JP2021042097A - Ceramic sintered body - Google Patents

Ceramic sintered body Download PDF

Info

Publication number
JP2021042097A
JP2021042097A JP2019164470A JP2019164470A JP2021042097A JP 2021042097 A JP2021042097 A JP 2021042097A JP 2019164470 A JP2019164470 A JP 2019164470A JP 2019164470 A JP2019164470 A JP 2019164470A JP 2021042097 A JP2021042097 A JP 2021042097A
Authority
JP
Japan
Prior art keywords
sintered body
sic
flow path
ceramic sintered
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019164470A
Other languages
Japanese (ja)
Other versions
JP7409807B2 (en
Inventor
良太 佐藤
Ryota Sato
良太 佐藤
佳孝 市川
Yoshitaka Ichikawa
佳孝 市川
美史 傳井
Yoshifumi Tsutai
美史 傳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2019164470A priority Critical patent/JP7409807B2/en
Publication of JP2021042097A publication Critical patent/JP2021042097A/en
Application granted granted Critical
Publication of JP7409807B2 publication Critical patent/JP7409807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a ceramic sintered body capable of forming a uniform temperature distribution on a placement surface.SOLUTION: The present invention provides a ceramic sintered body 10 that includes a placement surface F on which a substrate is placed, in which: the ceramics sintered body 10 is provided with a flow path 4 extending along a placement surface F at a position away from the placement surface F and flowing a medium through it; and a thermal conductivity of at least a portion of the flow path upper area X is smaller than a thermal conductivity of at least a portion of other area Y of the ceramic sintered body 10 adjacent to the flow path upper area X in a direction along the placement surface F, where a portion between the flow path 4 and the placement surface F of the ceramic sintered body 10 in a direction perpendicular to the placement surface F is defined as the flow path upper area X.SELECTED DRAWING: Figure 2

Description

本発明は、セラミックス焼結体に関する。 The present invention relates to a ceramic sintered body.

従来、媒体流路としての中空構造を有し、界面を有さずに一体化したセラミックス焼結体が知られている(例えば、特許文献1参照)。 Conventionally, a ceramic sintered body having a hollow structure as a medium flow path and being integrated without having an interface is known (see, for example, Patent Document 1).

特許文献1のものでは、中空部を有し、一体に焼成された平板状のセラミックス部材の製造方法であって、金型にセラミックス粉末を充填し第1のプレス成形をする工程と、第1のプレス成形体の一方の主面側に、本体が樹脂製の中子を設ける工程と、中子の上からセラミックス粉末を充填し第2のプレス成形をする工程と、加熱により第2のプレス成形体の側面から中子本体の樹脂を除去する工程と、樹脂を除去した第2のプレス成形体を焼成する工程と、を含む。 In Patent Document 1, a method for manufacturing a flat ceramic member having a hollow portion and being integrally fired, wherein a mold is filled with ceramic powder and a first press molding is performed, and a first step. A step of providing a core whose main body is made of resin on one main surface side of the press-molded body, a step of filling ceramic powder from above the core and performing a second press molding, and a second press by heating. It includes a step of removing the resin of the core body from the side surface of the molded body and a step of firing a second press molded body from which the resin has been removed.

このように、2段階で十分にプレスしたセラミックス粉末の成形体から樹脂製の中子本体を除去して中空構造を形成することで、中空構造を有し、界面を有しない一体化したセラミックス焼結体を低コストで製造することができる。 In this way, by removing the resin core body from the molded body of the ceramic powder sufficiently pressed in two steps to form a hollow structure, an integrated ceramic firing having a hollow structure and no interface is performed. The union can be manufactured at low cost.

特開2014−233883号公報Japanese Unexamined Patent Publication No. 2014-233883

内部に例えば冷却用の媒体を流すことができる流路を有するセラミックス焼結体を、ウエハや静電チャックなどの基板を載置する載置面を備えた基台として使用する場合、セラミックス焼結体の載置面から流路までの距離が、載置面の直下に流路が位置している部分と、載置面の直下に流路が位置していない部分とによって、真っ直ぐ下に向かう距離となるか、斜めに傾斜する距離となるかで距離が異なり、載置面の位置によって載置面から流路までの距離が異なる。そのため、セラミックス焼結体の載置面から流路までの熱抵抗に差が生じる。 When a ceramics sintered body having a flow path through which a cooling medium can flow, for example, is used as a base provided with a mounting surface on which a substrate such as a wafer or an electrostatic chuck is mounted, the ceramics sintered body is used. The distance from the mounting surface of the body to the flow path goes straight down depending on the part where the flow path is located directly under the mounting surface and the part where the flow path is not located directly under the mounting surface. The distance differs depending on whether it is a distance or an obliquely inclined distance, and the distance from the mounting surface to the flow path differs depending on the position of the mounting surface. Therefore, there is a difference in the thermal resistance from the mounting surface of the ceramic sintered body to the flow path.

熱抵抗がセラミックス焼結体の載置面の位置によって異なるということは、セラミックス焼結体に一様に入力された熱量が流路を流れる媒体に伝熱されるときに、直下に流路が存在する載置面部分とそれ以外との部分との間に温度差が生じる。 The fact that the thermal resistance differs depending on the position of the mounting surface of the ceramics sintered body means that when the amount of heat uniformly input to the ceramics sintered body is transferred to the medium flowing through the flow path, the flow path exists directly below. A temperature difference occurs between the mounting surface portion and the portion other than the mounting surface portion.

従って、セラミックス焼結体の流路内を流れる媒体による冷却効果が載置面に均一に現れず、セラミックス焼結体に載置される基板の温度分布に影響を与え、基板温度が不均一になる虞がある。 Therefore, the cooling effect of the medium flowing in the flow path of the ceramic sintered body does not appear uniformly on the mounting surface, which affects the temperature distribution of the substrate mounted on the ceramic sintered body, and the substrate temperature becomes non-uniform. There is a risk of becoming.

本発明は、以上の点に鑑み、載置面に一様な温度分布を形成することができるセラミックス焼結体を提供することを目的とする。 In view of the above points, it is an object of the present invention to provide a ceramic sintered body capable of forming a uniform temperature distribution on a mounting surface.

[1]上記目的を達成するため、本発明は、
基板が上方に載置される載置面を備えるセラミックス焼結体であって、
前記セラミックス焼結体は、前記載置面から離れた位置において前記載置面に沿って延在し、媒体を流す流路を備え、
前記載置面の垂直方向における前記セラミックス焼結体の前記流路と前記載置面との間の部分を流路上部領域と定義して、
前記流路上部領域の少なくとも一部の熱伝導率は、前記載置面に沿った方向において前記セラミックス焼結体の前記流路上部領域に隣接する他の領域の少なくとも一部の熱伝導率よりも小さいことを特徴とする。
[1] In order to achieve the above object, the present invention
A ceramics sintered body having a mounting surface on which a substrate is mounted.
The ceramics sintered body extends along the previously described surface at a position away from the previously described surface and includes a flow path through which the medium flows.
The portion of the ceramic sintered body between the flow path and the above-mentioned mounting surface in the vertical direction of the above-mentioned mounting surface is defined as a flow path upper region.
The thermal conductivity of at least a part of the flow path upper region is higher than the thermal conductivity of at least a part of the other region adjacent to the flow path upper region of the ceramic sintered body in the direction along the above-mentioned mounting surface. Is also small.

本発明によれば、流路上部領域の少なくとも一部の熱伝導率は、前記載置面に沿った方向において前記セラミックス焼結体の前記流路上部領域に隣接する他の領域の少なくとも一部の熱伝導率よりも小さいため、載置面に一様な温度分布を形成することができるセラミックス焼結体を提供することができる。 According to the present invention, the thermal conductivity of at least a part of the flow path upper region is at least a part of the other region of the ceramics sintered body adjacent to the flow path upper region in the direction along the above-mentioned mounting surface. Since it is smaller than the thermal conductivity of the above, it is possible to provide a ceramics sintered body capable of forming a uniform temperature distribution on the mounting surface.

[2]また、本発明においては、前記流路上部領域の少なくとも一部の嵩密度は、前記他の領域の少なくとも一部の嵩密度よりも小さいことが好ましい。 [2] Further, in the present invention, it is preferable that the bulk density of at least a part of the flow path upper region is smaller than the bulk density of at least a part of the other region.

[3]また、本発明においては、前記セラミックス焼結体は、炭化ケイ素を主成分とすることが好ましい。本発明において炭化ケイ素を主成分とするとは、セラミックス焼結体中に炭化ケイ素が50質量%以上含むことを意味する。 [3] Further, in the present invention, it is preferable that the ceramic sintered body contains silicon carbide as a main component. In the present invention, the term "silicon carbide as a main component" means that the ceramic sintered body contains 50% by mass or more of silicon carbide.

本発明の第1の実施形態に係るセラミックス焼結体の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the ceramics sintered body which concerns on 1st Embodiment of this invention. 図2Aは第1及び第2のSiC仮焼体を示す模式断面図。図2Bは第1及び第2のSiC仮焼体を積層した状態を示す模式断面図。図2Cはセラミックス焼結体を示す模式断面図。FIG. 2A is a schematic cross-sectional view showing the first and second SiC calcined bodies. FIG. 2B is a schematic cross-sectional view showing a state in which the first and second SiC calcined bodies are laminated. FIG. 2C is a schematic cross-sectional view showing a ceramic sintered body. 本発明の第2の実施形態に係るセラミックス焼結体の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the ceramics sintered body which concerns on 2nd Embodiment of this invention. 図4Aは第1から第3のSiC仮焼体を示す模式断面図。図4Bは第1から第3のSiC仮焼体を積層した状態を示す模式断面図。図4Cはセラミックス焼結体を示す模式断面図。FIG. 4A is a schematic cross-sectional view showing the first to third SiC calcined bodies. FIG. 4B is a schematic cross-sectional view showing a state in which the first to third SiC calcined bodies are laminated. FIG. 4C is a schematic cross-sectional view showing a ceramic sintered body. 図5Aは実施例8,9,11における第1及び第2のSiC仮焼体を示す模式断面図。図5Bは第1及び第2のSiC仮焼体を積層した状態を示す模式断面図。図5Cはセラミックス焼結体を示す模式断面図。FIG. 5A is a schematic cross-sectional view showing the first and second SiC calcined bodies in Examples 8, 9 and 11. FIG. 5B is a schematic cross-sectional view showing a state in which the first and second SiC calcined bodies are laminated. FIG. 5C is a schematic cross-sectional view showing a ceramic sintered body.

本発明の第1実施形態に係るセラミックス焼結体10について図面を参照して説明する。なお、図面は、セラミックス焼結体10及びその構成要素などを明確化するために模式的に示されており、実際の比率を表すものではなく、上下などの方向も単なる例示である。 The ceramic sintered body 10 according to the first embodiment of the present invention will be described with reference to the drawings. It should be noted that the drawings are schematically shown for clarifying the ceramic sintered body 10 and its constituent elements, and do not represent the actual ratio, and the directions such as up and down are merely examples.

第1実施形態のセラミックス焼結体10は、図1に示すように、第1のSiC仮焼体取得工程STEP1、第2のSiC仮焼体取得工程STEP2、第1の平面形成工程STEP3、第2の平面形成工程STEP4、凹部形成工程STEP5、積層工程STEP6及び焼成工程STEP7を備えている。 As shown in FIG. 1, the ceramic sintered body 10 of the first embodiment has a first SiC calcined body acquisition step STEP1, a second SiC calcined body acquisition step STEP2, a first plane forming step STEP3, and a first. 2. The flat surface forming step STEP4, the recess forming step STEP5, the laminating step STEP6, and the firing step STEP7 are provided.

第1のSiC仮焼体取得工程STEP1においては、図2Aを参照して、第1のSiC成形体を1200℃以上1900℃以下の温度で仮焼して第1のSiC仮焼体1を得る。第2のSiC仮焼体取得工程STEP2においては、第2のSiC成形体を1200℃以上1900℃以下の温度で仮焼して第2のSiC仮焼体2を得る。なお、第1のSiC仮焼体取得工程STEP1及び第2のSiC仮焼体取得工程STEP2における仮焼温度は同じであっても、相違していてもよい。 In the first SiC calcined body acquisition step STEP1, referring to FIG. 2A, the first SiC molded body is calcined at a temperature of 1200 ° C. or higher and 1900 ° C. or lower to obtain the first SiC calcined body 1. .. In the second SiC calcined body acquisition step STEP2, the second SiC molded body is calcined at a temperature of 1200 ° C. or higher and 1900 ° C. or lower to obtain a second SiC calcined body 2. The calcining temperatures in the first SiC calcined body acquisition step STEP1 and the second SiC calcined body acquisition step STEP2 may be the same or different.

第1のSiC仮焼体取得工程STEP1及び第2のSiC仮焼体取得工程STEP2においては、SiC(炭化ケイ素)粉末を成形した2個のSiC成形体を仮焼して第1及び第2のSiC仮焼体1,2を形成する。例えば、SiC粉末に、焼結助剤、バインダなどの添加剤を適宜添加して混合して、成形原料を作製し、この成形材料を用いて加圧成形して2個のSiC成形体を形成する。 In the first SiC calcined body acquisition step STEP1 and the second SiC calcined body acquisition step STEP2, two SiC molded bodies obtained by molding SiC (silicon carbide) powder are calcined to perform the first and second operations. SiC calcined bodies 1 and 2 are formed. For example, additives such as a sintering aid and a binder are appropriately added to and mixed with SiC powder to prepare a molding raw material, and pressure molding is performed using this molding material to form two SiC molded bodies. To do.

SiC粉末は、高純度であることが好ましく、その純度は、好ましくは96%以上、より好ましくは98%以上である。また、SiC粉末の平均粒径は、好ましくは0.1μm以上1.0μm以下、より好ましくは0.3μm以上0.8μm以下である。 The SiC powder is preferably of high purity, and the purity is preferably 96% or more, more preferably 98% or more. The average particle size of the SiC powder is preferably 0.1 μm or more and 1.0 μm or less, and more preferably 0.3 μm or more and 0.8 μm or less.

混合方法は、湿式、乾式の何れであってもよく、例えばボールミル、振動ミルなどの混合器を用いることができる。また、SiC粉末に焼結助剤などを添加してSiC顆粒を作製し、このSiC顆粒にバインダなどの添加剤を添加したものを用いて加圧成形してSiC成形体を形成してもよい。成形方法としては、例えば、一軸加圧成形や冷間静水等方圧加圧(CIP:Cold Isostatic Pressing)法などの公知の方法を用いればよい。 The mixing method may be either wet or dry, and for example, a mixer such as a ball mill or a vibration mill can be used. Further, a SiC granule may be prepared by adding a sintering aid or the like to the SiC powder, and a SiC molded body may be formed by pressure molding using the SiC granule to which an additive such as a binder is added. .. As the molding method, for example, a known method such as uniaxial pressure molding or cold isostatic pressing (CIP) method may be used.

なお、SiC成形体を900℃以上1200℃未満の温度で加熱してSiC脱脂体を得たうえで、このSiC脱脂体を1200℃以上1900℃以下の温度で加熱して第1及び第2のSiC仮焼体1,2を得てもよい。また、SiC成形体を1200℃以上1900℃以下の温度まで連続的に昇温させながら加熱して第1及び第2のSiC仮焼体1,2を得てもよい。 The SiC molded body is heated at a temperature of 900 ° C. or higher and lower than 1200 ° C. to obtain a SiC degreased body, and then the SiC degreased body is heated at a temperature of 1200 ° C. or higher and 1900 ° C. or lower to obtain the first and second defatted bodies. SiC calcined bodies 1 and 2 may be obtained. Further, the first and second SiC calcined bodies 1 and 2 may be obtained by heating the SiC molded body while continuously raising the temperature to a temperature of 1200 ° C. or higher and 1900 ° C. or lower.

第1の平面形成工程STEP3においては、第1のSiC仮焼体1に第1の平面1aを形成する。第2の平面形成工程STEP4においては、第2のSiC仮焼体2に第2の平面2aを形成する。なお、第1の平面1aと第2の平面2aは、積層工程STEP6において接触する面となる。 In the first plane forming step STEP3, the first plane 1a is formed on the first SiC calcined body 1. In the second plane forming step STEP4, the second plane 2a is formed on the second SiC calcined body 2. The first plane 1a and the second plane 2a are surfaces that come into contact with each other in the laminating step STEP6.

NC旋盤、MC加工機などの平面研削機やラッピング加工機などを用いて、例えば、表面粗さRaが、好ましくは0.15μm以上0.8μm以下、より好ましくは0.15μm以上0.4μm以下となるように研削および必要に応じて研磨を行うことにより、第1及び第2の平面1a,2aを形成する。 Using a surface grinder such as an NC lathe or MC processing machine or a lapping processing machine, for example, the surface roughness Ra is preferably 0.15 μm or more and 0.8 μm or less, more preferably 0.15 μm or more and 0.4 μm or less. The first and second planes 1a and 2a are formed by grinding and polishing as necessary.

凹部形成工程STEP5においては、第1の平面1a又は第2の平面2aの少なくとも一方に凹部3を形成する。凹部3は、流路4を構成するためのものであり、第1の平面1a、第2の平面2aの何れか一方、又は双方から掘り込むように研削加工などによって形成する。 In the recess forming step STEP5, the recess 3 is formed on at least one of the first plane 1a and the second plane 2a. The recess 3 is for forming the flow path 4, and is formed by grinding or the like so as to dig from either or both of the first flat surface 1a and the second flat surface 2a.

なお、第1の平面形成工程STEP3又は第2の平面形成工程STEP4において、第1の又は第2の平面1a,2aを研磨加工せずに、あるいは粗く研削加工しただけとしておき、凹部形成工程STEP5において凹部3を形成した後で、第1又は第2の平面1a,2aを研磨加工、あるいは仕上げの研削加工を行ってもよい。 In the first plane forming step STEP3 or the second plane forming step STEP4, the first or second planes 1a and 2a are left without polishing or only roughly ground, and the recess forming step STEP5 After forming the recess 3 in the above, the first or second flat surfaces 1a and 2a may be polished or finished by grinding.

なお、第1及び第2の平面1a,2aの双方から掘り込むように凹部3を形成する場合、これらの凹部3は、第1及び第2の平面1a,2aを積層工程STEP5において接触されたときに、一体化して流路4を構成するものであってもよいが、他の平面によって閉じられるものであってもよい。また、第1及び第2の平面1a,2aと凹部3の境界部分及び凹部3の底隅部分には、R面やC面などの面取り加工を施すことが好ましい。 When the recesses 3 are formed so as to be dug from both the first and second planes 1a and 2a, these recesses 3 are brought into contact with the first and second planes 1a and 2a in the laminating step STEP5. Occasionally, it may be integrated to form the flow path 4, but it may be closed by another plane. Further, it is preferable that the boundary portion between the first and second flat surfaces 1a and 2a and the recess 3 and the bottom corner portion of the recess 3 are chamfered such as an R surface and a C surface.

また、第1の平面形成工程STEP3、第2の平面形成工程STEP4又は凹部形成工程STEP5において、乾式の研削加工又は研磨加工により、第1の平面1a、第2の平面2a又は凹部3を形成することが好ましい。これにより、研削液又は研磨液が第1又は第2の仮焼体1,2の内部に侵入し、セラミックス焼結体10に不純物が残存するおそれの解消を図ることが可能となる。なお、研削加工及び研磨加工を行う場合、これら加工の双方ともに乾式で行うことが好ましい。 Further, in the first flat surface forming step STEP3, the second flat surface forming step STEP4, or the concave portion forming step STEP5, the first flat surface 1a, the second flat surface 2a, or the concave portion 3 is formed by dry grinding or polishing. Is preferable. As a result, it is possible to eliminate the possibility that the grinding liquid or the polishing liquid invades the inside of the first or second calcined bodies 1 and 2 and impurities remain in the ceramic sintered body 10. When grinding and polishing are performed, it is preferable that both of these processes are performed by a dry method.

さらに、凹部形成工程STEP5の前に、第1及び第2のSiC仮焼体1,2を保管する保管工程を備えていてもよい。これにより、予め作製した第1及び第2のSiC仮焼体1,2を保管しておくことにより、少なくとも仮焼に要する時間だけ短い時間でセラミックス焼結体10を得ることが可能となる。また、第1の平面形成工程STEP3及び第2の平面形成工程STEP4後の第1及び第2のSiC仮焼体1,2を保管しておくことにより、第1の平面1a及び第2の平面2aを形成する工程に要する時間の分も短い時間でセラミックス焼結体10を得ることが可能となる。 Further, a storage step of storing the first and second SiC calcined bodies 1 and 2 may be provided before the recess forming step STEP5. As a result, by storing the first and second SiC calcined bodies 1 and 2 prepared in advance, the ceramic sintered body 10 can be obtained in a short time at least by the time required for calcining. Further, by storing the first and second SiC calcined bodies 1 and 2 after the first plane forming step STEP3 and the second plane forming step STEP4, the first plane 1a and the second plane are stored. The ceramic sintered body 10 can be obtained in a short time as much as the time required for the step of forming 2a.

積層工程STEP6においては、図2Bを参照して、第1のSiC仮焼体1と第2のSiC仮焼体2とを、第1の平面1aと第2の平面2aとを接触させた状態で積層する。 In the laminating step STEP6, with reference to FIG. 2B, a state in which the first SiC calcined body 1 and the second SiC calcined body 2 are brought into contact with the first plane 1a and the second plane 2a. Laminate with.

なお、積層工程STEP6において、第1の平面1aと第2の平面2aとの間に、ホウ素を含む焼結助剤を介在させることが好ましい。これにより、焼成工程STEP7にて接合面となる第1及び第2の面1a,2aに焼結助剤が介在するので、接合面1a,2a付近での焼結が促進され、接合強度の向上を図ることが可能となる。例えば、ホウ素を含む焼結助剤としては、ホウ酸水溶液などを用いることができる。 In the laminating step STEP6, it is preferable to interpose a sintering aid containing boron between the first plane 1a and the second plane 2a. As a result, since the sintering aid intervenes in the first and second surfaces 1a and 2a which are the joint surfaces in the firing step STEP7, sintering in the vicinity of the joint surfaces 1a and 2a is promoted, and the bonding strength is improved. It becomes possible to plan. For example, as the sintering aid containing boron, an aqueous boric acid solution or the like can be used.

焼成工程STEP7においては、積層した第1のSiC仮焼体1及び第2のSiC仮焼体2を、積層方向に10kgf/cm以上の圧力を加えながら2000℃以上2200℃以下で焼成する。これにより、図2Cを参照して、第1及び第2のSiC仮焼体1,2が焼結して一体化されたセラミックス焼結体10が得られる。 In the firing step STEP7, the laminated first SiC calcined body 1 and the second SiC calcined body 2 are fired at 2000 ° C. or higher and 2200 ° C. or lower while applying a pressure of 10 kgf / cm 2 or more in the stacking direction. As a result, referring to FIG. 2C, the ceramic sintered body 10 in which the first and second SiC calcined bodies 1 and 2 are sintered and integrated is obtained.

焼成工程STEP7においては、少なくとも積層方向に加圧した状態で加熱するホットプレスなどによって、加圧焼結を行う。加熱時間は、好ましくは0.1時間以上10時間以下、より好ましくは1時間以上5時間以下である。そして、焼成雰囲気は、例えば不活性ガス雰囲気であるが、真空などの雰囲気であってもよい。 In the firing step STEP7, pressure sintering is performed by hot pressing or the like that heats at least in a state of being pressurized in the stacking direction. The heating time is preferably 0.1 hour or more and 10 hours or less, and more preferably 1 hour or more and 5 hours or less. The firing atmosphere is, for example, an inert gas atmosphere, but may be an atmosphere such as vacuum.

SiC焼結体同士を拡散接合して一体化する場合、SiC焼結体は難加工性であるので、接合面の研磨に多大な時間を要するが、これと比較して、上述した本発明の第1の実施形態に係るセラミックス焼結体10の製造方法においては、第1及び第2の仮焼体1,2の第1及び第2の平面1a,2a並びに凹部3を研削加工又は研磨加工する時間の低減を図ることが可能となる。また、凹部3を形成したSiC成形体同士を焼成して一体化する場合と比較して、凹部3に由来するセラミックス焼結体10の中空構造などの寸法精度の向上を図ることが可能となる。 When the SiC sintered bodies are diffusively bonded to each other and integrated, the SiC sintered body is difficult to process, so that it takes a long time to polish the bonded surface. In the method for producing the ceramic sintered body 10 according to the first embodiment, the first and second flat surfaces 1a and 2a and the recess 3 of the first and second calcined bodies 1 and 2 are ground or polished. It is possible to reduce the time required for polishing. Further, as compared with the case where the SiC molded bodies having the recesses 3 formed are fired and integrated, it is possible to improve the dimensional accuracy of the hollow structure of the ceramic sintered body 10 derived from the recesses 3. ..

さらに、錘を用いた小さな荷重を加えた状態で焼成を行う従来技術と比較して、10kgf/cm以上の加圧を行いながら焼成を行うので、接合強度の向上、及びセラミックス焼結体10の緻密化を図ることが可能となる。なお、10kgf/cm未満の加圧では、焼成時に第1及び第2の仮焼体1,2の第1及び第2の平面1a,2aの良好な面接触が得られず接合不良を引き起こすため不適である。 Further, as compared with the conventional technique of firing with a small load applied using a weight, firing is performed while applying a pressure of 10 kgf / cm 2 or more, so that the bonding strength is improved and the ceramic sintered body 10 is used. It is possible to improve the precision of the. If the pressure is less than 10 kgf / cm 2 , good surface contact between the first and second flat surfaces 1a and 2a of the first and second calcined bodies 1 and 2 cannot be obtained at the time of firing, causing poor joining. Therefore, it is not suitable.

ここで、図2B、図2Cに示すように、載置面Fの垂直方向(図2B、図2Cの上下方向)におけるセラミックス焼結体10の流路4と載置面Fとの間の部分を流路上部領域Xと定義し、載置面Fと流路4との間において流路上部領域Xを除いた領域を他の領域Yと定義する。換言すれば、他の領域Yは、載置面Fに沿った方向においてセラミックス焼結体の流路上部領域Xに隣接する領域と定義することができる。 Here, as shown in FIGS. 2B and 2C, a portion between the flow path 4 and the mounting surface F of the ceramic sintered body 10 in the vertical direction of the mounting surface F (vertical direction of FIGS. 2B and 2C). Is defined as the flow path upper region X, and the region between the mounting surface F and the flow path 4 excluding the flow path upper region X is defined as another region Y. In other words, the other region Y can be defined as a region adjacent to the flow path upper region X of the ceramic sintered body in the direction along the mounting surface F.

一般的に、内部に冷却用媒体を流すことができる流路を有するセラミックス焼結体を、ウエハや静電チャックなどの基板を載置する載置面を備えた基台として使用する場合、セラミックス焼結体の載置面から流路までの距離が、載置面の直下に流路が位置している部分と、載置面の直下に流路が位置していない部分とによって、真っ直ぐ下に向かう距離となるか、斜めに傾斜する距離となるかで距離が異なり、載置面の位置によって載置面から流路までの距離が異なる。そのため、セラミックス焼結体の載置面から流路までの熱抵抗に差が生じる。 Generally, when a ceramics sintered body having a flow path through which a cooling medium can flow is used as a base provided with a mounting surface on which a substrate such as a wafer or an electrostatic chuck is mounted, ceramics are used. The distance from the mounting surface of the sintered body to the flow path is straight down depending on the part where the flow path is located directly under the mounting surface and the part where the flow path is not located directly under the mounting surface. The distance differs depending on whether the distance is toward the surface or an oblique inclination, and the distance from the mounting surface to the flow path differs depending on the position of the mounting surface. Therefore, there is a difference in the thermal resistance from the mounting surface of the ceramic sintered body to the flow path.

熱抵抗がセラミックス焼結体の載置面の位置によって異なるということは、セラミックス焼結体に一様に入力された熱量が流路を流れる媒体に伝熱されるときに、直下に流路が存在する載置面部分とそれ以外との部分との間に温度差が生じる。 The fact that the thermal resistance differs depending on the position of the mounting surface of the ceramics sintered body means that when the amount of heat uniformly input to the ceramics sintered body is transferred to the medium flowing through the flow path, the flow path exists directly below. A temperature difference occurs between the mounting surface portion and the portion other than the mounting surface portion.

従って、セラミックス焼結体の流路内を流れる媒体による冷却効果が載置面に均一に現れず、セラミックス焼結体に載置される基板の温度分布に影響を与え、基板温度が不均一になる虞がある。 Therefore, the cooling effect of the medium flowing in the flow path of the ceramic sintered body does not appear uniformly on the mounting surface, which affects the temperature distribution of the substrate mounted on the ceramic sintered body, and the substrate temperature becomes non-uniform. There is a risk of becoming.

しかしながら、本実施形態のセラミックス焼結体10は、流路上部領域X(図2Bの点線で囲われた領域)の少なくとも一部の熱伝導率は、載置面F(図2B参照)に沿った方向においてセラミックス焼結体10の流路上部領域Xに隣接する他の領域Y(図2Bの一点鎖線で囲われた領域)の少なくとも一部の熱伝導率よりも小さい。 However, in the ceramic sintered body 10 of the present embodiment, at least a part of the thermal conductivity of the flow path upper region X (the region surrounded by the dotted line in FIG. 2B) is along the mounting surface F (see FIG. 2B). It is smaller than the thermal conductivity of at least a part of the other region Y (the region surrounded by the alternate long and short dash line in FIG. 2B) adjacent to the flow path upper region X of the ceramic sintered body 10 in the above direction.

これは、冷却媒体が流れる流路4となる凹部3に中子を入れることなく、第1仮焼体1と第2仮焼体2とを一軸加圧焼成することにより、凹部3上方のセラミックス焼結体10は加圧の影響を受け難く、セラミックス焼結体10の密度が疎になるのに対し、凹部3が直下に存在しない載置面Fの部分には加圧の影響でセラミックス焼結体10の密度が密になって、熱伝導率の差が生じるものと考えられる。 This is because the first calcined body 1 and the second calcined body 2 are uniaxially pressure-fired without inserting a core into the recess 3 which is the flow path 4 through which the cooling medium flows, so that the ceramics above the recess 3 are ceramics. The sintered body 10 is not easily affected by the pressure, and the density of the ceramic sintered body 10 becomes sparse, whereas the ceramics are baked on the portion of the mounting surface F where the recess 3 does not exist directly under the pressure. It is considered that the density of the body 10 becomes dense and a difference in thermal conductivity occurs.

これにより、載置面Fと流路4としての凹部3との間の距離の短い、流路上部領域Xの少なくとも一部の熱伝導率は低くなり、他の領域Yと比べて熱が伝わり難くなる。反対に、載置面Fと流路4との距離の長い、他の領域Yの少なくとも一部の熱伝導率は大きくなり、流路上部領域Xよりも熱が伝わり易くなる。このため、載置面Fに一様な温度分布を形成することができるセラミックス焼結体10を提供することができる。 As a result, the thermal conductivity of at least a part of the flow path upper region X, which has a short distance between the mounting surface F and the recess 3 as the flow path 4, becomes low, and heat is transferred as compared with the other regions Y. It becomes difficult. On the contrary, the thermal conductivity of at least a part of the other region Y, which has a long distance between the mounting surface F and the flow path 4, becomes large, and heat is more easily transferred than the flow path upper region X. Therefore, it is possible to provide the ceramic sintered body 10 capable of forming a uniform temperature distribution on the mounting surface F.

なお、熱伝導率は、流路上部領域Xおよび他の領域Yのそれぞれから直径5mm、厚さ1mm測定サンプルを切り出して、JIS R1611に準拠して測定される。 The thermal conductivity is measured in accordance with JIS R1611 by cutting out a measurement sample having a diameter of 5 mm and a thickness of 1 mm from each of the flow path upper region X and the other region Y.

また、載置面Fの温度と冷却媒体の温度との温度差T(℃)は、以下の式1から求められる。
T=Q/(λ/d) ・・・ (式1)
但し、λ(W/mK):熱伝導率、Q(W/m):載置された静電チャックなどに入射された熱流束(一定値)、d(m):載置面と流路との間の距離。
Further, the temperature difference T (° C.) between the temperature of the mounting surface F and the temperature of the cooling medium can be obtained from the following equation 1.
T = Q / (λ / d) ・ ・ ・ (Equation 1)
However, λ (W / m 2 K): thermal conductivity, Q (W / m 2 ): heat flux (constant value) incident on the mounted electrostatic chuck, etc., d (m): mounting surface Distance between and the flow path.

また、セラミックス焼結体10の流路上部領域Xの密度が疎となり、他の領域Yの密度は流路上部領域Xより密となるということは、流路上部領域Xの嵩密度は、他の領域Yの嵩密度と比較して小さくなる。嵩密度の測定方法としては、例えば、流路上部領域Xおよび他の領域Yのそれぞれから測定サンプルを切り出してJIS−R−1634に準拠したアルキメデス法で測定することができる。 Further, the density of the flow path upper region X of the ceramic sintered body 10 becomes sparse, and the density of the other regions Y becomes denser than the flow path upper region X, which means that the bulk density of the flow path upper region X is different. It becomes smaller than the bulk density of the region Y of. As a method for measuring the bulk density, for example, a measurement sample can be cut out from each of the flow path upper region X and the other region Y and measured by the Archimedes method based on JIS-R-1634.

次に、本発明の第2実施形態に係るセラミックス焼結体20の製造方法について図面を参照して説明する。 Next, a method for manufacturing the ceramic sintered body 20 according to the second embodiment of the present invention will be described with reference to the drawings.

本発明の第2の実施形態に係るセラミックス焼結体20の製造方法は、図3に示すように、第1のSiC仮焼体取得工程STEP11、第2のSiC仮焼体取得工程STEP12、第3のSiC仮焼体取得工程STEP13、第1の平面形成工程STEP14、第2の平面形成工程STEP15、凹部形成工程STEP16、積層工程STEP17及び焼成工程STEP18を備えている。 As shown in FIG. 3, the method for producing the ceramic sintered body 20 according to the second embodiment of the present invention includes the first SiC calcined body acquisition step STEP11, the second SiC calcined body acquisition step STEP12, and the second. 3. The SiC calcined body acquisition step STEP13, the first plane forming step STEP14, the second plane forming step STEP15, the recess forming step STEP16, the laminating step STEP17, and the firing step STEP18 are provided.

図3における第1のSiC仮焼体取得工程STEP11においては、図4Aを参照して、第1のSiC成形体を1200℃以上1900℃以下の温度で仮焼して第1のSiC仮焼体11を得る。第2のSiC仮焼体取得工程STEP12においては、第2のSiC成形体を1200℃以上1900℃以下の温度で仮焼して第2のSiC仮焼体12を得る。なお、第1のSiC仮焼体取得工程STEP11及び第2のSiC仮焼体取得工程STEP12における仮焼温度は同じであっても、相違していてもよい。 In the first SiC calcined body acquisition step STEP11 in FIG. 3, referring to FIG. 4A, the first SiC molded body is calcined at a temperature of 1200 ° C. or higher and 1900 ° C. or lower, and the first SiC calcined body is calcined. Get 11. In the second SiC calcined body acquisition step STEP12, the second SiC molded body is calcined at a temperature of 1200 ° C. or higher and 1900 ° C. or lower to obtain a second SiC calcined body 12. The calcining temperatures in the first SiC calcined body acquisition step STEP11 and the second SiC calcined body acquisition step STEP12 may be the same or different.

第1のSiC仮焼体取得工程STEP11は上述した図1における第1のSiC仮焼体取得工程STEP1と同様であり、第2のSiC仮焼体取得工程STEP12は上述した第2のSiC仮焼体取得工程STEP2と同様であるので、説明は省略する。 The first SiC calcined body acquisition step STEP11 is the same as the first SiC calcined body acquisition step STEP1 in FIG. 1 described above, and the second SiC calcined body acquisition step STEP12 is the above-mentioned second SiC calcined body acquisition step STEP12. Since it is the same as the body acquisition step STEP2, the description thereof will be omitted.

第3のSiC仮焼体取得工程STEP13においては、第3のSiC成形体を1200℃以上1900℃以下の温度で仮焼して第3のSiC仮焼体13を得る。第3のSiC仮焼体13は、上述した第1又は第2のSiC仮焼体11,12と同様して得ればよい。なお、第3のSiC仮焼体取得工程13における仮焼温度は、第1又は第2のSiC仮焼体取得工程STEP11,12における仮焼温度と同じであっても、相違していてもよい。 In the third SiC calcined body acquisition step STEP13, the third SiC molded body is calcined at a temperature of 1200 ° C. or higher and 1900 ° C. or lower to obtain a third SiC calcined body 13. The third SiC calcined body 13 may be obtained in the same manner as the first or second SiC calcined bodies 11 and 12 described above. The calcining temperature in the third SiC calcined body acquisition step 13 may be the same as or different from the calcining temperature in the first or second SiC calcined body acquisition steps STEP11 and 12. ..

第3のSiC仮焼体13は、積層工程STEP17において、図4Bを参照して、第1のSiC仮焼体11と第2のSiC仮焼体12とを、第1の平面11aと第2の平面21aとを接触させた状態で積層したときに、積層方向外側における段差や凹部を解消するような形状に構成されている。例えば、第2の仮焼体12の積層方向外側の表面の外周部に環状の段差が形成されている場合、第3のSiC仮焼体13は段差の高さとほぼ一致する厚みを有する環状部材として形成される。 In the laminating step STEP17, the third SiC calcined body 13 includes the first SiC calcined body 11 and the second SiC calcined body 12 with reference to FIG. 4B, and the first plane 11a and the second. When laminated in a state of being in contact with the flat surface 21a of the above, the shape is configured to eliminate steps and recesses on the outside in the lamination direction. For example, when an annular step is formed on the outer peripheral portion of the outer surface of the second calcined body 12 in the stacking direction, the third SiC calcined body 13 is an annular member having a thickness substantially matching the height of the step. Is formed as.

次に、第1の平面形成工程STEP14において、第1のSiC仮焼体11に第1の平面11aを形成する。第2の平面形成工程STEP15において、第2のSiC仮焼体12に第2の平面12aを形成する。 Next, in the first plane forming step STEP14, the first plane 11a is formed on the first SiC calcined body 11. In the second plane forming step STEP15, the second plane 12a is formed on the second SiC calcined body 12.

第1の平面形成工程STEP14は上述した第1の平面形成工程STEP3と同様であり、第2の平面形成工程STEP15は上述した第2の平面形成工程STEP4と同様であるので、説明は省略する。 Since the first plane forming step STEP14 is the same as the first plane forming step STEP3 described above and the second plane forming step STEP15 is the same as the second plane forming step STEP4 described above, the description thereof will be omitted.

次に、凹部形成工程STEP16において、第1の平面11a又は第2の平面12aの少なくとも一方に凹部14を形成する。凹部形成工程STEP16は上述した凹部形成工程STEP5と同様であるので、説明は省略する。 Next, in the recess forming step STEP16, the recess 14 is formed on at least one of the first plane 11a and the second plane 12a. Since the recess forming step STEP 16 is the same as the recess forming step STEP 5 described above, the description thereof will be omitted.

次に、積層工程STEP17においては、図4Bを参照して、第1のSiC仮焼体11と第2のSiC仮焼体12とを、第1の平面11aと第2の平面12aとを接触させた状態で積層する。 Next, in the laminating step STEP17, referring to FIG. 4B, the first SiC calcined body 11 and the second SiC calcined body 12 are brought into contact with each other, and the first plane 11a and the second plane 12a are brought into contact with each other. Laminate in the state of being allowed to.

さらに、積層工程17において、第3のSiC仮焼体13を第1のSiC仮焼体11又は第2のSiC仮焼体12の積層方向外側に剥離材15を介して積層する。これにより、第1から第3のSiC仮焼体11〜13は、積層方向外側において段差や凹部を解消されて平面状となって積層される。剥離材15としては、例えば、カーボンシート、窒化ホウ素シートなどを用いることができる。また、カーボンや窒化ホウ素を第1のSiC仮焼体11又は第2のSiC仮焼体12に直接コーティングしてもよい。 Further, in the laminating step 17, the third SiC calcined body 13 is laminated on the outside of the first SiC calcined body 11 or the second SiC calcined body 12 in the laminating direction via the release material 15. As a result, the first to third SiC calcined bodies 11 to 13 are laminated in a flat shape by eliminating steps and recesses on the outside in the stacking direction. As the release material 15, for example, a carbon sheet, a boron nitride sheet, or the like can be used. Further, carbon or boron nitride may be directly coated on the first SiC calcined body 11 or the second SiC calcined body 12.

次に、焼成工程STEP18において、積層した第1から第3のSiC仮焼体11〜13を、積層方向に1MPa以上の圧力を加えながら2000℃以上2200℃以下で焼成する。焼成工程STEP18は上述した焼成工程STEP7と同様であるので、説明は省略する。 Next, in the firing step STEP18, the laminated first to third SiC calcined bodies 11 to 13 are fired at 2000 ° C. or higher and 2200 ° C. or lower while applying a pressure of 1 MPa or higher in the stacking direction. Since the firing step STEP18 is the same as the firing step STEP7 described above, the description thereof will be omitted.

焼成工程STEP18の完了により、図4Cを参照して、第1及び第2のSiC仮焼体11,12が焼結して一体化されたセラミックス焼結体20が得られる。なお、第3のSiC仮焼体13が焼結してなる図示しないセラミックス焼結体は、剥離材15を介してセラミックス焼結体20と接しているだけであるので、セラミックス焼結体20と焼結せず、容易にセラミックス焼結体20と分離することができる。 When the firing step STEP18 is completed, the ceramic sintered body 20 in which the first and second SiC calcined bodies 11 and 12 are sintered and integrated is obtained with reference to FIG. 4C. The ceramic sintered body (not shown) formed by sintering the third SiC calcined body 13 is only in contact with the ceramic sintered body 20 via the release material 15, so that the ceramic sintered body 20 and the ceramic sintered body 20 are used. It can be easily separated from the ceramic sintered body 20 without sintering.

以上説明した本発明の第2の実施形態に係るセラミックス焼結体20の製造方法においても、前述した本発明の第1の実施形態に係るセラミックス焼結体10の製造方法と同様の作用効果を奏する。 The method for producing the ceramic sintered body 20 according to the second embodiment of the present invention described above also has the same effect as the method for producing the ceramic sintered body 10 according to the first embodiment of the present invention described above. Play.

さらに、本発明の第2の実施形態に係るセラミックス焼結体20の製造方法においては、第1又は第2のSiC仮焼体11,12の積層方向外側における段差部や凹部などに剥離材15を介して第3のSiC仮焼体13が配置された状態で加圧焼成される。そして、この焼成の際、第3のSiC仮焼体13は第1及び第2のSiC仮焼体11,12と同様に収縮する。これらにより、焼成中に第1及び第2のSiC仮焼体11,12に加わる圧力の均一化、及び接合強度の向上を図ることが可能となる。 Further, in the method for manufacturing the ceramic sintered body 20 according to the second embodiment of the present invention, the release material 15 is formed on a step portion or a recess on the outside of the first or second SiC calcined body 11 or 12 in the stacking direction. The third SiC calcined body 13 is pressure-fired in a state of being arranged therethrough. Then, at the time of this firing, the third SiC calcined body 13 shrinks in the same manner as the first and second SiC calcined bodies 11 and 12. As a result, it is possible to make the pressure applied to the first and second SiC calcined bodies 11 and 12 uniform during firing and to improve the bonding strength.

なお、本発明は、上述した第1又は第2の実施形態に具体的に記載したセラミックス焼結体10,20の製造方法に限定されるものではなく、特許請求の範囲に記載した範囲内であれば適宜変更することができる。例えば、セラミックス焼結体10,20は2個のSiC仮焼体1,2又は11,12が一体化したものであるが、3個以上のSiC仮焼体が一体化したものであってもよい。 The present invention is not limited to the method for producing the ceramic sintered bodies 10 and 20 specifically described in the first or second embodiment described above, but is within the scope of the claims. If there is, it can be changed as appropriate. For example, the ceramic sintered bodies 10 and 20 are two SiC calcined bodies 1, 2, 11 and 12 integrated, but even if three or more SiC calcined bodies are integrated. Good.

また、第2実施形態のセラミックス焼結体20においても、流路上部領域Xの少なくとも一部の熱伝導率は低くなり、他の領域Yと比べて熱が伝わり難くなるが、他の領域Yの少なくとも一部の熱伝導率は大きくなり、流路上部領域Xよりも熱が伝わり易くなる。このため、載置面Fに一様な温度分布を形成することができるセラミックス焼結体10を提供することができる。なお、熱伝導率は、流路上部領域Xおよび他の領域Yのそれぞれから直径5mm、厚さ1mm測定サンプルを切り出して、JIS R1611に準拠して測定することは、第1実施形態と同一である。 Further, also in the ceramic sintered body 20 of the second embodiment, the thermal conductivity of at least a part of the flow path upper region X is low, and heat is less likely to be transferred as compared with the other regions Y, but the other regions Y The thermal conductivity of at least a part of the above is increased, and heat is more easily transferred than the upper part region X of the flow path. Therefore, it is possible to provide the ceramic sintered body 10 capable of forming a uniform temperature distribution on the mounting surface F. The thermal conductivity is the same as in the first embodiment, in which a measurement sample having a diameter of 5 mm and a thickness of 1 mm is cut out from each of the flow path upper region X and the other region Y and measured in accordance with JIS R1611. is there.

また、第2実施形態においても、セラミックス焼結体10の流路上部領域Xの密度が密となり、他の領域Yの密度は流路上部領域Xより疎となるということは、流路上部領域Xの嵩密度は、他の領域Yの嵩密度と比較して小さくなる。嵩密度の測定方法としては、例えば、流路上部領域Xおよび他の領域Yのそれぞれから測定サンプルを切り出してJIS−R−1634に準拠したアルキメデス法で測定することができる。 Further, also in the second embodiment, the density of the flow path upper region X of the ceramic sintered body 10 becomes dense, and the density of the other regions Y becomes sparser than the flow path upper region X, which means that the flow path upper region The bulk density of X is smaller than the bulk density of the other region Y. As a method for measuring the bulk density, for example, a measurement sample can be cut out from each of the flow path upper region X and the other region Y and measured by the Archimedes method based on JIS-R-1634.

(実施例1〜7)
実施例1〜7においては、第1及び第2のSiC仮焼体取得工程STEP1,2として、まず、純度98%、平均粒径0.5μmのSiC粉末に、焼結助剤としてBC、C(カーボン)、成形助剤としてPVAなどのバインダなどを添加したものを原料とし、顆粒化して顆粒を得た。
(Examples 1 to 7)
In Examples 1-7, the first and second SiC calcined body obtaining step STEP1,2, first, 98% purity, the SiC powder having an average particle diameter of 0.5 [mu] m, B 4 C as a sintering aid , C (carbon), and a binder such as PVA added as a molding aid was used as a raw material and granulated to obtain granules.

そして、この顆粒を金型に充填し、圧力を20MPaとした一軸加圧成形して2個のSiC成形体を得た。これらのSiC成形体の嵩密度は表1に示す通りであった。次に、これらSiC成形体を焼成炉内にてアルゴン雰囲気で炉内温度を1200℃〜1900℃として3時間焼成して2個のSiC仮焼体を得た。仮焼後の嵩密度及び仮焼による収縮率は、表1に示す通りであった。 Then, the granules were filled in a mold and uniaxially pressure-molded at a pressure of 20 MPa to obtain two SiC molded bodies. The bulk densities of these SiC molded products were as shown in Table 1. Next, these SiC compacts were fired in an argon atmosphere in an argon atmosphere at a temperature of 1200 ° C. to 1900 ° C. for 3 hours to obtain two SiC calcined bodies. The bulk density after calcining and the shrinkage rate due to calcining were as shown in Table 1.

次に、第1及び第2の平面形成工程STEP3,4として、2個のSiC仮焼体を、図2Aを参照して、一辺100mm、高さ10mmの正方形板状の第1及び第2のSiC仮焼体1,2に加工した。第1のSiC仮焼体1の第1の平面1a及び第2のSiC仮焼体2の第2の平面2aは、実施例1〜4,6,7においては、♯170のダイヤモンド砥粒を備えた砥石を用いて研削加工を行った。そして、実施例5においては、♯600のダイヤモンド砥粒を備えた砥石を用いて研削加工を行った。研削加工は、研磨液は用いずに、乾式で行った。第1及び第2の平面1a,2aの算術平均粗さ(Ra)及び最大高さ(Rz)の平均は、表1に示す通りであった。 Next, as the first and second plane forming steps STEP3 and 4, two SiC calcined bodies were subjected to the first and second square plate-shaped first and second plates having a side of 100 mm and a height of 10 mm with reference to FIG. 2A. It was processed into SiC calcined bodies 1 and 2. The first flat surface 1a of the first SiC calcined body 1 and the second flat surface 2a of the second SiC calcined body 2 have diamond abrasive grains of # 170 in Examples 1 to 4, 6 and 7. Grinding was performed using the provided grindstone. Then, in Example 5, grinding was performed using a grindstone equipped with # 600 diamond abrasive grains. The grinding process was performed by a dry method without using a polishing liquid. The average arithmetic mean roughness (Ra) and maximum height (Rz) of the first and second planes 1a and 2a are as shown in Table 1.

次に、凹部形成工程STEP5として、第2のSiC仮焼体2の第2の平面2aに凹部3を形成した。凹部3は、3本の幅20mm、深さ5mm、長さ70mmの直線状の溝であった。この凹部3は、直径20mmのエンドミルを用いてMC加工により形成した。このMC加工の加工性の評価は表1に示す通りであった。 Next, as the recess forming step STEP5, the recess 3 was formed on the second flat surface 2a of the second SiC calcined body 2. The recesses 3 were three linear grooves having a width of 20 mm, a depth of 5 mm, and a length of 70 mm. The recess 3 was formed by MC processing using an end mill having a diameter of 20 mm. The evaluation of the workability of this MC processing is as shown in Table 1.

なお、評価は加工時の主軸の負荷、ビビリ及び仮焼体の破損の発生によって判定した。表1において、評価「◎」は1パスの切り込み量が0.25mm以上、且つ刃送り量が250mm/min以上が可能であって優良を意味する。評価「〇」は1パスの切り込み量が0.2mm以上、且つ刃送り量が200mm/min以上が可能であって良を意味する。評価「△」は1パスの切り込み量が0.15mm以上、且つ刃送り量が150mm/min以上が可能であって可を意味する。 The evaluation was made based on the load on the spindle during processing, chattering, and damage to the calcined body. In Table 1, the evaluation “⊚” means that the depth of cut in one pass can be 0.25 mm or more and the blade feed amount can be 250 mm / min or more, which is excellent. Evaluation "○" means that the depth of cut in one pass can be 0.2 mm or more and the blade feed amount can be 200 mm / min or more. The evaluation "Δ" means that the depth of cut in one pass can be 0.15 mm or more and the blade feed amount can be 150 mm / min or more.

これより、凹部3を形成する際の加工性に関しては、仮焼温度が1200℃以上1900℃であれば凹部3の形成は可能であるが、1250℃以上1785℃以下であると良好であることが分かった。 From this, regarding the workability when forming the concave portion 3, the concave portion 3 can be formed if the calcining temperature is 1200 ° C. or higher and 1900 ° C., but it is good if it is 1250 ° C. or higher and 1785 ° C. or lower. I understood.

次に、積層工程STEP6として、図2Bを参照して、第1のSiC仮焼体1と第2のSiC仮焼体2とを、第1の平面1aと第2の平面2aとを接触させた状態で積層させた。 Next, as the laminating step STEP6, referring to FIG. 2B, the first SiC calcined body 1 and the second SiC calcined body 2 are brought into contact with the first plane 1a and the second plane 2a. It was laminated in a state of being.

次に、焼成工程STEP7として、このように積層した第1及び第2のSiC仮焼体1,2を焼成炉内にてアルゴン雰囲気で押圧板としてのカーボン平板で挟み込んで、実施例1〜6では25kgf/cm(=2.45MPa)の荷重、実施例7では10kgf/cm(=0.98MPa)の荷重を積層方向にかけながら、炉内温度を2070℃として3時間焼成した。これにより、図2Cを参照して、セラミックス焼結体10が得られた。セラミックス焼結体10の流路上部領域X及び他の領域Yの熱伝導率と嵩密度は表1に示す通りであった。この結果、実施例1〜7は何れも他の領域Yの熱伝導率が流路上部領域Xの熱伝導率よりも11W/mK〜18W/mK大きく、流路上部領域Xの嵩密度が他の領域Yの嵩密度よりも0.02g/cm〜0.05g/cm小さいことが確認された。 Next, as the firing step STEP7, the first and second SiC calcined bodies 1 and 2 thus laminated are sandwiched between carbon flat plates as pressing plates in an argon atmosphere in the firing furnace, and Examples 1 to 6 are performed. in load of 25kgf / cm 2 (= 2.45MPa) , while applying a load of example 7, 10kgf / cm 2 (= 0.98MPa) in the stacking direction, and calcined 3 hours furnace temperature as 2070 ° C.. As a result, the ceramic sintered body 10 was obtained with reference to FIG. 2C. The thermal conductivity and bulk density of the upper flow path region X and the other regions Y of the ceramic sintered body 10 are as shown in Table 1. As a result, in all of Examples 1 to 7, the thermal conductivity of the other region Y is 11 W / mK to 18 W / mK larger than the thermal conductivity of the flow path upper region X, and the bulk density of the flow path upper region X is different. It was confirmed that the bulk density of the region Y was 0.02 g / cm 3 to 0.05 g / cm 3 smaller than that of the region Y.

そして、このセラミックス焼結体10に対して、接合部を含むように切断し、切断面を研磨加工した後、接合部を拡大鏡などを用いて実験者が目視した。その結果、接合部に接合不不良や破損などは確認されず、凹部3に由来する中空構造にも破損や歪みなどは確認されなかった。 Then, the ceramic sintered body 10 was cut so as to include the joint portion, the cut surface was polished, and then the joint portion was visually inspected using a magnifying glass or the like. As a result, no joint failure or breakage was confirmed in the joint portion, and no breakage or distortion was confirmed in the hollow structure derived from the recess 3.

実施例1〜7の結果を表1にまとめた。 The results of Examples 1 to 7 are summarized in Table 1.

Figure 2021042097
Figure 2021042097

(実施例8)
実施例8においては、図1における第1及び第2の平面形成工程STEP3,4として、2個のSiC仮焼体を、図5Aを参照して、直径400mm、厚さ10mmの円板状の第1のSiC仮焼体21及び直径400mm、厚さ25mmの円板状の第2のSiC仮焼体22に加工した。第1のSiC仮焼体21の第1の平面21a、第2のSiC仮焼体22の第2の平面22aは、♯170のダイヤモンド砥粒を備えた砥石を用いて研削加工を行った。このとき、研磨液は用いずに、乾式で研削加工を行った。第1及び第2の平面21a,22aの算術平均粗さ(Ra)及び最大高さ(Rz)の平均は、表2に示す通りであった。また、図1における凹部形成工程STEP5として、実施例1と同様のMC加工により凹部23,24を形成した。凹部23は、第2のSiC仮焼体22の第2の平面22aに幅20mm、深さ5mmの円周形状に形成した。凹部24は、第2のSiC仮焼体22の第2の平面22aとは反対側の表面の外周部に幅25mm深さ15mmを有する環状に形成した。これらのことを除いて実施例1と同様にして、セラミックス焼結体30を作製した。
(Example 8)
In Example 8, as the first and second plane forming steps STEP3 and 4 in FIG. 1, two SiC calcined bodies are formed into a disk shape having a diameter of 400 mm and a thickness of 10 mm with reference to FIG. 5A. It was processed into a first SiC calcined body 21 and a disc-shaped second SiC calcined body 22 having a diameter of 400 mm and a thickness of 25 mm. The first flat surface 21a of the first SiC calcined body 21 and the second flat surface 22a of the second SiC calcined body 22 were ground using a grindstone equipped with diamond abrasive grains of # 170. At this time, the grinding process was performed by a dry method without using a polishing liquid. The average arithmetic mean roughness (Ra) and maximum height (Rz) of the first and second planes 21a and 22a are as shown in Table 2. Further, as the recess forming step STEP5 in FIG. 1, the recesses 23 and 24 were formed by the same MC processing as in Example 1. The recess 23 is formed on the second flat surface 22a of the second SiC calcined body 22 in a circumferential shape having a width of 20 mm and a depth of 5 mm. The recess 24 is formed in an annular shape having a width of 25 mm and a depth of 15 mm on the outer peripheral portion of the surface of the second SiC calcined body 22 opposite to the second flat surface 22a. A ceramic sintered body 30 was produced in the same manner as in Example 1 except for these matters.

このセラミックス焼結体30も、実施例1と同様に、接合部に接合不良や破損などは確認されず、凹部23に由来する中空構造にも破損や歪みなどは確認されなかった。実施例8の結果を表2にまとめた。そして、実施例8で作製したセラミックス焼結体30は、他の領域Yの熱伝導率が流路上部領域Xの熱伝導率よりも大きく、流路上部領域Xの嵩密度が他の領域Yの嵩密度よりも小さいことが確認された。 In this ceramic sintered body 30, as in Example 1, no joint failure or breakage was confirmed in the joint portion, and no breakage or distortion was confirmed in the hollow structure derived from the recess 23. The results of Example 8 are summarized in Table 2. Then, in the ceramic sintered body 30 produced in Example 8, the thermal conductivity of the other region Y is larger than the thermal conductivity of the flow path upper region X, and the bulk density of the flow path upper region X is the other region Y. It was confirmed that it was smaller than the bulk density of.

実施例8で作製したセラミックス焼結体30の載置面Fに熱量3000Wを入熱し、流路4に20℃の冷媒を循環させた状態で載置面Fの温度を測定した。温度測定には赤外線温度計を使用した。流路上部領域Xの温度は23.8℃であり、他の領域Yは23.7℃であった。流路上部領域Xと他の領域Yとで温度差が少なく、載置面Fのより均一な温度分布が図れることが確認された。 A heat amount of 3000 W was applied to the mounting surface F of the ceramic sintered body 30 produced in Example 8, and the temperature of the mounting surface F was measured in a state where a refrigerant at 20 ° C. was circulated in the flow path 4. An infrared thermometer was used for temperature measurement. The temperature of the upper flow path region X was 23.8 ° C, and the temperature of the other region Y was 23.7 ° C. It was confirmed that the temperature difference between the upper part region X of the flow path and the other region Y was small, and a more uniform temperature distribution on the mounting surface F could be achieved.

(実施例9)
実施例9においては、第1及び第2の平面21a,22aに対する研削加工方法を除いて実施例8と同様にして、第1及び第2のSiC仮焼体21,22を得た。
(Example 9)
In Example 9, first and second SiC calcined bodies 21 and 22 were obtained in the same manner as in Example 8 except for the grinding method for the first and second flat surfaces 21a and 22a.

詳述すると、第1及び第2のSiC仮焼体21,22に対して、♯600のダイヤモンド砥粒を備えた砥石を用いて研削加工を行い、第1及び第2の平面21a,22aの算術平均粗さ(Ra)の平均を0.27μmとした。さらに、算術平均粗さ(Ra)が0.01μmの平面を有する別のSiC焼結体を用い、面方向に垂直に6000Paの荷重をかけながら0.5m/minの速度で摺動させて乾式で研磨を行った。これにより、第1及び第2の平面21a,21bの算術平均粗さ(Ra)の平均は0.18μmとなった。 More specifically, the first and second SiC calcined bodies 21 and 22 are ground by using a grindstone equipped with diamond abrasive grains of # 600, and the first and second flat surfaces 21a and 22a are subjected to grinding. The average arithmetic mean roughness (Ra) was set to 0.27 μm. Further, using another SiC sintered body having a plane having an arithmetic mean roughness (Ra) of 0.01 μm, it is slid at a speed of 0.5 m / min while applying a load of 6000 Pa perpendicular to the plane direction to dry type. Polished with. As a result, the average arithmetic mean roughness (Ra) of the first and second planes 21a and 21b became 0.18 μm.

次に、実施例8と同様にして、図1における積層工程STEP6及び焼成工程STEP7を行った。これにより、セラミックス焼結体30を得た。 Next, in the same manner as in Example 8, the laminating step STEP6 and the firing step STEP7 in FIG. 1 were performed. As a result, the ceramic sintered body 30 was obtained.

このセラミックス焼結体30も、実施例8と同様に、接合部に接合不良や破損などは確認されず、凹部23に由来する中空構造にも破損や歪みなどは確認されなかった。実施例9の結果を表3にまとめた。そして、実施例9で作製したセラミックス焼結体30は、他の領域Yの熱伝導率が流路上部領域Xの熱伝導率よりも大きく、流路上部領域Xの嵩密度が他の領域Yの嵩密度よりも小さいことが確認された。 Similarly to Example 8, in this ceramic sintered body 30, no joint failure or breakage was confirmed in the joint portion, and no breakage or distortion was confirmed in the hollow structure derived from the recess 23. The results of Example 9 are summarized in Table 3. Then, in the ceramic sintered body 30 produced in Example 9, the thermal conductivity of the other region Y is larger than the thermal conductivity of the flow path upper region X, and the bulk density of the flow path upper region X is the other region Y. It was confirmed that it was smaller than the bulk density of.

(実施例10)
実施例10においては、図3における第1及び第2のSiC仮焼体取得工程STEP11,12として、実施例8の第1及び第2のSiC仮焼体取得工程STEP1,2と同様にして、2個のSiC成形体を得た。次に、これらSiC成形体を焼成炉内にてアルゴン雰囲気で炉内温度を1500℃として3時間焼成して2個のSiC仮焼体を得た。
(Example 10)
In Example 10, the first and second SiC calcined body acquisition steps STEP11 and 12 in FIG. 3 were carried out in the same manner as in the first and second SiC calcined body acquisition steps STEP1 and 2 of Example 8. Two SiC compacts were obtained. Next, these SiC compacts were fired in an argon atmosphere in an argon atmosphere at a temperature of 1500 ° C. for 3 hours to obtain two SiC calcined bodies.

また、第3のSiC仮焼体取得工程STEP13として、実施例1の第1及び第2のSiC仮焼体取得工程STEP1,2と同様にして、SiC成形体を得た。次に、このSiC成形体を焼成炉内にてアルゴン雰囲気で炉内温度を1500℃として3時間焼成して1個のSiC仮焼体を得た。 Further, as the third SiC calcined body acquisition step STEP13, a SiC molded body was obtained in the same manner as in the first and second SiC calcined body acquisition steps STEP1 and 2 of Example 1. Next, this SiC molded product was fired in an argon atmosphere in an argon atmosphere at a temperature of 1500 ° C. for 3 hours to obtain one SiC calcined product.

次に、図3における第1及び第2の平面形成工程STEP14,15として、図4Aを参照して、前記2個のSiC仮焼体を、直径400mm、厚さ10mmの円板形状の第1のSiC仮焼体11及び直径400mm、厚さ25mmの円板形状の第2のSiC仮焼体12に加工した。第1のSiC仮焼体11の第1の平面11a及び第2のSiC仮焼体12の第2の平面12aは、♯170のダイヤモンド砥粒を備えた砥石を用いて研削加工を行った。また、前記1個のSiC仮焼体を、外径400mm、内径350.5mm、厚さ14.5mmの円環形状の第3のSiC仮焼体13に加工した。 Next, as the first and second plane forming steps STEP14 and 15 in FIG. 3, referring to FIG. 4A, the two SiC calcined bodies are first formed into a disk shape having a diameter of 400 mm and a thickness of 10 mm. The SiC calcined body 11 and the second SiC calcined body 12 having a diameter of 400 mm and a thickness of 25 mm were processed. The first flat surface 11a of the first SiC calcined body 11 and the second flat surface 12a of the second SiC calcined body 12 were ground using a grindstone equipped with diamond abrasive grains of # 170. Further, the one SiC calcined body was processed into a ring-shaped third SiC calcined body 13 having an outer diameter of 400 mm, an inner diameter of 350.5 mm, and a thickness of 14.5 mm.

次に、凹部形成工程STEP16として、第2のSiC仮焼体12の第2の平面12aに凹部14を形成し、第2のSiC仮焼体12の第2の平面12aとは反対側の表面の外周部に幅25mm、深さ15mm円環状の凹部を形成した。凹部14は、幅10mm、深さ10mmであって冷媒用の流路に相当する円周形状であった。この凹部14は、実施例8と同じようにMC加工により形成した。 Next, as the recess forming step STEP16, the recess 14 is formed on the second flat surface 12a of the second SiC calcined body 12, and the surface of the second SiC calcined body 12 on the side opposite to the second flat surface 12a. An annular recess having a width of 25 mm and a depth of 15 mm was formed on the outer peripheral portion of the above. The recess 14 had a width of 10 mm and a depth of 10 mm, and had a circumferential shape corresponding to a flow path for a refrigerant. The recess 14 was formed by MC processing in the same manner as in Example 8.

次に、積層工程STEP17として、図4Bを参照して、第1のSiC仮焼体11と第2のSiC仮焼体12とを、第1の平面11aと第2の平面12aとを接触させた状態で積層させた。さらに、第2のSiC仮焼体12の外周外側に剥離材15を介して第3のSiC仮焼体13を、剥離材15を介して第1のSiC仮焼体11の第1の平面11aの下方に設置した。なお、剥離材15は共に厚さ0.25mmのカーボンシートを用いた。 Next, as the laminating step STEP17, referring to FIG. 4B, the first SiC calcined body 11 and the second SiC calcined body 12 are brought into contact with each other, and the first plane 11a and the second plane 12a are brought into contact with each other. It was laminated in a state of being. Further, the third SiC calcined body 13 is placed on the outer periphery of the outer peripheral side of the second SiC calcined body 12 via the release material 15, and the first flat surface 11a of the first SiC calcined body 11 is passed through the release material 15. It was installed below. As the release material 15, a carbon sheet having a thickness of 0.25 mm was used.

次に、焼成工程STEP18として、このように積層した第1から第3のSiC仮焼体11〜13を、実施例1の焼成工程STEP7と同様にして焼成した。その後、第3のSiC仮焼体13が焼成された部分を剥離することにより、図4Cを参照して、セラミックス焼結体20が得られた。 Next, as the firing step STEP18, the first to third SiC calcined bodies 11 to 13 thus laminated were fired in the same manner as in the firing step STEP7 of Example 1. Then, by peeling off the portion where the third SiC calcined body 13 was fired, the ceramic sintered body 20 was obtained with reference to FIG. 4C.

そして、このセラミックス焼結体20に対して、接合部を含むように切断し、切断面を研磨加工した後、接合部を拡大鏡などを用いて実験者が目視した。その結果、接合部に接合不良や破損などは確認されず、凹部14に由来する中空構造にも破損や歪みなどは確認されなかった。また、実施例10で作成したセラミックス焼結体20は、他の領域Yの熱伝導率が流路上部領域Xの熱伝導率よりも大きく、流路上部領域Xの嵩密度が他の領域Yの嵩密度よりも小さいことが確認された。 Then, the ceramic sintered body 20 was cut so as to include the joint portion, the cut surface was polished, and then the joint portion was visually inspected using a magnifying glass or the like. As a result, no joint failure or breakage was confirmed in the joint portion, and no breakage or distortion was confirmed in the hollow structure derived from the recess 14. Further, in the ceramic sintered body 20 produced in Example 10, the thermal conductivity of the other region Y is larger than the thermal conductivity of the flow path upper region X, and the bulk density of the flow path upper region X is the other region Y. It was confirmed that it was smaller than the bulk density of.

(実施例11)
実施例11においては、図1における積層工程STEP6において、第1のSiC仮焼体21の第1の表面21a及び第2のSiC仮焼体22の第2の表面22aに、濃度0.3g/Lのホウ酸水溶液用を塗布したうえで、第1及び第2のSiC焼結体21,22を積層したことを除いて、実施例8と同様にして、セラミックス焼結体30を作製した。
(Example 11)
In Example 11, in the laminating step STEP6 in FIG. 1, the concentration of 0.3 g / g / on the first surface 21a of the first SiC calcined body 21 and the second surface 22a of the second SiC calcined body 22. A ceramic sintered body 30 was produced in the same manner as in Example 8 except that the first and second SiC sintered bodies 21 and 22 were laminated after applying L for an aqueous boric acid solution.

このセラミックス焼結体30も、実施例8と同様に、接合部に接合不良や破損などは確認されず、凹部23に由来する中空構造にも破損や歪みなどは確認されず、他の領域Yの熱伝導率が流路上部領域Xの熱伝導率よりも大きく、流路上部領域Xの嵩密度が他の領域Yの嵩密度よりも小さいことが確認された。 Similar to Example 8, in this ceramic sintered body 30, no joint failure or breakage was confirmed in the joint portion, no breakage or distortion was confirmed in the hollow structure derived from the recess 23, and the other region Y was not confirmed. It was confirmed that the thermal conductivity of the flow path upper region X is larger than that of the flow path upper region X, and the bulk density of the flow path upper region X is smaller than the bulk density of the other regions Y.

実施例8〜11の結果を表2にまとめた。 The results of Examples 8 to 11 are summarized in Table 2.

Figure 2021042097
Figure 2021042097

(比較例1)
比較例1においては、まず、実施例1における第1及び第2の仮焼体取得工程STEP1,2と凹部形成工程STEP6に代えて、予め凹部を形成した2つのSiC成形体を焼成炉内にてアルゴン雰囲気で炉内温度を2070℃として3時間焼成して、第1のSiC焼結体と第2のSiC焼結体を作製した。第1の平面を有する第1のSiC焼結体は、直径400mm、厚さ10mmの円板状であり、第2の平面を有する第2のSiC焼結体は、直径400mm、厚さ25mmであり、第2の平面に幅20mm、深さ5mmの円板形状の凹部と、第2の平面と反対側の表面の外周部に幅25mm、深さ15mmの環状の凹部とを有している。
(Comparative Example 1)
In Comparative Example 1, first, instead of the first and second calcined body acquisition steps STEP1 and 2 and the recess forming step STEP6 in Example 1, two SiC molded bodies having recesses formed in advance were placed in the firing furnace. The first SiC sintered body and the second SiC sintered body were prepared by firing in an argon atmosphere at a furnace temperature of 2070 ° C. for 3 hours. The first SiC sintered body having the first flat surface has a disk shape having a diameter of 400 mm and a thickness of 10 mm, and the second SiC sintered body having the second flat surface has a diameter of 400 mm and a thickness of 25 mm. The second plane has a disk-shaped recess having a width of 20 mm and a depth of 5 mm, and the outer peripheral portion of the surface opposite to the second plane has an annular recess having a width of 25 mm and a depth of 15 mm. ..

次に、第1及び第2の平面形成工程STEP3,4として、第1のSiC焼結体の第1の平面と第2のSiC焼結体の第2の平面に対して、♯170および#600のダイヤモンド砥粒を備えた砥石を用いて研削加工を行ったのち、1μmのダイヤモンド遊離砥粒によるラッピング加工を行った。第1及び第2の平面は、算術平均粗さ(Ra)の平均が、0.1μmであり、最大高さ(Rz)の平均が1.1μmであった。これらのことを除いて実施例1と同様にしてセラミックス焼結体30を作製した。 Next, as the first and second plane forming steps STEP3, # 170 and # with respect to the first plane of the first SiC sintered body and the second plane of the second SiC sintered body, # 170 and # After grinding with a grindstone equipped with 600 diamond abrasive grains, wrapping with 1 μm diamond free abrasive grains was performed. In the first and second planes, the average arithmetic mean roughness (Ra) was 0.1 μm, and the average maximum height (Rz) was 1.1 μm. A ceramic sintered body 30 was produced in the same manner as in Example 1 except for these matters.

比較例1のセラミックス焼結体30において、流路上部領域Xと他の領域Yの熱伝導率は、ともに158W/mKであり、流路上部領域Xと他の領域Yの嵩密度はともに3.12g/cmであり、流路上部領域Xと他の領域Yとで熱伝導率や嵩密度の差は認められなかった。 In the ceramic sintered body 30 of Comparative Example 1, the thermal conductivitys of the flow path upper region X and the other region Y are both 158 W / mK, and the bulk densities of the flow path upper region X and the other region Y are both 3. It was .12 g / cm 3 , and no difference in thermal conductivity or bulk density was observed between the upper channel area X and the other area Y.

実施例8と同様に測定された比較例1のセラミックス焼結体の流路上部領域Xの温度は23.0℃であり、他の領域Yは23.7℃であった。実施例8と比較して、載置面の温度分布が不均一であることが分かる。 The temperature of the upper flow path region X of the ceramic sintered body of Comparative Example 1 measured in the same manner as in Example 8 was 23.0 ° C., and the temperature of the other region Y was 23.7 ° C. It can be seen that the temperature distribution on the mounting surface is non-uniform as compared with Example 8.

1,11,21 第1のSiC仮焼体
1a,11a,21a 第1の平面
2,12,22 第2のSiC仮焼体
2a,12a,22a 第2の平面
3、14,23 凹部
13 第3のSiC仮焼体
15 剥離材
10,20,30 セラミックス焼結体
F 載置面
X 流路上部領域
Y 他の領域
1,11,21 First SiC calcined body 1a, 11a, 21a First flat surface 2,12,22 Second SiC calcined body 2a, 12a, 22a Second flat surface 3, 14, 23 Recess 13 3 SiC calcined body 15 release material 10, 20, 30 Ceramic sintered body F mounting surface X flow path upper region Y other region

Claims (3)

基板が上方に載置される載置面を備えるセラミックス焼結体であって、
前記セラミックス焼結体は、前記載置面から離れた位置において前記載置面に沿って延在し、媒体を流す流路を備え、
前記載置面の垂直方向における前記セラミックス焼結体の前記流路と前記載置面との間の部分を流路上部領域と定義して、
前記流路上部領域の少なくとも一部の熱伝導率は、前記載置面に沿った方向において前記セラミックス焼結体の前記流路上部領域に隣接する他の領域の少なくとも一部の熱伝導率よりも小さいことを特徴とするセラミックス焼結体。
A ceramics sintered body having a mounting surface on which a substrate is mounted.
The ceramics sintered body extends along the previously described surface at a position away from the previously described surface and includes a flow path through which the medium flows.
The portion of the ceramic sintered body in the vertical direction between the above-mentioned mounting surface and the above-mentioned mounting surface is defined as a flow path upper region.
The thermal conductivity of at least a part of the flow path upper region is higher than the thermal conductivity of at least a part of the other region adjacent to the flow path upper region of the ceramic sintered body in the direction along the above-mentioned mounting surface. Ceramic sintered body characterized by being small in size.
請求項1に記載のセラミックス焼結体であって、
前記流路上部領域の少なくとも一部の嵩密度は、前記他の領域の少なくとも一部の嵩密度よりも小さいことを特徴とするセラミックス焼結体。
The ceramic sintered body according to claim 1.
A ceramic sintered body characterized in that the bulk density of at least a part of the flow path upper region is smaller than the bulk density of at least a part of the other region.
請求項1または請求項2に記載のセラミックス焼結体であって、
前記セラミックス焼結体は、炭化ケイ素を主成分とすることを特徴とするセラミックス焼結体。
The ceramic sintered body according to claim 1 or 2.
The ceramics sintered body is a ceramics sintered body characterized by containing silicon carbide as a main component.
JP2019164470A 2019-09-10 2019-09-10 Electrostatic chuck and its manufacturing method Active JP7409807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019164470A JP7409807B2 (en) 2019-09-10 2019-09-10 Electrostatic chuck and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019164470A JP7409807B2 (en) 2019-09-10 2019-09-10 Electrostatic chuck and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021042097A true JP2021042097A (en) 2021-03-18
JP7409807B2 JP7409807B2 (en) 2024-01-09

Family

ID=74861774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019164470A Active JP7409807B2 (en) 2019-09-10 2019-09-10 Electrostatic chuck and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7409807B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276886A (en) * 2004-03-23 2005-10-06 Nikon Corp Electrostatic chuck and exposure apparatus
JP2006013302A (en) * 2004-06-29 2006-01-12 Ngk Insulators Ltd Substrate mounting device and substrate temperature adjusting method
JP2012071995A (en) * 2010-09-27 2012-04-12 Taiheiyo Cement Corp Alumina ceramic joined body and method for manufacturing the same
WO2018210786A1 (en) * 2017-05-16 2018-11-22 Heraeus Deutschland GmbH & Co. KG Ceramic-metal substrate with low amorphous phase

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018434A (en) 2017-07-14 2019-02-07 日本特殊陶業株式会社 Method for producing compact of ceramic powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276886A (en) * 2004-03-23 2005-10-06 Nikon Corp Electrostatic chuck and exposure apparatus
JP2006013302A (en) * 2004-06-29 2006-01-12 Ngk Insulators Ltd Substrate mounting device and substrate temperature adjusting method
JP2012071995A (en) * 2010-09-27 2012-04-12 Taiheiyo Cement Corp Alumina ceramic joined body and method for manufacturing the same
WO2018210786A1 (en) * 2017-05-16 2018-11-22 Heraeus Deutschland GmbH & Co. KG Ceramic-metal substrate with low amorphous phase

Also Published As

Publication number Publication date
JP7409807B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US20100022174A1 (en) Grinding tool and method for fabricating the same
TWI772100B (en) Bonded abrasive article and method of making the same
JP5805556B2 (en) Alumina ceramic joined body and method for producing the same
JP7409807B2 (en) Electrostatic chuck and its manufacturing method
JP6148845B2 (en) Method for manufacturing electrode-embedded ceramic sintered body
JP2005279789A (en) Vacuum chuck for grinding/polishing
JP5928672B2 (en) Manufacturing method of alumina ceramic joined body
JP4913468B2 (en) Silicon carbide polishing plate and method for polishing semiconductor wafer
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005279788A (en) Vacuum chuck for grinding/polishing
JP5869437B2 (en) Method for joining SiC sintered bodies
CN111433170A (en) Bonded ceramic having flow channel formed therein for flowable fluid and method for preparing the same
JP7216611B2 (en) Manufacturing method of SiC sintered member
JP2021038101A (en) METHOD OF PRODUCING SINTERED MEMBER OF Al2O3
JP2020203825A (en) METHOD FOR PRODUCING SiC SINTERED MEMBER
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2008006529A (en) Vacuum chuck and vacuum suction device using the same
JP6975598B2 (en) Manufacturing method of silicon carbide member
JP6382579B2 (en) Cordierite joint
JP2022012992A (en) MANUFACTURING METHOD OF AlN SINTERED MEMBER, MANUFACTURING METHOD OF ELECTRODE EMBEDDING MEMBER, AND ELECTRODE EMBEDDING MEMBER
JP6917520B2 (en) Annealing plate material, annealing plate manufacturing method, and substrate manufacturing method
JP2009111293A (en) Vacuum suction apparatus and manufacturing method therefor
JP2009147078A (en) Vacuum suction device, and manufacturing method thereof
JP6335737B2 (en) Method for producing hollow structure
JP6199180B2 (en) Vacuum adsorption apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7409807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150