(最大酸素吸蔵量Cmax算出時の空燃比制御と最大酸素吸蔵量Cmaxの算出)
上述したように、触媒は劣化するに従ってその最大酸素吸蔵量は次第に低下してくるが、本実施形態の内燃機関は、触媒の最大酸素吸蔵量Cmaxを算出・推定し、この算出された最大酸素吸蔵量Cmaxが所定の基準値より小さいか否かを判定することにより、触媒が劣化したか否かを判定するようになっている。
本内燃機関は触媒の最大酸素吸蔵量Cmaxの測定のために、下記のような空燃比制御(空燃比強制設定制御、アクティブ制御)を行う。以下、この空燃比制御について、図2のタイムチャートを参照しながら説明する。
ECU20は先ず、図2の上側のグラフに示すように、時刻t1までは前述した通常の空燃比制御を行い、この時刻t1にて最大酸素吸蔵量を算出する所定の条件(この例では、その時点でO2センサ18の検出した空燃比が所定のしきい値よりもリッチであることも、その所定条件に含められている。)が成立すると、上記触媒の上流のガスの目標空燃比(触媒上流側空燃比の目標値)abyfrを、所定の設定リーン空燃比abyfLeanに設定する。この結果、触媒上流側空燃比は理論空燃比よりもリーンな前記設定リーン空燃比abyfLeanに制御され、触媒上流側の空燃比センサ16の検出値が前記設定リーン空燃比abyfLean付近の値を示すようになる。
この結果、触媒コンバータ11内の触媒にはリーンな空燃比のガスが流入するので、そのガスに含まれるNOxから酸素が奪われ、触媒に吸蔵されてゆく。そして吸蔵される酸素量が限界(最大酸素吸蔵量)に達すると、触媒はそれ以上はNOxから酸素を奪うことができなくなって、触媒の下流にもリーンな空燃比のガスが流出し始める。この結果、図2の下側のグラフの時刻t2に示すように、O2センサ18の出力は、リッチを示す値からリーンを示す値へと変化する。なお、この時刻t1〜t2間の作動を第1モードにおける作動と呼ぶ。
時刻t2にて、触媒下流側のO2センサ18の出力がリッチを示す値からリーンを示す値に変化すると、ECU20は、上記触媒の上流のガスの目標空燃比abyfrを、所定の設定リッチ空燃比abyfRichに設定する。この結果、触媒上流側空燃比は、理論空燃比よりもリッチな前記設定リッチ空燃比abyfRichになるよう制御され、触媒上流側の空燃比センサ16の検出値が前記設定リッチ空燃比abyfRich付近の値を示すようになる。
ここで触媒コンバータ11内の触媒は、前記の時刻t1〜t2の制御によって、その吸蔵する酸素量は時刻t2の時点で最大になっている。そして時刻t2以降において触媒にリッチな空燃比のガスが流入すると、触媒内に吸蔵されていた酸素が、当該触媒に流入する未燃HC,COの酸化のために消費されてゆく。そして、触媒の酸素吸蔵量がゼロとなると、それ以上は未燃HC,COを酸化することができなくなって、触媒の下流にもリッチな空燃比のガスが流出し始める。この結果、図2の下側のグラフの時刻t3に示すように、触媒下流側のO2センサ18の出力はリーンを示す値からリッチを示す値へと変化する。なお、この時刻t2〜t3間の作動を第2モードにおける作動と呼ぶ。
そして本空燃比制御装置は、かかる時刻t2〜t3間のうちの所定の計算周期tsample内における酸素吸蔵量変化量ΔO2を下記の式1に従って計算する。
ΔO2 = 0.23・mfr・(stoich − abyfs) …(式1)
式1において、値「0.23」は大気中に含まれる酸素の重量割合であり、mfrは所定時間(計算周期tsample)内の燃料噴射量の合計量である。stoichは理論空燃比を意味し、例えば14.7を採用できる。abyfsは、上記計算周期において上流側空燃比センサ16で検出された空燃比A/Fである。この式1に示したように、計算周期tsample内の燃料噴射量の合計量mfrに、検出された空燃比A/Fの理論空燃比からの偏移量(stoich − abyfs)を乗じると、同所定時間tsampleにおける酸素吸蔵量変化量ΔO2を求めることができる。
そして、下記式2のように前記の酸素吸蔵量変化量ΔO2を時刻t2〜t3にわたって積算することで、触媒が酸素を最大限貯蔵していた状態から酸素を全て消費(放出)した状態となるまでの酸素消費量、即ち最大酸素吸蔵量Cmax2が求められる。なお、Cmax2の「2」とは、「第2モードで算出された」という意味である。
Cmax2 = ΣΔO2(区間t2〜t3) …(式2)
続いての制御を説明する。時刻t3にて、触媒下流側のO2センサ18の出力がリーンを示す値からリッチを示す値に変化すると、本装置は触媒の上流のガスの空燃比を理論空燃比よりもリーンな所定の設定リーン空燃比に制御するため、上記触媒の上流のガスの目標空燃比abyfrを所定の設定リーン空燃比abyfLeanに設定する。この結果、触媒上流側の空燃比センサ16の検出値が前記設定リーン空燃比abyfLean付近の値を示すようになる。
ここで、前記の時刻t2〜t3の制御の結果、時刻t3の時点においては触媒の酸素吸蔵量はゼロとなっている。そしてこの状態から、時刻t3以降ではリーンな空燃比のガスが触媒へ流入し、そのガスに含まれるNOxから酸素が奪われて触媒に吸蔵されてゆく。そして、触媒に吸蔵される酸素量が限界(最大酸素吸蔵量)に達すると、それ以上はNOxから酸素を奪うことができなくなって、触媒の下流にもリーンな空燃比のガスが流出し始めるようになる。この結果、図2の下側の時刻t4に示すように、触媒下流側のO2センサ18の出力はリッチを示す値からリーンを示す値に変化する。なお、この時刻t3〜t4間の作動を第3モードにおける作動と称する。
本装置は、かかる時刻t3〜t4間においても最大酸素吸蔵量を算出する。即ち、時刻t3〜t4間の所定の計算周期tsample内において、酸素吸蔵量変化量ΔO2を下記の式3に従って計算する。
ΔO2 = 0.23・mfr・(abyfs − stoich) …(式3)
この式3に示したように、計算周期tsample内の燃料噴射量の合計量mfrに、検出された空燃比A/Fの理論空燃比からの偏移量(abyfs − stoich)を乗じると、当該所定時間tsampleにおける酸素吸蔵量変化量ΔO2を求めることができる。
そして、下記式4のように前記の酸素吸蔵量変化量ΔO2を時刻t3〜t4にわたって積算することで、触媒が酸素を全く吸蔵していない状態から酸素を最大限吸蔵した状態となるまでの酸素吸蔵量、即ち最大酸素吸蔵量Cmax3が求められる。なお、Cmax3の「3」とは、「第3モードで算出された」という意味である。
Cmax3 = ΣΔO2(区間t3〜t4) …(式4)
そして、本装置は、時刻t4において、前述した通常の空燃比制御を再開し、機関に吸入される混合気の空燃比を理論空燃比に戻す。そして得られたCmax2,Cmax3の平均を、最大酸素吸蔵量Cmaxとして採用する。以上が、触媒の最大酸素吸蔵量Cmaxの算出原理である。
(O2センサ劣化判定制御)
次に、触媒下流側のO2センサ18の劣化判定制御について、図3を主に参照して説明する。即ち、上記の空燃比強制設定制御時においてO2センサ18の検出値は通常は図2に示すような挙動を示すが、O2センサ18が経時劣化してくると、例えば出力電圧の範囲が縮小するような傾向を呈することになる。本実施形態では、この傾向が一定程度以上進むとO2センサ18が異常(以下、この異常を「電圧縮小異常」と称する)であるとECU20が判定して、ユーザにO2センサ18の交換を促すようにしている。
本実施形態ではO2センサ18の劣化判定を、以下に示すように、前記の触媒劣化判定のための最大酸素吸蔵量算出の際に、併せて行っている。
例えば、空燃比強制設定制御の上述の第1モードでの作動(図2の時刻t1〜t2)では、触媒上流側の目標空燃比abyfrが設定リーン空燃比abyfLeanに設定されるが、それから時間が経過して触媒の下流にリーンな空燃比のガスが流出してくると、それをO2センサ18が検知して、その検出空燃比をリッチ側からリーン側へ変化させる。しかしながらO2センサ18が上述のような異常(電圧縮小異常)となっていた場合は、図3に示すように、(触媒下流側の実際の空燃比はリーンであるのに)O2センサ18がしきい値を跨いでリーン側へ変化できなくなる。検出値が当該しきい値を一瞬でも跨いでリーン側に変化すれば第2モードへ移行することになるけれども、検出値がしきい値付近(リッチ側)で長時間安定してしまうと、前記第1モードを長時間継続しなければならず、エミッションやドライバビリティの観点から望ましくない。
この点、本実施形態では、空燃比強制設定制御時にはECU20がO2センサ18の検出値を監視し、当該検出値のある程度の時間履歴をRAM23等に保存するようにしている。そして、O2センサ18の現在の検出値と、現在より所定のサンプリング時間Δtだけ前の検出値(前記RAM23から読み出して用いる)との差Δvを求め、この差Δvを前記サンプリング時間Δtで除して変化率(Δv/Δt)を計算する。そして、得られた変化率の絶対値|Δv/Δt|が所定値よりも小さい、即ち変化率がゼロ近傍であることをもって、O2センサ18の検出値が安定していると判断する。
もし図3に示すように、時刻t1で目標空燃比abyfrを設定リーン空燃比abyfLeanとし、それから十分な時間(所定時間ts)が経過して、それでもO2センサ18の検出値がリッチ側からしきい値を跨いでリーン側に変化せず、O2センサ18の検出値が安定していると判断されれば、ECU20はO2センサ18が異常であると判定して、その時点(時刻tc)で空燃比強制設定制御を直ちに終了させるように制御している。また、適宜の表示装置35に、O2センサ18が異常である旨を表示する。
なお、O2センサ18検出値の安定の有無の判定においては、前記サンプリング時間Δtの値が一定である場合には、現在の検出値と当該サンプリング時間Δtだけ前の検出値との差Δvを、サンプリング時間Δtで除することなく、単純にその差の絶対値|Δv|を所定値と比較することで検出値の安定の有無を判定するようにしても良い。以上が、O2センサ18の劣化判定制御の概要である。
(実際の制御)
次に、上記制御を実現するための実際の処理ルーチンについて詳細に説明する。図4は最大酸素吸蔵量算出開始の際の処理ルーチンを示すフロー図、図5は最大酸素吸蔵量算出のための空燃比強制設定制御の処理ルーチンを示すフロー図、図6は酸素吸蔵量の積算のための処理ルーチンを示すフロー図、図7は最大酸素吸蔵量の算出のための処理ルーチンを示すフロー図である。図8はO2センサの異常判定のための処理ルーチンを示すフロー図である。
CPU24は、図4〜図8のフローチャートに示された各ルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになると、CPU24は酸素吸蔵量算出(劣化判定処理)を開始すべきか否かを判定するために、図4に示したルーチンのステップS101の処理を開始し、空燃比強制設定フラグの値が「0」か「1」かを調べる。この空燃比強制設定フラグが「1」であるときは、空燃比が図2の時刻t1〜t4のように、目標空燃比abyfrが設定リーン空燃比abyfLeanや設定リッチ空燃比abyfRichに強制的に設定されていることを意味する。
いま、最大酸素吸蔵量算出のための空燃比強制設定制御を行っておらず、且つ、最大酸素吸蔵量算出条件(触媒劣化判定条件)が成立していないものとして説明すると、前記空燃比強制設定フラグの値は「0」となっている。従って、処理はステップS102に進み、最大酸素吸蔵量算出条件が成立しているか否かを判定する。本実施形態では、この最大酸素吸蔵量算出条件は、水温センサ14で検出された冷却水温が所定温度以上であり、図示しない車速センサにより検出された車速が所定の高車速以上であり、且つ、スロットルバルブ9の開度の単位時間当たりの変化量が所定量以下であるという条件が満足された場合、即ち、機関が定常運転されている場合に成立する。
更に、前記の最大酸素吸蔵量算出条件には、触媒の温度が所定の温度範囲内にあること、前回の最大酸素吸蔵量算出から所定時間以上が経過したこと、前回の最大酸素吸蔵量算出から車両が所定距離以上運転されたこと、前回の最大酸素吸蔵量算出からのトリップ数が所定回数に達したこと、前回の最大酸素吸蔵量算出から内燃機関が所定時間以上運転されたこと、前回の最大酸素吸蔵量算出からの前記エアフローメータ7で得られた吸気量の積算値が所定値に達したこと、の任意の一つ又は二つ以上の組み合わせを加えても良い。現段階では上述したように最大酸素吸蔵量算出条件は成立していないので、ステップS102で「N」と判定して、図4のルーチンをいったん終了する。
次に、先に説明した図2の時刻t1のように、その時点までは最大酸素吸蔵量算出(触媒劣化判定)のための空燃比強制設定制御を行っていないが、その時点において最大酸素吸蔵量算出条件が成立したものとして説明を続けると、CPU24はステップS101で空燃比強制設定フラグの値を調べる。空燃比強制設定フラグは「0」であるので、ステップS102に進み、酸素吸蔵量算定条件が成立したか否かを調べる。酸素吸蔵量算定条件は成立しているので、ステップS102で「Y」と判定してステップS103に進み、触媒の最大酸素吸蔵量算出を行うべく空燃比強制設定フラグを「1」に設定する。そして、ステップS104で、前述の第1モードへ移行すべくモード変数の値を「1」にしてルーチンをいったん終了する。なおモード変数とは、上述の空燃比強制設定制御の第1〜第3モードのうち何れのモードに現在あるかを表す変数であって、その値は第1モードでは「1」、第2モードでは「2」、第3モードでは「3」とされる。
次に、図5のルーチンを説明する。図5のルーチンも所定時間の経過毎にCPU24によって反復的に実行されるものである。この図5のルーチンでは、ステップS201において先ずモード変数の値が調べられる。モード変数の値は前述の処理で「1」とされているので、CPU24はステップS202で、目標空燃比abyfrを設定リーン空燃比abyfLeanに設定する。
なおCPU24は、内燃機関10の空燃比が前述した目標空燃比abyfrとなるようにフィードバック制御を行う図略のルーチンを所定時間毎に実行しており、このために内燃機関10の空燃比(ひいては触媒上流側空燃比)は、目標空燃比abyfrに略一致せしめられるように随時制御される。従って前記ステップS202で目標空燃比abyfrを設定リーン空燃比abyfLeanに設定したことに伴い、触媒上流側空燃比は、その設定リーン空燃比abyfLeanとなるように制御されることになる。
そしてCPU24は図5のステップS203に進み、O2センサ18の状態を調べる。現時点では目標空燃比abyfrを設定リーン空燃比abyfLeanに設定した直後であるので、O2センサ18はリッチを示す値を維持していることになる。従って、CPU24はステップS203で「N」と判定して、本ルーチンをいったん終了する。
そして触媒の酸素吸蔵量が最大に達し、触媒の下流側にリーンなガスが流出して、O2センサ18がリッチを示す値からリーンを示す値へ所定のしきい値を跨いで変化すると、CPU24はステップS203で「Y」と判定してステップS204に進み、前述の第2モードへ移行すべく、モード変数の値を「2」に設定する。なお、前記しきい値としては例えば理論空燃比付近を示す値を採用することが考えられる。例えばO2センサ18が、理論空燃比よりリーンな空燃比を検出したときは約0.1ボルト、理論空燃比よりリッチな空燃比を検出したときは約0.9ボルトの電圧を出力するように構成した場合、前記しきい値として0.5ボルトを採用することが考えられる。
モード変数の値が「2」とされると、図5のルーチンにおいて、CPU24はステップS201からステップS205へ進むことになる。このステップS205では、目標空燃比abyfrを設定リッチ空燃比abyfRichに設定する。この結果、触媒上流側空燃比が上記設定リッチ空燃比abyfRichとなるようにフィードバック制御が行われる。続いて、ステップS206でO2センサ18の状態を検出する。そして、O2センサ18の検出値がリーンを示す値から前記しきい値を跨いでリッチを示す値に変化するまで、CPU24はステップS206で「N」と判定し、本ルーチンをいったん終了するようになる。
そして触媒が酸素を放出してその吸蔵量がゼロになり、触媒の下流側にリッチなガスが流出して、O2センサ18がリーンを示す値からリッチを示す値へ前記しきい値を跨いで変化すると、CPU24はステップS206で「Y」と判定し、ステップS207に進んで前記第3モードへ移行すべくモード変数の値を「3」に設定し、本ルーチンをいったん終了する。
モード変数の値が「3」とされると、図5のルーチンにおいて、CPU24はステップS201からステップS208へ進むことになる。このステップS208では、目標空燃比abyfrを設定リーン空燃比abyfLeanに設定する。この結果、触媒上流側の空燃比が上記設定リーン空燃比abyfLeanとなるようにフィードバック制御が行われる。そしてステップS209でO2センサ18の状態を検出する。そして、O2センサ18の検出値がリッチを示す値から前記しきい値を跨いでリーンを示す値に変化するまで、CPU24はステップS209で「N」と判定し、本ルーチンをいったん終了するようになる。
そして触媒の酸素吸蔵量が最大に達し、触媒の下流側にリーンなガスが流出して、O2センサ18がリッチを示す値からリーンを示す値へ前記しきい値を跨いで変化すると、CPU24はステップS210で「Y」と判定し、空燃比強制設定制御を終了させて通常の制御モードへ戻すべく、ステップS210で、空燃比強制設定フラグを「0」に設定する。なお、この処理に伴って、前述の目標空燃比abyfrを理論空燃比(又はその付近の値)に設定する処理も併せて行う。
次に、酸素吸蔵量の積算ルーチンについて、図6を参照して説明する。図6のルーチンも、CPU24によって所定時間毎に実行されるようになっている。なお、図6のルーチンが実行される時間間隔が、前述の計算周期tsampleに相当する。
このルーチンでは、ステップS301において、酸素吸蔵量変化量ΔO2を、上記の式1・式3に対応する式(ΔO2 = 0.23・mfr・(abyfs − stoich))に従って計算する。mfrは燃料噴射量の合計量、abyfsは触媒上流側の空燃比センサ16で検出された空燃比、stoichは理論空燃比である。
次にステップS302において、モード変数の値を調べる。現時点でのモード変数の値が「2」の場合は、ステップS303に進んで、第2モードにおける積算値記憶用の変数OSA2に、酸素吸蔵量変化量ΔO2の絶対値を加算する。現時点でのモード変数の値が「3」の場合は、ステップS304に進んで、第3モードにおける積算値記憶用の変数OSA3に、酸素吸蔵量変化量ΔO2の絶対値を加算する。積算後は、本ルーチンをいったん終了する。
この図6のルーチンを反復して実行することにより、第2モードでは変数OSA2に酸素吸蔵量変化量ΔO2が積算されてゆき、第3モードでは変数OSA3に酸素吸蔵量変化量ΔO2が積算されていく。この結果、第2モードが終了したときには変数OSA2に、第3モードが終了したときは変数OSA3に、触媒の最大酸素吸蔵量を示す値が記憶されていることになる。
次に、最大酸素吸蔵量の算出ルーチンについて、図7を参照して説明する。なお図7のルーチンも、CPU24によって所定時間毎に実行されるようになっている。
この図7のルーチンでは、先ずステップS401で、空燃比強制設定フラグが「1」から「0」に切り換わったかを判定する。例えばフラグの値が「0」のままであったり「1」のままであった場合には、最大酸素吸蔵量を算出するタイミングではないので、ステップS401でCPU24は「N」と判定して、ルーチンをいったん終了する。
空燃比強制設定制御が終了した直後であって、空燃比強制設定フラグが「1」から「0」に切り換わったことがステップS401で検出されると、CPU24はステップS401で「Y」と判定して、最大酸素吸蔵量の算出を行うべくステップS402に進む。ステップS402では、前述の変数OSA2の記憶内容を変数Cmax2に、変数OSA3の記憶内容を変数Cmax3に、それぞれ記憶する。
そしてCPU24はステップS403で、Cmax2,Cmax3の平均を算出し、最大酸素吸蔵量Cmaxを得る(Cmax =(Cmax2 + Cmax3)/2)。この算出したCmaxは、RAM23等に適宜記憶しておき、触媒の劣化判定処理に用いられる。そしてステップS404で積算用変数OSA2,OSA3を次回の算出に備えてゼロにリセットし、ルーチンを終了する。
なお、触媒の劣化判定処理ルーチンの詳細は図示しないが、触媒の最大酸素吸蔵量Cmaxが算出される毎に呼び出されるものであって、その最大酸素吸蔵量Cmaxと所定の基準値とを比較し、最大酸素吸蔵量Cmaxがその基準値を下回った場合には、前記出力ポート26を介して表示装置35に信号を送り、触媒が劣化している旨を表示装置35に表示させる。
次に、O2センサ18の劣化判定ルーチンについて、図8を参照して説明する。なお図8のルーチンも、CPU24によって所定時間毎に実行されるようになっている。
この図8のルーチンでは、先ずステップS501で、空燃比強制設定フラグの値を調べる。即ち本実施形態では、O2センサ18の劣化判定は、触媒の劣化判定のための空燃比強制設定制御時に、併せて行われるように構成している。
従ってCPU24は、ステップS501で空燃比強制設定フラグの値が「0」の場合は、O2センサ18の劣化判定を行わないものとし、本ルーチンをいったん終了する。
一方、上述のような空燃比強制設定制御が行われている場合には、ステップS501の処理で空燃比強制設定フラグの値が「1」になっているので、ステップS502に進む。このステップS502では、触媒上流側の目標空燃比abyfrがリーン側あるいはリッチ側に設定されてから所定時間が経過しているか否かを調べる。即ち本実施形態のECU20は、前記第1〜第3の各モードを開始して目標空燃比abyfrを設定リーン空燃比abyfLean又は設定リッチ空燃比abyfRichに設定する処理の際(時刻t1,t2,t3)に、ECU20内に構築されている図示せぬタイマ手段(タイマ回路)をリセットし、同時に計時を開始させるようにしている。そして図8のステップS502では、上記リセットからの経過時間を上記タイマ手段から取得した上で、その経過時間が所定値ts以内だった場合には、当該ステップS502で「N」と判定し、本ルーチンをいったん終了する。
要するに、O2センサ18の劣化の有無の最終的な判定は、各モードの開始時刻(図2の時刻t1,t2,t3)から所定時間tsを経過したときのみ行われる。こうすることで、O2センサ18は正常であるのに、例えば第1モードの開始直後(図2の時刻t1直後)にO2センサ18の検出値が安定した値で推移していることをもって、O2センサ18が異常であると誤判定することが防止される。
触媒上流側の目標空燃比abyfrがリーン側あるいはリッチ側に設定されてから所定時間tsが経過していた場合には、ステップS502でCPU24は「Y」と判定してステップS503へ進む。そしてO2センサ18の検出値を取得し、RAM23に記憶されている検出値の履歴を更新するとともに、当該履歴から、現在よりサンプリング時間Δtだけ前の時点でのO2センサ18の検出値を読み出し、現在の検出値との差Δvを求める。更にこの差Δvを前記サンプリング時間Δtで除して、O2センサ18の検出値vの時間変化率(Δv/Δt)を取得する。そしてこの時間変化率の絶対値|Δv/Δt|と、予め定められた所定値とが比較されて、当該時間変化率の絶対値が前記所定値以下だった場合は、ステップS503で「Y」と判定し、ステップS504へ進む。時間変化率の絶対値が所定値を上回る場合は、ステップS503で「N」と判定し、本ルーチンをいったん終了する。
ステップS504以降はO2センサ18が異常である場合の処理である。ステップS504では、CPU24は空燃比強制設定フラグを「0」に設定する。また、目標空燃比abyfrを理論空燃比(又は、その付近の値)に戻す制御も併せて行う。
即ち、O2センサ18が異常であると判定されたので、空燃比強制設定制御を継続したとしても最大酸素吸蔵量Cmaxを正確に求めて触媒の劣化判定処理を行うのはもはや無理であり、かえってエミッションやドライバビリティの悪化を招くだけである。従って、空燃比強制設定制御は途中で直ちに中止(キャンセル)して、エミッション等の悪化を抑制するようにしている。CPU24は次にステップS505に進み、前記出力ポート26を介して表示装置35に信号を送り、O2センサ18が異常である旨を表示装置35に表示させて、ユーザにO2センサ18の交換を促す。
以上に説明したように、本実施形態の触媒劣化判定装置は、空燃比強制設定モードの前記第2モードで、目標空燃比abyfrを設定リーン空燃比abyfLeanから設定リッチ空燃比abyfRichへ切り換え、その後に触媒下流側のO2センサ18の検出値がしきい値を跨いでリッチからリーンへ変化するまでの、上流側の空燃比センサ16の検出値と理論空燃比との偏移量を積算することで、触媒の最大酸素吸蔵量を求め、これを基に触媒の劣化の有無を判定している。
そして、第1〜第3の各モードで目標空燃比abyfrが設定リーン空燃比abyfLean又は設定リッチ空燃比abyfRichに設定された後に、前記O2センサ18の検出空燃比が当初のリッチ又はリーンな空燃比から前記しきい値を跨がずに安定した値を示したことをもって、前記O2センサ18が異常であると判定するようになっている。
従って、O2センサ18が前述の電圧縮小異常を呈し、触媒の下流側の空燃比の変化に応じてしきい値を跨がなくなってしまっても、O2センサ18の検出値が安定した値を示した時点でO2センサ18が異常であると判定できる。従って、O2センサ18の異常検出を早期に行える。特に、本実施形態は前記の特許文献1に比較して、積算されていく値(本実施形態においては、変数OSA2やOSA3の値の内容)が所定の基準値を超える前の段階でも、O2センサ18の検出値の挙動から当該O2センサ18の異常を早期に発見できる点で優れている。
また本実施形態では、O2センサ18の検出値の変化率の絶対値|Δv/Δt|が所定の値以下であることをもって、検出空燃比が安定した値を示していると判断する。従って、簡単な計算でO2センサの異常の有無を判定できる。
また本実施形態では、O2センサ18が異常であると判定されると、その時点(図3の時刻tc)で触媒劣化判定を直ちに中止し、前記目標空燃比abyfrを理論空燃比付近に戻すように構成している。従って、空燃比強制設定制御を直ちに中止でき、O2センサ18の異常を早期に検出できることとあいまって、エミッションの悪化、ドライバビリティの悪化を著しく抑制できる。
なお本実施形態では、ECU20が、本発明の目標値設定手段、上流側空燃比制御手段、触媒劣化判定手段、下流側空燃比異常判定手段に相当する。即ち、上記CPU24、ROM22、RAM23、EPROM34等のハードウェアと、図4〜図8にフローを示すプログラムとにより、上記手段がECU20内に構築されている。
また、本実施形態の所定時間tsにかわり、酸素吸蔵量変化量△O2の積算値を用いても良い。即ち、酸素吸蔵量変化量△O2の積算値が所定値、例えば使用初期の最大酸素吸蔵量の1/2、を超えたことをもって、所定時間tsに代えてもよい。一律の所定時間tsを用いると、例えば、エンジンの運転条件の変化により、触媒が十分に酸素を吸蔵又は放出しないうちに、所定時間tsが経過する可能性がある。このような条件下による誤検出の可能性も、所定時間tsに代え酸素吸蔵量変化量△O2の積算値を用いることによって回避することができる。
なお、O2センサ18の異常判定は、例えば図9のように行っても良い。即ち、前記第1モードでの作動において、前記しきい値よりリッチ側に所定値だけオフセットした第2しきい値を定めておき、この第2しきい値と前記しきい値との間の範囲内にO2センサ18の検出値が入った時点(時刻ta)で、図示しないタイマ手段(タイマ回路)の計時を開始する。そして、検出値が第2しきい値としきい値との間の範囲内に留まったまま前記タイマ手段が所定時間tuの経過を検出したことをもって、異常であると判定するのである。
即ち、O2センサ18が正常な状態であれば、O2センサ18は触媒下流側の空燃比がリッチからリーンへ変化したことを検知して図2の時刻t2のように鋭く降下し、しきい値と第2しきい値との間の領域を短時間で横切るはずである。一方、図9のようにO2センサ18が電圧縮小異常を呈しているときは、しきい値と第2しきい値との間で検出値が長時間安定することになる。図9の制御では、しきい値と第2しきい値との間の範囲にO2センサ18の検出値が留まったまま十分に長い所定時間tuを経過したことをもって、O2センサ18が異常であると判定するようにしている。この構成は、簡単な判定処理でO2センサ18の異常を判別できる利点がある。
なお、第2しきい値としてしきい値よりもリッチ側にオフセットされた値が用いられるのは、目標空燃比abyfrを設定リーン空燃比abyfLeanに設定する第1モード及び第3モードにおいてである。目標空燃比abyfrを設定リッチ空燃比abyfRichへ切り換える第2モードでは、しきい値よりもリーン側にオフセットされた値が第2しきい値として用いられる。
また第2しきい値を使うことのほか、O2センサ18の異常判定を軌跡長を求めることによって行っても良い。即ち、O2センサ18の検出値があまり変化せず安定している場合は、図3の下側のグラフでのO2センサ18の検出値の推移のサンプリング時間Δt内での軌跡長L(L=√(Δt+Δv))は、Δtに近い値を示す筈である。この原理を用いて、上記軌跡長Lとサンプリング時間Δtとの差の絶対値|L−Δt|が所定値を下回ったことをもってO2センサ18の検出値が安定しているものと判断し、これを基礎にO2センサ18の異常判定を行うようにしても良い。あるいは、軌跡長をサンプリング時間で除した値(L/Δt)が1付近を示すかどうかで判定しても良い。
なお、O2センサ18の異常判定は、前記の変化率での判定や、第2しきい値を用いた判定や、軌跡長での判定等を複数組み合わせて行っても良い。
また、下流側空燃比検出手段としてのO2センサ18の構成は、空燃比の変化に応じてその出力する信号がZ特性をもって変化するものであれば良く、その構成は問わない。
また、触媒の劣化判定のために触媒の最大酸素吸蔵量を算出する際は、上記制御では目標空燃比abyfrを図2に示すようにリーン→リッチ→リーンと振って行うようにしているが、逆に、リッチ→リーン→リッチと振って最大酸素吸蔵量を算出するようにしても良い。
また、触媒の劣化判定は、絶対量としての最大酸素吸蔵量を求めてそれを基に劣化の有無を判断する場合に限定されない。例えば、目標空燃比abyfrを設定リーン空燃比abyfLeanから設定リッチ空燃比abyfRichへ切り換えると同時にタイマ手段での計時を開始し、O2センサ18の検出値がリーンからしきい値を跨いでリッチへ変化するまでの時間が所定時間を下回ったことのみをもって、触媒が劣化していると判定しても良い。
なおO2センサ18の異常には、前述の電圧縮小異常のほか、断線やセンサの素子割れ、ショート等の異常も考えられるが、いずれの異常についても、例えば前記の変化率Δv/Δtを調べることで、的確に検出することができる。ただし、O2センサ18の出力値が最初から0ボルト又は1ボルト以上で一定しているような故障の場合には、前述の第2しきい値による判定のみでは異常を検出できず、他の判定方法と組み合わせる必要がある。
触媒劣化判定装置の構成を示すブロック図。 触媒劣化判定時のECUによる制御を示すタイムチャート図。 O2センサの異常検出制御を示すタイムチャート図。 最大酸素吸蔵量算出開始の際の処理ルーチンを示すフロー図。 最大酸素吸蔵量算出のための空燃比強制設定制御の処理ルーチンを示すフロー図。 酸素吸蔵量の積算のための処理ルーチンを示すフロー図。 最大酸素吸蔵量の算出のための処理ルーチンを示すフロー図。 O2センサの異常判定のための処理ルーチンを示すフロー図。 O2センサの異常検出方法の他の例を示すタイムチャート図。
符号の説明
1 内燃機関本体
11 触媒コンバータ
16 空燃比センサ(上流側空燃比検出手段)
18 O2センサ(下流側空燃比検出手段)
20 ECU

Claims (4)

  1. 内燃機関の排気通路に備えられた触媒の劣化の有無を判定する触媒劣化判定装置であって、
    前記触媒の下流側に配置されるZ出力特性のO2センサよりなる下流側空燃比検出手段と、
    前記触媒の上流側の目標空燃比を所定のリッチ空燃比と所定のリーン空燃比との間で切り換えつつ設定可能な目標値設定手段と、
    前記目標値設定手段で設定された目標空燃比となるように前記触媒の上流側の空燃比を制御する上流側空燃比制御手段と、
    前記目標空燃比が前記リッチ空燃比又は前記リーン空燃比から前記リーン空燃比又は前記リッチ空燃比へ切り換えられた後、前記下流側空燃比検出手段の検出空燃比がリッチ又はリーンな空燃比から所定のしきい値を跨いでリーン又はリッチな空燃比に変化することを用いて、前記触媒の劣化の有無を判定する、触媒劣化判定手段と、
    前記目標空燃比が前記リーン空燃比又は前記リッチ空燃比に設定された後に、前記下流側空燃比検出手段の検出空燃比が当初のリッチ又はリーンな空燃比から前記しきい値を跨がずに安定した値を示したことをもって、前記下流側空燃比検出手段が異常であると判定する下流側空燃比検出異常判定手段と、
    を備える、触媒劣化判定装置。
  2. 請求項1に記載の触媒劣化判定装置であって、
    前記下流側空燃比検出異常判定手段は、前記下流側空燃比検出手段の検出空燃比の変化率がゼロ近傍であることをもって、当該検出空燃比が安定した値を示していると判断することを特徴とする、触媒劣化判定装置。
  3. 請求項1に記載の触媒劣化判定装置であって、
    前記下流側空燃比検出異常判定手段は、前記下流側空燃比検出手段の検出空燃比が、前記しきい値から当初のリッチ側又はリーン側にオフセットした第2しきい値と前記しきい値との間に所定時間以上とどまっていることをもって、当該検出空燃比が安定した値を示していると判断することを特徴とする、触媒劣化判定装置。
  4. 請求項1から請求項3までの何れか一項に記載の触媒劣化判定装置であって、
    前記触媒劣化判定手段は、触媒劣化判定時において前記下流側空燃比検出手段が異常であると前記下流側空燃比検出異常判定手段によって判定されると、触媒劣化判定を直ちに中止して前記目標空燃比を理論空燃比又はその付近に戻すことを特徴とする、触媒劣化判定装置。
JP2004198214A 2004-07-05 2004-07-05 内燃機関における触媒の劣化判定装置 Pending JP2006017078A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198214A JP2006017078A (ja) 2004-07-05 2004-07-05 内燃機関における触媒の劣化判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198214A JP2006017078A (ja) 2004-07-05 2004-07-05 内燃機関における触媒の劣化判定装置

Publications (1)

Publication Number Publication Date
JP2006017078A true JP2006017078A (ja) 2006-01-19

Family

ID=35791586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198214A Pending JP2006017078A (ja) 2004-07-05 2004-07-05 内燃機関における触媒の劣化判定装置

Country Status (1)

Country Link
JP (1) JP2006017078A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001584A1 (fr) * 2006-06-27 2008-01-03 Toyota Jidosha Kabushiki Kaisha Unité de détection de dégradation de catalyseur
JP2010001781A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp 内燃機関の触媒劣化診断装置
JP2010185371A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 触媒劣化診断装置
WO2012160650A1 (ja) * 2011-05-24 2012-11-29 トヨタ自動車株式会社 内燃機関の触媒被毒検出装置
JP2016089799A (ja) * 2014-11-11 2016-05-23 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP2016121591A (ja) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 酸素濃度センサの故障判定装置
CN112412597A (zh) * 2019-08-21 2021-02-26 日本碍子株式会社 催化器劣化诊断系统及催化器劣化诊断方法
US11015510B2 (en) 2018-09-21 2021-05-25 Ngk Insulators, Ltd. Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
US11274592B2 (en) 2018-10-09 2022-03-15 Ngk Insulators, Ltd. Catalyst deterioration diagnosis device and catalyst deterioration diagnosis method
CN114215632A (zh) * 2021-12-16 2022-03-22 潍柴动力股份有限公司 一种三元催化器作弊诊断方法及相关装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001584A1 (fr) * 2006-06-27 2008-01-03 Toyota Jidosha Kabushiki Kaisha Unité de détection de dégradation de catalyseur
JP2008008158A (ja) * 2006-06-27 2008-01-17 Toyota Motor Corp 触媒劣化検出装置
JP2010001781A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp 内燃機関の触媒劣化診断装置
JP2010185371A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 触媒劣化診断装置
WO2012160650A1 (ja) * 2011-05-24 2012-11-29 トヨタ自動車株式会社 内燃機関の触媒被毒検出装置
JP2016089799A (ja) * 2014-11-11 2016-05-23 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP2016121591A (ja) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 酸素濃度センサの故障判定装置
US11015510B2 (en) 2018-09-21 2021-05-25 Ngk Insulators, Ltd. Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
DE102019006426B4 (de) 2018-09-21 2022-06-02 Ngk Insulators, Ltd. Katalysator-Verschlechterungs-Diagnosesystem und Katalysator-Verschlechterungs-Diagnoseverfahren
US11274592B2 (en) 2018-10-09 2022-03-15 Ngk Insulators, Ltd. Catalyst deterioration diagnosis device and catalyst deterioration diagnosis method
CN112412597A (zh) * 2019-08-21 2021-02-26 日本碍子株式会社 催化器劣化诊断系统及催化器劣化诊断方法
US11060439B2 (en) 2019-08-21 2021-07-13 Ngk Insulators, Ltd. Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
CN112412597B (zh) * 2019-08-21 2023-07-25 日本碍子株式会社 催化器劣化诊断系统及催化器劣化诊断方法
CN114215632A (zh) * 2021-12-16 2022-03-22 潍柴动力股份有限公司 一种三元催化器作弊诊断方法及相关装置

Similar Documents

Publication Publication Date Title
JP6237460B2 (ja) 内燃機関の異常診断装置
JP5029718B2 (ja) 内燃機関の排気浄化装置
JP6256240B2 (ja) 内燃機関の制御装置
JP6288011B2 (ja) 内燃機関
WO2014118890A1 (ja) 内燃機関の制御装置
JP2007332914A (ja) 触媒劣化検出装置
JP6252357B2 (ja) 内燃機関の制御装置
JP6296019B2 (ja) 内燃機関
JP2006017078A (ja) 内燃機関における触媒の劣化判定装置
JP5930031B2 (ja) エンジンの排気浄化装置及び排気浄化方法
JP2009299557A (ja) 触媒の劣化判定装置
JP6268976B2 (ja) 内燃機関の制御装置
JP6056726B2 (ja) 内燃機関の制御装置
JP2021102944A (ja) 触媒劣化検出装置
JP2000034946A (ja) 内燃機関の排ガス浄化装置
JP2006250043A (ja) 触媒劣化検出装置
JP3225787B2 (ja) 内燃機関のo2 センサ制御装置
JP2004060563A (ja) 内燃機関の燃料噴射量制御装置
JP6206314B2 (ja) 内燃機関の制御装置
US6912842B2 (en) Oxygen storage capacity estimation
JP2001073747A (ja) 内燃機関の排気浄化装置
JP2005337029A (ja) 内燃機関の排気浄化装置
JP2020090947A (ja) 内燃機関の排気浄化装置
JP2006016980A (ja) 内燃機関における触媒の最大酸素吸蔵量算出装置及び最大酸素吸蔵量算出方法
JP2009144559A (ja) 内燃機関の制御装置