JP2020117775A - Method and apparatus for manufacturing ferrous sintered body - Google Patents

Method and apparatus for manufacturing ferrous sintered body Download PDF

Info

Publication number
JP2020117775A
JP2020117775A JP2019010314A JP2019010314A JP2020117775A JP 2020117775 A JP2020117775 A JP 2020117775A JP 2019010314 A JP2019010314 A JP 2019010314A JP 2019010314 A JP2019010314 A JP 2019010314A JP 2020117775 A JP2020117775 A JP 2020117775A
Authority
JP
Japan
Prior art keywords
iron
sintered body
based sintered
temperature
straightening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019010314A
Other languages
Japanese (ja)
Inventor
恒哲 平岡
Tsuneaki Hiraoka
恒哲 平岡
義也 真野
Yoshiya Mano
義也 真野
武 島澤
Takeshi Shimazawa
武 島澤
慎太郎 鈴木
Shintaro Suzuki
慎太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019010314A priority Critical patent/JP2020117775A/en
Publication of JP2020117775A publication Critical patent/JP2020117775A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To obtain a ferrous sintered body having excellent various mechanical characteristics and excellent shape accuracy by applying excellent correction effect to the ferrous sintered body irrespective of the presence or absence of heat treatment after hardening.SOLUTION: A method for manufacturing a ferrous sintered body in the present invention includes a correction step S4 of making a correction of the ferrous sintered body 1 by subjecting a raw material powder composed mainly of ferrous powder to compression molding, and by constraining the ferrous sintered body 1 obtained by sintering with the use of metal molds 15a and 15b. In the correction step S4, the ferrous sintered body 1 is set to less than 100 degrees, and the ferrous sintered body 1 are constrained by the metal molds 15a and 15b in a state where the metal molds 15a and 15b have a higher temperature than the ferrous sintered body 1 by heating.SELECTED DRAWING: Figure 3

Description

本発明は、鉄系焼結体の製造方法及び製造装置に関し、特に鉄系焼結体を効果的に矯正するための技術に関する。 The present invention relates to a method and an apparatus for manufacturing an iron-based sintered body, and particularly to a technique for effectively correcting an iron-based sintered body.

ギヤなどの複雑な形状を有する部品の製造方法として、ニアネットシェイプの観点から焼結を利用した製法(粉末冶金法)が注目されている。この製法は、金属粉末を所定の形状に圧縮成形した後、金属の種類に応じた温度に加熱することで焼結体を形成するものである。例えば、強度や耐摩耗性などが必要とされる部品については、鉄を主成分とし、炭素を所定量含有した組成の金属粉末を圧粉成形し、焼結した後、焼入れ及び焼き戻しを施すことにより、要求仕様を満足する部品が製造されている。また、近年では、焼結後の冷却を利用して焼入れを行う、いわゆるシンターハードニング(焼結焼入れ)に関する技術も開発されている。 As a method of manufacturing a component having a complicated shape such as a gear, a manufacturing method utilizing powder (powder metallurgy method) has attracted attention from the viewpoint of near net shape. In this manufacturing method, a metal powder is compression-molded into a predetermined shape and then heated to a temperature according to the type of metal to form a sintered body. For example, for parts requiring strength and wear resistance, metal powder having a composition containing iron as a main component and containing a predetermined amount of carbon is compacted, sintered, and then quenched and tempered. As a result, parts satisfying the required specifications are manufactured. Further, in recent years, a technique related to so-called sintering hardening (sinter hardening) in which quenching is performed by utilizing cooling after sintering has been developed.

ところで、この種の焼結部品においては、焼結後の変形により、形状精度が悪化することが問題となっている。例えばギヤなど薄板状の焼結部品の場合、その平面度が悪化することが分かっている。この対策として、従来、多数の矯正方法が提案されている。 By the way, in this kind of sintered part, there is a problem that the shape accuracy is deteriorated due to the deformation after sintering. For example, in the case of a thin plate-shaped sintered component such as a gear, the flatness thereof is known to deteriorate. As a countermeasure against this, many correction methods have been conventionally proposed.

例えば特許文献1には、鉄系焼結体の焼結処理後であって焼入れ処理前に、300〜600度に加熱した鉄系焼結体にサイジングを施す技術が開示されている。また、特許文献2には、焼結部品を所定温度に加熱することでオーステナイト化し、急冷すると共に、急冷の途中で焼結部品を金型で拘束してサイジングすることにより、焼入れしながら矯正を行う技術が開示されている。また、特許文献3には、焼入れ後の焼結体を100〜550度に再加熱し、高温状態の焼結体を金型で拘束することにより矯正を行う技術が開示されている。 For example, Patent Document 1 discloses a technique of sizing the iron-based sintered body heated to 300 to 600 degrees after the sintering treatment of the iron-based sintered body and before the quenching treatment. Further, in Patent Document 2, a sintered component is heated to a predetermined temperature to be austenite and rapidly cooled, and at the same time, the sintered component is constrained by a mold during sizing to be rectified while quenching. Techniques for doing so are disclosed. Further, Patent Document 3 discloses a technique of reheating a sintered body after quenching to 100 to 550 degrees and restraining the sintered body in a high temperature state with a mold to perform straightening.

特開2009−149957号公報JP, 2009-149957, A 特開2016−141857号公報JP, 2016-141857, A 特開平11−80810号公報JP, 11-80810, A

しかしながら、特許文献1に記載の方法だと、矯正を行った後に焼入れ等の熱処理を施すことになるため、当該熱処理により再び焼結体が変形するおそれが生じる。特許文献2に記載の方法によれば、矯正がなされた焼入れ焼結体を得ることができるが、焼入れの後に焼き戻し等の熱処理を追加で行う場合には、再び焼結体が変形するおそれが生じる。特許文献3に記載の方法であれば、焼入れ後の焼結体に熱処理(焼き戻し等)を施しながら焼結体の矯正を行うことができるが、焼結体の形状によっては、要求されるレベルにまで矯正することが難しい問題がある。特に、焼結体が薄板状をなす場合には、熱処理後の反りが顕著となるため、今まで以上に有効な矯正技術が求められているのが現状である。 However, according to the method described in Patent Document 1, since the heat treatment such as quenching is performed after the correction, the sintered body may be deformed again by the heat treatment. According to the method described in Patent Document 2, it is possible to obtain a quenched and sintered body that has been straightened, but when heat treatment such as tempering is additionally performed after quenching, the sintered body may be deformed again. Occurs. According to the method described in Patent Document 3, the sintered body can be straightened while being subjected to heat treatment (tempering, etc.) after quenching, but this is required depending on the shape of the sintered body. There is a problem that it is difficult to correct to a level. In particular, when the sintered body is in the form of a thin plate, the warpage after heat treatment becomes remarkable, so that a more effective straightening technique is required at present.

以上の実情に鑑み、本明細書では、焼入れ後の熱処理の有無に関わらず、優れた矯正効果を鉄系焼結体に付与でき、これにより各種機械特性に優れかつ形状精度にも優れた鉄系焼結体を得ることを、解決すべき技術課題とする。 In view of the above circumstances, in the present specification, regardless of the presence or absence of heat treatment after quenching, it is possible to impart an excellent straightening effect to the iron-based sintered body, which makes it possible to obtain iron having excellent mechanical properties and excellent shape accuracy. Obtaining a system sintered body is a technical problem to be solved.

前記課題の解決は、本発明に係る鉄系焼結体の製造方法によって達成される。すなわち、この製造方法は、鉄系粉末を主成分とする原料粉末を圧縮成形し、焼結することで得られた鉄系焼結体を金型で拘束することで鉄系焼結体の矯正を行う矯正工程を備えた鉄系焼結体の製造方法において、矯正工程で、鉄系焼結体を100度未満にし、金型を加熱により鉄系焼結体よりも高温にした状態で、鉄系焼結体を金型で拘束する点をもって特徴付けられる。なお、ここでいう「主成分」は、原料粉末に含まれる粉末の中で最も含有比が高い粉末を指す。この場合、鉄系粉末を主成分とする原料粉末には、鉄系粉末のみからなる原料粉末も含まれる。 The solution to the above problem is achieved by the method for manufacturing an iron-based sintered body according to the present invention. That is, this manufacturing method corrects the iron-based sintered body by restraining the iron-based sintered body obtained by compressing and sintering the raw material powder containing iron-based powder as the main component with the mold. In the method for manufacturing an iron-based sintered body having a straightening step of performing, in the straightening step, the temperature of the iron-based sintered body is less than 100 degrees, and the mold is heated to a temperature higher than that of the iron-based sintered body. It is characterized in that the iron-based sintered body is constrained by a mold. The “main component” here refers to the powder with the highest content ratio among the powders contained in the raw material powder. In this case, the raw material powder containing iron-based powder as a main component also includes the raw material powder made of only iron-based powder.

本発明者らは、鉄系焼結体の温度と拘束用金型の温度が矯正効果に及ぼす影響について鋭意検討した結果、焼入れが施された状態の鉄系焼結体の温度を100度未満とし、上記金型の温度を鉄系焼結体の温度よりも高温にした状態で上記金型による鉄系焼結体の矯正を行った場合に、非常に優れた矯正効果を得ることを見出した。本発明は、上記知見に基づきなされたもので、100度未満の状態にある鉄系焼結体を、加熱により鉄系焼結体よりも高温にした状態の金型で拘束することにより、従来よりも優れた矯正効果を得ることができる。また、鉄系焼結体を相対的に低温とし、金型を加熱により相対的に高温にした状態で鉄系焼結体を拘束するのであれば、金型の温度を制御することで(例えば所定の温度を一定時間保持することで)、比較的容易に焼入れ以外の熱処理を矯正と同時に施すことができる。よって、焼入れ後の熱処理によって鉄系焼結体が再び変形する事態を回避して、優れた形状精度を維持することができる。以上より、本発明によれば、各種機械特性に優れ、かつ形状精度に優れた鉄系焼結体を得ることが可能となる。 As a result of diligent study on the influence of the temperature of the iron-based sintered body and the temperature of the restraining die on the straightening effect, the inventors have found that the temperature of the iron-based sintered body in the quenched state is less than 100 degrees. And, it was found that when the iron-based sintered body is straightened by the die in a state where the temperature of the die is higher than the temperature of the iron-based sintered body, a very excellent straightening effect is obtained. It was The present invention was made on the basis of the above-mentioned findings, and by binding an iron-based sintered body in a state of less than 100 degrees with a die in a state of being heated to a higher temperature than the iron-based sintered body by heating, It is possible to obtain a better correction effect. Further, if the iron-based sintered body is restrained in a state where the iron-based sintered body is set to a relatively low temperature and the die is heated to a relatively high temperature, the temperature of the die can be controlled (for example, By holding a predetermined temperature for a certain period of time, it is relatively easy to perform heat treatment other than quenching at the same time as straightening. Therefore, it is possible to avoid the situation where the iron-based sintered body is deformed again by the heat treatment after quenching, and it is possible to maintain excellent shape accuracy. As described above, according to the present invention, it is possible to obtain an iron-based sintered body that is excellent in various mechanical characteristics and is excellent in shape accuracy.

また、本発明に係る鉄系焼結体の製造方法において、金型の温度と鉄系焼結体の温度との差を200度以上としてもよい。 In the method for manufacturing an iron-based sintered body according to the present invention, the difference between the temperature of the mold and the temperature of the iron-based sintered body may be 200 degrees or more.

このように、金型の温度と鉄系焼結体の温度との差を200度以上にした状態で矯正工程を実施することにより、さらに優れた矯正効果を得ることができる。上記構成は、熱処理後の変形量が大きい場合に特に有効である。 As described above, by performing the straightening step in a state where the difference between the temperature of the mold and the temperature of the iron-based sintered body is 200 degrees or more, a more excellent straightening effect can be obtained. The above configuration is particularly effective when the amount of deformation after heat treatment is large.

また、本発明に係る鉄系焼結体の製造方法において、鉄系焼結体の温度を常温としてもよい。なお、ここでいう常温とは、JIS 8703に準拠し、摂氏5度以上でかつ35度以下の範囲における所定の温度を指すものとする。 In the method for manufacturing an iron-based sintered body according to the present invention, the temperature of the iron-based sintered body may be room temperature. In addition, the normal temperature referred to herein means a predetermined temperature in the range of 5 degrees Celsius or more and 35 degrees Celsius or less according to JIS 8703.

このように、鉄系焼結体の温度を常温にした状態で矯正工程を実施することによって、さらに優れた矯正効果を得ることができる。 As described above, by performing the straightening step in a state where the temperature of the iron-based sintered body is room temperature, a further excellent straightening effect can be obtained.

また、本発明に係る鉄系焼結体の製造方法において、金型の温度を400度未満としてもよい。 In the method for manufacturing an iron-based sintered body according to the present invention, the temperature of the mold may be less than 400 degrees.

このように、拘束用金型の温度を400度未満とした状態で矯正工程を実施することによって、例えば焼入れ後に行う焼き戻し等の熱処理による硬度の低下を可及的に抑制しつつ、優れた矯正効果を得ることが可能となる。 In this way, by performing the straightening step in a state where the temperature of the restraining mold is less than 400 degrees, it is possible to suppress the decrease in hardness due to heat treatment such as tempering performed after quenching as much as possible, and it is excellent. It is possible to obtain a correction effect.

また、本発明に係る鉄系焼結体の製造方法において、金型による拘束時間を1分以上でかつ20分以下としてもよい。 Further, in the method for manufacturing an iron-based sintered body according to the present invention, the constraint time by the mold may be 1 minute or more and 20 minutes or less.

このように、金型による鉄系焼結体の拘束時間を1分以上とすることで、鉄系焼結体に対する優れた矯正効果を安定的に得ることができる。一方、拘束時間が20分を超えても、矯正効果にそれほど違いはないため、生産性の観点からは最大で20分に留めることが好ましい。 Thus, by setting the holding time of the iron-based sintered body by the mold to 1 minute or more, an excellent straightening effect on the iron-based sintered body can be stably obtained. On the other hand, even if the restraint time exceeds 20 minutes, there is not much difference in the correction effect, so from the viewpoint of productivity, it is preferable to limit it to 20 minutes at the maximum.

また、本発明に係る鉄系焼結体の製造方法において、鉄系焼結体に対して焼き戻し処理を施す焼き戻し工程をさらに備え、金型による拘束で鉄系焼結体を加熱することにより焼き戻し処理を施してもよい。 Further, in the method for manufacturing an iron-based sintered body according to the present invention, the method further comprises a tempering step of subjecting the iron-based sintered body to a tempering treatment, and heating the iron-based sintered body with restraint by a mold. A tempering process may be performed according to.

このように、金型による拘束で鉄系焼結体を加熱することにより焼き戻し処理を施すようにすれば、焼き戻しに伴って鉄系焼結体に生じる変形を矯正することができる。あるいは、焼き戻しに伴って鉄系焼結体に生じるはずの変形を抑止することができる。これにより、焼き戻し工程後においても鉄系焼結体に高い形状精度を付与することができる。もちろん、鉄系焼結体に対して矯正処理と同時に焼き戻し処理を施すことができるので、生産性の観点でも好適である。 In this way, if the tempering process is performed by heating the iron-based sintered body by restraining it with the mold, the deformation caused in the iron-based sintered body due to the tempering can be corrected. Alternatively, it is possible to suppress the deformation that should occur in the iron-based sintered body due to tempering. As a result, it is possible to provide the iron-based sintered body with high shape accuracy even after the tempering process. Of course, the iron-based sintered body can be subjected to the straightening treatment and the tempering treatment at the same time, which is also preferable from the viewpoint of productivity.

また、本発明に係る鉄系焼結体の製造方法において、矯正工程の前に、鉄系粉末を圧縮成形してなる圧粉成形体を焼結して鉄系焼結体を得る焼結工程と、焼結工程の後、鉄系焼結体に焼入れ処理を施す焼入れ工程とをさらに備えてもよい。あるいは、矯正工程の前に、鉄系粉末を圧縮成形してなる圧粉成形体を所定の温度にまで加熱して焼結すると共に、加熱後の冷却により焼入れ処理を施す焼結焼入れ工程をさらに備えてもよい。 Further, in the method for producing an iron-based sintered body according to the present invention, a sintering step for obtaining an iron-based sintered body by sintering a powder compact formed by compression-forming iron-based powder before the straightening step. And a quenching step of subjecting the iron-based sintered body to a quenching treatment after the sintering step. Alternatively, before the straightening step, a sinter-quenching step in which a powder compact formed by compression-molding an iron-based powder is heated to a predetermined temperature for sintering and a quenching process is performed by cooling after heating is further performed. You may prepare.

本発明は、焼入れが施された状態の鉄系焼結体に対して非常に優れた矯正効果を付与し得るものであることから、上述のように、矯正工程の前に焼結工程と焼入れ工程とを設けることで、あるいは焼結焼入れ工程を設けることで、強度等の各種機械特性に優れ、かつ形状精度にも優れた鉄系焼結体を量産することが可能となる。 INDUSTRIAL APPLICABILITY The present invention is capable of imparting a very excellent straightening effect to an iron-based sintered body that has been subjected to quenching. Therefore, as described above, the sintering step and quenching are performed before the straightening step. By providing a step or by providing a sintering and hardening step, it becomes possible to mass-produce an iron-based sintered body that is excellent in various mechanical properties such as strength and is also excellent in shape accuracy.

また、本発明に係る鉄系焼結体の製造方法において、鉄系粉末は、鉄を主成分とし、かつ少なくとも炭素を含んでもよい。また、この場合、鉄系粉末は、炭素を0.3wt%以上でかつ1.0wt%以下含むものであってもよい。 In the method for manufacturing an iron-based sintered body according to the present invention, the iron-based powder may contain iron as a main component and at least carbon. Further, in this case, the iron-based powder may contain carbon in an amount of 0.3 wt% or more and 1.0 wt% or less.

このように、少なくとも炭素を含む鉄系粉末で鉄系焼結体を形成することによって、上述した焼入れ等の熱処理を十分に施すことができ、これにより強度等の各種機械特性優れた鉄系焼結体を得ることが可能となる。 As described above, by forming the iron-based sintered body with the iron-based powder containing at least carbon, the heat treatment such as the above-described quenching can be sufficiently performed, and thus, the iron-based firing excellent in various mechanical properties such as strength can be achieved. It becomes possible to obtain a union.

また、本発明に係る鉄系焼結体の製造方法において、鉄系焼結体は薄板状をなすものであってもよい。また、この場合、鉄系焼結体はギヤであってもよい。 Further, in the method for manufacturing an iron-based sintered body according to the present invention, the iron-based sintered body may have a thin plate shape. Further, in this case, the iron-based sintered body may be a gear.

本発明は、特に薄板状をなす鉄系焼結体の矯正に有効であるから、鉄系焼結体が薄板状をなす場合、当該鉄系焼結体に本発明に係る矯正工程を施すことにより、非常に優れた矯正効果を得ることが可能となる。 The present invention is particularly effective for straightening an iron-based sintered body having a thin plate shape. Therefore, when the iron-based sintered body has a thin plate shape, the iron-based sintered body is subjected to the straightening step according to the present invention. This makes it possible to obtain a very excellent correction effect.

また、前記課題の解決は、本発明に係る鉄系焼結体の製造装置によっても達成される。すなわち、この製造装置は、鉄系粉末を主成分とする原料粉末を圧縮成形し、焼結することで得られた鉄系焼結体を拘束することにより鉄系焼結体の矯正を行う矯正装置を備えた鉄系焼結体の製造装置において、矯正装置は、鉄系焼結体を拘束する金型と、金型を加熱する加熱部とを有し、かつ矯正装置は、鉄系焼結体を100度未満とし、金型を加熱部の加熱により鉄系焼結体よりも高温にした状態で、金型により鉄系焼結体を拘束可能に構成されている点をもって特徴付けられる。 The solution to the above-mentioned problems can also be achieved by the apparatus for producing an iron-based sintered body according to the present invention. That is, this manufacturing apparatus corrects the iron-based sintered body by restraining the iron-based sintered body obtained by compression molding and sintering the raw material powder containing iron-based powder as the main component. In an iron-based sintered body manufacturing apparatus including a device, the straightening device has a die for constraining the iron-based sintered body and a heating unit for heating the die, and the straightening device is an iron-based sintered body. It is characterized by the fact that the iron-based sintered body can be restrained by the mold in a state where the bonded body is less than 100 degrees and the mold is heated to a temperature higher than that of the iron-based sintered body by heating in the heating section. ..

本発明に係る製造装置によれば、本発明に係る製造方法と同様に、従来よりも優れた矯正効果を得ることができる。また、鉄系焼結体を相対的に低温とし、金型を加熱部の加熱により相対的に高温にした状態で鉄系焼結体を拘束するのであれば、金型の温度を制御することで、比較的容易に焼入れ以外の熱処理を矯正と同時に施すことができる。よって、焼入れ後の熱処理によって鉄系焼結体が再び変形する事態を回避して、優れた形状精度を維持することができる。以上より、本発明によれば、各種機械特性に優れ、かつ形状精度に優れた鉄系焼結体を得ることが可能となる。 According to the manufacturing apparatus of the present invention, as in the manufacturing method of the present invention, it is possible to obtain a correction effect superior to the conventional one. In addition, if the iron-based sintered body is kept at a relatively low temperature and the iron-based sintered body is constrained while the die is heated to a relatively high temperature by heating the heating section, the temperature of the die should be controlled. Thus, heat treatment other than quenching can be relatively easily applied simultaneously with straightening. Therefore, it is possible to avoid the situation where the iron-based sintered body is deformed again by the heat treatment after quenching, and it is possible to maintain excellent shape accuracy. As described above, according to the present invention, it is possible to obtain an iron-based sintered body that is excellent in various mechanical characteristics and is excellent in shape accuracy.

以上述べたように、本発明によれば、焼入れ後の熱処理の有無に関わらず、優れた矯正効果を鉄系焼結体に付与でき、これにより各種機械特性に優れかつ形状精度にも優れた鉄系焼結体を得ることが可能となる。 As described above, according to the present invention, it is possible to impart an excellent straightening effect to the iron-based sintered body regardless of the presence or absence of heat treatment after quenching, and thus excellent in various mechanical characteristics and also in shape accuracy. It is possible to obtain an iron-based sintered body.

本発明の一実施形態に係る鉄系焼結体の製造方法の全体の流れを示すフローチャートである。It is a flow chart which shows the whole flow of the manufacturing method of the iron system sintered compact concerning one embodiment of the present invention. 本発明の一実施形態に係る矯正装置とその周辺構成を示す図である。It is a figure which shows the correction device which concerns on one Embodiment of this invention, and its periphery structure. 矯正装置の断面図である。It is sectional drawing of a correction device. 本発明の他の実施形態に係る鉄系焼結体の製造方法の全体の流れを示すフローチャートである。It is a flow chart which shows the whole flow of the manufacturing method of the iron system sintered compact concerning other embodiments of the present invention. 実施例に係る鉄系焼結体の定盤上における側面図である。It is a side view on the surface plate of the iron system sintered compact concerning an example.

以下、本発明の一実施形態を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態に係る熱処理工程の全体の流れを示すフローチャートである。図1に示すように、本発明に係る熱処理工程は、鉄系粉末を主成分とする原料粉末を圧縮成形する成形工程S1と、圧縮成形により得られた圧粉成形体に焼結処理を施す焼結工程S2と、焼結処理により得られた鉄系焼結体に焼入れ処理を施す焼入れ工程S3と、焼入れ処理が施された鉄系焼結体に矯正処理を施す矯正工程S4と、焼入れ処理が施された鉄系焼結体に焼き戻し処理を施す焼き戻し工程S5と、矯正処理及び焼き戻し処理が施された鉄系焼結体に仕上げ加工を施す仕上げ加工工程S6とを備える。仕上げ加工工程S6では研磨やショットピーニングなど一又は複数の機械加工が施される。もちろん、仕上げ加工工程S6は省略することも可能である。また、図示は省略するが、必要に応じて、焼入れ工程S3と焼き戻し工程S5の後にそれぞれ、洗浄工程と検査工程とを設けてもよい。 FIG. 1 is a flowchart showing the overall flow of a heat treatment process according to an embodiment of the present invention. As shown in FIG. 1, in the heat treatment step according to the present invention, a molding step S1 of compressing and molding a raw material powder containing an iron-based powder as a main component, and a sintering treatment of a powder compact obtained by compression molding. Sintering step S2, quenching step S3 of performing a quenching treatment on the iron-based sintered body obtained by the sintering treatment, straightening step S4 of performing a straightening treatment on the quenched iron-based sintered body, and quenching A tempering step S5 of tempering the iron-based sintered body that has been subjected to the treatment and a finishing step S6 of finishing the iron-based sintered body that has been subjected to the straightening treatment and the tempering treatment are provided. In the finishing process S6, one or a plurality of machining processes such as polishing and shot peening are performed. Of course, the finishing step S6 can be omitted. Although illustration is omitted, if necessary, a cleaning step and an inspection step may be provided after the quenching step S3 and the tempering step S5, respectively.

図2は、図1に示す矯正工程S4に使用する矯正装置10及びその周辺構成を示す図である。この矯正装置10は、搬送路11上を所定の方向に搬送される複数のワーク(すなわち鉄系焼結体1)に対して矯正処理を施すように構成されたもので、金型15a,15b(後述する図3を参照)による鉄系焼結体1の拘束を可能としている。本実施形態では、矯正装置10よりも搬送路11の上流側に、鉄系焼結体1の温度を調整する温度調整室12が配設されている。また、本実施形態では、矯正装置10は、鉄系焼結体1に焼き戻し処理を施すための加熱を行う加熱装置を兼ねており、矯正装置10よりも搬送路11の下流側には鉄系焼結体1に焼き戻し処理を施すための冷却を行う冷却装置13が配設されている。以下、まず矯正装置10の構成を中心に説明し、次いで、この矯正装置10を用いた矯正工程S4及び焼き戻し工程S5の一例を説明する。 FIG. 2 is a diagram showing the straightening device 10 used in the straightening step S4 shown in FIG. 1 and its peripheral configuration. The straightening device 10 is configured to perform a straightening process on a plurality of works (that is, the iron-based sintered body 1) transported on the transport path 11 in a predetermined direction, and the dies 15a and 15b. The iron-based sintered body 1 can be restrained by (see FIG. 3 described later). In the present embodiment, a temperature adjusting chamber 12 that adjusts the temperature of the iron-based sintered body 1 is arranged on the upstream side of the conveying path 11 with respect to the straightening device 10. Further, in the present embodiment, the straightening device 10 also serves as a heating device that performs heating for performing the tempering process on the iron-based sintered body 1, and the iron is provided on the downstream side of the transport path 11 with respect to the straightening device 10. A cooling device 13 that cools the system sintered body 1 to perform a tempering process is provided. Hereinafter, the configuration of the straightening device 10 will be mainly described, and then an example of the straightening process S4 and the tempering process S5 using the straightening device 10 will be described.

ここで、対象となる鉄系焼結体1の形状は原則として任意であり、例えば円盤状(中央の穴の有無は問わない)など薄板状をなすものであってもよい。また、鉄系焼結体1を構成する原料粉末の組成についても原則任意であり、例えば炭素を所定の割合(0.3wt%以上でかつ1.0wt%)含む鉄系粉末を主成分として含む粉末組成を挙げることができる。もちろん、鉄系粉末のみで原料粉末を構成してもよい。また、用途の面から見た鉄系焼結体1の種類についても任意であり、例えばギヤなど、相対的に高い強度や硬度、じん性(疲労強度)などが求められる用途に用いられる機械部品が対象となり得る。 Here, the target iron-based sintered body 1 may have any shape in principle, and may have a thin plate shape such as a disk shape (with or without a central hole). In addition, the composition of the raw material powder that constitutes the iron-based sintered body 1 is also optional in principle, and contains, for example, iron-based powder containing carbon in a predetermined ratio (0.3 wt% or more and 1.0 wt%) as the main component. The powder composition may be mentioned. Of course, the raw material powder may be composed of only iron-based powder. Further, the type of the iron-based sintered body 1 from the viewpoint of application is also arbitrary, and for example, mechanical parts used for applications requiring relatively high strength, hardness, toughness (fatigue strength), such as gears. Can be the target.

矯正装置10は、図3に示すように、鉄系焼結体1を上下方向から挟持し、拘束するための一対の金型15a,15bと、一対の金型15a,15bとそれぞれ接する一対の加熱部16a,16bとを有する。本実施形態では、下側の金型15aと下側の加熱部16aがともに固定型17aに固定されると共に、上側の金型15bと上側の加熱部16bがともに可動型17bに固定されている。これにより、図示しない駆動装置により可動型17bを昇降することにより、可動型17bに固定された上側の金型15bと上側の加熱部16bが昇降するようになっている。 As shown in FIG. 3, the straightening device 10 includes a pair of molds 15a and 15b for sandwiching and restraining the iron-based sintered body 1 from above and below, and a pair of molds 15a and 15b that are in contact with each other. It has heating parts 16a and 16b. In this embodiment, the lower die 15a and the lower heating portion 16a are both fixed to the fixed die 17a, and the upper die 15b and the upper heating portion 16b are both fixed to the movable die 17b. .. As a result, when the movable die 17b is moved up and down by a driving device (not shown), the upper die 15b and the upper heating part 16b fixed to the movable die 17b are moved up and down.

また、本実施形態では、矯正装置10は、各加熱部16a,16bの金型15a,15bと反対の側に一対の断熱部18a,18bをさらに備えると共に、各加熱部16a,16bを冷却する一対の冷却部19a,19bをさらに備える。これにより、各金型15a,15bはそれぞれ対応する加熱部16a,16bにより所定の温度に加熱され得ると共に、断熱部18a,18bにより各金型15a,15bの温度を保持し得る。また、各冷却部19a,19bにより対応する各金型15a,15bを冷却し得る。また、この場合、矯正装置10は、各加熱部16a,16bと各冷却部19a,19bを制御する制御部20をさらに有する。これにより、各金型15a,15bの温度を制御可能としている。 In addition, in the present embodiment, the straightening device 10 further includes a pair of heat insulating parts 18a and 18b on the opposite sides of the heating parts 16a and 16b from the molds 15a and 15b, and cools the heating parts 16a and 16b. It further includes a pair of cooling units 19a and 19b. As a result, the respective molds 15a and 15b can be heated to a predetermined temperature by the corresponding heating units 16a and 16b, and the temperatures of the respective molds 15a and 15b can be maintained by the heat insulating units 18a and 18b. Further, the respective cooling units 19a, 19b can cool the corresponding molds 15a, 15b. In this case, the straightening device 10 further includes a control unit 20 that controls the heating units 16a and 16b and the cooling units 19a and 19b. As a result, the temperature of each mold 15a, 15b can be controlled.

なお、図3では、各加熱部16a,16bは、金属製の加熱用プレート16a1,16b1と、各加熱用プレート16a1,16b1に埋設される一又は複数のカートリッジヒータ16a2,16b2とを有する場合を例示しているが、もちろんこれ以外の構成を採ってもかまわない。同様に、図3では、各冷却部19a,19bは、金属製の冷却用プレート19a1,19b1と、各冷却用プレート19a1,19b1に埋設される冷水管19a2,19b2とを有する場合を例示しているが、もちろんこれ以外の構成を採ってもかまわない。 In addition, in FIG. 3, each heating unit 16a, 16b has a case where it has a metal heating plate 16a1, 16b1 and one or a plurality of cartridge heaters 16a2, 16b2 embedded in each heating plate 16a1, 16b1. Although illustrated, of course, other configurations may be adopted. Similarly, in FIG. 3, each cooling unit 19a, 19b exemplifies a case where the cooling plate 19a1, 19b1 made of metal and the cold water pipes 19a2, 19b2 embedded in each cooling plate 19a1, 19b1 are exemplified. However, of course, other configurations may be adopted.

また、本実施形態では、鉄系焼結体1の搬送路11が水平方向に伸び、矯正装置10を構成する一対の金型15a,15b間を通過するように構成されているが(図3を参照)、もちろん、鉄系焼結体1の搬送態様はこれには限られない。例えば図示は省略するが、搬送路11が、鉄系焼結体1を水平方向に搬送する第一搬送路と、第一搬送路の下流端から鉄系焼結体1を上昇させる第二搬送路と、第二搬送路の下流端から水平方向に鉄系焼結体1を搬送する第三搬送路と、第三搬送路の下流端から鉄系焼結体1を下降させる第四搬送路、及び第四搬送路の下流端から鉄系焼結体1を水平方向に搬送する第五搬送路とで構成されてもよい。また、鉄系焼結体1を搬送路11に沿って搬送するための手段としては任意であり、例えば図示は省略するが、コンベア、あるいは動力シリンダ(油圧シリンダ、エアシリンダ、電動シリンダ)などを採用することができる。 Further, in the present embodiment, the conveying path 11 of the iron-based sintered body 1 is configured to extend in the horizontal direction and pass between the pair of molds 15a and 15b forming the straightening device 10 (see FIG. 3). Of course), of course, the transportation mode of the iron-based sintered body 1 is not limited to this. For example, although illustration is omitted, the transport path 11 is a first transport path for transporting the iron-based sintered body 1 in the horizontal direction, and a second transport for raising the iron-based sintered body 1 from the downstream end of the first transport path. Path, a third conveyor path for horizontally conveying the iron-based sintered body 1 from the downstream end of the second conveyor path, and a fourth conveyor path for descending the iron-based sintered body 1 from the downstream end of the third conveyor path. , And a fifth conveyance path for horizontally conveying the iron-based sintered body 1 from the downstream end of the fourth conveyance path. The means for conveying the iron-based sintered body 1 along the conveying path 11 is arbitrary and, for example, although not shown, a conveyor or a power cylinder (hydraulic cylinder, air cylinder, electric cylinder) or the like is used. Can be adopted.

また、搬送路11上の鉄系焼結体1を一対の金型15a,15b間に導入及び排出するための手段についても任意であり、例えば図示は省略するが、搬送路11上の鉄系焼結体1を下流側に向けて押出す押出し装置や、搬送路11上の鉄系焼結体1を下流側に向けて引込む引込み装置を採用することができる。あるいは、同じく図示は省略するが、搬送路11上の鉄系焼結体1をピックアップして一対の金型15a,15b間に導入すると共に、一対の金型15a,15b間から鉄系焼結体1を取出して搬送路11上に復帰させるためのロボットアームを採用してもよい。 Further, means for introducing and discharging the iron-based sintered body 1 on the transport path 11 between the pair of molds 15a and 15b is also arbitrary, and for example, although not shown, the iron-based sintered body 1 on the transport path 11 is omitted. An extruding device that extrudes the sintered body 1 toward the downstream side, or a drawing device that retracts the iron-based sintered body 1 on the transport path 11 toward the downstream side can be used. Alternatively, although not shown in the figure, the iron-based sintered body 1 on the conveying path 11 is picked up and introduced between the pair of molds 15a and 15b, and the iron-based sintered body is inserted between the pair of molds 15a and 15b. A robot arm for taking out the body 1 and returning it to the transport path 11 may be adopted.

以上の構成を有する矯正装置10は、搬送路11の上流側と下流側とで、温度調整室12及び冷却装置13とそれぞれ隣接している(図2を参照)。これにより、温度調整室12から搬出された鉄系焼結体1が矯正装置10内に搬入され、矯正装置10から搬出された鉄系焼結体1が冷却装置13内に搬入されるようになっている。 The straightening device 10 having the above configuration is adjacent to the temperature adjusting chamber 12 and the cooling device 13 on the upstream side and the downstream side of the transport path 11 (see FIG. 2 ). As a result, the iron-based sintered body 1 carried out from the temperature adjusting chamber 12 is carried into the straightening device 10, and the iron-based sintered body 1 carried out from the straightening device 10 is carried into the cooling device 13. Has become.

温度調整室12は、搬入された鉄系焼結体1を所定の温度に調整するための装置であり、温度調整の方式に応じた装置構成をとる。例えば空調により温度調整を行う場合、ともに図示しない制御部により空調装置を制御して、温度調整室12内の温度を100度未満に調整する。本実施形態では、温度調整室12内の温度を常温(5〜35度)の範囲における所定の温度(例えば20度)に調整し、焼入れ工程S3を経て温度調整室12内に搬入された鉄系焼結体1の温度を上記所定の温度に調整可能としている。なお、図3に示す矯正装置10の制御部20で、矯正装置10に隣接する温度調整室12内の温度を調整してもよい。この場合、制御部20は、一対の金型15a,15bの温度と、一対の金型15a,15b間に導入される直前の鉄系焼結体1の温度の双方を制御し得る。 The temperature adjustment chamber 12 is a device for adjusting the temperature of the iron-based sintered body 1 that has been carried in to a predetermined temperature, and has a device configuration according to the temperature adjustment method. For example, when the temperature is adjusted by air conditioning, the control unit (not shown) controls the air conditioner to adjust the temperature in the temperature adjustment chamber 12 to less than 100 degrees. In the present embodiment, the temperature inside the temperature adjustment chamber 12 is adjusted to a predetermined temperature (for example, 20 degrees) in the range of normal temperature (5 to 35 degrees), and the iron carried into the temperature adjustment chamber 12 through the quenching step S3. The temperature of the system sintered body 1 can be adjusted to the above predetermined temperature. The controller 20 of the straightening device 10 shown in FIG. 3 may adjust the temperature in the temperature adjusting chamber 12 adjacent to the straightening device 10. In this case, the control unit 20 can control both the temperature of the pair of molds 15a and 15b and the temperature of the iron-based sintered body 1 immediately before being introduced between the pair of molds 15a and 15b.

冷却装置13は、矯正装置10により加熱された鉄系焼結体1を冷却するための装置であり、冷却の方式に応じた装置構成をとる。例えば空冷であれば冷却装置13の内部空間は図示しない空調装置により所定の雰囲気温度に管理されており、冷却装置13内に搬入された鉄系焼結体1が所定の冷却速度で所定の温度まで冷却される。あるいは、水冷であれば冷却装置13は図示しない冷却液の液槽を有しており、冷却装置13内に搬入された鉄系焼結体1を冷却液中に浸漬することで所定の冷却速度で所定の温度まで冷却される。 The cooling device 13 is a device for cooling the iron-based sintered body 1 heated by the straightening device 10, and has a device configuration according to the cooling method. For example, in the case of air cooling, the internal space of the cooling device 13 is controlled to a predetermined ambient temperature by an air conditioner (not shown), and the iron-based sintered body 1 carried into the cooling device 13 is cooled to a predetermined temperature at a predetermined cooling rate. Cooled down. Alternatively, in the case of water cooling, the cooling device 13 has a liquid tank for a cooling liquid (not shown), and the iron-based sintered body 1 carried into the cooling device 13 is immersed in the cooling liquid to obtain a predetermined cooling rate. Is cooled to a predetermined temperature.

次に、本発明に係る鉄系焼結体1の製造方法の一例を、上記構成の矯正装置10を用いた鉄系焼結体1の矯正工程S4と焼き戻し工程S5を中心に説明する。 Next, an example of a method for manufacturing the iron-based sintered body 1 according to the present invention will be described focusing on the straightening step S4 and the tempering step S5 of the iron-based sintered body 1 using the straightening apparatus 10 having the above-described configuration.

(S1)成形工程
この工程では、まず上述した組成の鉄系粉末を主成分とする原料粉末を図示しない成形装置に供給し、加圧する。これにより上記原料粉末を圧縮成形し、所定形状の圧粉成形体を得る。
(S1) Molding Step In this step, first, a raw material powder containing iron-based powder having the above-mentioned composition as a main component is supplied to a molding device (not shown) and pressurized. Thus, the raw material powder is compression-molded to obtain a green compact having a predetermined shape.

(S2)焼結工程
続いて、成形工程S1で得られた圧粉成形体を図示しない焼結装置に供給し、所定の加熱処理を施すことで、焼結体(鉄系焼結体1)を得る。この際、加熱温度は、原料粉末(通常、主成分となる鉄系粉末)の焼結温度の範囲で設定される。
(S2) Sintering Step Subsequently, the powder compact obtained in the molding step S1 is supplied to a sintering device (not shown) and subjected to a predetermined heat treatment, thereby obtaining a sintered body (iron-based sintered body 1). To get At this time, the heating temperature is set within the range of the sintering temperature of the raw material powder (usually the iron-based powder that is the main component).

(S3)焼入れ工程
この工程では、焼結工程S2で得られた鉄系焼結体1を図示しない焼入れ装置(加熱装置、冷却装置)に供給し、所定の温度履歴で加熱及び冷却することにより焼入れ処理を施す。この時点で、鉄系焼結体1によっては、焼入れ処理に伴う変形が生じる。
(S3) Quenching Step In this step, the iron-based sintered body 1 obtained in the sintering step S2 is supplied to a quenching device (heating device, cooling device) not shown, and is heated and cooled at a predetermined temperature history. Apply quenching treatment. At this time, depending on the iron-based sintered body 1, deformation occurs due to the quenching treatment.

(S4)矯正工程
(S5)焼き戻し工程
上述のようにして焼入れ処理が施された状態の鉄系焼結体1を得た後、この鉄系焼結体1に矯正処理を施す。本実施形態では、矯正処理と併せて焼き戻し処理を施す。具体的には、図2に示すように、焼入れ処理が施された状態の鉄系焼結体1を搬送路11に沿って搬送し、矯正装置10とその上流側で隣接する温度調整室12内に搬入する。ここで温度調整室12内の温度を100度未満(例えば常温)に調整しておき、かつこの雰囲気温度下に鉄系焼結体1を所定時間の間、保持することで、搬入された鉄系焼結体1の温度が100度未満の状態となる。温度が100度未満の状態となった鉄系焼結体1は搬送路11の下流側で温度調整室12と隣接する矯正装置10内に搬入される。
(S4) Straightening step (S5) Tempering step After obtaining the iron-based sintered body 1 in the state where the quenching treatment is performed as described above, the iron-based sintered body 1 is subjected to the straightening treatment. In this embodiment, the tempering process is performed together with the straightening process. Specifically, as shown in FIG. 2, the iron-based sintered body 1 in the state of being subjected to the quenching treatment is conveyed along the conveying path 11, and the temperature adjusting chamber 12 adjacent to the straightening device 10 on the upstream side thereof. Bring it in. Here, the temperature of the temperature adjusting chamber 12 is adjusted to less than 100 degrees (for example, room temperature), and the iron-based sintered body 1 is held at this ambient temperature for a predetermined time, so that the iron carried in is transferred. The temperature of the system sintered body 1 becomes less than 100 degrees. The iron-based sintered body 1 in a state where the temperature is lower than 100 degrees is carried into the straightening device 10 adjacent to the temperature adjusting chamber 12 on the downstream side of the transport path 11.

矯正装置10内に搬入された鉄系焼結体1は、上述した所定の手段により一対の金型15a,15b間(図3を参照)に導入される。一対の金型15a,15b間に導入された時点における鉄系焼結体1の温度は、温度調整室12を搬出した時点の温度と実質的に等しい(ほとんど変わらない)ことから、鉄系焼結体1は、100度未満の温度の状態で一対の金型15a,15b間に導入される。この際、制御部20により矯正装置10の各加熱部16a,16bが加熱され、鉄系焼結体1の温度よりも高温の状態とされる。具体的には、各金型15a,15bは、鉄系焼結体1の温度と比べて200度以上高い温度(例えば250度以上でかつ350度以下の範囲における所定の温度)に加熱された状態にある。なお、本実施形態のように、矯正工程S4と焼き戻し工程S5を同時に実施する場合、各金型15a,15bの温度は、十分な矯正効果が期待できる範囲内であって、かつ焼き戻しによる各種機械特性の向上が見込まれる範囲内(例えば270度以上でかつ320度以下)で設定されるのがよい。 The iron-based sintered body 1 carried into the straightening device 10 is introduced between the pair of molds 15a and 15b (see FIG. 3) by the above-mentioned predetermined means. Since the temperature of the iron-based sintered body 1 at the time of being introduced between the pair of molds 15a and 15b is substantially equal to the temperature at the time of carrying out the temperature adjustment chamber 12 (almost unchanged), the iron-based baking is performed. The united body 1 is introduced between the pair of molds 15a and 15b at a temperature of less than 100 degrees. At this time, the control unit 20 heats the heating units 16a and 16b of the straightening device 10 to a temperature higher than the temperature of the iron-based sintered body 1. Specifically, each die 15a, 15b is heated to a temperature higher than the temperature of the iron-based sintered body 1 by 200 degrees or more (for example, a predetermined temperature in the range of 250 degrees or more and 350 degrees or less). Is in a state. When the straightening step S4 and the tempering step S5 are performed at the same time as in the present embodiment, the temperatures of the respective molds 15a and 15b are within a range in which a sufficient straightening effect can be expected, and It is preferable to set within a range in which various mechanical characteristics are expected to be improved (for example, 270 degrees or more and 320 degrees or less).

上述のように鉄系焼結体1と金型15a,15bの温度調整を行った状態で、図示しない駆動装置により可動型17bを下降させる。これにより、可動型17bと共に上側の金型15bが下側の金型15aに接近し、これら一対の金型15a,15b間に導入された状態の鉄系焼結体1を上下方向から挟持する。この際、例えば鉄系焼結体1に対する加圧力を調整することにより、鉄系焼結体1を所定の加圧力で拘束する。そして、この拘束状態を一定時間(例えば1〜20分の範囲における所定の時間)の間保持する。これにより、鉄系焼結体1の変形が矯正される。これにより、鉄系焼結体1に対する矯正処理が完了する。また、本実施形態では、一対の金型15a,15bにより鉄系焼結体1が焼き戻し可能な温度にまで加熱される(焼き戻し工程S5の加熱工程)。然る後、可動型17bを上昇させて一対の金型15a,15bを互いに離れる向きに移動させ、鉄系焼結体1を一対の金型15a,15b間から上述した所定の手段で排出する。なお、上述のように保持している間、例えば各金型15a,15bの温度が一定となるよう制御部20による温度制御が行われる。もちろん、矯正や焼き戻しの結果に悪影響を及ぼさない範囲で温度を変動させてもかまわない。 With the temperature of the iron-based sintered body 1 and the molds 15a and 15b adjusted as described above, the movable mold 17b is lowered by a driving device (not shown). As a result, the upper mold 15b approaches the lower mold 15a together with the movable mold 17b, and the iron-based sintered body 1 in the state of being introduced between the pair of molds 15a and 15b is sandwiched from the vertical direction. .. At this time, for example, by adjusting the pressure applied to the iron-based sintered body 1, the iron-based sintered body 1 is constrained at a predetermined pressure. Then, this restrained state is held for a certain time (for example, a predetermined time within a range of 1 to 20 minutes). As a result, the deformation of the iron-based sintered body 1 is corrected. As a result, the straightening process for the iron-based sintered body 1 is completed. Further, in the present embodiment, the iron-based sintered body 1 is heated to a temperature at which tempering can be performed by the pair of molds 15a and 15b (heating step of tempering step S5). After that, the movable mold 17b is raised to move the pair of molds 15a, 15b away from each other, and the iron-based sintered body 1 is discharged from between the pair of molds 15a, 15b by the above-mentioned predetermined means. .. In addition, during the holding as described above, the temperature control by the control unit 20 is performed so that the temperature of each of the molds 15a and 15b becomes constant. Of course, the temperature may be changed within a range that does not adversely affect the results of straightening and tempering.

上述のように一対の金型15a,15b間から排出された鉄系焼結体1に対して、本実施形態では、冷却を行う(焼き戻し工程S5の冷却工程)。具体的には、図2に示すように、搬送路11上に復帰した鉄系焼結体1を下流側に搬送して、矯正装置10から搬出すると共に冷却装置13内に搬入する。冷却装置13内では、所定の冷却速度で矯正開始時の温度(100度以下、ここでは常温)にまで冷却される。これにより、鉄系焼結体1に対する焼き戻し処理が完了する。焼き戻し処理が完了した鉄系焼結体1は、搬送路11上を下流側に搬送され、冷却装置13から搬出される。 In the present embodiment, the iron-based sintered body 1 discharged between the pair of molds 15a and 15b as described above is cooled (cooling step of tempering step S5). Specifically, as shown in FIG. 2, the iron-based sintered body 1 that has returned to the transport path 11 is transported to the downstream side, unloaded from the straightening device 10, and loaded into the cooling device 13. In the cooling device 13, it is cooled at a predetermined cooling rate to the temperature at the start of straightening (100 degrees or less, here normal temperature). This completes the tempering process for the iron-based sintered body 1. The iron-based sintered body 1 for which the tempering process has been completed is transported to the downstream side on the transport path 11 and is unloaded from the cooling device 13.

(S6)仕上げ加工工程
冷却装置13から搬出された鉄系焼結体1は、次工程である仕上げ加工工程S6へ搬送される。そして、仕上げ加工工程S6で、研磨やショットピーニングなどの機械加工が施され、鉄系焼結体1が最終的な製品に即した性状(例えば硬度、表面粗さ、形状精度など)に仕上げられる。以上のようにして、多数の鉄系焼結体1が連続的に製造される。
(S6) Finishing Step The iron-based sintered body 1 carried out from the cooling device 13 is conveyed to the finishing step S6 which is the next step. Then, in the finishing step S6, mechanical processing such as polishing and shot peening is performed, and the iron-based sintered body 1 is finished to have properties (for example, hardness, surface roughness, shape accuracy) suitable for the final product. .. As described above, many iron-based sintered bodies 1 are continuously manufactured.

以上述べたように、本発明に係る鉄系焼結体の製造方法によれば、矯正工程S4において、100度未満の状態にある鉄系焼結体1を、加熱により鉄系焼結体1よりも高温にした状態の金型15a,15bで拘束することにより、従来よりも優れた矯正効果を得ることができる。また、鉄系焼結体1を相対的に低温とし、金型15a,15bを加熱により相対的に高温にした状態で鉄系焼結体1を拘束する場合、金型15a,15bの温度を制御部20により制御することで、比較的容易に焼入れ以外の熱処理である焼き戻し工程S5を矯正工程S4と同時に施すことができる。よって、焼入れ工程S3後の熱処理によって鉄系焼結体1が再び変形する事態を回避して、優れた形状精度を維持することができる。以上より、本発明によれば、各種機械特性に優れ、かつ形状精度に優れた鉄系焼結体1を得ることが可能となる。 As described above, according to the method for manufacturing an iron-based sintered body according to the present invention, the iron-based sintered body 1 in a state of less than 100 degrees is heated by the iron-based sintered body 1 in the straightening step S4. By restraining the molds 15a and 15b in a state where the temperature is higher than that, it is possible to obtain a straightening effect superior to the conventional one. When the iron-based sintered body 1 is held at a relatively low temperature and the dies 15a and 15b are heated to a relatively high temperature to restrain the iron-based sintered body 1, the temperatures of the dies 15a and 15b are changed. By controlling by the control unit 20, the tempering step S5, which is a heat treatment other than quenching, can be performed relatively easily at the same time as the straightening step S4. Therefore, it is possible to avoid the situation where the iron-based sintered body 1 is deformed again by the heat treatment after the quenching step S3, and to maintain excellent shape accuracy. As described above, according to the present invention, it is possible to obtain the iron-based sintered body 1 which is excellent in various mechanical characteristics and is excellent in shape accuracy.

また、本実施形態では、鉄系焼結体1の温度を常温とし、かつ金型15a,15bの温度と鉄系焼結体1の温度との差を200度以上とした状態で、鉄系焼結体1を拘束するようにしたので、さらに優れた矯正効果を得ることができる。特に、鉄系焼結体1が薄板状をなし、焼入れ処理により大きな反りを生じる場合など、熱処理後の変形量が大きい場合に有効となる。 In the present embodiment, the temperature of the iron-based sintered body 1 is room temperature, and the difference between the temperature of the molds 15a and 15b and the temperature of the iron-based sintered body 1 is 200 degrees or more. Since the sintered body 1 is constrained, a further excellent straightening effect can be obtained. In particular, it is effective when the iron-based sintered body 1 has a thin plate shape and a large amount of deformation occurs after the heat treatment, such as when a large amount of warpage occurs due to the quenching treatment.

また、本実施形態では、鉄系焼結体1に対して焼き戻し処理を施す焼き戻し工程S5をさらに備え、矯正装置10の金型15a,15bによる拘束で鉄系焼結体1を加熱することにより焼き戻し処理を施すようにした。これにより、焼き戻しに伴って鉄系焼結体1に生じる変形を一対の金型15a,15bで矯正することができる。あるいは、焼き戻しに伴って鉄系焼結体1に生じるはずの変形を一対の金型15a,15bで抑止することができる。これにより、焼き戻し工程S5後においても鉄系焼結体1に高い形状精度を付与することができる。もちろん、鉄系焼結体1に対して矯正処理と同時に焼き戻し処理を施すことができるので、生産性の観点でも好ましい。 In addition, in the present embodiment, a tempering step S5 for performing a tempering process on the iron-based sintered body 1 is further provided, and the iron-based sintered body 1 is heated by being restrained by the molds 15a and 15b of the straightening device 10. As a result, a tempering process was performed. As a result, the deformation of the iron-based sintered body 1 due to tempering can be corrected by the pair of molds 15a and 15b. Alternatively, the pair of molds 15a and 15b can suppress the deformation that should occur in the iron-based sintered body 1 due to the tempering. As a result, it is possible to provide the iron-based sintered body 1 with high shape accuracy even after the tempering step S5. Of course, the iron-based sintered body 1 can be subjected to the tempering treatment at the same time as the straightening treatment, which is also preferable from the viewpoint of productivity.

以上、本発明の一実施形態について説明したが、本発明に係る鉄系焼結体の製造方法及び製造装置は、その趣旨を逸脱しない範囲において、上記以外の構成を採ることも可能である。 Although one embodiment of the present invention has been described above, the manufacturing method and the manufacturing apparatus for an iron-based sintered body according to the present invention can have configurations other than the above without departing from the spirit of the invention.

図4は、本発明の他の実施形態に係る鉄系焼結体の製造方法の流れを示すフローチャートである。図4に示すように、この製造方法は、成形工程S1の後に、仮焼結工程S7と焼結焼入れ工程S8を設けた点において、図1に示す製造方法と相違する。具体的に、本実施形態では、成形工程S1で、鉄系粉末を主成分とする原料粉末の圧粉成形体を成形した後、この圧粉成形体を加熱して仮焼結処理を施す。この仮焼結工程S7では、原料粉末(鉄系粉末)の材質に応じて設定される焼結温度よりも低い温度で圧粉成形体に加熱を施す。これにより、以後のワーク(圧粉成形体)の取り扱い性が高められる。次いで、焼結焼入れ工程S8では、仮焼結処理が施された圧粉成形体を所定の温度にまで加熱して焼結すると共に、加熱後の冷却により焼入れを施す。これにより、焼入れが施された状態の鉄系焼結体1が得られる。 FIG. 4 is a flowchart showing a flow of a method for manufacturing an iron-based sintered body according to another embodiment of the present invention. As shown in FIG. 4, this manufacturing method differs from the manufacturing method shown in FIG. 1 in that a provisional sintering step S7 and a sintering and hardening step S8 are provided after the molding step S1. Specifically, in the present embodiment, in the molding step S1, a powder compact of a raw material powder containing iron-based powder as a main component is compacted, and then this compact is heated and subjected to temporary sintering treatment. In the temporary sintering step S7, the green compact is heated at a temperature lower than the sintering temperature set according to the material of the raw material powder (iron-based powder). As a result, the subsequent workability of the work (compacted powder compact) is improved. Next, in a sintering and quenching step S8, the green compact subjected to the temporary sintering treatment is heated to a predetermined temperature to be sintered, and is quenched by cooling after heating. As a result, the iron-based sintered body 1 that has been quenched is obtained.

本実施形態においても、矯正工程S4において、100度未満の状態にある鉄系焼結体1を、加熱により鉄系焼結体1よりも高温にした状態の金型15a,15bで拘束することにより、従来よりも優れた矯正効果を得ることができる。また、鉄系焼結体1を相対的に低温とし、金型15a,15bを加熱により相対的に高温にした状態で鉄系焼結体1を拘束する場合、金型15a,15bの温度を制御部20により制御することで、比較的容易に焼き戻し工程S5を矯正工程S4と同時に施すことができる。よって、焼結焼入れ工程S8後の熱処理によって鉄系焼結体1が再び変形する事態を回避して、優れた形状精度を維持することができる。以上より、本実施形態に係る製造方法及び製造装置においても、各種機械特性に優れ、かつ形状精度に優れた鉄系焼結体1を得ることが可能となる。また、本実施形態のように、焼結焼入れ工程S8により焼結処理の一部としての冷却を利用して焼入れ処理を施すことで、工程数の低減化を図ることができ、経済的である。 Also in the present embodiment, in the correcting step S4, the iron-based sintered body 1 in a state of less than 100 degrees is restrained by the molds 15a and 15b in a state where the temperature is higher than that of the iron-based sintered body 1 by heating. As a result, it is possible to obtain a correction effect that is superior to the conventional one. When the iron-based sintered body 1 is held at a relatively low temperature and the dies 15a and 15b are heated to a relatively high temperature to restrain the iron-based sintered body 1, the temperatures of the dies 15a and 15b are changed. By controlling by the control unit 20, the tempering step S5 can be performed relatively easily at the same time as the straightening step S4. Therefore, it is possible to avoid the situation where the iron-based sintered body 1 is deformed again by the heat treatment after the sintering and quenching step S8, and to maintain excellent shape accuracy. As described above, also in the manufacturing method and the manufacturing apparatus according to the present embodiment, it is possible to obtain the iron-based sintered body 1 which is excellent in various mechanical characteristics and in shape accuracy. Further, as in the present embodiment, by performing the quenching treatment by utilizing the cooling as a part of the sintering treatment in the sintering and quenching step S8, the number of steps can be reduced, which is economical. ..

なお、以上の説明では、矯正工程S4の前に、焼入れ工程S3又は焼結焼入れ工程S8を設けた場合を例示したが、もちろん本発明の適用対象はこれには限られない。結果として焼入れが施された状態の鉄系焼結体1と同等の性状を示す限りにおいて、任意の性状の鉄系焼結体に本発明に係る矯正工程S4を施すことが可能である。 In the above description, the case where the quenching step S3 or the sintering and quenching step S8 is provided before the straightening step S4 is illustrated, but the application of the present invention is not limited to this. As a result, it is possible to perform the straightening step S4 according to the present invention on the iron-based sintered body of any property as long as it exhibits the same properties as the iron-based sintered body 1 in the quenched state.

また、以上の説明では、何れの実施形態においても、矯正工程S4と焼き戻し工程S5とを同時に行う場合を例示したが、本発明はこれ以外の形態を採ることも可能である。要は、焼入れ工程S3(又は焼結焼入れ工程S8)と焼き戻し工程S5以外の熱処理工程を鉄系焼結体1に施す場合、当該熱処理工程を矯正工程S4と同時に行ってもよく、またその場合、図3等に示す矯正装置10を用いて上記熱処理の少なくとも一部を実施してもよい。もちろん、焼入れ後に何らの熱処理を施す必要がない場合には、矯正工程S4のみを単独で実施してもかまわない。 Further, in the above description, in any of the embodiments, the case where the straightening step S4 and the tempering step S5 are performed at the same time has been illustrated, but the present invention can take other forms. In short, when the iron-based sintered body 1 is subjected to a heat treatment step other than the quenching step S3 (or the sintering and quenching step S8) and the tempering step S5, the heat treatment step may be performed simultaneously with the straightening step S4. In this case, at least a part of the heat treatment may be performed using the straightening device 10 shown in FIG. Of course, when it is not necessary to perform any heat treatment after quenching, only the straightening step S4 may be performed alone.

また、以上の説明では、矯正装置10とその上流側で隣接して温度調整室12を設け、この温度調整室12で矯正工程S4に供給される鉄系焼結体1の温度を100度未満に調整する場合を例示したが、もちろんこの形態には限定されない。例えば焼入れ工程S3に係る装置と矯正装置10との間に、鉄系焼結体1が常温又はその付近まで自然冷却されるのに十分な大きさの距離を有する場合、特に温度調整室12を設けることなく工程間搬送時の自然冷却で鉄系焼結体1の温度を100度未満にしてもよい。 Further, in the above description, the temperature adjusting chamber 12 is provided adjacent to the straightening device 10 on the upstream side thereof, and the temperature of the iron-based sintered body 1 supplied to the straightening step S4 in the temperature adjusting chamber 12 is less than 100 degrees. However, the present invention is not limited to this form. For example, when the iron-based sintered body 1 has a distance large enough to be naturally cooled to or near room temperature between the apparatus related to the quenching step S3 and the straightening apparatus 10, the temperature control chamber 12 is especially provided. The temperature of the iron-based sintered body 1 may be set to less than 100° C. by natural cooling during conveyance between steps without providing.

また、以上の説明では、矯正装置10に、一対の金型15a,15bと接する加熱部16a,16bを設けて、この加熱部16a,16bの発熱により一対の金型15a,15bを加熱して、鉄系焼結体1の温度よりも高温にした場合を例示したが、もちろんこれ以外の加熱形態も採用可能である。例えば矯正装置10を覆うケーシング内の雰囲気を加熱することにより、一対の金型15a,15bを所定の温度に加熱してもよい。 Further, in the above description, the orthodontic device 10 is provided with the heating units 16a and 16b which are in contact with the pair of molds 15a and 15b, and the pair of molds 15a and 15b are heated by the heat generated by the heating units 16a and 16b. Although the case where the temperature is higher than the temperature of the iron-based sintered body 1 is illustrated, of course, other heating forms can be adopted. For example, the pair of molds 15a and 15b may be heated to a predetermined temperature by heating the atmosphere in the casing that covers the straightening device 10.

また、焼入れ以外の熱処理工程(例えば焼き戻し工程S5)を施すに際し、以上の説明では、矯正装置10で焼き戻し工程S5の加熱処理を実施し、矯正装置10に隣接する冷却装置13で焼き戻し工程S5の冷却処理を実施した場合を例示したが、もちろんこれ以外の形態をとることも可能である。例えば図3に示す矯正装置10の冷却部19a,19bを利用して、一対の金型15a,15bを冷却し、これにより焼き戻し工程S5の冷却処理を矯正装置10内で実施してもよい。 Further, when performing a heat treatment step other than quenching (for example, tempering step S5), in the above description, the heat treatment of the tempering step S5 is performed by the straightening apparatus 10, and the tempering is performed by the cooling apparatus 13 adjacent to the straightening apparatus 10. Although the case where the cooling process of step S5 is performed is illustrated, it is of course possible to take other forms. For example, the cooling units 19a and 19b of the straightening apparatus 10 shown in FIG. 3 may be used to cool the pair of molds 15a and 15b, whereby the cooling process of the tempering step S5 may be performed in the straightening apparatus 10. ..

以下、本発明に係る矯正効果を立証するための実験結果について説明する。 Hereinafter, experimental results for demonstrating the correction effect according to the present invention will be described.

≪試験片≫
本実施例では、中央に孔部を有する円盤状の鉄系焼結体を作製し、試験片として用いた。試験片の寸法は何れも、φ100(外径)×φ30(内径)×t6(厚み寸法)とした。下記の表1に示す組成の鉄系粉末を原料粉末として、圧粉成形した後、仮焼結及び焼結焼入れ処理を施すことで、上記寸法の鉄系焼結体を作製した。

Figure 2020117775
≪Test piece≫
In this example, a disk-shaped iron-based sintered body having a hole in the center was prepared and used as a test piece. The dimensions of all the test pieces were φ100 (outer diameter)×φ30 (inner diameter)×t6 (thickness dimension). The iron-based powder having the composition shown in Table 1 below was used as a raw material powder, which was pressed and then subjected to pre-sintering and sinter-quenching to produce an iron-based sintered body having the above size.
Figure 2020117775

≪試験条件≫
試験装置には、図3に示す矯正装置10を用いた。また、表2に示すように、試験片の温度と、拘束用金型の温度との組み合わせを複数種類(ここでは3種類)用意し、それぞれの場合における矯正前後での変形量を測定した。なお、ここでいう変形量とは、図5に示すように、薄板状の試験片100の内径側端部101と定盤103とが接するように、試験片100を載置した状態における外径側端部102と定盤103との隙間hの大きさをいうものとする。また、拘束時の加圧力は何れも80ton、保持時間(拘束時の加圧力を付与し続けた時間)は何れも5分とした。

Figure 2020117775
≪Test conditions≫
As the test device, the straightening device 10 shown in FIG. 3 was used. Further, as shown in Table 2, a plurality of types (three types in this case) of combinations of the temperature of the test piece and the temperature of the restraining mold were prepared, and the deformation amount before and after the correction in each case was measured. The amount of deformation referred to here is, as shown in FIG. 5, the outer diameter when the test piece 100 is placed such that the inner diameter side end 101 of the thin plate-shaped test piece 100 and the surface plate 103 are in contact with each other. It refers to the size of the gap h between the side end portion 102 and the surface plate 103. Further, the pressing force at the time of restraint was set to 80 tons, and the holding time (the time during which the pressing force at the time of restraint was continuously applied) was set to 5 minutes.
Figure 2020117775

≪試験結果≫
矯正試験の結果を表2に示す。表2に示すように、試験片の温度を高温とし、金型の温度を低温とした場合(比較例4)、矯正効果は確認できなかった。また、試験片の温度を高温とし、かつ金型の温度も高温とした場合(比較例1〜3)、一定の矯正効果は認められたが、試験片の矯正前変形量が大きいほど矯正効果は小さかった。これに対して、試験片の温度を100度未満とし、金型の温度を高温とした場合(実施例1〜5)、非常に優れた矯正効果が認められた。特に矯正前変形量が大きい場合(実施例1〜4)に極めて優れた矯正効果が認められた。以上より、本発明の有用性が立証された。
≪Test result≫
The results of the straightening test are shown in Table 2. As shown in Table 2, when the temperature of the test piece was high and the temperature of the mold was low (Comparative Example 4), the straightening effect could not be confirmed. Further, when the temperature of the test piece was high and the temperature of the mold was also high (Comparative Examples 1 to 3), a certain straightening effect was observed, but the larger the pre-straightening deformation amount of the test piece, the straightening effect. Was small. On the other hand, when the temperature of the test piece was less than 100 degrees and the temperature of the mold was high (Examples 1 to 5), a very excellent straightening effect was observed. Particularly when the pre-correction deformation amount was large (Examples 1 to 4), an extremely excellent correction effect was recognized. From the above, the usefulness of the present invention was proved.

1 鉄系焼結体
10 矯正装置
11 搬送路
12 温度調整室
13 冷却装置
15a,15b 金型
16a,16b 加熱部
16a1,16b1 加熱用プレート
16a2,16b2 カートリッジヒータ
17a 固定型
17b 可動型
18a,18b 断熱部
19a,19b 冷却部
19a1,19b1 冷却用プレート
19a2,19b2 冷水管
20 制御部
100 試験片
101 内径側端部
102 外径側端部
103 定盤
h 隙間
S1 成形工程
S2 焼結工程
S3 焼入れ工程
S4 矯正工程
S5 焼き戻し工程
S6 仕上げ加工工程
S7 仮焼結工程
S8 焼結焼入れ工程
1 Iron-based Sintered Body 10 Straightening Device 11 Conveying Path 12 Temperature Control Chamber 13 Cooling Devices 15a, 15b Molds 16a, 16b Heating Parts 16a1, 16b1 Heating Plates 16a2, 16b2 Cartridge Heater 17a Fixed Mold 17b Movable Molds 18a, 18b Insulation Parts 19a, 19b Cooling parts 19a1, 19b1 Cooling plates 19a2, 19b2 Cold water pipe 20 Control part 100 Test piece 101 Inner diameter side end 102 Outer diameter side end 103 Surface plate h Gap S1 Forming step S2 Sintering step S3 Quenching step S4 Straightening process S5 Tempering process S6 Finishing process S7 Temporary sintering process S8 Sinter hardening process

Claims (13)

鉄系粉末を主成分とする原料粉末を圧縮成形し、焼結することで得られた鉄系焼結体を金型で拘束することで前記鉄系焼結体の矯正を行う矯正工程を備えた鉄系焼結体の製造方法において、
前記矯正工程で、前記鉄系焼結体を100度未満とし、前記金型を加熱により前記鉄系焼結体よりも高温にした状態で、前記鉄系焼結体を前記金型で拘束することを特徴とする、鉄系焼結体の製造方法。
Equipped with a straightening step for straightening the iron-based sintered body by restraining the iron-based sintered body obtained by compressing and sintering the raw material powder containing iron-based powder as a main component with a mold. In the method of manufacturing the iron-based sintered body,
In the correction step, the iron-based sintered body is restrained by the mold while the iron-based sintered body is less than 100 degrees and the mold is heated to a temperature higher than that of the iron-based sintered body. A method for manufacturing an iron-based sintered body, comprising:
前記金型の温度と前記鉄系焼結体の温度との差を200度以上とした請求項1に記載の鉄系焼結体の製造方法。 The method for producing an iron-based sintered body according to claim 1, wherein the difference between the temperature of the mold and the temperature of the iron-based sintered body is 200 degrees or more. 前記鉄系焼結体の温度を常温とした請求項1又は2に記載の鉄系焼結体の製造方法。 The method for manufacturing an iron-based sintered body according to claim 1 or 2, wherein the temperature of the iron-based sintered body is room temperature. 前記金型の温度を400度未満とした請求項1〜3の何れか一項に記載の鉄系焼結体の製造方法。 The method for producing an iron-based sintered body according to claim 1, wherein the temperature of the mold is less than 400 degrees. 前記金型による拘束時間を1分以上でかつ20分以下とした請求項1〜4の何れか一項に記載の鉄系焼結体の製造方法。 The method for producing an iron-based sintered body according to any one of claims 1 to 4, wherein the constraint time by the mold is set to 1 minute or more and 20 minutes or less. 前記鉄系焼結体に対して焼き戻し処理を施す焼き戻し工程をさらに備え、
前記金型による拘束で前記鉄系焼結体を加熱することにより前記焼き戻し処理を施す請求項1〜5の何れか一項に記載の鉄系焼結体の製造方法。
Further comprising a tempering step of performing a tempering process on the iron-based sintered body,
The method for manufacturing an iron-based sintered body according to any one of claims 1 to 5, wherein the tempering treatment is performed by heating the iron-based sintered body with restraint by the mold.
前記矯正工程の前に、前記鉄系粉末を圧縮成形してなる圧粉成形体を焼結して前記鉄系焼結体を得る焼結工程と、前記焼結工程の後、前記鉄系焼結体に焼入れ処理を施す焼入れ工程とをさらに備える請求項1〜6の何れか一項に記載の鉄系焼結体の製造方法。 Before the straightening step, a sintering step of sintering a powder compact formed by compression molding of the iron-based powder to obtain the iron-based sintered body, and a sintering step after the sintering step. The method for manufacturing an iron-based sintered body according to any one of claims 1 to 6, further comprising a quenching step of performing quenching treatment on the united body. 前記矯正工程の前に、前記鉄系粉末を圧縮成形してなる圧粉成形体を所定の温度にまで加熱して焼結すると共に、前記加熱後の冷却により焼入れ処理を施す焼結焼入れ工程をさらに備える請求項1〜6の何れか一項に記載の鉄系焼結体の製造方法。 Prior to the straightening step, a sintering and quenching step of heating the powder compact formed by compression molding of the iron-based powder to a predetermined temperature to sinter it, and performing quenching treatment by cooling after the heating. The method for manufacturing an iron-based sintered body according to any one of claims 1 to 6, further comprising: 前記鉄系粉末は、鉄を主成分とし、かつ少なくとも炭素を含む請求項1〜8の何れか一項に記載の鉄系焼結体の製造方法。 The method for producing an iron-based sintered body according to claim 1, wherein the iron-based powder contains iron as a main component and contains at least carbon. 前記鉄系粉末は、前記炭素を0.3wt%以上でかつ1.0wt%以下含む請求項9に記載の鉄系焼結体の製造方法。 The method for manufacturing an iron-based sintered body according to claim 9, wherein the iron-based powder contains 0.3 wt% or more and 1.0 wt% or less of the carbon. 前記鉄系焼結体は薄板状をなす請求項1〜10の何れか一項に記載の鉄系焼結体の製造方法。 The method for manufacturing an iron-based sintered body according to claim 1, wherein the iron-based sintered body has a thin plate shape. 前記鉄系焼結体はギヤである請求項11に記載の鉄系焼結体の製造方法。 The method for manufacturing an iron-based sintered body according to claim 11, wherein the iron-based sintered body is a gear. 鉄系粉末を主成分とする原料粉末を圧縮成形し、焼結することで得られた鉄系焼結体を拘束することにより前記鉄系焼結体の矯正を行う矯正装置を備えた鉄系焼結体の製造装置において、
前記矯正装置は、前記鉄系焼結体を拘束する金型と、前記金型を加熱する加熱部とを有し、かつ
前記矯正装置は、前記鉄系焼結体を100度未満とし、前記金型を前記加熱部の加熱により前記鉄系焼結体よりも高温にした状態で、前記金型により前記鉄系焼結体を拘束可能に構成されていることを特徴とする、鉄系焼結体の製造装置。
An iron-based system having a straightening device for straightening the iron-based sintered body by constraining the iron-based sintered body obtained by compression-molding and sintering raw material powder containing iron-based powder as a main component In the sintered body manufacturing equipment,
The straightening device has a mold for restraining the iron-based sintered body, and a heating unit for heating the mold, and the straightening device sets the iron-based sintered body to less than 100 degrees, and The iron-based sintered body is configured to be capable of restraining the iron-based sintered body by the die while the die is heated to a temperature higher than that of the iron-based sintered body by heating of the heating unit. Equipment for manufacturing unions.
JP2019010314A 2019-01-24 2019-01-24 Method and apparatus for manufacturing ferrous sintered body Pending JP2020117775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019010314A JP2020117775A (en) 2019-01-24 2019-01-24 Method and apparatus for manufacturing ferrous sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019010314A JP2020117775A (en) 2019-01-24 2019-01-24 Method and apparatus for manufacturing ferrous sintered body

Publications (1)

Publication Number Publication Date
JP2020117775A true JP2020117775A (en) 2020-08-06

Family

ID=71890063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019010314A Pending JP2020117775A (en) 2019-01-24 2019-01-24 Method and apparatus for manufacturing ferrous sintered body

Country Status (1)

Country Link
JP (1) JP2020117775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770158A (en) * 2023-06-28 2023-09-19 扬州新乐新材料有限公司 Preparation method of iron-based composite material for automobile gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770158A (en) * 2023-06-28 2023-09-19 扬州新乐新材料有限公司 Preparation method of iron-based composite material for automobile gear
CN116770158B (en) * 2023-06-28 2023-11-28 扬州新乐新材料有限公司 Preparation method of iron-based composite material for automobile gear

Similar Documents

Publication Publication Date Title
JP5083752B2 (en) Method for producing component parts by deforming a steel plate and apparatus for carrying out the method
JP2019505674A5 (en)
TWI495731B (en) Processes for reducing flatness deviations in alloy articles
CN103934642B (en) A kind of steel cold-extrusion technology
CN103894613A (en) Powder forging process of connecting rods
KR101522513B1 (en) Method for manufacuring a helical gear using powder metallugy
JP7160917B2 (en) Pressing method for coated steel and use of steel
CN105586477A (en) Method for improving hardness of 3D printing martensitic stainless steel structural part
CN105441881A (en) Making method of chromium target and making method of combination of chromium target
US20040115084A1 (en) Method of producing powder metal parts
TR201809224T4 (en) In particular, vehicle chassis, vehicle bodywork and so on. Method for the production of parabolic springs or pitman arms.
JP2020117775A (en) Method and apparatus for manufacturing ferrous sintered body
JP2013173153A (en) Method of heat treating steel plate for hot press
CN103189153A (en) Method for the roll-forming of profiles and a structural part produced thereby
JP5446410B2 (en) Heat treatment method for annular workpiece
CN101910425B (en) A process for forming steel
JP2012066279A (en) Method for producing bearing race
JP2013013907A (en) Warm press forming method for metal plate
RU2482197C1 (en) Method for deformation-thermal processing of austenitic stainless steels
JP2020158828A (en) Method and apparatus for producing sintered product
US7767044B2 (en) Method for heat-treating steel material
JP5869437B2 (en) Method for joining SiC sintered bodies
CN112779382B (en) Heat treatment method for hot work die steel
CN113677459A (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
CN111958955A (en) Nylon SLS (Selective laser sintering) workpiece plane warpage correction method