JP5869437B2 - Method for joining SiC sintered bodies - Google Patents

Method for joining SiC sintered bodies Download PDF

Info

Publication number
JP5869437B2
JP5869437B2 JP2012145546A JP2012145546A JP5869437B2 JP 5869437 B2 JP5869437 B2 JP 5869437B2 JP 2012145546 A JP2012145546 A JP 2012145546A JP 2012145546 A JP2012145546 A JP 2012145546A JP 5869437 B2 JP5869437 B2 JP 5869437B2
Authority
JP
Japan
Prior art keywords
sic sintered
joining
groove
sintered bodies
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012145546A
Other languages
Japanese (ja)
Other versions
JP2014009114A (en
Inventor
梅津 基宏
基宏 梅津
良太 佐藤
良太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2012145546A priority Critical patent/JP5869437B2/en
Publication of JP2014009114A publication Critical patent/JP2014009114A/en
Application granted granted Critical
Publication of JP5869437B2 publication Critical patent/JP5869437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、SiC焼結体の接合方法に関する。 The present invention relates to a bonding how the SiC sintered body.

SiC焼結体は、高強度かつ高剛性であることから、半導体製造プロセスの各種処理時にウエハ、描画マスクなどを固定する際の固定治具などとして広く用いられている。このような固定治具は、温度調整用の熱媒体を流す溝が内部に設けられている。内部に溝を設けるには、接合面に溝を形成したSiC焼結体を接合する必要がある。   Since the SiC sintered body has high strength and high rigidity, it is widely used as a fixing jig for fixing a wafer, a drawing mask, etc. during various processes in the semiconductor manufacturing process. Such a fixing jig is provided with a groove through which a heat medium for temperature adjustment flows. In order to provide a groove inside, it is necessary to join a SiC sintered body having a groove formed on the joint surface.

粉末状、板状などのSiをSiC焼結体の間に挟んでSiの融点以上で熱処理することによって、SiC焼結体を接合することがある。接合時にSiは融点以上に加熱されて液状になるため、溝を有する場合、Siが溝に染み出すことが多い。そこで、特許文献1には、接合面の端部にC面加工を施すことにより、染み出したSiを捕捉して、Siの溝への染み出しを防止することが開示されている。   The SiC sintered body may be joined by sandwiching Si in powder form or plate-like shape between the SiC sintered bodies and heat-treating at a melting point of Si or higher. Since Si is heated to a melting point or higher during bonding and becomes liquid, when it has grooves, Si often oozes into the grooves. Thus, Patent Document 1 discloses that C-surface processing is performed on the end portion of the joint surface to capture the exuded Si and prevent the exudation of Si into the groove.

しかし、溶融したSiの流動を制御することは困難であるので、接合層の厚み、幅などを一定にすることは非常に困難である。その結果、溝の断面積が各部で一定でなくなり、熱媒体を溝に流した際に場所ごとの流量を完全に制御することが難しく、厳密な温度調整をすることが困難であった。従って、接合層の厚み、幅などにばらつきがなく、結果として溝の断面積にばらつきのない構造体を得られるような接合法が望まれていた。   However, since it is difficult to control the flow of molten Si, it is very difficult to make the thickness and width of the bonding layer constant. As a result, the cross-sectional area of the groove is not constant in each part, and it is difficult to completely control the flow rate at each place when a heat medium is passed through the groove, and it is difficult to perform precise temperature adjustment. Therefore, there has been a demand for a bonding method in which there is no variation in the thickness and width of the bonding layer, and as a result, a structure having a uniform cross-sectional area of the groove can be obtained.

そこで、Siなどの接合材を介することなくSiC焼結体の接合面同士を直接接触させた状態で加熱加圧することによって、SiC焼結体を接合することがある。   Therefore, the SiC sintered body may be joined by heating and pressing in a state where the joining surfaces of the SiC sintered body are in direct contact with each other without using a joining material such as Si.

特開2001−261459公報Japanese Patent Laid-Open No. 2001-261459

しかしながら、SiC焼結体の接合面同士を直接接触させた状態で加熱加圧して接合する場合、接合面に空隙が生じて良好に接合することができないおそれがあった。接合面に空隙が存在すると、溝に流した熱媒体が漏れ出る。   However, when joining by heating and pressing in a state where the joint surfaces of the SiC sintered bodies are in direct contact with each other, there is a possibility that voids are generated on the joint surface and the joint cannot be performed satisfactorily. If there is a gap in the joint surface, the heat medium that has flowed into the groove leaks out.

本発明は、これらの問題に鑑みてなされたものであり、接合界面に空隙が生じずにSiC焼結体を良好に接合することが可能なSiC焼結体の接合方法を提供することを目的とする。 The present invention has been made in view of these problems, to provide a bonding how the bonding interface can be well bonded to SiC sintered body without causing a gap to a SiC sintered body Objective.

本発明のSiC焼結体の接合方法は、2つのSiC焼結体を準備する工程と、前記SiC焼結体の接合面の最長部寸法をL(mm)としたとき、前記2つのSiC焼結体の接合面をそれぞれ、平面度a(μm)がa≦L/60を満たし、中央部に向って凸形状となるように研磨加工を行う工程と、前記2つのSiC焼結体の接合面を合わせて、前記接合面に0.1MPa以上の圧力で加圧しながら、1500℃以上で10分以上処理する工程とを備えることを特徴とする。   The SiC sintered body joining method of the present invention includes the steps of preparing two SiC sintered bodies, and assuming that the longest dimension of the joining surface of the SiC sintered body is L (mm). Polishing the bonded surfaces of the bonded bodies so that the flatness a (μm) satisfies a ≦ L / 60 and a convex shape toward the center, and bonding of the two SiC sintered bodies And a step of processing at 1500 ° C. or higher for 10 minutes or longer while pressing the joint surfaces with a pressure of 0.1 MPa or higher.

本発明のSiC焼結体の接合方法によれば、接合面が中央部に向って凸形状であるので、熱処理時に接合面の中央部が確実に接触して、接合界面の中央部には空隙が生じ難くなる。そして、凸形状が高過ぎないように、発明を実施するための形態の欄で後述するように平面度a(μm)がa≦L/60を満たしていれば、接合界面の端部にも空隙が生じ難いことが分かった。よって、接合界面に空隙が生じていないSiC接合体を高歩留まりで得ることができる。   According to the bonding method of the SiC sintered body of the present invention, the bonding surface is convex toward the central portion, so that the central portion of the bonding surface is in reliable contact during heat treatment, and there is a gap in the central portion of the bonding interface. Is less likely to occur. If the flatness a (μm) satisfies a ≦ L / 60 so that the convex shape is not too high, as will be described later in the section of the embodiment for carrying out the invention, the end of the joint interface is also formed. It was found that voids were not easily generated. Therefore, it is possible to obtain a SiC bonded body having no voids at the bonding interface with a high yield.

ところで、SiC焼結体の厚さが厚過ぎると、熱処理時に接合面に変形が生じずに、接合界面の端部に空隙が生じるおそれがある。   By the way, when the thickness of the SiC sintered body is too thick, there is a possibility that voids are generated at the end of the bonding interface without deformation of the bonding surface during heat treatment.

そこで、本発明のSiC焼結体の接合方法において、前記SiC焼結体の厚さをt(mm)としたとき、前記平面度a(μm)が、a≦50/tを満たすように前記研磨加工を行う。 Therefore, in the method for joining SiC sintered bodies according to the present invention, when the thickness of the SiC sintered body is t (mm), the flatness a (μm) satisfies a ≦ 50 / t. polished intends line.

この場合、発明を実施するための形態の欄で後述するように、接合界面の端部に空隙が生じないことが分かった。   In this case, as will be described later in the column of the embodiment for carrying out the invention, it has been found that no void is generated at the end of the bonding interface.

また、本発明のSiC焼結体の接合方法において、前記SiC焼結体の焼結温度以下1500℃以上で前記処理を行うことが好ましい。   Moreover, in the joining method of the SiC sintered compact of this invention, it is preferable to perform the said process below 1500 degreeC or more below the sintering temperature of the said SiC sintered compact.

この場合、接合界面での粒成長が抑制され、接合強度の低下を防止することができる。そして、これにより、接合時の変形も抑制することが可能となる。   In this case, grain growth at the bonding interface is suppressed, and a decrease in bonding strength can be prevented. And it becomes possible to also suppress the deformation | transformation at the time of joining by this.

また、本発明のSiC焼結体の接合方法において、前記2つのSiC焼結体の少なくとも一方のSiC焼結体の接合面に溝を形成する工程を備えることが好ましい。   Moreover, in the joining method of the SiC sintered compact of this invention, it is preferable to provide the process of forming a groove | channel in the joining surface of at least one SiC sintered compact of said 2 SiC sintered compact.

この場合、内部に溝を備えたSiC接合体を得ることがきできる。なお、内部の溝は、閉塞空間を形成する溝であっても、外部に連通する溝であってもよい。   In this case, a SiC joined body having a groove inside can be obtained. The inner groove may be a groove forming a closed space or a groove communicating with the outside.

(a)、(b)は、SiC焼結体の接合方法を順に説明する概略断面図。(A), (b) is a schematic sectional drawing explaining the joining method of a SiC sintered compact in order. 実施例の結果をまとめた表。The table | surface which put together the result of the Example. 比較例の結果をまとめた表。The table | surface which put together the result of the comparative example.

本発明の実施形態に係るSiC焼結体の接合方法について説明する。   The joining method of the SiC sintered compact concerning the embodiment of the present invention is explained.

ここでは、図1(a)に示すように、2つの平板状のSiC焼結体11,12を接合する場合について説明する。   Here, as shown in FIG. 1A, a case where two flat SiC sintered bodies 11 and 12 are joined will be described.

SiC焼結体11,12は、公知の添加剤、焼結助剤などを必要に応じてSiC原料粉末に添加して、公知の製造プロセスで製造することができる。例えば、焼結助剤としてBC、Cなどを用いることができる。 The SiC sintered bodies 11 and 12 can be manufactured by a known manufacturing process by adding known additives, sintering aids and the like to the SiC raw material powder as necessary. For example, B 4 C, C or the like can be used as a sintering aid.

SiC焼結体11,12は、十分に緻密化したものであることが好ましい。緻密化が不十分では、SiC焼結体11,12が変形して、接合後の内部溝13の形状精度が低下するためである。具体的には、SiC焼結体11,12は、相対密度が95%以上であることが好ましい。   It is preferable that SiC sintered bodies 11 and 12 are sufficiently densified. This is because if the densification is insufficient, the SiC sintered bodies 11 and 12 are deformed, and the shape accuracy of the internal groove 13 after joining is lowered. Specifically, the SiC sintered bodies 11 and 12 preferably have a relative density of 95% or more.

一方のSiC焼結体12の接合面12aに溝12bを形成する。これにより、SiC焼結体11,12の接合面同士を接合することによって、内部溝13を有するSiC接合体10を得ることができる。   A groove 12b is formed in the joint surface 12a of one SiC sintered body 12. Thereby, the SiC joined body 10 which has the internal groove | channel 13 can be obtained by joining the joining surfaces of the SiC sintered compacts 11 and 12. FIG.

なお、ここでは、一方のSiC焼結体12の接合面12aに溝12bを形成する場合を示したが、これに限定されるものではなく、他方のSiC焼結体11の接合面11aにも溝を形成してもよい。また、SiC焼結体11,12に形成される溝の個数、形状なども限定されない。さらに、何れのSiC焼結体11,12にも溝を形成しなくてもよい。   In addition, although the case where the groove | channel 12b was formed in the joining surface 12a of one SiC sintered body 12 was shown here, it is not limited to this, The joining surface 11a of the other SiC sintered body 11 is also shown. A groove may be formed. Further, the number and shape of the grooves formed in the SiC sintered bodies 11 and 12 are not limited. Furthermore, it is not necessary to form a groove in any of the SiC sintered bodies 11 and 12.

SiC焼結体11,12の接合面11a,12aはともに、接合面12aに形成された溝12bを除いて、周囲から中央部に向って滑らかな凸形状に研磨加工する。なお、図面では、厚さ方向が幅方向に対して拡大されており、接合面11a,12aの凸形状が強調されている。接合面は中央部に向って滑らかな凸形状であるので、平面度aは実質的に凸形状の高さを意味している。   Both the joining surfaces 11a and 12a of the SiC sintered bodies 11 and 12 are polished into a smooth convex shape from the periphery toward the center, except for the grooves 12b formed on the joining surface 12a. In the drawings, the thickness direction is enlarged with respect to the width direction, and the convex shapes of the joint surfaces 11a and 12a are emphasized. Since the joint surface has a smooth convex shape toward the central portion, the flatness a substantially means the height of the convex shape.

接合面11a,12aはともに、その平面度a(μm)は、最長部寸法L(mm)との間に、式(1)の関係を満たす。
a≦L/60 ・・・ (1)
Both the joining surfaces 11a and 12a satisfy the relationship of the formula (1) between the flatness a (μm) and the longest dimension L (mm).
a ≦ L / 60 (1)

なお、最長部とは、例えば、接合面が円形である場合には直径であり、矩形状である場合には対角線である。SiC焼結体11,12は円板、矩形板に限定されず、多角形板など種々の形状の板であってもよい。   The longest part is, for example, a diameter when the joint surface is circular, and a diagonal line when the joint surface is rectangular. The SiC sintered bodies 11 and 12 are not limited to circular plates and rectangular plates, and may be plates having various shapes such as polygonal plates.

さらに、接合面11a,12aの平面度a(μm)はともに、SiC焼結体12の厚さt(mm)との間に、式(2)の関係を満たすことが好ましい。
a≦50/t ・・・ (2)
Furthermore, it is preferable that the flatness a (μm) of the joining surfaces 11 a and 12 a satisfy the relationship of the formula (2) with the thickness t (mm) of the SiC sintered body 12.
a ≦ 50 / t (2)

接合面11a,12aの研磨加工は、例えば、ラッピング加工により行えばよい。溝12bの加工は、研磨加工の前又は後に行う。SiC焼結体12の焼結前に粗加工しておき、焼結後に溝12bに精度加工を行ってもよい。溝12bは、例えば、エンドミルなどを用いたフライス加工、マシニングセンタを用いた加工などによって形成すればよい。   The polishing of the joint surfaces 11a and 12a may be performed, for example, by lapping. The groove 12b is processed before or after the polishing process. The SiC sintered body 12 may be roughly processed before sintering, and the precision processing may be performed on the groove 12b after sintering. The groove 12b may be formed by, for example, milling using an end mill or the like, or processing using a machining center.

接合処理は、接合面11a,12aを合わせて接合面11a,12aに垂直な方向から0.1MPa以上の圧力で加圧しながら1500℃以上で10分以上、熱処理する。なお、熱処理後に、残留応力を除去するためにアニール処理を行ってもよい。   In the joining process, the joining surfaces 11a and 12a are combined and heat-treated at 1500 ° C. or more for 10 minutes or more while pressing with a pressure of 0.1 MPa or more from a direction perpendicular to the joining surfaces 11a and 12a. Note that after the heat treatment, an annealing treatment may be performed in order to remove the residual stress.

加圧は、例えば、積み重ねたSiC焼結体11,12の上面に錘を載せる、あるいはホットプレス炉を用いるなどによって、接合面11a,12aに均等に0.1MPa以上の圧力が掛かるように加圧する。なお、接合面11a,12aに垂直な方向とは、略平面としての接合面11a,12aに対する垂直な方向であればよい。加圧力が0.1MPa未満の場合、熱処理時に接合面11a,12a同士の接触が不十分となるため、接合界面に1〜数μmの空隙が発生するので、好ましくない。   The pressurization is performed, for example, by placing a weight on the upper surface of the stacked SiC sintered bodies 11 and 12 or using a hot press furnace so that a pressure of 0.1 MPa or more is uniformly applied to the joint surfaces 11a and 12a. Press. The direction perpendicular to the joining surfaces 11a and 12a may be a direction perpendicular to the joining surfaces 11a and 12a as a substantially flat surface. When the applied pressure is less than 0.1 MPa, contact between the joining surfaces 11a and 12a becomes insufficient during heat treatment, and a gap of 1 to several μm is generated at the joining interface, which is not preferable.

熱処理温度は、1500℃以上、特に1500℃〜2000℃の範囲であることが好ましい。熱処理温度が2000℃を超えると、SiC焼結体11,12が軟化して、溝12bの形状が変化する可能性があるので、内部溝13の断面積精度を良好に確保することができないおそれがある。   The heat treatment temperature is preferably 1500 ° C. or more, particularly preferably in the range of 1500 ° C. to 2000 ° C. If the heat treatment temperature exceeds 2000 ° C., the SiC sintered bodies 11 and 12 may be softened and the shape of the groove 12b may change, so that the cross-sectional area accuracy of the internal groove 13 may not be ensured satisfactorily. There is.

また、熱処理温度は、SiC焼結体11,12の焼成温度よりも低温とすることが好ましい。これは、粒成長を抑制して、接合強度が低下することを防ぐためである。これにより、接合時の変形も抑制することができ、内部溝13の場所ごとの断面積を一定化することが可能となる。   The heat treatment temperature is preferably lower than the firing temperature of the SiC sintered bodies 11 and 12. This is to suppress the grain growth and prevent the bonding strength from decreasing. Thereby, the deformation | transformation at the time of joining can also be suppressed and it becomes possible to make constant the cross-sectional area for every location of the internal groove | channel 13. FIG.

一方、熱処理温度が1500℃未満である場合、接合面11a,12aの接触部で物質移動が起きずに、1〜数μmの空隙が接合界面に発生するおそれがある。   On the other hand, when the heat treatment temperature is less than 1500 ° C., mass transfer does not occur at the contact portions of the bonding surfaces 11a and 12a, and a gap of 1 to several μm may be generated at the bonding interface.

処理時間は、10分以上、特に10〜240分であることが好ましい。処理時間が10分未満である場合は、SiC焼結体11,12全体が均一に加熱されずに、局所的に接合界面に空隙が生じるおそれがある。一方、処理時間が240分を超えた場合、一体化反応に及ぼす効果が変わらず、経済的に不利になる。   The treatment time is preferably 10 minutes or more, particularly 10 to 240 minutes. When the processing time is less than 10 minutes, the entire SiC sintered bodies 11 and 12 are not uniformly heated, and there is a possibility that voids are locally generated at the bonding interface. On the other hand, when the treatment time exceeds 240 minutes, the effect on the integration reaction is not changed, which is economically disadvantageous.

接合面11a,12aが中央部に向って凹形状、又は平面形状である場合、熱処理時に、特に接合界面の中央部に空隙が生じやすくなる。一方、接合面11a,12aが中央部に向って凸形状であれば、熱処理時に接合面11a,12aの中央部が確実に接触するので、接合界面の中央部には空隙が生じ難くなる。ただし、接合面11a,12aの凸形状が高過ぎると、接合界面の端部に空隙が生じ易くなる。   When the bonding surfaces 11a and 12a are concave or flat toward the center, a gap is likely to be generated particularly at the center of the bonding interface during heat treatment. On the other hand, if the joint surfaces 11a and 12a are convex toward the central portion, the central portions of the joint surfaces 11a and 12a come into contact with each other during heat treatment, so that it is difficult for a gap to be formed in the central portion of the joint interface. However, if the convex shapes of the joint surfaces 11a and 12a are too high, voids are likely to be generated at the ends of the joint interface.

そこで、後述する実施例及び従来例で述べるように、接合面11a,12aの平面度aがともに、上記式(1)の関係を満たせば、接合界面の端部に空隙が生じないことが分かった。   Therefore, as will be described later in Examples and Conventional Examples, it is understood that if the flatness a of the joining surfaces 11a and 12a satisfies the relationship of the above formula (1), no gap is generated at the end of the joining interface. It was.

さらに、SiC焼結体11,12の厚さtが厚過ぎると、熱処理時に接合面11a,12aに変形が生じずに、接合界面の端部に空隙が生じるおそれがある。   Furthermore, if the thickness t of the SiC sintered bodies 11 and 12 is too thick, the bonding surfaces 11a and 12a are not deformed during the heat treatment, and there is a possibility that voids are generated at the ends of the bonding interface.

しかし、後述する実施例及び従来例で述べるように、接合面11a,12aの平面度aがともに、上記式(2)の関係を満たせば、接合界面の端部に空隙が生じないことが分かった。   However, as will be described later in Examples and Conventional Examples, it is found that if the flatness a of the joining surfaces 11a and 12a satisfies the relationship of the above formula (2), no gap is generated at the end of the joining interface. It was.

図1(b)に示すように、SiC焼結体11,12を接合させたSiC接合体10は、内部溝13を有している。そして、接合時に生じる変形が非常に少ないので、内部溝13の場所ごとの断面積は一定となり、内部溝13を流れる熱媒体の流水抵抗のばらつきを抑制することが可能となる。よって、半導体製造プロセスでウエハ、描画マスクなどの被処理物を固定するための冶具としてSiC接合体10を用いた場合、温度調整用の熱媒体を内部溝13に流すことによって、被処理物の温度調整を高精度に均一に行うことが可能となる。   As shown in FIG. 1B, the SiC joined body 10 in which the SiC sintered bodies 11 and 12 are joined has an internal groove 13. And since the deformation | transformation which arises at the time of joining is very few, the cross-sectional area for every location of the internal groove 13 becomes fixed, and it becomes possible to suppress the dispersion | variation in the flowing water resistance of the heat medium which flows through the internal groove 13. Therefore, when the SiC joined body 10 is used as a jig for fixing an object to be processed such as a wafer or a drawing mask in a semiconductor manufacturing process, by flowing a heat medium for temperature adjustment through the internal groove 13, It becomes possible to perform temperature adjustment uniformly with high accuracy.

〔実施例、比較例〕
以下、本発明の実施例及び比較例を具体的に挙げ、本発明を詳細に説明する。
Examples and comparative examples
Hereinafter, the present invention will be described in detail with specific examples and comparative examples of the present invention.

2つのSiC焼結体11,12を周知のプロセスで作製した。具体的には、平均粒径が1μm以下のSiC粉末に、焼結助剤としてBCを0.1〜0.5質量%、C(カーボンブラック)を2〜4質量%、成形助剤としてPVAなどのバインダー等を添加したものを原料粉末とした。次に、この原料粉末をスプレードライヤーなどで顆粒化した後にCIP成形した。そして、溝12bを粗加工により形成した後に、アルゴン雰囲気中で2000℃〜2200℃で焼成することによってSiC焼結体11,12を得た。SiC焼結体11,12の相対密度は99.0%であった。 Two SiC sintered bodies 11 and 12 were produced by a known process. Specifically, SiC powder having an average particle size of 1 μm or less, 0.1 to 0.5% by mass of B 4 C and 2 to 4% by mass of C (carbon black) as a sintering aid, a molding aid As a raw material powder, a binder such as PVA was added. Next, this raw material powder was granulated with a spray dryer or the like and then CIP-molded. And after forming the groove | channel 12b by roughing, the SiC sintered compacts 11 and 12 were obtained by baking at 2000 degreeC-2200 degreeC in argon atmosphere. The relative density of the SiC sintered bodies 11 and 12 was 99.0%.

SiC焼結体11,12は、溝12aの有無を除いて同形の円板である。SiC焼結体11,12の直径L及び厚さtは、図2、図3の各欄に記載した。SiC焼結体11,12は円板形状であるので、直径Lが接合面の最長部寸法となる。   The SiC sintered bodies 11 and 12 are discs having the same shape except for the presence or absence of the groove 12a. The diameter L and thickness t of the SiC sintered bodies 11 and 12 are shown in the respective columns of FIGS. Since SiC sintered bodies 11 and 12 have a disk shape, diameter L is the longest dimension of the joint surface.

SiC焼結体11,12の接合面11a,12aをラッピング加工して、接合面11a,12aを中央に向って滑らかな凸形状とした。そして、レーザー干渉式形状測定機を用いて平面度aを測定した。   The joining surfaces 11a and 12a of the SiC sintered bodies 11 and 12 were lapped to make the joining surfaces 11a and 12a smooth and convex toward the center. And flatness a was measured using the laser interference type shape measuring machine.

SiC焼結体12の接合面12aに、中央部を通って横断する深さ2mm、幅2mm、の溝12bをマシニングセンタを用いて精密加工して形成した。溝12bの寸法を精密に測定した。   A groove 12b having a depth of 2 mm and a width of 2 mm traversing through the central portion was formed on the joining surface 12a of the SiC sintered body 12 by precision machining using a machining center. The dimension of the groove 12b was measured accurately.

溝12bの寸法は、溝12bの中央部の断面S3を中心として、溝12bの長手方向に沿って15mmごとの断面S1〜S5における合計5箇所で測定して、その平均値を図2、図3の各欄に記載した。溝12bの深さと幅の積、すなわち断面積のばらつきは0.2%以下であった。なお、ばらつきは、各断面S1〜S5における測定値から算出した5つの断面積の最大値と最小値との差を、算出した5つの断面積の平均値で除算することによって算出した。   The dimensions of the groove 12b were measured at a total of five locations in the cross sections S1 to S5 every 15 mm along the longitudinal direction of the groove 12b with the cross section S3 at the center of the groove 12b as the center. It described in each column of 3. The product of the depth and width of the groove 12b, that is, the variation in cross-sectional area was 0.2% or less. The variation was calculated by dividing the difference between the maximum value and the minimum value of the five cross-sectional areas calculated from the measured values in the cross sections S1 to S5 by the average value of the calculated five cross-sectional areas.

2つのSiC焼結体を、ホットプレス炉で接合面同士を合わせて接合面に垂直な方向から加圧して加熱した状態で、熱処理することによって、SiC接合体を得た。   The two SiC sintered bodies were subjected to heat treatment in a state in which the bonding surfaces were put together in a hot press furnace and pressed from a direction perpendicular to the bonding surfaces and heated to obtain a SiC bonded body.

内部溝13の寸法を、内部溝13の中央部の断面S3を中心として、内部溝13の長手方向に沿って15mmごとの断面S1〜S5における合計5箇所で測定した。各断面S1〜S5での測定値を図2、図3の各欄に記載した。そして、各断面S1〜S5における測定値から算出した5つの断面積の最大値と最小値との差を、算出した5つの断面積の平均値で除算することによってばらつきを算出した。   The dimension of the internal groove 13 was measured at a total of five locations in the cross sections S1 to S5 every 15 mm along the longitudinal direction of the internal groove 13 with the cross section S3 at the center of the internal groove 13 as the center. The measured values at each of the cross sections S1 to S5 are shown in the respective columns of FIGS. And the dispersion | variation was computed by dividing the difference of the maximum value of five cross-sectional areas calculated from the measured value in each cross section S1-S5 with the minimum value by the average value of five calculated cross-sectional areas.

〔実施例〕
図2に示すように、全ての実施例1〜10において、上記式(1)及び式(2)を満たしていた。また、熱処理時の処理条件は、全て、処理圧力が0.1MPa以上、加熱温度が1500℃以上、処理時間が10分〜240分であった。
〔Example〕
As shown in FIG. 2, in all Examples 1-10, the said Formula (1) and Formula (2) were satisfy | filled. Moreover, all the processing conditions at the time of heat processing were a processing pressure of 0.1 MPa or more, a heating temperature of 1500 ° C. or more, and a processing time of 10 minutes to 240 minutes.

全ての実施例1〜10において、SiC接合体10の接合界面において空隙を認めることはできなった。   In all Examples 1 to 10, no voids could be observed at the bonding interface of the SiC bonded body 10.

また、SiC接合体10の粒径については、断面のSEM観察により、接合前後の平均粒径を測定し、粒成長しているかどうかを調べた。平均粒径は、線インターセプト法により測定したところ、全ての実施例1〜10において、粒成長は認められなかった。   Moreover, about the particle size of the SiC joined body 10, the average particle diameter before and behind joining was measured by SEM observation of the cross section, and it was investigated whether the grain was growing. When the average particle diameter was measured by the line intercept method, no grain growth was observed in all of Examples 1 to 10.

また、全ての実施例1〜10において、内部溝13の断面積のばらつきは1%よりも小さく、内部溝13の形状精度が極めて高いことが分かった。   Moreover, in all Examples 1-10, the dispersion | variation in the cross-sectional area of the internal groove 13 was smaller than 1%, and it turned out that the shape precision of the internal groove 13 is very high.

〔比較例〕
図3に示すように、比較例1では、接合面11a,12aの平面度a(μm)がともにL/60(mm)より大きかった。比較例1では、接合界面の端部に近い断面S1及びS5で空隙が観察された。
[Comparative Example]
As shown in FIG. 3, in Comparative Example 1, the flatness a (μm) of the joint surfaces 11a and 12a was both greater than L / 60 (mm). In Comparative Example 1, voids were observed in the cross sections S1 and S5 near the end of the bonding interface.

比較例2では、接合面11a,12aの平面度a(μm)がともに、50/tより大きかった。比較例2では、接合界面の端部に近い断面S1及びS5で空隙が観察された。   In Comparative Example 2, the flatness a (μm) of the joint surfaces 11a and 12a was both greater than 50 / t. In Comparative Example 2, voids were observed in the cross sections S1 and S5 near the end of the bonding interface.

比較例3では、熱処理時の処理温度が1400℃であり、1500℃より低かった。比較例3では、全ての断面S1〜S5で空隙が観察され、接合できていなかった。   In Comparative Example 3, the treatment temperature during the heat treatment was 1400 ° C., which was lower than 1500 ° C. In Comparative Example 3, voids were observed in all the cross sections S1 to S5, and bonding was not possible.

比較例4では、熱処理時の処理時間が5分であり10分より短かった。比較例4では、接合界面の端部に近い断面S1及びS5で空隙が観察された。   In Comparative Example 4, the treatment time during the heat treatment was 5 minutes, which was shorter than 10 minutes. In Comparative Example 4, voids were observed in the cross sections S1 and S5 near the end of the bonding interface.

比較例5では、熱処理時の加圧力が0.05MPaであり、0.1MPaより小さかった。比較例5では、接合界面の端部に近い断面S1及びS5で空隙が観察された。   In Comparative Example 5, the applied pressure during the heat treatment was 0.05 MPa, which was smaller than 0.1 MPa. In Comparative Example 5, voids were observed in the cross sections S1 and S5 near the end of the bonding interface.

比較例6では、接合面11a,12aの平面度a(μm)がともに、L/60(mm)より大きく、且つ50/t(mm)より大きかった。比較例6では、全ての断面S1〜S5で空隙が観察された。   In Comparative Example 6, the flatness a (μm) of the joint surfaces 11a and 12a was both greater than L / 60 (mm) and greater than 50 / t (mm). In Comparative Example 6, voids were observed in all the cross sections S1 to S5.

比較例7では、熱処理温度がSiC焼結体の焼結温度を超えていた。比較例7では、内部溝13の断面積のばらつきは1%よりも大きく、内部溝13の形状精度が悪かった。   In Comparative Example 7, the heat treatment temperature exceeded the sintering temperature of the SiC sintered body. In Comparative Example 7, the variation in the cross-sectional area of the internal groove 13 was greater than 1%, and the shape accuracy of the internal groove 13 was poor.

10…SiC接合体、 11,12…SiC焼結体、 11a,12a…接合面、 12b…溝、 13…内部溝。   DESCRIPTION OF SYMBOLS 10 ... SiC joined body, 11, 12 ... SiC sintered compact, 11a, 12a ... Joining surface, 12b ... Groove, 13 ... Internal groove.

Claims (3)

2つのSiC焼結体を準備する工程と、
前記SiC焼結体の接合面の最長部寸法をL(mm)としたとき、前記2つのSiC焼結体の接合面をそれぞれ、平面度a(μm)がa≦L/60を満たし、中央部に向って凸形状となるように研磨加工を行う工程と、
前記2つのSiC焼結体の接合面を合わせて、前記接合面に0.1MPa以上の圧力で加圧しながら、1500℃以上で10分以上処理する工程とを備え
前記SiC焼結体の厚さをt(mm)としたとき、前記平面度a(μm)が、a≦50/tを満たすように前記研磨加工を行うことを特徴とするSiC焼結体の接合方法。
Preparing two SiC sintered bodies;
When the longest dimension of the bonded surface of the SiC sintered body is L (mm), the flatness a (μm) of the bonded surfaces of the two SiC sintered bodies satisfies a ≦ L / 60, and the center A process of polishing so as to be convex toward the part;
A process of combining the joining surfaces of the two SiC sintered bodies and treating the joining surfaces at a pressure of 0.1 MPa or more and at 1500 ° C. or more for 10 minutes or more ,
When the thickness of the SiC sintered body is t (mm), the polishing is performed so that the flatness a (μm) satisfies a ≦ 50 / t . Joining method.
前記SiC焼結体の焼結温度以下1500℃以上で前記処理を行うことを特徴とする請求項1に記載のSiC焼結体の接合方法。 Method of joining SiC sintered body according to claim 1, characterized in that performing the processing at a sintering temperature below 1500 ° C. or more of the SiC sintered body. 前記2つのSiC焼結体の少なくとも一方のSiC焼結体の接合面に溝を形成する工程を備えることを特徴とする請求項1又は2に記載のSiC焼結体の接合方法。 The method for joining SiC sintered bodies according to claim 1, further comprising a step of forming a groove in a joining surface of at least one of the two SiC sintered bodies.
JP2012145546A 2012-06-28 2012-06-28 Method for joining SiC sintered bodies Active JP5869437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012145546A JP5869437B2 (en) 2012-06-28 2012-06-28 Method for joining SiC sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012145546A JP5869437B2 (en) 2012-06-28 2012-06-28 Method for joining SiC sintered bodies

Publications (2)

Publication Number Publication Date
JP2014009114A JP2014009114A (en) 2014-01-20
JP5869437B2 true JP5869437B2 (en) 2016-02-24

Family

ID=50106131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012145546A Active JP5869437B2 (en) 2012-06-28 2012-06-28 Method for joining SiC sintered bodies

Country Status (1)

Country Link
JP (1) JP5869437B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532806B2 (en) * 2015-11-13 2019-06-19 日本特殊陶業株式会社 Substrate support device
JP6975598B2 (en) * 2017-09-21 2021-12-01 日本特殊陶業株式会社 Manufacturing method of silicon carbide member
KR102069422B1 (en) * 2017-12-19 2020-01-22 주식회사 티씨케이 Bonding ceramics and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274572A (en) * 1988-09-09 1990-03-14 Ngk Insulators Ltd Bonding of sintered silicon carbide
US4925608A (en) * 1988-09-27 1990-05-15 Norton Company Joining of SiC parts by polishing and hipping

Also Published As

Publication number Publication date
JP2014009114A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5869437B2 (en) Method for joining SiC sintered bodies
JP6464666B2 (en) Cylindrical target material and manufacturing method thereof, and cylindrical sputtering target and manufacturing method thereof
JP2017509791A5 (en)
JP2012184763A5 (en)
CN105441881A (en) Making method of chromium target and making method of combination of chromium target
JP5805556B2 (en) Alumina ceramic joined body and method for producing the same
JP6146413B2 (en) Combination body, member for plasma processing apparatus, plasma processing apparatus, and method of manufacturing focus ring
AU2016200274B2 (en) Carbon ceramic brake disc and method for manufacturing the same
JP6148845B2 (en) Method for manufacturing electrode-embedded ceramic sintered body
JP2013204051A (en) Method for manufacturing cylindrical sputtering target material
JP2015030629A (en) Alumina ceramic joined body and method for producing the same
JP5928672B2 (en) Manufacturing method of alumina ceramic joined body
JP2012501851A5 (en)
JP5388464B2 (en) Aluminum-ceramic composite and method for producing the same
KR101937961B1 (en) Silicon nitride substrate without planarization and method of manufacturing the same
WO2020158775A1 (en) Heat-dissipating member and manufacturing method for same
JP2019001695A (en) Method for producing silicon carbide member
JP6281385B2 (en) Method for manufacturing outer layer made of cemented carbide for rolling roll
JP7409807B2 (en) Electrostatic chuck and its manufacturing method
JP2020117775A (en) Method and apparatus for manufacturing ferrous sintered body
JP2020186151A (en) METHOD FOR PRODUCING SiC SINTERED MEMBER
JP6355615B2 (en) Manufacturing method of ceramic sintered body
JP2020123714A (en) Heat-dissipating member and manufacturing method thereof
JP7296466B2 (en) Method for manufacturing metal member
JP2019055897A (en) Production method of silicon carbide member

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160107

R150 Certificate of patent or registration of utility model

Ref document number: 5869437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250