JP2006013302A - Substrate mounting device and substrate temperature adjusting method - Google Patents

Substrate mounting device and substrate temperature adjusting method Download PDF

Info

Publication number
JP2006013302A
JP2006013302A JP2004191106A JP2004191106A JP2006013302A JP 2006013302 A JP2006013302 A JP 2006013302A JP 2004191106 A JP2004191106 A JP 2004191106A JP 2004191106 A JP2004191106 A JP 2004191106A JP 2006013302 A JP2006013302 A JP 2006013302A
Authority
JP
Japan
Prior art keywords
substrate
substrate mounting
bonding
ceramic
mounting apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004191106A
Other languages
Japanese (ja)
Other versions
JP4409373B2 (en
Inventor
Yasuki Imai
康喜 今井
Tetsuya Kawajiri
哲也 川尻
Tomoyuki Fujii
知之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2004191106A priority Critical patent/JP4409373B2/en
Priority to US11/165,573 priority patent/US20060021705A1/en
Publication of JP2006013302A publication Critical patent/JP2006013302A/en
Application granted granted Critical
Publication of JP4409373B2 publication Critical patent/JP4409373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate mounting device which is further inexpensive, has a simple structure and can adjust in-plane temperature distribution of a substrate temperature, and a substrate temperature adjusting method. <P>SOLUTION: The substrate mounting device has a plate-like ceramics base material with a substrate mounting surface in one surface and a junction layer formed on the other surface of the ceramics base material. The plane is divided into a plurality, and junction of different thermal conductivities is disposed in each region. The in-place temperature distribution of the substrate mounted on the ceramics base material is adjusted by adjusting in-plane distribution of thermal conductivity in a junction layer formed on the other surface of the ceramic base material with the substrate mounting surface in the one surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体プロセス等で使用される、サセプタ−、静電チャックもしくはセラミックスヒータ等の基板載置装置及びこれらの装置における基板温度調整方法に関する。   The present invention relates to a substrate mounting apparatus such as a susceptor, an electrostatic chuck or a ceramic heater used in a semiconductor process or the like, and a substrate temperature adjusting method in these apparatuses.

半導体プロセスや液晶ディスプレイ製造プロセスでは、シリコンウエハやガラス等の基板を載置するため、サセプタ−や静電チャック、あるいはヒータを内蔵したセラミックスヒータ等の基板載置装置が使用されている。また、高周波プラズマ処理装置では、プラズマ照射により上昇した基板温度を低減するため、冷却機能を備えた基板載置装置も使用されている。   In a semiconductor process or a liquid crystal display manufacturing process, a substrate mounting device such as a susceptor, an electrostatic chuck, or a ceramic heater with a built-in heater is used to mount a substrate such as a silicon wafer or glass. Further, in the high-frequency plasma processing apparatus, a substrate mounting apparatus having a cooling function is also used in order to reduce the substrate temperature that has been raised by the plasma irradiation.

半導体プロセスにおいて、基板表面の面内温度分布は、作製される薄膜の膜質やエッチング特性等の面内ばらつきに影響を与えるため、できるだけ均一にすることが望まれている。しかしながら、基板面内における温度分布は、基板載置装置内に備えたセラミックスヒータ等の温度分布のみならず、プラズマからの入熱分布等の基板載置装置以外の使用環境に起因する影響も大きく受ける。   In a semiconductor process, the in-plane temperature distribution on the surface of the substrate affects in-plane variations such as the film quality and etching characteristics of the thin film to be produced. However, the temperature distribution in the substrate surface is greatly influenced not only by the temperature distribution of the ceramic heater provided in the substrate mounting apparatus, but also by the usage environment other than the substrate mounting apparatus, such as the heat input distribution from the plasma. receive.

したがって、基板載置装置自体の基板載置面温度分布を均一になるように調整しても、実際の基板表面には、上述するような外的要因により均一な温度分布を形成することは困難である。そこで、基板温度分布を最適化するため、プラズマ条件の最適化や基板載置装置周囲に配置する部材の形状や材質の調整が行われている。   Therefore, even if the substrate placement surface temperature distribution of the substrate placement apparatus itself is adjusted to be uniform, it is difficult to form a uniform temperature distribution on the actual substrate surface due to the external factors described above. It is. Therefore, in order to optimize the substrate temperature distribution, the plasma conditions are optimized and the shape and material of the members arranged around the substrate mounting apparatus are adjusted.

また、プラズマからの入熱分布に応じて、基板載置面の凹凸を場所により調整した静電チャック装置(特許文献1)や、基板載置面となるセラミックス基材内を複数のゾーンに分け、ゾーンごとに独立にヒータを埋設し、発熱量を調整するマルチゾーンヒータ(特許文献2)も提案されている。
特開平7−18438号公報(図1) 特開2001−52843号(第1図)
Moreover, according to the heat input distribution from plasma, the electrostatic chuck apparatus (patent document 1) which adjusted the unevenness | corrugation of the board | substrate mounting surface according to the place, and the inside of the ceramic base material used as a board | substrate mounting surface are divided into several zones. A multi-zone heater (Patent Document 2) that embeds a heater independently for each zone and adjusts the heat generation amount has also been proposed.
Japanese Patent Laid-Open No. 7-18438 (FIG. 1) Japanese Patent Laid-Open No. 2001-52843 (FIG. 1)

しかしながら、プラズマ条件の最適化や基板載置装置周囲に配置する部材や基板載置面の凹凸の調整により、基板温度分布の調整を行う従来の最適化方法では調整できる範囲に限界がある。   However, there is a limit to the range that can be adjusted by the conventional optimization method that adjusts the substrate temperature distribution by optimizing the plasma conditions and adjusting the unevenness of the members placed around the substrate mounting apparatus and the substrate mounting surface.

一方、予想されるプラズマ照射条件等を考慮し、ゾーンごとに最適なヒータを埋設する方法では、ヒータの設計に負担がかかり、基板載置装置の価格も高額になる。また、一旦作製した後は使用環境の変化に合わせて修正することが困難であるので、汎用性に乏しい。さらに、必要な基板温度が比較的低い場合は、ヒータの加熱よりむしろ基板の冷却が必要となるため、ヒータを使用しない構造で、面内の基板温度分布調整ができることが望まれる。   On the other hand, in the method of embedding an optimal heater for each zone in consideration of the expected plasma irradiation conditions and the like, a burden is imposed on the design of the heater, and the price of the substrate mounting apparatus is also expensive. Moreover, once it is manufactured, it is difficult to correct it according to changes in the use environment, so that it is not versatile. Furthermore, when the required substrate temperature is relatively low, it is necessary to cool the substrate rather than heating the heater. Therefore, it is desirable to be able to adjust the in-plane substrate temperature distribution with a structure that does not use a heater.

本発明の目的は、上記従来の課題に鑑み、より簡易で汎用性のある、基板温度の面内温度分布調整が可能な基板載置装置及び基板温度調整方法を提供することである。   An object of the present invention is to provide a substrate mounting apparatus and a substrate temperature adjusting method capable of adjusting the in-plane temperature distribution of the substrate temperature, which are simpler and more versatile in view of the above-described conventional problems.

本発明の態様による基板載置装置は、一方の面に基板載置面を持つ、板状のセラミックス基材と、セラミックス基材の他方の面上に形成された接合層であって、面内を複数の領域に分け、領域ごとに熱伝導率の異なる接合材が配置されていることを特徴とする。   A substrate mounting apparatus according to an aspect of the present invention includes a plate-shaped ceramic base material having a substrate mounting surface on one surface, and a bonding layer formed on the other surface of the ceramic base material. Is divided into a plurality of regions, and bonding materials having different thermal conductivities are arranged for each region.

本発明の態様による基板温度の調整方法は、一方の面に基板載置面を持つセラミック基材の他方の面上に形成された接合層における熱導電率の面内分布を調整することにより、セラミックス基材上に載置される基板の面内温度分布を調整することを特徴とする。   The method for adjusting the substrate temperature according to the aspect of the present invention adjusts the in-plane distribution of the thermal conductivity in the bonding layer formed on the other surface of the ceramic base material having the substrate mounting surface on one surface, The in-plane temperature distribution of the substrate placed on the ceramic substrate is adjusted.

本発明の態様による基板載置装置によれば、簡易な構成で、基板載置面上に配置する基板表面の温度分布を調整できる。   According to the substrate mounting apparatus according to the aspect of the present invention, the temperature distribution on the substrate surface arranged on the substrate mounting surface can be adjusted with a simple configuration.

本発明の別の態様による基板温度調整方法によれば、簡易で汎用性の高い方法で基板載置面上に配置する基板表面の温度分布を調整できる。   According to the substrate temperature adjusting method according to another aspect of the present invention, the temperature distribution on the substrate surface arranged on the substrate mounting surface can be adjusted by a simple and versatile method.

以下、図面を参照しながら、本発明の実施の形態に係る静電チャック、及びその製造方法について説明する。   Hereinafter, an electrostatic chuck and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.

図1(a)に、本発明の実施の形態に係る基板載置装置1の概略的な断面図を示す。基板載置装置1は、一方の面に基板載置面を有する板状のセラミックス基材10と、このセラミックス基材10の他方の面上に形成された接合層20とを有し、この接合層20が、基板面内で複数の領域に分けられ、領域ごとに熱伝導率の異なる接合材で形成されていることを特徴とする。なお、好ましくは、接合層20を介して板状の基台であるベースプレート30がセラミックス基材10に接合された構造を有することが好ましい。   FIG. 1A shows a schematic cross-sectional view of a substrate mounting apparatus 1 according to an embodiment of the present invention. The substrate mounting device 1 includes a plate-shaped ceramic base material 10 having a substrate mounting surface on one surface, and a bonding layer 20 formed on the other surface of the ceramic base material 10. The layer 20 is divided into a plurality of regions within the substrate surface and is formed of a bonding material having different thermal conductivity for each region. In addition, it is preferable that the base plate 30 that is a plate-like base is preferably bonded to the ceramic substrate 10 via the bonding layer 20.

本実施の形態に係る基板載置装置1によれば、セラミックス基材10の他方の面上に配置された接合層20の熱導電率の面内分布が調整できるため、基板からセラミックス基材10及び接合層20への伝熱による冷却効率を場所により変更できる。よって、セラミックス基材10上に載置される基板の面内温度分布を調整できる。特に、接合層20を介してセラミックス基材10にベースプレート30を接合させる場合は、接合層20を介してベースプレート30に抜ける伝熱による基板温度の冷却効果がより大きくなるため、接合層20の熱伝導率の面内分布を調整することによる温度調節機能の効果も大きい。   According to the substrate mounting apparatus 1 according to the present embodiment, since the in-plane distribution of the thermal conductivity of the bonding layer 20 disposed on the other surface of the ceramic base material 10 can be adjusted, the ceramic base material 10 from the substrate can be adjusted. And the cooling efficiency by the heat transfer to the joining layer 20 can be changed with a place. Therefore, the in-plane temperature distribution of the substrate placed on the ceramic substrate 10 can be adjusted. In particular, when the base plate 30 is bonded to the ceramic substrate 10 via the bonding layer 20, the effect of cooling the substrate temperature due to heat transfer to the base plate 30 via the bonding layer 20 becomes greater. The effect of the temperature adjustment function by adjusting the in-plane distribution of conductivity is also great.

図1(b)は、セラミックス基材10の他方の面上に形成された接合層20の平面図を示す。ここでは、接合層20は面内で中心部20Bとその外周部20Aの二つの領域に分けられ、外周部20Aに第1接合材が配置され、中心部20Bに第1接合材と異なる熱伝導率を有する第2接合材が配置される例を示す。   FIG. 1B shows a plan view of the bonding layer 20 formed on the other surface of the ceramic substrate 10. Here, the bonding layer 20 is divided into two regions of a central portion 20B and an outer peripheral portion 20A in the plane, the first bonding material is disposed on the outer peripheral portion 20A, and the heat conduction different from that of the first bonding material is performed on the central portion 20B. The example in which the 2nd bonding material which has a rate is arranged is shown.

プラズマCVD装置やプラズマドライエッチング装置等のプラズマ処理装置内で、本実施の形態に係る基板載置装置1を使用する場合において、基板表面温度分布は基板の中心部より基板周辺部で高くなることがある。この場合は、基板表面はプラズマ強度分布や装置構造上の影響により基板中心部より基板外縁部で温度が高くなり易くなっていると考えられる。そこで、このような環境で本実施の形態に係る基板載置装置1を使用する場合は、接合層20の中心部20Bに熱伝導率が小さい接合材を配置し、接合層20の外周部20Aには熱伝導率が大きい接合材を配置するとよい。基板温度が高くなり易い基板縁部では、熱伝導率の大きい接合材により効率的に冷却が進み、過剰な温度上昇を避けることができるとともに、基板温度が基板縁部より低くなり易い基板中央部では、熱伝導率が小さい接合材を配置することにより基板温度の冷却が抑制される。その結果、プラズマ強度の分布や装置構造上に起因する基板表面温度の不均一な分布を是正し、基板温度の面内均一化を図ることができる。   In the case where the substrate mounting apparatus 1 according to the present embodiment is used in a plasma processing apparatus such as a plasma CVD apparatus or a plasma dry etching apparatus, the substrate surface temperature distribution is higher at the periphery of the substrate than at the center of the substrate. There is. In this case, it is considered that the temperature of the substrate surface tends to be higher at the outer edge of the substrate than at the center of the substrate due to the influence of the plasma intensity distribution and the device structure. Therefore, when the substrate mounting apparatus 1 according to the present embodiment is used in such an environment, a bonding material having a low thermal conductivity is disposed in the central portion 20B of the bonding layer 20, and the outer peripheral portion 20A of the bonding layer 20 is used. It is preferable to arrange a bonding material having a high thermal conductivity. At the edge of the substrate where the substrate temperature is likely to be high, the cooling proceeds efficiently due to the bonding material having a high thermal conductivity, so that an excessive temperature rise can be avoided and the substrate temperature is likely to be lower than the edge of the substrate. Then, the cooling of the substrate temperature is suppressed by disposing a bonding material having a low thermal conductivity. As a result, the nonuniform distribution of the substrate surface temperature caused by the distribution of the plasma intensity and the apparatus structure can be corrected, and the substrate temperature can be made in-plane uniform.

図1(a)及び図1(b)では、接合層20を中心部20Bと外周部20Aの2領域に分け、それぞれに熱伝導率の異なる接合材を配置したが、図2(a)に示すように、接合材層20面内を20A〜20Cの三領域に分け、内側になるほど熱伝導率の低い接合材を配置する構造を採用してもよい。さらに、必要に応じて分割する領域数を増やしてもよい。   In FIG. 1A and FIG. 1B, the bonding layer 20 is divided into two regions of a central portion 20B and an outer peripheral portion 20A, and bonding materials having different thermal conductivities are arranged in each region. As shown, a structure in which the surface of the bonding material layer 20 is divided into three regions 20A to 20C and a bonding material having a lower thermal conductivity is arranged toward the inner side may be employed. Furthermore, the number of areas to be divided may be increased as necessary.

なお、基板表面温度分布は、上述するように基板中央部で低く、周辺部で高い場合のみならず、使用条件や装置構造により種々の温度分布を持ちえる。したがって、基板表面温度分布に合わせて接合材の熱伝導率の面内分布を調整することが望ましい。   As described above, the substrate surface temperature distribution may have various temperature distributions depending on the use conditions and the device structure, as well as the case where the substrate surface temperature is low at the central portion and high at the peripheral portion. Therefore, it is desirable to adjust the in-plane distribution of the thermal conductivity of the bonding material in accordance with the substrate surface temperature distribution.

また、接合層20の領域分割の形態は、中心部から同心円状に分割する形態に限定されるものではなく、必要な温度調整条件に応じて種々の分割形態を採用できる。例えば、基板載置装置に基板リフトピン等やパージガスのために貫通孔が開いているような場合は、その部分に対応する基板表面温度が局部的に高かったりあるいは逆に低かったりする。この場合は、図2(b)に示すように、局部的な温度変化を補正するため、対応する接合層20の領域20Dに、周囲と異なる熱伝導率を有する接合材を配置してもよい。あるいは、基板載置装置1が配置される半導体製造装置装置内にある排気ポートや他部品等の影響で基板の一部の領域の温度が下がり易い場合は、温度が下がりやすい領域に対応する接合層20の領域に熱伝導率の低い接合材を配置してもよい。   Moreover, the form of the region division of the bonding layer 20 is not limited to the form of concentric division from the central portion, and various division forms can be adopted according to the necessary temperature adjustment conditions. For example, when a through hole is opened for a substrate lift pin or a purge gas in the substrate mounting device, the substrate surface temperature corresponding to that portion is locally high or low. In this case, as shown in FIG. 2B, in order to correct a local temperature change, a bonding material having a thermal conductivity different from the surroundings may be disposed in the region 20D of the corresponding bonding layer 20. . Alternatively, when the temperature of a part of the substrate is likely to decrease due to an exhaust port or other components in the semiconductor manufacturing apparatus in which the substrate mounting apparatus 1 is disposed, the bonding corresponding to the region where the temperature is likely to decrease is performed. A bonding material having low thermal conductivity may be disposed in the region of the layer 20.

このように接合層中の接合材の熱伝導率の面内分布を調整する方法によれば、簡易な方法で基板の面内温度分布の調整を行うことができるとともに、有機系の接合材を使用すれば、接合層20を容易に除去することができるため、基板載置装置1の使用環境の変化に合わせて、接合層20内の熱伝導率分布を適宜変更したものを作製し直すことも容易である。したがって、汎用性も極めて高い。   Thus, according to the method of adjusting the in-plane distribution of the thermal conductivity of the bonding material in the bonding layer, the in-plane temperature distribution of the substrate can be adjusted by a simple method, and an organic bonding material can be used. If used, the bonding layer 20 can be easily removed, so that the thermal conductivity distribution in the bonding layer 20 is appropriately changed according to the change in the usage environment of the substrate platform 1. Is also easy. Therefore, versatility is also extremely high.

図3(a)及び図3(b)の本実施の形態に係る基板載置装置の別の形態を示す。図3(a)に示すように、好ましくは、セラミックス基材10内に静電チャック電極40を埋設し、静電チャック機能を有する基板載置装置2とすることが好ましい。静電チャック機能により基板をセラミックス基材10の載置面に密着させ、基板載置装置2からの伝熱効率を上げることができるため正確な基板温度分布の制御が可能になる。   Another form of the substrate mounting apparatus according to the present embodiment shown in FIGS. 3A and 3B is shown. As shown in FIG. 3A, it is preferable to embed an electrostatic chuck electrode 40 in the ceramic substrate 10 to provide the substrate mounting device 2 having an electrostatic chuck function. Since the substrate can be brought into close contact with the mounting surface of the ceramic substrate 10 by the electrostatic chuck function and the heat transfer efficiency from the substrate mounting device 2 can be increased, the substrate temperature distribution can be accurately controlled.

さらに、図3(b)に示すように、静電チャック電極40のみならず、抵抗発熱体50を埋設した基板載置装置3としてもよい。また、図3(b)に示すように、ベースプレート30として、冷却液が循環できる冷却液流路60等の冷却機能を備えたものを使用してもよい。抵抗発熱体50を備えることで、ヒータ機能が付加されているため、基板温度を上げることができる。また、抵抗発熱体50として、領域ごとに個別の温度設定が可能なマルチゾーンヒータを使用すれば、より広い温度範囲での調整が可能になる。   Further, as shown in FIG. 3B, not only the electrostatic chuck electrode 40 but also the substrate mounting device 3 in which the resistance heating element 50 is embedded may be used. Moreover, as shown in FIG.3 (b), you may use the thing provided with cooling functions, such as the cooling fluid flow path 60 which can circulate a cooling fluid, as the baseplate 30. FIG. By providing the resistance heating element 50, since the heater function is added, the substrate temperature can be raised. If a multi-zone heater capable of setting individual temperatures for each region is used as the resistance heating element 50, adjustment in a wider temperature range is possible.

さらに、本実施の形態に係る基板載置装置は、基板温度の面内温度分布を調整する別の手段と組み合わせて使用することで、基板の面内温度分布の調整機能をさらに高めることができる。例えば、図4(a)及び図4(b)に示すように、セラミックス基材10の基板載置面に相当する表面に、複数の凸部を配し、基板に接する凸部の基板との接触面の面積を場所により変えることで基板温度の面内温度分布を調整することもできる。なお、この場合、接触面積は、凸部の面積に相当する。   Further, the substrate mounting apparatus according to the present embodiment can be further combined with another means for adjusting the in-plane temperature distribution of the substrate temperature to further enhance the function of adjusting the in-plane temperature distribution of the substrate. . For example, as shown in FIG. 4A and FIG. 4B, a plurality of convex portions are arranged on the surface corresponding to the substrate mounting surface of the ceramic base material 10, and the convex portion substrate in contact with the substrate is arranged. The in-plane temperature distribution of the substrate temperature can be adjusted by changing the area of the contact surface depending on the location. In this case, the contact area corresponds to the area of the convex portion.

プラズマ処理装置中で基板載置装置4を使用する場合において、基板表面温度が基板中心部で低く、基板縁部で高い場合は、例えば図4(a)及び図4(b)に示すように、セラミックス基材10の基板載置面を中央部には基板との接触面積の小さい凸部70Cを形成し、その周囲にこれより接触面積が大きい凸部70B、さらにその外周に、凸部70Bより基板との接触面積が大きい凸部70Cを形成する。基板載置面中央部では凸部70Cの基板との接触面積が小さいため伝熱による冷却効果が抑制され、基板載置面外周部では凸部70Aの基板との接触面積が大きいため伝熱による冷却効果が促進される結果、プラズマ強度の分布や装置構造上に起因する基板温度の不均一分布を補正できる。   When the substrate mounting apparatus 4 is used in the plasma processing apparatus, when the substrate surface temperature is low at the center of the substrate and high at the edge of the substrate, for example, as shown in FIGS. 4 (a) and 4 (b). Further, a convex portion 70C having a small contact area with the substrate is formed in the central portion of the substrate mounting surface of the ceramic base material 10, and a convex portion 70B having a larger contact area is formed around the convex portion 70B. A convex portion 70C having a larger contact area with the substrate is formed. Since the contact area between the convex portion 70C and the substrate is small at the central portion of the substrate placement surface, the cooling effect due to heat transfer is suppressed, and the contact area between the convex portion 70A and the substrate is large at the outer periphery portion of the substrate placement surface. As a result of promoting the cooling effect, it is possible to correct the distribution of the plasma intensity and the uneven distribution of the substrate temperature due to the apparatus structure.

なお、ここでは、基板載置面を同心円状に3つの領域に分け、各領域に所定の接触面積を持つ凸部を形成した基板載置面を形成したが、基板載置面の分割形態は、基板表面温度や使用条件に合わせて種々の形態を採用できる。例えば、図4(b)に示す構造とは逆に、基板載置面の中心部に基板との接触面積が大きい凸部を配置し、外周部側に基板との接触面積が小さく凸部を配置してもよい。   Here, the substrate placement surface is divided into three regions concentrically, and a substrate placement surface is formed in which convex portions having a predetermined contact area are formed in each region. Various forms can be adopted according to the substrate surface temperature and use conditions. For example, contrary to the structure shown in FIG. 4B, a convex part having a large contact area with the substrate is arranged at the center of the substrate mounting surface, and a convex part having a small contact area with the substrate is provided on the outer peripheral side. You may arrange.

このように、接合材の面内分布の調整に加えて、基板載置面の凸部の接触面積分布の調整を行うことで、基板温度分布の微調整が可能になり、より正確な所望の温度分布を得ることができる。   In this way, in addition to the adjustment of the in-plane distribution of the bonding material, by adjusting the contact area distribution of the convex portion of the substrate mounting surface, the substrate temperature distribution can be finely adjusted, and a more accurate desired A temperature distribution can be obtained.

以下、具体的に本実施の形態に係る基板載置装置の各構成材料について説明する。  Hereinafter, each constituent material of the substrate mounting apparatus according to the present embodiment will be specifically described.

まず、セラミックス基材10としては、種々のセラミックス材が使用できるが、例えばアルミナ(Al23)等の酸化物セラミックス、窒化アルミニウム(AlN)や窒化珪素(Si34)、窒化硼素(BN)、サイアロン等の窒化セラミックス、炭化珪素(SiC)等の炭化セラミックスの緻密質な焼結体を例示できる。なお、これらの材料の中でもAlNは、耐食性が良好であり熱伝導性が高いため好適に使用できる。なお、セラミックス基材10の形状は、載置すべき基板の大きさと形状に合わせて、種々の形状を採用することができる。基板載置面は円状に限らず、矩形もしくは多角形であってもよい。 First, as the ceramic substrate 10, various ceramic materials can be used. For example, oxide ceramics such as alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), boron nitride ( BN), nitride ceramics such as sialon, and dense sintered bodies of carbonized ceramics such as silicon carbide (SiC) can be exemplified. Of these materials, AlN can be suitably used because it has good corrosion resistance and high thermal conductivity. In addition, the shape of the ceramic base material 10 can employ | adopt various shapes according to the magnitude | size and shape of the board | substrate which should be mounted. The substrate placement surface is not limited to a circular shape, and may be a rectangle or a polygon.

ベースプレート30は、冷却機能を備えたものであることが好ましく、比較的熱伝導性の高い、金属材料あるいは金属とセラミックスとのコンポジット材を使用することが好ましい。具体的なベースプレート材質としては、Al、Cu、真鍮、SUS等が挙げられるが、特に限定するものではない。  The base plate 30 is preferably provided with a cooling function, and it is preferable to use a metal material or a composite material of metal and ceramics having relatively high thermal conductivity. Specific examples of the base plate material include, but are not limited to, Al, Cu, brass, and SUS.

コンポジット材を構成するセラミックス材としては、特に限定はなく、セラミックス誘電体基材10と同質または異質の多孔質セラミックス材料を使用できる。例えば、アルミナ、窒化アルミニウム、炭化珪素、窒化珪素、サイアロン等を用いることができる。一方、多孔質セラミックス材料に充填する金属としては、耐腐食性が高く、充填性の良いものが好ましく、例えばAlもしくはAlとSiとの合金を好ましく使用できる。  The ceramic material constituting the composite material is not particularly limited, and a porous ceramic material that is the same as or different from the ceramic dielectric substrate 10 can be used. For example, alumina, aluminum nitride, silicon carbide, silicon nitride, sialon, or the like can be used. On the other hand, the metal to be filled in the porous ceramic material is preferably a metal having high corrosion resistance and good filling properties. For example, Al or an alloy of Al and Si can be preferably used.

有機のみならず無機ガラスの接合材を使用することも可能であるが、ベースプレート30とセラミックス誘電体基材10との熱膨張差を低減するため、接合温度の低い有機系接合材を使用することが好ましい。  It is possible to use not only an organic but also an inorganic glass bonding material, but in order to reduce the difference in thermal expansion between the base plate 30 and the ceramic dielectric substrate 10, an organic bonding material having a low bonding temperature should be used. Is preferred.

また、本実施の形態の基板載置装置1では、接合層20は面内で複数の領域に分けられ、領域ごとに熱伝導率の異なる接合材を使用する。領域ごとに全く組成が異なる接合材を使用してもよいが、例えば有機系接合材にフィラーを含有した接合材を使用し、フィラーの含有量を調整することで、所望の熱伝導率を調整してもよい。具体的には、ポリイミド樹脂、シリコーン樹脂、アクリル樹脂等を母剤として使用し、必要に応じてAl23、AlN、TiB、Al等のフィラーを添加することが望ましい。 Moreover, in the substrate mounting apparatus 1 of the present embodiment, the bonding layer 20 is divided into a plurality of regions within the plane, and bonding materials having different thermal conductivities are used for each region. Bonding materials with completely different compositions may be used for each region, but the desired thermal conductivity can be adjusted by adjusting the filler content by using, for example, a bonding material containing a filler in the organic bonding material. May be. Specifically, it is desirable to use a polyimide resin, a silicone resin, an acrylic resin or the like as a base material, and add a filler such as Al 2 O 3 , AlN, TiB, or Al as necessary.

使用する接合材の熱伝導率の値に限定はないが、例えば図1(b)のように接合層20をニつの領域に分割し、一方の領域に熱伝導率の高い接合材を配置し、他方の領域に熱伝導率の低い接合材を配置する場合、例えば熱伝導率の高い接合材としては、低い接合材の1.1〜100倍の熱伝導率を有する接合材、必要に応じて100倍以上の熱伝導率を有する接合材を使用できる。  The value of the thermal conductivity of the bonding material to be used is not limited. For example, as shown in FIG. 1B, the bonding layer 20 is divided into two regions, and a bonding material having a high thermal conductivity is arranged in one region. When a bonding material with low thermal conductivity is arranged in the other region, for example, as a bonding material with high thermal conductivity, a bonding material having a thermal conductivity 1.1 to 100 times that of the low bonding material, if necessary Thus, a bonding material having a thermal conductivity of 100 times or more can be used.

なお、製造工程のハンドリングをより容易にするため、接合層30として、シート状の有機接合材、もしくはシート状の有機樹脂の両面に有機接着剤が塗布された接着シートを利用してもよい。  In addition, in order to make handling of a manufacturing process easier, you may utilize the adhesive sheet by which the organic adhesive agent was apply | coated to both surfaces of a sheet-like organic bonding material or a sheet-like organic resin as the joining layer 30. FIG.

セラミックス基材10として、図3(a)に示すように、静電チャック電極40を埋設したものを使用する場合は、静電チャックの吸着機構は、電極と基板間とのクーロン力を利用したタイプでも、セラミックス基材表面と基板との間隙部の吸着力を利用したジョンソン・ラーベック力を利用したものでも良い。クーロン力を利用する場合には、セラミックス基材10の、特に静電チャック電極40と基板載置面との間の誘電体層の使用温度における比抵抗を1014Ω・cm以上とし、誘電体層の厚みを0.5mm以下とすることが好ましい。一方、ジョンソン・ラーベック力を利用する場合には、誘電体層の使用温度における比抵抗が10Ω・cm〜1012Ω・cmであり、誘電体層の厚みが0.2mm〜5mmのものを使用することが好ましい。 As shown in FIG. 3A, when the ceramic substrate 10 is embedded with the electrostatic chuck electrode 40, the electrostatic chuck attracting mechanism uses the Coulomb force between the electrode and the substrate. The type may also be a type that uses the Johnson-Rahbek force that uses the adsorption force of the gap between the ceramic substrate surface and the substrate. When using the Coulomb force, the specific resistance at the operating temperature of the dielectric layer of the ceramic substrate 10, particularly between the electrostatic chuck electrode 40 and the substrate mounting surface, is set to 10 14 Ω · cm or more, and the dielectric The layer thickness is preferably 0.5 mm or less. On the other hand, when using the Johnson-Rahbek force, the dielectric layer has a specific resistance at the operating temperature of 10 7 Ω · cm to 10 12 Ω · cm and a thickness of the dielectric layer of 0.2 mm to 5 mm. Is preferably used.

静電チャック電極40は、例えばMo、W、及びWC等の高融点金属が使用でき、その形態に特に限定はない。静電チャック電極40としては、ペースト状の金属を印刷し、乾燥、焼成により形成した膜状電極、スパッタやイオンビーム蒸着等の物理的蒸着の他、CVD等の化学的蒸着で金属薄膜を形成し、エッチングによりパターン電極を形成してもよい。あるいは、金網(メッシュ)等のバルク金属からなる電極を使用することもできる。  For the electrostatic chuck electrode 40, for example, refractory metals such as Mo, W, and WC can be used, and the form thereof is not particularly limited. As the electrostatic chuck electrode 40, a paste-like metal is printed, a film electrode formed by drying and baking, a physical thin film such as sputtering or ion beam vapor deposition, or a metal thin film is formed by chemical vapor deposition such as CVD. The pattern electrode may be formed by etching. Or the electrode which consists of bulk metals, such as a metal-mesh (mesh), can also be used.

また、図3(b)に示すような、抵抗発熱体50を埋設したセラミックス基材10を形成する場合は、抵抗発熱体50の材料として、モリブデン(Mo)、タングステン(W)、モリブデンカーバイド(MoC)、タングステンカーバイド(WC)等の高融点導電材料を好ましく使用できる。高融点金属以外にも、Ni、TiN、TiC、TaC、NbC、HfC、HfB2、ZrB2、カーボン等も使用できる。線状のものに限らず、リボン状、メッシュ状、コイルスプリング状、シート状、印刷電極等種々の形態を使用することもできる。 3B, when the ceramic base material 10 in which the resistance heating element 50 is embedded is formed, the material of the resistance heating element 50 is molybdenum (Mo), tungsten (W), molybdenum carbide ( High melting point conductive materials such as MoC) and tungsten carbide (WC) can be preferably used. Besides refractory metals, Ni, TiN, TiC, TaC, NbC, HfC, HfB 2 , ZrB 2 , carbon, and the like can be used. Not only a linear thing but various forms, such as ribbon shape, mesh shape, coil spring shape, sheet shape, and a printed electrode, can also be used.

次に、本実施の形態に係る基板載置装置1〜4の製造方法について説明する。  Next, a method for manufacturing the substrate mounting apparatuses 1 to 4 according to the present embodiment will be described.

まず、セラミックス基材10とベースプレート30をそれぞれ作製する。セラミックス基材10を作製するには、窒化アルミニウム等のセラミックス原料紛と必要に応じてイットリア(Y23)、シリカ(SiO2)又はアルミナ(Al23)等の焼結助剤原料紛を所定の配合比で調合し、ポットミルあるいはボールミル等を用いて混合する。混合は湿式、乾式いずれでもよい。湿式を用いた場合は、混合後乾燥を行い、原料混合紛を得る。この後、原料混合紛をそのまま、若しくはバインダを加えて造粒したものを用いて成形を行い、例えば円盤状の成形体を得る。成形方法は限定されず、種々の方法を用いることができる。例えば、金型成形法、CIP(Cold Isostatic Pressing)法、スリップキャスト法等の方法を用いることができる。さらに、得られた成型体を、ホットプレス法もしくは常圧焼結法等を用いて、窒化アルミニウムの場合は約1700℃〜約1900℃、アルミナの場合は約1600℃、サイアロンの場合は約1700℃〜約1800℃、炭化珪素の場合は約2000℃〜約2200℃で焼成して、焼結体を作製する。 First, the ceramic substrate 10 and the base plate 30 are respectively produced. In order to produce the ceramic substrate 10, a ceramic raw material powder such as aluminum nitride and a sintering aid raw material such as yttria (Y 2 O 3 ), silica (SiO 2 ) or alumina (Al 2 O 3 ) as required. The powder is mixed at a predetermined mixing ratio and mixed using a pot mill or a ball mill. Mixing may be either wet or dry. When wet is used, drying is performed after mixing to obtain a raw material mixed powder. Thereafter, molding is performed using the raw material mixed powder as it is or granulated by adding a binder to obtain, for example, a disk-shaped molded body. The molding method is not limited, and various methods can be used. For example, a mold forming method, a CIP (Cold Isostatic Pressing) method, a slip casting method, or the like can be used. Further, the obtained molded body is obtained by using a hot press method or an atmospheric pressure sintering method, in the case of aluminum nitride, about 1700 ° C to about 1900 ° C, in the case of alumina, about 1600 ° C, and in the case of sialon, about 1700 ° C. C. to about 1800.degree. C., and in the case of silicon carbide, it is fired at about 2000.degree. C. to about 2200.degree. C. to produce a sintered body.

なお、セラミックス基材10中に静電チャック電極40や抵抗発熱体50を埋設させる作製する場合は、成形工程において各電極を埋設する。例えば静電チャック電極40の場合は、金属バルク体からなる穴明きの面状の電極、より好ましくは、メッシュ(金網)状電極を原料紛中に埋設するとよい。また、抵抗発熱体50を埋設する場合は、静電チャック電極と同様に、コイル状、スパイラル状等の所定形状に加工した金属バルク体を埋設する。いずれの電極も、例えばモリブデンやタングステン等の高融点金属を使用することが好ましい。  In the case where the electrostatic chuck electrode 40 and the resistance heating element 50 are embedded in the ceramic substrate 10, each electrode is embedded in the forming process. For example, in the case of the electrostatic chuck electrode 40, a perforated planar electrode made of a metal bulk body, more preferably, a mesh (metal mesh) electrode may be embedded in the raw material powder. When the resistance heating element 50 is embedded, a metal bulk body processed into a predetermined shape such as a coil shape or a spiral shape is embedded as in the electrostatic chuck electrode. For any electrode, it is preferable to use a refractory metal such as molybdenum or tungsten.

また、静電チャック電極40として、ペースト状の金属を印刷し、乾燥、焼成により形成した膜状電極を使用することもできる。この場合は、成形工程で、例えば円盤状のグリーンシートを2枚作製し、その一方の表面にペースト状の金属電極を印刷し、この印刷電極を挟んで、もう一方のグリーンシートを積層し、グリーンシート積層体を作製し、このグリーンシート積層体を焼成してもよい。  Further, as the electrostatic chuck electrode 40, a film-like electrode formed by printing a paste-like metal, drying, and firing can be used. In this case, in the molding process, for example, two disc-shaped green sheets are produced, a paste-like metal electrode is printed on one surface thereof, the other green sheet is laminated with the printed electrode being sandwiched, A green sheet laminate may be produced and the green sheet laminate may be fired.

ベースプレート30は、コンポジット材や金属材をベースに作製し、必要に応じて冷水路を形成することもできる。  The base plate 30 can be made of a composite material or a metal material as a base, and a cold water channel can be formed as necessary.

次に、接合層20を介してセラミックス基材10とベースプレート30との接合を行う。この接合工程では、まず、熱伝導率の異なる複数の接合材をセラミックス基材10の裏面に配置する。配置の仕方は、例えば接合材を印刷方法を用いて、セラミックス基材10もしくはベースプレート30のいずれか一方の面上にパターニングしてもよいし、あるいは複数のシート状の接合材をセラミックス基材10とベースプレート30との間の所定位置にそれぞれ配置してもよい。この後、真空中もしくは大気中で接合材の硬化温度まで昇温し、加圧を行い両者を接合する。  Next, the ceramic substrate 10 and the base plate 30 are bonded via the bonding layer 20. In this joining step, first, a plurality of joining materials having different thermal conductivities are arranged on the back surface of the ceramic substrate 10. For example, the bonding material may be patterned on one surface of the ceramic substrate 10 or the base plate 30 by using a printing method, or a plurality of sheet-shaped bonding materials may be formed on the ceramic substrate 10. And a predetermined position between the base plate 30 and the base plate 30. Thereafter, the temperature is raised to the curing temperature of the bonding material in vacuum or in the air, and pressure is applied to bond the two together.

以下、本発明の効果を確認するために行なった基板温度分布のシミュレーションと本発明の実施例について説明する。  Hereinafter, a simulation of substrate temperature distribution performed in order to confirm the effect of the present invention and examples of the present invention will be described.

<シミュレーション例>
まず、セラミックス基材10とベースプレート30との間に介在させる接合層20の面内を複数の領域に分け、領域ごとに熱伝導率が異なる材料を配置した場合に予想されるセラミックス基材10表面(基板載置面)での温度分布を有限要素法を用いてシミュレーションした。なお、基板載置装置2はプラズマ処理装置中に配置した場合、プラズマからの入熱により、セラミックス基材10表面の温度が上昇するが、ここでは面内均一に温度が上昇するものと仮定した。
<Example of simulation>
First, the surface of the ceramic substrate 10 expected when the surface of the bonding layer 20 interposed between the ceramic substrate 10 and the base plate 30 is divided into a plurality of regions and materials having different thermal conductivities are arranged in each region. The temperature distribution on the (substrate mounting surface) was simulated using the finite element method. In addition, when the substrate mounting apparatus 2 is disposed in the plasma processing apparatus, the temperature of the surface of the ceramic base material 10 increases due to heat input from the plasma. Here, it is assumed that the temperature increases uniformly in the plane. .

表1にシミュレーションの条件を示す。なお、シミュレーションの対象としたのは、図3(a)に示す構造を有する基板載置装置2である。すなわち、静電チャック電極40を埋設したセラミックス基材10とベースプレート30とを接合層20で接合した構造を有し、接合層20が面内で中心部20Aと外周部20Bの2領域に分割され、各領域に熱伝導率が異なる接合材を使用したものである。シミュレーションに際して使用した各構造の具体的な材料とサイズ、及び接合材の熱伝導率は表1に示す。  Table 1 shows the simulation conditions. Note that the simulation target is the substrate mounting apparatus 2 having the structure shown in FIG. That is, the ceramic base material 10 in which the electrostatic chuck electrode 40 is embedded and the base plate 30 are joined by the joining layer 20, and the joining layer 20 is divided into two regions of the central portion 20A and the outer peripheral portion 20B in the plane. In each region, bonding materials having different thermal conductivities are used. Table 1 shows the specific material and size of each structure used in the simulation, and the thermal conductivity of the bonding material.

なお、ベースプレート30の底面の温度は20℃、プラズマからセラミックス基材10に入熱されるエネルギーは300W、500W、700Wとそれぞれ3条件を仮定した。また、接合層20は、面内を中心部とその外周部の2つの領域に分け、熱伝導率の異なる接合層をそれぞれの領域に配置した。中心部接合層のサイズは、φ60mm、φ120mm、φ140mmの3条件を仮定した。  It is assumed that the temperature of the bottom surface of the base plate 30 is 20 ° C., and the energy input from the plasma to the ceramic substrate 10 is 300 W, 500 W, and 700 W, respectively, under three conditions. In addition, the bonding layer 20 was divided into two regions, a central portion and an outer peripheral portion thereof, and bonding layers having different thermal conductivities were arranged in the respective regions. As the size of the central bonding layer, three conditions of φ60 mm, φ120 mm, and φ140 mm were assumed.

セラミックス基材としてAlNを使用した場合のシミュレーション結果を表2及び図5に示す。また、セラミックス基材としてAlOを使用した場合のシミュレーション結果を表3及び図6に示す。
The simulation results when AlN is used as the ceramic substrate are shown in Table 2 and FIG. Also shows the simulation result in the case of Al 2 O 3 is used as the ceramic base material in Table 3 and Figure 6.

表2、表3、図5及び図6に示すように、セラミックス基材の基板載置面へのプラズマからの入熱パワーが面内で均一の場合、セラミックス基材とベースプレート間に介在する接合材を面内で中心部とその外周部に分け、中心部に熱伝導率が小さい接合材を配置し、外周部にそれよりも熱伝導率の大きい接合材を配置することで、基板載置面に中心部より周辺部で低い温度分布を形成することが可能であることがわかった。なお、グラフ中に示していないが、接合層を単一の接合材で形成した場合は、セラミックス基材の基板載置面上での温度分布はほぼ均一となる。   As shown in Table 2, Table 3, FIG. 5 and FIG. 6, when the heat input power from the plasma to the substrate mounting surface of the ceramic base material is uniform in the plane, the joining interposed between the ceramic base material and the base plate The material is divided into a central part and its outer peripheral part in a plane, a bonding material having a low thermal conductivity is arranged in the central part, and a bonding material having a higher thermal conductivity is arranged in the outer peripheral part, thereby placing the substrate on the substrate. It was found that it was possible to form a lower temperature distribution on the surface in the periphery than in the center. Although not shown in the graph, when the bonding layer is formed of a single bonding material, the temperature distribution on the substrate mounting surface of the ceramic substrate is substantially uniform.

したがって、実際にプラズマ処理装置中で本実施の形態に係る基板載置装置を使用する際、装置構造上の問題で基板温度が不均一となる場合は、接合層中の接合材の熱伝導率を場所により変更することにで基板表面温度の均熱化を図ることが可能であることが確認できた。また、基板温度分布の調整は接合層の面内を複数に分割し各領域ごとに所定の熱伝導率を有する接合材を使用することで行なうが、接合層の分割する領域の大きさや形状、使用する接合材の熱伝導率値等によりセラミックス基材の基板載置面の温度分布を簡易にしかも効果的に調整できることが確認できた。  Therefore, when the substrate mounting apparatus according to this embodiment is actually used in the plasma processing apparatus, if the substrate temperature becomes non-uniform due to a problem in the apparatus structure, the thermal conductivity of the bonding material in the bonding layer It was confirmed that the temperature of the substrate surface can be equalized by changing the position depending on the location. In addition, the adjustment of the substrate temperature distribution is performed by dividing the in-plane of the bonding layer into a plurality and using a bonding material having a predetermined thermal conductivity for each region, but the size and shape of the region where the bonding layer is divided, It was confirmed that the temperature distribution on the substrate mounting surface of the ceramic base material can be easily and effectively adjusted by the thermal conductivity value of the bonding material used.

例えば、接合層の中心部と外周部とに配置する接合材の熱伝導率を2倍以上変えることでセラミックス基材の基板載置面での中心部と外周部の温度差を0〜5℃調整することが可能になる。さらに、熱伝導率の設定や接合材の面内分布を変更することで自在な温度調整が可能である。接合層の中心部と外周部とに配置する接合材の熱伝導率を10倍以上変えることでセラミックス基材の基板載置面での中心部と外周部の温度差を0〜30℃の範囲で調整可能であることも確認できた。  For example, the temperature difference between the central portion and the outer peripheral portion on the substrate mounting surface of the ceramic base material is changed to 0 to 5 ° C. by changing the thermal conductivity of the bonding material disposed at the central portion and the outer peripheral portion of the bonding layer at least twice. It becomes possible to adjust. Furthermore, it is possible to freely adjust the temperature by changing the thermal conductivity setting and the in-plane distribution of the bonding material. The temperature difference between the central portion and the outer peripheral portion on the substrate mounting surface of the ceramic base material is changed in the range of 0 to 30 ° C. by changing the thermal conductivity of the bonding material arranged at the central portion and the outer peripheral portion of the bonding layer by 10 times or more. It was also confirmed that adjustment was possible.

<実施例1及び2>
実施例1及び2の基板載置装置としては、図7に示すような、静電チャック電極40を埋設したセラミックス基材10と冷却水流路を備えたベースプレート30と両者の間に介在させた接合層20とを有する基板載置装置であって、接合層20が面内で中心部とその外周部に分割され、各領域に熱伝導率の異なる接合材を使用したものを作製した。
<Examples 1 and 2>
As the substrate mounting apparatus of Examples 1 and 2, as shown in FIG. 7, a ceramic base material 10 in which an electrostatic chuck electrode 40 is embedded, a base plate 30 having a cooling water flow path, and a joint interposed between the two. The substrate mounting apparatus having the layer 20 was manufactured in which the bonding layer 20 was divided into a central portion and an outer peripheral portion thereof in a plane, and a bonding material having different thermal conductivity was used for each region.

具体的に、セラミックス基材10は、以下の条件で作製した。すなわち、まず、還元窒化法によって得られたAlN粉末に、アクリル系樹脂バインダを添加し、噴霧造粒法により造粒顆粒を作製した。この造粒顆粒を金型を用いて、一軸加圧成形を行った。なお、この成形に際して、成形体中に板状のメッシュ電極であるMoバルク電極を埋設させた。この成形体をホットプレス焼成し、一体焼結品を作製した。なお、ホットプレス時の圧力は200kg/cmとし、焼成時は、最高温度である1900℃まで10℃/時間の昇温速度で温度を上昇させ、この最高温度条件を1時間保持した。こうして、Φ200mm、厚み5mmの円盤状のAlN製セラミックス基材10を作製した。このセラミックス基材10の体積抵抗率は、室温で1E+10Ωcmであった。なお、セラミックス基材10の基板載置面は、凹凸を付けず平坦面とした。 Specifically, the ceramic substrate 10 was produced under the following conditions. That is, first, an acrylic resin binder was added to the AlN powder obtained by the reduction nitriding method, and granulated granules were prepared by the spray granulation method. This granulated granule was uniaxially pressed using a mold. In addition, in this shaping | molding, Mo bulk electrode which is a plate-shaped mesh electrode was embed | buried in the molded object. This molded body was hot-press fired to produce an integrally sintered product. The pressure during hot pressing was 200 kg / cm 2, and during firing, the temperature was increased to a maximum temperature of 1900 ° C. at a rate of temperature increase of 10 ° C./hour, and this maximum temperature condition was maintained for 1 hour. Thus, a disk-shaped AlN ceramic substrate 10 having a diameter of 200 mm and a thickness of 5 mm was produced. The volume resistivity of this ceramic substrate 10 was 1E + 10 Ωcm at room temperature. In addition, the board | substrate mounting surface of the ceramic base material 10 was made into the flat surface without attaching an unevenness | corrugation.

一方、ベースプレート30としては、冷却水路を内部に備えた約Φ240mm、厚み30mmに加工したAl製プレートを使用した。  On the other hand, as the base plate 30, an Al plate processed to have a cooling water passage of about Φ240 mm and a thickness of 30 mm was used.

実施例1の基板載置装置では、AlN製セラミックス基材10とベースプレート30との間に、熱伝導率1.4W/mKのΦ60mmの円形アクリルシートと熱伝導率0.6W/mKの内径Φ60mm外径Φ200mmのリング形状シートを介在させ、真空雰囲気、100℃で、上下から200psi(1.38×106Pa)の加圧を行い、セラミックス基材10とベースプレート30との接合を行った。 In the substrate mounting apparatus of Example 1, between the AlN ceramic substrate 10 and the base plate 30, a circular acrylic sheet having a thermal conductivity of 1.4 W / mK and a diameter of 60 mm and a thermal conductivity of 0.6 W / mK, an inner diameter of 60 mm. The ceramic substrate 10 and the base plate 30 were joined by applying a pressure of 200 psi (1.38 × 10 6 Pa) from above and below in a vacuum atmosphere at 100 ° C. with a ring-shaped sheet having an outer diameter of Φ200 mm.

また、実施例2の基板載置装置では、AlN製セラミックス基材10とベースプレート30との間に、熱伝導率1.4W/mKのΦ140mmの円形アクリルシートと熱伝導率0.6W/mKの内径Φ140mm外径Φ200mmのリング形状シートを介在させ、真空雰囲気、100℃で、上下から200psi(1.38×106Pa)の加圧を行い、セラミックス基材10とベースプレート30との接合を行った。 In addition, in the substrate mounting apparatus of Example 2, a Φ140 mm circular acrylic sheet having a thermal conductivity of 1.4 W / mK and a thermal conductivity of 0.6 W / mK are provided between the AlN ceramic base material 10 and the base plate 30. The ceramic substrate 10 and the base plate 30 are joined by applying a pressure of 200 psi (1.38 × 10 6 Pa) from above and below in a vacuum atmosphere at 100 ° C. with a ring-shaped sheet having an inner diameter of Φ140 mm and an outer diameter of Φ200 mm. It was.

この実施例1及び2の基板載置装置を図7に示すように、ランプヒータ120を備えた真空チャンバ100内に設置し、セラミックス基材10の基板載置面上の所定位置に熱電対90の端子をAlでろう付けしたSi基板を載置した。ベースプレート30中に流す冷却水の温度は20℃とした。プラズマ処理装置中で基板載置装置を使用する場合に生じるプラズマからの基板への入熱を模擬し、真空チャンバ100内を1Pa以下に設定した後、ランプヒータ120を使用して、基板の加熱を行った。ランプヒータ120の出力を300W、もしくは700Wに設定し、Si基板中央部とSi基板端部の温度を測定した。測定結果を表3及び図6に示した。  As shown in FIG. 7, the substrate mounting apparatus of Examples 1 and 2 is installed in a vacuum chamber 100 provided with a lamp heater 120, and a thermocouple 90 is placed at a predetermined position on the substrate mounting surface of the ceramic substrate 10. A Si substrate with Al terminals brazed with Al was placed. The temperature of the cooling water flowing through the base plate 30 was 20 ° C. After simulating the heat input to the substrate from the plasma generated when the substrate mounting apparatus is used in the plasma processing apparatus, the inside of the vacuum chamber 100 is set to 1 Pa or less, and then the lamp heater 120 is used to heat the substrate. Went. The output of the lamp heater 120 was set to 300 W or 700 W, and the temperatures of the Si substrate center and the Si substrate end were measured. The measurement results are shown in Table 3 and FIG.

ランプヒータ120からの熱の入熱は基板面内でほぼ均一になるように調整したため、接合層を単一の接合材で形成した場合は、面内でほぼ均一な基板温度分布が得られるが、セラミックス基材とベースプレート間に介在する接合層を面内で中心部とその外周部に分け、中心部に熱伝導率が小さい接合材を配置し、外周部にそれよりも熱伝導率の大きい接合材を配置した。こうしてセラミックス基材10の基板載置面温度を中心部より周辺部で低い温度分布を形成することが可能であることが実施例においても確認した。  Since the heat input from the lamp heater 120 is adjusted to be substantially uniform in the substrate surface, when the bonding layer is formed of a single bonding material, a substantially uniform substrate temperature distribution can be obtained in the surface. The bonding layer interposed between the ceramic substrate and the base plate is divided into a central portion and its outer peripheral portion in the plane, a bonding material having a low thermal conductivity is arranged in the central portion, and the thermal conductivity is larger than that in the outer peripheral portion. A bonding material was placed. It was also confirmed in the examples that the substrate placement surface temperature of the ceramic base material 10 can be formed in a lower temperature distribution in the peripheral portion than in the peripheral portion.

シミュレーション結果と実際の測定結果は、良く一致しており、シミュレーション通り、実際の現場においても、接合層の面内における熱伝導率の分布を調整する本実施の形態に係る基板温度調整方法が極めて有効な温度調整方法であることが確認できた。
The simulation result and the actual measurement result are in good agreement, and the substrate temperature adjustment method according to the present embodiment for adjusting the thermal conductivity distribution in the surface of the bonding layer is extremely accurate even in the actual site as simulated. It was confirmed that this was an effective temperature adjustment method.

以上、本発明の基板載置装置及び基板温度調整方法の実施の形態及び実施例について説明したが、本発明の内容は、上述する実施の形態及び実施例の記載に限定されるものではない。種々の変形や改良が可能であることは当業者には自明であろう。   As mentioned above, although embodiment and the Example of the substrate mounting apparatus and substrate temperature adjustment method of this invention were described, the content of this invention is not limited to description of embodiment and Example mentioned above. It will be apparent to those skilled in the art that various modifications and improvements can be made.

本発明の実施の形態に係る基板載置装置の断面図、及び接合層の平面図である。It is sectional drawing of the board | substrate mounting apparatus which concerns on embodiment of this invention, and the top view of a joining layer. 本発明の実施の形態に係る接合層中の接合材の分布を示す平面図である。It is a top view which shows distribution of the joining material in the joining layer which concerns on embodiment of this invention. 本発明の実施の形態に係る基板載置装置の別の態様を示す断面図である。It is sectional drawing which shows another aspect of the substrate mounting apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る基板載置装置のさらに別の態様を示す断面図と平面図である。It is sectional drawing and a top view which show another aspect of the board | substrate mounting apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係るAlN製セラミックス基材を使用した基板載置装置における基板載置面での温度分布をシミュレーションした結果を示すグラフである。It is a graph which shows the result of having simulated the temperature distribution in the board | substrate mounting surface in the board | substrate mounting apparatus using the ceramic base material made from AlN which concerns on embodiment of this invention. 本発明の実施の形態に係るAl2O3製セラミックス基材を使用した基板載置装置における基板載置面での温度分布をシミュレーションした結果を示すグラフである。It is a graph which shows the result of having simulated the temperature distribution in the board | substrate mounting surface in the board | substrate mounting apparatus using the ceramic base material made from Al2O3 which concerns on embodiment of this invention. 本発明の実施例1及び2の基板載置装置の評価方法を示す装置図の概略断面図である。It is a schematic sectional drawing of the apparatus figure which shows the evaluation method of the board | substrate mounting apparatus of Example 1 and 2 of this invention. 本発明の実施例1及び2の基板載置装置を使用した場合における基板温度分布の測定結果を示すグラフである。It is a graph which shows the measurement result of substrate temperature distribution at the time of using the substrate mounting apparatus of Example 1 and 2 of this invention.

符号の説明Explanation of symbols

1 基板載置装置
10 セラミックス基材
20 接合層
30 ベースプレート
40.静電チャック電極
DESCRIPTION OF SYMBOLS 1 Substrate mounting apparatus 10 Ceramic base material 20 Bonding layer 30 Base plate 40. Electrostatic chuck electrode

Claims (14)

一方の面に基板載置面を持つ、板状のセラミックス基材と、
前記セラミックス基材の他方の面上に形成された接合層とを有し、
前記接合層は、面内を複数の領域に分けられ、前記領域ごとに熱伝導率の異なる接合材が配置されていることを特徴とする基板載置装置。
A plate-like ceramic substrate having a substrate mounting surface on one side;
A bonding layer formed on the other surface of the ceramic substrate,
The bonding layer is divided into a plurality of regions in a plane, and bonding materials having different thermal conductivities are arranged for each of the regions.
さらに、前記セラミックス基材の前記他方の面に対し、前記接合層を介して接合される、基台を有することを特徴とする請求項1に記載の基板載置装置。   The substrate mounting apparatus according to claim 1, further comprising a base that is bonded to the other surface of the ceramic base material via the bonding layer. 前記接合層は、面内を中心部とその外周部の2つの領域に分けられ、前記中心部に前記接合材として第1接合材が配置され、前記外周部に、別の接合材として、前記第1接合材と熱伝導率が異なる第2接合材が配置されていることを特徴とする請求項1または2に記載の基板載置装置。   The bonding layer is divided into two regions of a central portion and an outer peripheral portion thereof in the plane, the first bonding material is disposed as the bonding material in the central portion, and the outer peripheral portion as another bonding material, The substrate mounting apparatus according to claim 1, wherein a second bonding material having a thermal conductivity different from that of the first bonding material is disposed. 前記第2接合材は、前記第1接合材より熱伝導率が高いことを特徴とする請求項3に記載の基板載置装置。   The substrate mounting apparatus according to claim 3, wherein the second bonding material has higher thermal conductivity than the first bonding material. 前記接合材は、アクリル系樹脂母材と、前記母材中に添加されるフィラーとを含むことを特徴とする請求項1から4のいずれか1項に記載の基板載置装置。   The substrate mounting apparatus according to any one of claims 1 to 4, wherein the bonding material includes an acrylic resin base material and a filler added to the base material. さらに、前記セラミックス基材中に埋設された、静電チャック電極を有することを特徴とする請求項1から5のいずれか1項に記載の基板載置装置。   The substrate mounting apparatus according to claim 1, further comprising an electrostatic chuck electrode embedded in the ceramic base material. 前記セラミックス基材中に埋設された、抵抗発熱体を有することを特徴とする請求項1から6のいずれか1項に記載の基板載置装置。   The substrate mounting apparatus according to claim 1, further comprising a resistance heating element embedded in the ceramic base material. 前記基台は、冷却構造を備えていることを特徴とする請求項1から7のいずれか1項に記載の基板載置装置。   The substrate mounting apparatus according to claim 1, wherein the base includes a cooling structure. 前記セラミックス基材は、前記基板載置面に複数の凸部を有し、載置される基板と各前記凸部との接触面積が、前記基板載置面内で領域ごとに異なることを特徴とする請求項1から8のいずれか1項に記載の基板載置装置。   The ceramic base material has a plurality of convex portions on the substrate placement surface, and a contact area between the placed substrate and each convex portion is different for each region in the substrate placement surface. The substrate mounting apparatus according to any one of claims 1 to 8. 前記接触面積は、前記基板載置面内の中央領域より外周囲領域で大きいことを特徴とする請求項9に記載の基板載置装置。   The substrate mounting apparatus according to claim 9, wherein the contact area is larger in an outer peripheral region than in a central region in the substrate mounting surface. 前記接触面積は、前記基板載置面内の外周囲領域より中央領域で大きいことを特徴とする請求項10に記載の基板載置装置。   The substrate mounting apparatus according to claim 10, wherein the contact area is larger in a central region than an outer peripheral region in the substrate mounting surface. 一方の面に基板載置面を持つセラミック基材の他方の面上に形成された接合層における熱導電率の面内分布を調整することにより、前記セラミックス基材上に載置される基板の面内温度分布を調整することを特徴とする基板温度調整方法。   By adjusting the in-plane distribution of thermal conductivity in the bonding layer formed on the other surface of the ceramic substrate having the substrate mounting surface on one surface, the substrate mounted on the ceramic substrate is adjusted. A substrate temperature adjusting method comprising adjusting an in-plane temperature distribution. 前記接合層における熱導電率の面内分布の調整は、
前記接合層の面内を中心部とその外周部の2つの領域に分け、前記中心部に第1接合材を配置し、前記外周部に前記第1接合材と熱伝導率が異なる第2接合材を配置することにより行うことを特徴とする請求項12に記載の基板温度調整方法。
Adjustment of the in-plane distribution of thermal conductivity in the bonding layer is
A surface of the bonding layer is divided into a central portion and an outer peripheral portion thereof, a first bonding material is disposed in the central portion, and a second bonding having a different thermal conductivity from the first bonding material in the outer peripheral portion. The substrate temperature adjusting method according to claim 12, wherein the substrate temperature adjusting method is performed by arranging a material.
さらに、前記基板載置面に複数の凸部を形成し、載置される基板と各前記凸部との接触面積を場所により調整することで、前記セラミックス基材上に載置される基板の面内温度分布を調整する請求項12または13に記載の基板温度調整方法。   Furthermore, a plurality of protrusions are formed on the substrate mounting surface, and the contact area between the substrate to be mounted and each of the protrusions is adjusted depending on the location of the substrate to be mounted on the ceramic substrate. The substrate temperature adjusting method according to claim 12 or 13, wherein the in-plane temperature distribution is adjusted.
JP2004191106A 2004-06-29 2004-06-29 Substrate placing apparatus and substrate temperature adjusting method Active JP4409373B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004191106A JP4409373B2 (en) 2004-06-29 2004-06-29 Substrate placing apparatus and substrate temperature adjusting method
US11/165,573 US20060021705A1 (en) 2004-06-29 2005-06-23 Substrate mounting apparatus and control method of substrate temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191106A JP4409373B2 (en) 2004-06-29 2004-06-29 Substrate placing apparatus and substrate temperature adjusting method

Publications (2)

Publication Number Publication Date
JP2006013302A true JP2006013302A (en) 2006-01-12
JP4409373B2 JP4409373B2 (en) 2010-02-03

Family

ID=35730811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191106A Active JP4409373B2 (en) 2004-06-29 2004-06-29 Substrate placing apparatus and substrate temperature adjusting method

Country Status (2)

Country Link
US (1) US20060021705A1 (en)
JP (1) JP4409373B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035878A (en) * 2005-07-26 2007-02-08 Kyocera Corp Wafer retainer and its manufacturing method
JP2007110023A (en) * 2005-10-17 2007-04-26 Shinko Electric Ind Co Ltd Substrate holding apparatus
JP2007198967A (en) * 2006-01-27 2007-08-09 Orion Mach Co Ltd Temperature-conditioning type environment tester of plate
JP2007201068A (en) * 2006-01-25 2007-08-09 Taiheiyo Cement Corp Electrostatic chuck
JP2007258607A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Electrostatic chuck
JP2007266342A (en) * 2006-03-29 2007-10-11 Tokyo Electron Ltd Mounting stand and vacuum processor
JP2009267256A (en) * 2008-04-28 2009-11-12 Ngk Insulators Ltd Substrate retainer and method for manufacturing the same
JP2010503208A (en) * 2006-08-29 2010-01-28 ラム リサーチ コーポレーション Method for adjusting the thermal conductivity of an electrostatic chuck support assembly
JP2010034514A (en) * 2008-07-01 2010-02-12 Ngk Insulators Ltd Junction structure, method of manufacturing the same, and electrostatic chuck
WO2010061740A1 (en) * 2008-11-25 2010-06-03 京セラ株式会社 Wafer heating apparatus, electrostatic chuck, and method for manufacturing wafer heating apparatus
WO2011048917A1 (en) * 2009-10-20 2011-04-28 東京エレクトロン株式会社 Sample table and microwave plasma processing apparatus
KR101120590B1 (en) * 2007-12-17 2012-03-09 가시오게산키 가부시키가이샤 Deposition apparatus and deposition method
JPWO2010095720A1 (en) * 2009-02-20 2012-08-30 日本碍子株式会社 Ceramic-metal bonded body and manufacturing method thereof
WO2013047647A1 (en) * 2011-09-30 2013-04-04 Toto株式会社 Alternating current drive electrostatic chuck
US8503155B2 (en) 2008-02-26 2013-08-06 Kyocera Corporation Wafer support member, method for manufacturing the same and electrostatic chuck using the same
JP2014503611A (en) * 2010-11-15 2014-02-13 アプライド マテリアルズ インコーポレイテッド Adhesive material used to join chamber components
JP2014132560A (en) * 2012-12-03 2014-07-17 Ngk Insulators Ltd Ceramic heater
KR20140094450A (en) * 2013-01-21 2014-07-30 도쿄엘렉트론가부시키가이샤 Bonding method, mounting table and substrate processing apparatus
JP2015035485A (en) * 2013-08-08 2015-02-19 株式会社東芝 Electrostatic chuck, placement plate support and manufacturing method of electrostatic chuck
JP2015532015A (en) * 2012-09-19 2015-11-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated How to bond substrates
JP2016092105A (en) * 2014-10-31 2016-05-23 住友大阪セメント株式会社 Electrostatic chuck device
WO2017056835A1 (en) * 2015-09-29 2017-04-06 京セラ株式会社 Sample holder
JP2017147312A (en) * 2016-02-17 2017-08-24 日本特殊陶業株式会社 Holding device and method for manufacturing holding device
JP2017152469A (en) * 2016-02-23 2017-08-31 京セラ株式会社 Sample holder
WO2019211928A1 (en) * 2018-05-01 2019-11-07 日本特殊陶業株式会社 Method for manufacturing retention device
US10896842B2 (en) 2009-10-20 2021-01-19 Tokyo Electron Limited Manufacturing method of sample table
JP2021042097A (en) * 2019-09-10 2021-03-18 日本特殊陶業株式会社 Ceramic sintered body
JP2021157948A (en) * 2020-03-27 2021-10-07 日本特殊陶業株式会社 Ceramic heater and manufacturing method thereof
WO2022108900A1 (en) * 2020-11-19 2022-05-27 Lam Research Corporation Substrate support with uniform temperature across a substrate
KR20220125205A (en) * 2016-07-27 2022-09-14 램 리써치 코포레이션 Substrate support with increasing areal density and corresponding method of fabricating

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869184B2 (en) * 2005-11-30 2011-01-11 Lam Research Corporation Method of determining a target mesa configuration of an electrostatic chuck
KR100672721B1 (en) * 2005-12-29 2007-01-22 동부일렉트로닉스 주식회사 A method for fabricating flash memory
US20070283891A1 (en) * 2006-03-29 2007-12-13 Nobuyuki Okayama Table for supporting substrate, and vacuum-processing equipment
US9147588B2 (en) * 2007-03-09 2015-09-29 Tel Nexx, Inc. Substrate processing pallet with cooling
WO2008128080A2 (en) * 2007-04-13 2008-10-23 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic dissipative stage for use in forming lcd products
WO2008128244A1 (en) * 2007-04-16 2008-10-23 Saint-Gobain Ceramics & Plastics, Inc. Process of cleaning a substrate for microelectronic applications including directing mechanical energy through a fluid bath and apparatus of same
TWI475594B (en) * 2008-05-19 2015-03-01 Entegris Inc Electrostatic chuck
US8861170B2 (en) 2009-05-15 2014-10-14 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
US11116046B2 (en) * 2015-11-12 2021-09-07 Kyocera Corporation Heater
US10483147B2 (en) 2017-11-21 2019-11-19 Wallow Electric Manufacturing Company Dual-purpose vias for use in ceramic pedestals
CN113471095A (en) * 2020-03-31 2021-10-01 长鑫存储技术有限公司 Chamber applied to semiconductor process
US20230420274A1 (en) * 2022-06-22 2023-12-28 Tel Manufacturing And Engineering Of America, Inc. Radiatively-Cooled Substrate Holder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551983A (en) * 1994-11-01 1996-09-03 Celestech, Inc. Method and apparatus for depositing a substance with temperature control
US5886863A (en) * 1995-05-09 1999-03-23 Kyocera Corporation Wafer support member
EP0948042A1 (en) * 1998-03-06 1999-10-06 VenTec Gesellschaft für Venturekapital und Unternehmensberatung Electrostatic device for clamping wafers and other parts
JP4156788B2 (en) * 2000-10-23 2008-09-24 日本碍子株式会社 Susceptor for semiconductor manufacturing equipment
US20030089457A1 (en) * 2001-11-13 2003-05-15 Applied Materials, Inc. Apparatus for controlling a thermal conductivity profile for a pedestal in a semiconductor wafer processing chamber
JP4034096B2 (en) * 2002-03-19 2008-01-16 日本碍子株式会社 Semiconductor support equipment

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035878A (en) * 2005-07-26 2007-02-08 Kyocera Corp Wafer retainer and its manufacturing method
JP2007110023A (en) * 2005-10-17 2007-04-26 Shinko Electric Ind Co Ltd Substrate holding apparatus
JP2007201068A (en) * 2006-01-25 2007-08-09 Taiheiyo Cement Corp Electrostatic chuck
JP2007198967A (en) * 2006-01-27 2007-08-09 Orion Mach Co Ltd Temperature-conditioning type environment tester of plate
JP4698431B2 (en) * 2006-01-27 2011-06-08 オリオン機械株式会社 Plate temperature control environment test equipment
JP4495687B2 (en) * 2006-03-24 2010-07-07 日本碍子株式会社 Electrostatic chuck
JP2007258607A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Electrostatic chuck
JP2007266342A (en) * 2006-03-29 2007-10-11 Tokyo Electron Ltd Mounting stand and vacuum processor
JP2013157617A (en) * 2006-08-29 2013-08-15 Lam Research Corporation Electrostatic chuck support assembly
KR101432845B1 (en) * 2006-08-29 2014-08-26 램 리써치 코포레이션 Method of tuning thermal conductivity of electrostatic chuck support assembly
JP2010503208A (en) * 2006-08-29 2010-01-28 ラム リサーチ コーポレーション Method for adjusting the thermal conductivity of an electrostatic chuck support assembly
KR101120590B1 (en) * 2007-12-17 2012-03-09 가시오게산키 가부시키가이샤 Deposition apparatus and deposition method
US8503155B2 (en) 2008-02-26 2013-08-06 Kyocera Corporation Wafer support member, method for manufacturing the same and electrostatic chuck using the same
JP2009267256A (en) * 2008-04-28 2009-11-12 Ngk Insulators Ltd Substrate retainer and method for manufacturing the same
JP2010034514A (en) * 2008-07-01 2010-02-12 Ngk Insulators Ltd Junction structure, method of manufacturing the same, and electrostatic chuck
KR20110089336A (en) 2008-11-25 2011-08-05 쿄세라 코포레이션 Wafer heating apparatus, electrostatic chuck, and method for manufacturing wafer heating apparatus
JP5116855B2 (en) * 2008-11-25 2013-01-09 京セラ株式会社 Wafer heating device, electrostatic chuck
WO2010061740A1 (en) * 2008-11-25 2010-06-03 京セラ株式会社 Wafer heating apparatus, electrostatic chuck, and method for manufacturing wafer heating apparatus
JP5734834B2 (en) * 2009-02-20 2015-06-17 日本碍子株式会社 Manufacturing method of ceramic-metal joint
JPWO2010095720A1 (en) * 2009-02-20 2012-08-30 日本碍子株式会社 Ceramic-metal bonded body and manufacturing method thereof
US10896842B2 (en) 2009-10-20 2021-01-19 Tokyo Electron Limited Manufacturing method of sample table
WO2011048917A1 (en) * 2009-10-20 2011-04-28 東京エレクトロン株式会社 Sample table and microwave plasma processing apparatus
KR101324589B1 (en) * 2009-10-20 2013-11-01 도쿄엘렉트론가부시키가이샤 Sample table and microwave plasma processing apparatus
JP2011091096A (en) * 2009-10-20 2011-05-06 Tokyo Electron Ltd Sample table and microwave plasma processing apparatus
JP2014503611A (en) * 2010-11-15 2014-02-13 アプライド マテリアルズ インコーポレイテッド Adhesive material used to join chamber components
JP2013084935A (en) * 2011-09-30 2013-05-09 Toto Ltd Ac drive electrostatic chuck
WO2013047647A1 (en) * 2011-09-30 2013-04-04 Toto株式会社 Alternating current drive electrostatic chuck
US9093488B2 (en) 2011-09-30 2015-07-28 Toto Ltd. AC-driven electrostatic chuck
KR102304432B1 (en) * 2012-09-19 2021-09-17 어플라이드 머티어리얼스, 인코포레이티드 Methods for bonding substrates
JP2015532015A (en) * 2012-09-19 2015-11-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated How to bond substrates
KR20200123293A (en) * 2012-09-19 2020-10-28 어플라이드 머티어리얼스, 인코포레이티드 Methods for bonding substrates
JP2014132560A (en) * 2012-12-03 2014-07-17 Ngk Insulators Ltd Ceramic heater
KR102176724B1 (en) * 2013-01-21 2020-11-09 도쿄엘렉트론가부시키가이샤 Bonding method, mounting table and substrate processing apparatus
US9520814B2 (en) 2013-01-21 2016-12-13 Tokyo Electron Limited Bonding method, mounting table and substrate processing apparatus
KR20140094450A (en) * 2013-01-21 2014-07-30 도쿄엘렉트론가부시키가이샤 Bonding method, mounting table and substrate processing apparatus
JP2014139989A (en) * 2013-01-21 2014-07-31 Tokyo Electron Ltd Bonding method, mounting table and substrate processing apparatus
JP2015035485A (en) * 2013-08-08 2015-02-19 株式会社東芝 Electrostatic chuck, placement plate support and manufacturing method of electrostatic chuck
JP2016092105A (en) * 2014-10-31 2016-05-23 住友大阪セメント株式会社 Electrostatic chuck device
JPWO2017056835A1 (en) * 2015-09-29 2018-03-15 京セラ株式会社 Sample holder
WO2017056835A1 (en) * 2015-09-29 2017-04-06 京セラ株式会社 Sample holder
JP2017147312A (en) * 2016-02-17 2017-08-24 日本特殊陶業株式会社 Holding device and method for manufacturing holding device
JP2017152469A (en) * 2016-02-23 2017-08-31 京セラ株式会社 Sample holder
KR20220125205A (en) * 2016-07-27 2022-09-14 램 리써치 코포레이션 Substrate support with increasing areal density and corresponding method of fabricating
KR102638983B1 (en) 2016-07-27 2024-02-22 램 리써치 코포레이션 Substrate support with increasing areal density and corresponding method of fabricating
WO2019211928A1 (en) * 2018-05-01 2019-11-07 日本特殊陶業株式会社 Method for manufacturing retention device
JPWO2019211928A1 (en) * 2018-05-01 2020-05-28 日本特殊陶業株式会社 Holding device manufacturing method
JP2021042097A (en) * 2019-09-10 2021-03-18 日本特殊陶業株式会社 Ceramic sintered body
JP7409807B2 (en) 2019-09-10 2024-01-09 日本特殊陶業株式会社 Electrostatic chuck and its manufacturing method
JP2021157948A (en) * 2020-03-27 2021-10-07 日本特殊陶業株式会社 Ceramic heater and manufacturing method thereof
WO2022108900A1 (en) * 2020-11-19 2022-05-27 Lam Research Corporation Substrate support with uniform temperature across a substrate

Also Published As

Publication number Publication date
JP4409373B2 (en) 2010-02-03
US20060021705A1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4409373B2 (en) Substrate placing apparatus and substrate temperature adjusting method
TWI459851B (en) Heating equipment
KR102244625B1 (en) Heated substrate support with temperature profile control
JP4931376B2 (en) Substrate heating device
JP2009267256A (en) Substrate retainer and method for manufacturing the same
JP2006005095A (en) Substrate heater and its manufacturing process
US6946625B2 (en) Ceramic susceptor
JP2005159018A (en) Wafer supporting member
US7394043B2 (en) Ceramic susceptor
TWI248135B (en) Heating device for manufacturing semiconductor
JP2004146568A (en) Ceramic heater for semiconductor manufacturing device
JP2004146566A (en) Ceramic heater for semiconductor manufacturing device
CN112582330A (en) Semiconductor processing equipment and electrostatic chuck assembly thereof
JP4788575B2 (en) Holder for semiconductor manufacturing equipment
JP2005243243A (en) Heating method
JP2010283364A (en) Holder for semiconductor manufacturing device
JP2005026585A (en) Ceramic joined body
JP2011222257A (en) Wafer heating heater unit and semiconductor manufacturing apparatus mounted with the same
JP2007088498A (en) Ceramic heater for semiconductor manufacturing apparatus
JP2006286646A (en) Ceramic heater
JP2004311447A (en) Ceramic heater
JP2004241393A (en) Ceramic heater
JP2002008826A (en) Ceramic heater for semiconductor manufacturing and inspecting device
JP2003031457A (en) Hot plate unit for semiconductor producing/inspecting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Ref document number: 4409373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4