JP2009111293A - Vacuum suction apparatus and manufacturing method therefor - Google Patents

Vacuum suction apparatus and manufacturing method therefor Download PDF

Info

Publication number
JP2009111293A
JP2009111293A JP2007284482A JP2007284482A JP2009111293A JP 2009111293 A JP2009111293 A JP 2009111293A JP 2007284482 A JP2007284482 A JP 2007284482A JP 2007284482 A JP2007284482 A JP 2007284482A JP 2009111293 A JP2009111293 A JP 2009111293A
Authority
JP
Japan
Prior art keywords
frame
mounting
vacuum suction
porous body
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007284482A
Other languages
Japanese (ja)
Inventor
Motohiro Umetsu
基宏 梅津
Shinya Sato
伸也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007284482A priority Critical patent/JP2009111293A/en
Publication of JP2009111293A publication Critical patent/JP2009111293A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin and light-weight vacuum suction apparatus for carrying, which is superior suction performance. <P>SOLUTION: The vacuum suction apparatus for carrying a substrate comprises a mounting part composed of a ceramics porous body, having a mounting surface for mounting the substrate, a roughly concave frame part composed of dense ceramics surrounding the mounting part and a support part for supporting the frame part. The vacuum suction apparatus is provided with a suction hole which directly communicates with substantially the center of the mounting part and is provided on the concave part bottom surface of the frame part; a first suction groove communicating with the mounting part via the suction hole and provided on the bonding surface of the frame part or the support part; and the mounting part and the frame part are directly bonded without a gap. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、半導体ウエハやガラス基板等を吸着保持する真空吸着装置に関する。 The present invention relates to a vacuum suction apparatus that holds, for example, a semiconductor wafer or a glass substrate by suction.

従来、例えば半導体装置の製造工程において、半導体ウエハを搬送、加工、検査する場合には、真空圧を利用した真空吸着装置が使用され、均一な吸着を行うために、ウエハを吸着載置する面を多孔質体で形成した真空吸着装置が用いられてきた。例えば、多孔質体からなる載置部を樹脂またはガラスなどの接着剤により支持部に接合してなり、下方の吸引孔より真空吸引することにより、上記載置部の載置面に半導体ウエハの全面を吸着するものが提案されている(例えば、特許文献1)。
特開2005−50855号公報
Conventionally, when a semiconductor wafer is transported, processed, or inspected, for example, in the manufacturing process of a semiconductor device, a vacuum suction device using a vacuum pressure has been used. A vacuum adsorption apparatus in which a porous body is formed has been used. For example, the mounting portion made of a porous body is bonded to the support portion with an adhesive such as resin or glass, and vacuum suction is performed from the lower suction hole, so that the semiconductor wafer is placed on the mounting surface of the mounting portion. The thing which adsorb | sucks the whole surface is proposed (for example, patent document 1).
Japanese Patent Laying-Open No. 2005-50855

特に近年、半導体ウエハの薄型化が進み、反りや割れが生じやすくなっており、その取扱いは難しくなっている。また、プロセス処理の高精度化やウエハの大口径化に伴って、枚葉式の処理が広く行われており、ウエハを全面吸着できる多孔質体を載置部とした真空吸着装置が用いられている。 In particular, in recent years, semiconductor wafers have become thinner, and warping and cracking are likely to occur, making it difficult to handle. In addition, with the increase in process accuracy and wafer diameter, single-wafer processing is widely performed, and a vacuum adsorption device using a porous body that can adsorb the entire wafer surface is used. ing.

ウエハの搬送においては、アームの先端に取り付けられた吸着装置にウエハを吸着させて動かすことから、吸着装置は軽量であることが好ましい。また、ウエハが多段に収納されたケースからウエハを一枚ずつ取り出すには、吸着装置自体が薄型であることが望まれる。 In transferring the wafer, the suction device is preferably lightweight because the wafer is sucked and moved by the suction device attached to the tip of the arm. Further, in order to take out the wafers one by one from the case in which the wafers are stored in multiple stages, it is desirable that the suction device itself be thin.

ここで、薄型で軽量の吸着装置を製造するには、多孔質体自体を薄型に加工する必要があるが、多孔質体は脆いため薄型加工は困難であり、加工できたとしてもその後の取扱いや接合の際に割れや欠けが生じやすい問題があった。 Here, in order to manufacture a thin and lightweight adsorption device, the porous body itself needs to be processed into a thin shape, but since the porous body is fragile, it is difficult to process the thin shape, and even if it can be processed, the subsequent handling In addition, there is a problem that cracks and chips are likely to occur during joining.

また、多孔質体の接合は、接合材が多孔質体に浸透しやすいため、ムラなく接合することは困難であり、載置部が外れることが多く問題となっていた。 In addition, since the bonding material easily penetrates into the porous body, it is difficult to bond the porous body without unevenness, and there are many problems that the mounting portion is detached.

さらに、薄型の吸着装置では、吸引孔や吸引溝の配置が形状上制約を受けるため、これらの形成が難しく、適切な吸着性能が得られずに吸着したウエハにシワができたり、破損したりする問題があった。 Furthermore, in the thin suction device, the arrangement of the suction holes and suction grooves is restricted due to the shape, so it is difficult to form these, and the wafers that are sucked are wrinkled or damaged without obtaining proper suction performance. There was a problem to do.

本発明はこれらの問題に鑑みて見出されたものであり、薄型軽量で、かつ、吸着性能に優れた搬送用の真空吸着装置を提供する。 The present invention has been found in view of these problems, and provides a vacuum suction device for conveyance that is thin and light and has excellent suction performance.

本発明は、上記課題を解決するために、基板を載置する載置面を有するセラミックス多孔質体からなる載置部と、該載置部を取り囲む略凹型の緻密質セラミックスからなる枠部と、該枠部を支持する支持部と、からなる基板搬送用の真空吸着装置であって、前記載置部の略中央に直接連通し、前記枠部の凹型部底面に設けられた吸引孔と、該吸引孔を介して前記載置部に連通し、前記枠部または前記支持部の接合面に設けられた第一吸引溝と、を有し、前記載置部と前記枠部とが隙間無く直接接合されていることを特徴とする真空吸着装置を提供する。 In order to solve the above-mentioned problems, the present invention provides a mounting portion made of a porous ceramic body having a mounting surface on which a substrate is mounted, and a frame portion made of a substantially concave dense ceramic surrounding the mounting portion. A vacuum suction device for transporting a substrate, comprising: a support portion that supports the frame portion; and a suction hole provided in a bottom surface of the concave portion of the frame portion that communicates directly with the substantially center of the mounting portion. And the first suction groove provided on the joint surface of the frame part or the support part, and the gap between the placement part and the frame part. There is provided a vacuum suction device characterized by being directly joined without any problem.

このような構成とすることにより、薄型で、多孔質体に割れや欠け等が無く、しかも多孔質体が外れることがない吸着装置を得ることができる。さらに、本発明によれば、薄型の形状であっても、中央部から吸引できることから、ウエハにシワができたり、破損したりする問題も解消される。また、載置部と枠部との間に接着層を介することなく、直接接合された構成とすることにより、従来の真空吸着装置のような接着材の多孔質体への浸透による隙間や接着不良が生じないので、載置部が外れる問題は解消される。 By adopting such a configuration, it is possible to obtain an adsorption device that is thin, has no cracks or chips in the porous body, and does not come off the porous body. Furthermore, according to the present invention, even if it is a thin shape, it can be sucked from the center portion, so that the problem that the wafer is wrinkled or broken is also solved. In addition, by adopting a structure in which the mounting portion and the frame portion are directly joined without an adhesive layer, a gap or adhesion due to penetration of an adhesive material into a porous body such as a conventional vacuum suction device is achieved. Since the defect does not occur, the problem that the mounting portion is detached is solved.

また、本発明の真空吸着装置は、前記載置部の厚みは2mm以下であって、前記載置部を含めた真空吸着装置の全厚みが5mm以下である。さらに、前記吸引孔及び前記載置部の双方に直接連通し、前記第一吸引溝とは前記吸引孔を介して連通する前記枠部の凹型部底面に設けた第二吸引溝を有することを特徴とする。このように非常に薄型であっても、基板の全面を吸着でき、ウエハを破損したりするおそれのない真空吸着装置を提供する。 In the vacuum suction device of the present invention, the placement portion has a thickness of 2 mm or less, and the total thickness of the vacuum suction device including the placement portion is 5 mm or less. Further, the first suction groove communicates with both the suction hole and the mounting portion, and the first suction groove has a second suction groove provided on the bottom surface of the concave portion of the frame portion that communicates with the suction hole. Features. Thus, even if it is very thin, a vacuum suction device that can suck the entire surface of the substrate and does not cause damage to the wafer is provided.

載置部の厚みを2mm以下、真空吸着装置の全厚みを5mm以下としたのは、この範囲よりも大きい真空吸着装置は、薄型が求められる搬送用には適さず、また、本発明のような真空吸着装置の構成を必要としないからである。ここで、載置部の厚みは、0.5mm以上とすることが好ましい。これは、載置部加工時の加工負荷およびウエハ吸着時の真空圧等から、破損することなく作製、使用できる載置部の厚みとして提供できるものである。これにともないセラミックス等の加工性を考慮して真空吸着装置の全厚みは2mm以上とすることが好ましい。枠部および支持部の厚みとしては、1〜2.5mmの範囲で作製することが好ましい。 The reason why the thickness of the mounting portion is 2 mm or less and the total thickness of the vacuum suction device is 5 mm or less is that a vacuum suction device larger than this range is not suitable for transport where thinness is required, and as in the present invention. This is because a simple vacuum suction device configuration is not required. Here, the thickness of the placement portion is preferably 0.5 mm or more. This can be provided as the thickness of the mounting portion that can be produced and used without damage from the processing load at the time of processing the mounting portion and the vacuum pressure at the time of wafer adsorption. Accordingly, considering the workability of ceramics and the like, the total thickness of the vacuum suction device is preferably 2 mm or more. As thickness of a frame part and a support part, producing in the range of 1-2.5 mm is preferable.

前記支持部の材質は、セラミックスを強化材とした金属基複合材料(MMC)または、緻密質セラミックスである。支持部を接合することで、薄型の真空吸着装置であっても第一吸引溝を容易に形成することができる。また、支持部の材質としてセラミックスを強化材とした金属基複合材料を用いれば、靱性を大幅に高めることができ、薄型であっても破損し難い真空吸着装置とすることができる。 The material of the support part is a metal matrix composite material (MMC) made of ceramics as a reinforcing material or dense ceramics. By joining the support portions, the first suction groove can be easily formed even with a thin vacuum suction device. Further, if a metal matrix composite material made of ceramics as a reinforcing material is used as the material of the support portion, the toughness can be greatly increased, and a vacuum suction device that is not easily damaged even if it is thin can be obtained.

本発明の真空吸着装置は、略凹型の枠部にセラミックス粉末と結合材を含むセラミックス多孔質体原料の混合物を投入し、成形体を成形する工程と、前記成形体を前記枠部とともに前記結合材が溶融する温度以上に加熱して、セラミックス多孔質体を得るとともに、前記結合材によりセラミックス多孔質体と枠部とを隙間無く直接接合する工程と、前記枠部と支持部とを接合する工程と、前記枠部と前記セラミックス多孔質体とを共に研磨して載置部を形成する工程と、を含む製造方法により得られる。このような製造方法によれば、枠部と載置部のセラミックス多孔質体とを隙間無く直接接合することができ、割れや欠け等の問題が生じ易いセラミックス多孔質体の加工工程を回避することができ、また枠部とセラミックス多孔質体の接合をセラミックス多孔質体の焼成と同時に行うことができるので、工程を簡略化することが可能となる。 The vacuum suction device of the present invention includes a step of feeding a mixture of ceramic powder and a raw material of a ceramic porous body containing a binder into a substantially concave frame portion, molding the molded body, and bonding the molded body together with the frame portion The ceramic porous body is obtained by heating to a temperature higher than the temperature at which the material melts, the step of directly joining the ceramic porous body and the frame portion without gaps by the binder, and the frame portion and the support portion are joined. It is obtained by a manufacturing method including a step and a step of polishing the frame portion and the ceramic porous body together to form a placement portion. According to such a manufacturing method, the ceramic porous body of the frame portion and the mounting portion can be directly joined without a gap, and the processing step of the ceramic porous body that easily causes problems such as cracking and chipping is avoided. In addition, since the joining of the frame portion and the ceramic porous body can be performed simultaneously with the firing of the ceramic porous body, the process can be simplified.

上述のように本発明によれば、載置部の割れ、欠けおよび外れ等の問題を解消し、薄型軽量で、吸着性能に優れた真空吸着装置を提供することができる。 As described above, according to the present invention, it is possible to provide a vacuum suction device that solves problems such as cracking, chipping, and detachment of the mounting portion, is thin and light, and has excellent suction performance.

以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は円板形状の真空吸着装置10の概略図である。図1(a)は、真空吸着装置の載置面側から見た平面図であり、図1(b)は、図1(a)におけるA−A断面の矢視図であり、図1(c)は、図1(b)におけるイ側から見た矢視図である。真空吸着装置10は、円板状の載置部1と、載置部1の載置面1a以外を囲うように設けられた略凹型の枠部2と、載置部1および枠部2を支持する支持部7とを備えている。載置部1を覆うようにウエハが載置され、載置部1の気孔が吸引孔4、第一吸引溝5、および第二吸引溝6を介して真空吸引されることによりウエハが載置面1aに吸着保持される。図1からわかるように、第一吸引溝5は吸引孔4を介して載置部1および第二吸引溝6に連通している。また、枠部および支持部はアームと連結するための把手部3、13(図3)を備えている。 FIG. 1 is a schematic view of a disk-shaped vacuum suction device 10. Fig.1 (a) is the top view seen from the mounting surface side of a vacuum suction apparatus, FIG.1 (b) is an arrow line view of the AA cross section in Fig.1 (a), and FIG. c) is an arrow view seen from the side A in FIG. The vacuum suction device 10 includes a disc-shaped mounting portion 1, a substantially concave frame portion 2 provided so as to surround other than the mounting surface 1 a of the mounting portion 1, the mounting portion 1 and the frame portion 2. And a support portion 7 for supporting. The wafer is placed so as to cover the placement unit 1, and the pores of the placement unit 1 are vacuum-sucked through the suction hole 4, the first suction groove 5, and the second suction groove 6 to place the wafer. Adsorbed and held on the surface 1a. As can be seen from FIG. 1, the first suction groove 5 communicates with the placement portion 1 and the second suction groove 6 through the suction hole 4. Moreover, the frame part and the support part are provided with handle parts 3 and 13 (FIG. 3) for connecting to the arm.

載置部1の開気孔率は20%以上50%以下であることが好ましく、かつ、その平均気孔径は1μm以上100μm以下であることが好ましい。載置部1の開気孔率をこのような範囲とする理由は、前記範囲内であれば、圧損が大きくなって、十分な吸着力を得ることが困難となったり、十分な機械的強度を得ることができなかったり、載置面1aの平坦性が低下したりすることがないためである。また、平均気孔径を前記範囲とするのは、平均気孔径が1μm未満では圧損が大きくなって吸着力が弱くなるおそれがあり、逆に100μm超では載置面1aの面精度が悪化するおそれがあるからである。 The open porosity of the mounting portion 1 is preferably 20% or more and 50% or less, and the average pore diameter is preferably 1 μm or more and 100 μm or less. The reason why the open porosity of the mounting portion 1 is in such a range is that if it is within the above range, the pressure loss becomes large and it becomes difficult to obtain sufficient adsorption force, or sufficient mechanical strength is obtained. This is because it cannot be obtained or the flatness of the mounting surface 1a is not lowered. In addition, the average pore diameter within the above range is that if the average pore diameter is less than 1 μm, the pressure loss may increase and the adsorptive power may be weakened. Conversely, if the average pore diameter exceeds 100 μm, the surface accuracy of the mounting surface 1a may be deteriorated. Because there is.

載置部1はセラミックス多孔質体からなる。具体的には、所定のセラミックス粉末と結合材のガラスから構成され、連通する開気孔を有する多孔質組織を有している。セラミックス粉末には、例えば、アルミナ、ジルコニア、炭化珪素、窒化珪素等を用いることができる。 The mounting portion 1 is made of a ceramic porous body. Specifically, it has a porous structure composed of predetermined ceramic powder and binder glass and having open pores communicating therewith. For the ceramic powder, for example, alumina, zirconia, silicon carbide, silicon nitride or the like can be used.

載置部1に用いられる結合材のガラスとしては特に限定されず、ビトリファイド砥石に用いられるガラス質の結合材等を用いることができる。具体的には、例えば、軟化点が1000℃近傍のアルミノ珪酸塩系ガラスや、900℃以下のホウ珪酸系ガラス等を用いることができる。 It does not specifically limit as glass of the binder used for the mounting part 1, The glassy binder etc. which are used for a vitrified grindstone can be used. Specifically, for example, an aluminosilicate glass having a softening point in the vicinity of 1000 ° C. or a borosilicate glass having a softening point of 900 ° C. or less can be used.

図2は、枠部の構造を示したものである。図2(a)は、載置面側(図2(b)におけるロ側)から見た平面図であり、図2(b)は、図2(a)におけるB−B断面の矢視図であり、図2(c)は、支持部との接合面側(図2(b)におけるハ側)から見た平面図である。枠部の載置部が収まる凹型部底面には、略中央に吸引孔4があり、これと直接連通した第二吸引溝6が形成されている。また、支持部との接合面側には、吸引孔4と直接連通した第一吸引溝5が設けられている。 FIG. 2 shows the structure of the frame portion. Fig.2 (a) is a top view seen from the mounting surface side (B side in FIG.2 (b)), FIG.2 (b) is an arrow directional view of the BB cross section in Fig.2 (a). FIG. 2 (c) is a plan view seen from the side of the joint surface with the support portion (c side in FIG. 2 (b)). On the bottom surface of the concave part in which the mounting part of the frame part is accommodated, there is a suction hole 4 in the approximate center, and a second suction groove 6 is formed which communicates directly therewith. A first suction groove 5 that is in direct communication with the suction hole 4 is provided on the side of the joint surface with the support portion.

吸引孔4を凹型部底面の略中央に設けたのは、略中央からウエハを吸着することにより、ウエハにシワが生じたり、破損したりすることを防止するためである。これは、吸引孔が凹型部底面の中央から偏った位置に形成されると、最も吸引孔から離れた位置では吸着力の発現が遅れ、吸着力に偏りが生じるためである。なお、図2では、第二吸引溝を放射状に設けたが、第二吸引溝の形状はこれに限定されるものではなく、環状や、環状と放射状を組み合わせたもの等、種々の形状を採用できる。さらに、吸引孔のみで均一な吸着力が生じる場合には、第二吸引溝は設けなくとも良い。吸引孔の直径や第二吸引溝の幅は、載置部加工時の加工負荷およびウエハ吸着時の真空圧等により載置部が破損することなく作製および使用できるように、十分な吸着力が得られる範囲で小さいことが望ましい。 The reason why the suction hole 4 is provided at substantially the center of the bottom surface of the concave portion is to prevent the wafer from being wrinkled or damaged by sucking the wafer from the substantially center. This is because when the suction hole is formed at a position deviated from the center of the bottom surface of the concave portion, the expression of the adsorption force is delayed at the position farthest from the suction hole, and the adsorption force is biased. In FIG. 2, the second suction groove is provided radially, but the shape of the second suction groove is not limited to this, and various shapes such as a ring or a combination of a ring and a radial are adopted. it can. Further, when a uniform suction force is generated only by the suction holes, the second suction groove may not be provided. The diameter of the suction hole and the width of the second suction groove have sufficient suction power so that the mounting part can be manufactured and used without damage due to the processing load during processing of the mounting part and the vacuum pressure during wafer suction. It is desirable that it is as small as possible.

枠部2の材質は特に限定されず、アルミナ、ジルコニア、炭化珪素、窒化珪素等の緻密質セラミックスが用いられる。ただし熱膨張の観点から、載置部のセラミックス粉末と同じセラミックスを使用することが好ましい。 The material of the frame part 2 is not particularly limited, and a dense ceramic such as alumina, zirconia, silicon carbide, silicon nitride or the like is used. However, from the viewpoint of thermal expansion, it is preferable to use the same ceramic as the ceramic powder of the mounting portion.

図2の例では、第一吸引溝5を枠部の接合面側に形成したが、図4に示したように、支持部7の接合面側に第一吸引溝15を形成しても良い。図2または図4に示したような第一吸引溝の構成であれば、真空吸着装置の厚みを大きくすることなく、枠部の略中央に形成された吸引孔と真空ポンプ等の真空源との連結が可能となる。 In the example of FIG. 2, the first suction groove 5 is formed on the joint surface side of the frame portion. However, as shown in FIG. 4, the first suction groove 15 may be formed on the joint surface side of the support portion 7. . If the configuration of the first suction groove as shown in FIG. 2 or FIG. 4 is used, the suction hole formed in the approximate center of the frame portion and a vacuum source such as a vacuum pump without increasing the thickness of the vacuum suction device Can be connected.

支持部7の材質は、セラミックスを強化材とした金属基複合材料(MMC)または、緻密質セラミックスである。上述のように支持部を接合する構成とすることで、薄型の真空吸着装置であっても第一吸引溝を容易に形成することができる。また、特に支持部の材質としてセラミックスを強化材とした金属基複合材料を用いれば、靱性を大幅に高めることができ、薄型であっても破損し難い真空吸着装置とすることができる。緻密質セラミックスとしては、アルミナ、ジルコニア、炭化珪素、窒化珪素等のセラミックスを用いることができる。 The material of the support part 7 is a metal matrix composite material (MMC) using ceramics as a reinforcing material or a dense ceramic. By adopting a configuration in which the support portions are joined as described above, the first suction groove can be easily formed even with a thin vacuum suction device. In particular, if a metal matrix composite material made of ceramics as a reinforcing material is used as the material of the support portion, the toughness can be significantly increased, and a vacuum suction device that is not easily damaged even if it is thin can be obtained. As the dense ceramic, ceramics such as alumina, zirconia, silicon carbide, and silicon nitride can be used.

次に、本発明の真空吸着装置10の製造方法について説明する。はじめに載置部1を形成するセラミックス多孔質体の原料であるセラミックス粉末および結合材であるガラス粉末に、水またはアルコールを加えて混合してスラリーを調整する。原料の混合は、ボールミル、ミキサー等、公知の方法が適用できる。ここで、水またはアルコール量は特に限定しないが、セラミックス粉末の粒度、ガラス粉末の添加量を考慮し所望の流動性が得られるように、水またはアルコールの添加量を調整する。セラミックス粉末とガラス粉末の量は、目標とする開気孔率、セラミックス粉末の粒度、焼成温度およびガラス粘性等を考慮して調整されるが、概ねセラミックス粉末100質量部に対してガラス粉末を5〜30質量部の範囲で添加することが望ましい。 Next, the manufacturing method of the vacuum suction apparatus 10 of this invention is demonstrated. First, water or alcohol is added to and mixed with ceramic powder, which is a raw material of the porous ceramic body that forms the mounting portion 1, and glass powder, which is a binder, to prepare a slurry. For mixing the raw materials, a known method such as a ball mill or a mixer can be applied. Here, the amount of water or alcohol is not particularly limited, but the amount of water or alcohol added is adjusted so that desired fluidity can be obtained in consideration of the particle size of the ceramic powder and the amount of glass powder added. The amount of the ceramic powder and the glass powder is adjusted in consideration of the target open porosity, the particle size of the ceramic powder, the firing temperature, the glass viscosity, and the like. It is desirable to add in the range of 30 parts by mass.

次に、CIP成形や鋳込み成形等の公知の成形方法、電気炉焼成やホットプレス等の公知の焼成方法、およびダイヤモンド砥石等による公知の研削加工方法により作製したセラミックスの枠部2の載置部が形成される凹型部に前記スラリーを充填する。この際、必要に応じて、スラリー中の粗大気泡を除去するための真空脱泡や、充填を高めるための振動を加えると良い。また、第二吸引溝6および吸引孔4には、載置部となる混合物を注ぐ前に、ろう、樹脂等の焼失部材により閉塞しておく。なお、吸引孔は真空吸着するために必須であるが、吸引溝は必要に応じて無くすことも可能である。すなわち、十分かつ均一な真空吸着力が得られるのであれば、吸引孔のみでも良い。 Next, the mounting portion of the ceramic frame portion 2 produced by a known molding method such as CIP molding or cast molding, a known firing method such as electric furnace firing or hot press, and a known grinding method using a diamond grindstone or the like The slurry is filled in the concave mold portion where the is formed. At this time, it is preferable to apply vacuum defoaming for removing coarse bubbles in the slurry and vibration for enhancing the filling as necessary. Further, the second suction groove 6 and the suction hole 4 are closed with a burned-out member such as wax or resin before pouring the mixture serving as the placement portion. The suction hole is essential for vacuum suction, but the suction groove can be eliminated if necessary. That is, as long as a sufficient and uniform vacuum suction force can be obtained, only the suction holes may be used.

枠部の凹型部に充填し成形した成形体を十分に乾燥させた後、ガラスの溶融する温度(少なくとも軟化点以上の温度)で枠部ごと焼成する。この際、焼成温度がガラスの軟化点より低いとガラスが溶けずにセラミックス粉末を結合することができず、反対に焼成温度が高すぎると変形や収縮を起こすため、セラミックス粉末を結合し得る範囲で、できるだけ低温で焼成することが望ましい。このように、枠部の凹型部に直接載置部原料を充填して成形し、そのまま焼成することで、載置部と枠部との間に接着層を介することなく、直接接合された構成とすることができる。本発明の真空吸着装置では接着層が形成されず、従来の真空吸着装置のような接着層の気孔への浸透による隙間や接着不良が生じないので、載置部が外れる問題は解消される。 After the molded body filled and molded in the concave part of the frame part is sufficiently dried, the whole frame part is fired at a temperature at which the glass melts (at least a temperature equal to or higher than the softening point). At this time, if the firing temperature is lower than the softening point of the glass, the glass does not melt and the ceramic powder cannot be bonded. Conversely, if the firing temperature is too high, deformation or shrinkage occurs. Thus, it is desirable to fire at as low a temperature as possible. In this way, the mounting part raw material is directly filled into the concave part of the frame part, molded, and baked as it is, so that the structure is directly joined without an adhesive layer between the mounting part and the frame part. It can be. In the vacuum suction device of the present invention, the adhesive layer is not formed, and a gap or poor adhesion due to penetration of the adhesive layer into the pores as in the conventional vacuum suction device does not occur, so that the problem that the mounting portion is detached is solved.

次に、載置部となるセラミックス多孔質体が凹型部に形成された枠部と支持部とを接合する。接合は、ガラス接合、エポキシ系やシリコン系の接着剤を用いた接合、またはろう付け等の公知の方法を採用できる。熱処理を伴う接合であれば、載置部の焼成と同時に接合を行っても良い。支持部が緻密質セラミックスの場合は、ガラス接合が好ましく、セラミックスを強化材とした金属基複合材料の場合は、接着剤を用いた接合が好ましい。 Next, the frame part in which the ceramic porous body used as a mounting part was formed in the concave mold part, and a support part are joined. For the bonding, a known method such as glass bonding, bonding using an epoxy or silicon adhesive, or brazing can be employed. If joining is accompanied by heat treatment, joining may be performed simultaneously with firing of the mounting portion. When the support portion is a dense ceramic, glass bonding is preferable, and when the support is a metal-based composite material using ceramic as a reinforcing material, bonding using an adhesive is preferable.

載置面の形成は、枠部と凹型部に形成されたセラミックス多孔質体とを共に研磨して行う。この方法によれば、強度が弱く割れや欠けの生じ易いセラミックス多孔質体を薄型の載置部に加工することができ、セラミックス多孔質体は枠部と隙間無く直接接合されているので、加工精度にも優れており、載置面の面精度を高めることができる。研磨加工はダイヤモンド砥石等の通常用いる方法により行うことができる。 The mounting surface is formed by polishing both the frame portion and the ceramic porous body formed on the concave portion. According to this method, the ceramic porous body, which is weak in strength and easily cracked or chipped, can be processed into a thin mounting portion, and the ceramic porous body is directly joined to the frame portion without any gaps. The accuracy is also excellent, and the surface accuracy of the mounting surface can be increased. Polishing can be performed by a commonly used method such as a diamond grindstone.

上述した製法により、真空吸着装置を作製した。真空吸着装置の形状は、載置部の直径297mm、載置部の厚み1mm、枠部および支持部の直径310mm、枠部の厚さ2mm、支持部の厚さ2mmとした。吸引孔(直径3mm)の位置を枠部の凹型部の中央に形成したもの、中央からの距離が50、75、100、125mmの位置に形成したものをそれぞれ作製し、ウエハ(直径300mm、厚さ20μm)の吸着試験を行った。吸着試験は、ウエハ10枚について吸着を行い、シワや破損の不良が生じないか調べた。表1に試験結果を示した。

Figure 2009111293
A vacuum suction apparatus was produced by the above-described manufacturing method. The shape of the vacuum suction device was a mounting portion diameter of 297 mm, a mounting portion thickness of 1 mm, a frame portion and a supporting portion diameter of 310 mm, a frame portion thickness of 2 mm, and a supporting portion thickness of 2 mm. A wafer having a suction hole (diameter 3 mm) formed at the center of the concave portion of the frame and a distance from the center of 50, 75, 100, and 125 mm was prepared, and a wafer (diameter 300 mm, thickness 20 μm) adsorption test. In the adsorption test, 10 wafers were adsorbed to check for wrinkles and breakage defects. Table 1 shows the test results.
Figure 2009111293

吸引孔位置が中央のものは、シワや破損が生じなかったが、それ以外には不良が生じた。 Wrinkles and damage did not occur when the suction hole was in the center, but other defects occurred.

次に、載置部の厚さを変えて真空吸着装置を作製した。真空吸着装置の形状は、載置部の直径297mm、枠部および支持部の直径310mm、枠部の厚さ2.5mm、支持部の厚さ2mmとし、載置部の厚みが異なるものを作製した。枠部としてアルミナ焼結体を使用し、アルミナ粉末(平均粒径125μm)、ガラス粉末(アルミノケイ酸塩ガラス、平均粒径:20μm、軟化点950℃)を多孔質体原料として用い、載置部を形成した。支持部としては、アルミナ焼結体および炭化珪素を強化材としたアルミニウム基複合材料(MMC)を用いた。なお、アルミニウム基複合材料は、市販の炭化珪素粉末を用いてセラミックスの充填率が60体積%のプリフォームを形成し、次いで、窒素中750℃で加熱処理してアルミニウム合金(JIS AC8A)をプリフォーム中に浸透させたものを用いた。それぞれ10個作製し、載置部に割れが生じた不良数を調べた。なお、上記平均粒径(D50)の数値は、レーザー回折式粒度分布測定装置により測定したものである。作製結果を表2に示す。

Figure 2009111293
Next, the vacuum suction device was manufactured by changing the thickness of the mounting portion. The shape of the vacuum suction device is 297 mm in diameter of the mounting part, 310 mm in diameter of the frame part and the supporting part, 2.5 mm in thickness of the frame part, 2 mm in thickness of the supporting part, and manufactured with different thicknesses of the mounting part did. Alumina sintered body is used as the frame, alumina powder (average particle size 125 μm), glass powder (aluminosilicate glass, average particle size: 20 μm, softening point 950 ° C.) is used as the porous material, Formed. As the support portion, an aluminum-based composite material (MMC) using an alumina sintered body and silicon carbide as a reinforcing material was used. The aluminum-based composite material is a commercially available silicon carbide powder, which is formed into a preform with a ceramic filling rate of 60% by volume, and then heat-treated at 750 ° C. in nitrogen to form an aluminum alloy (JIS AC8A). What was infiltrated into the reforming was used. Ten pieces of each were produced, and the number of defects in which cracks occurred in the mounting portion was examined. In addition, the numerical value of the said average particle diameter (D50) is measured with the laser diffraction type particle size distribution measuring apparatus. The production results are shown in Table 2.
Figure 2009111293

作製したものの大部分は歩留まり良くできた。ただし、載置部の厚さが0.2mmのものでは、載置部の加工時または使用時に載置部が割れるものが生じた。 Most of the fabricated products were good in yield. However, when the thickness of the mounting portion was 0.2 mm, the mounting portion was broken when the mounting portion was processed or used.

比較例として、従来のセラミックス多孔質体とセラミックス緻密体とをガラス質接合材を用いて、接合する方法により、上記作製例と同等形状の真空吸着装置の作製を試みたが、多孔質体の加工時に割れや欠けが生じ易く、また、セラミックス多孔質体とセラミックス緻密体とを接合した後に、多孔質体と枠部とを共に研磨して載置部を形成する際にも、枠部と多孔質体の接合部に隙間が不可避的に存在するため、その部分で研磨不良が発生した。したがって、このような方法では、歩留まりが悪く、載置面の精度も十分ではないため実用は不可能であった。 As a comparative example, an attempt was made to produce a vacuum adsorption device having the same shape as the above production example by a method of joining a conventional ceramic porous body and a ceramic dense body using a glassy bonding material. When the ceramic porous body and the ceramic dense body are joined together, the porous body and the frame portion are polished together to form the mounting portion. Since a gap inevitably exists in the joint portion of the porous body, poor polishing occurred in that portion. Therefore, such a method is not practical because the yield is poor and the accuracy of the mounting surface is not sufficient.

図1は、本発明の真空吸着装置の代表例を示す概略図である。図1(a)は、真空吸着装置の載置面側から見た平面図であり、図1(b)は、図1(a)におけるA−A断面の矢視図であり、図1(c)は、図1(b)におけるイ側から見た矢視図である。FIG. 1 is a schematic view showing a typical example of the vacuum suction device of the present invention. Fig.1 (a) is the top view seen from the mounting surface side of a vacuum suction apparatus, FIG.1 (b) is an arrow line view of the AA cross section in Fig.1 (a), and FIG. c) is an arrow view seen from the side A in FIG. 図2は、枠部の概略図である。図2(a)は、載置面側(図2(b)におけるロ側)から見た平面図であり、図2(b)は、図2(a)におけるB−B断面の矢視図であり、図2(c)は、支持部との接合面側(図2(b)におけるハ側)から見た平面図である。FIG. 2 is a schematic view of the frame portion. Fig.2 (a) is a top view seen from the mounting surface side (B side in FIG.2 (b)), FIG.2 (b) is an arrow directional view of the BB cross section in Fig.2 (a). FIG. 2 (c) is a plan view seen from the side of the joint surface with the support portion (c side in FIG. 2 (b)). 図3は、支持部の概略図である。図3(a)は、接合面側から見た平面図であり、図3(b)は、図3(a)におけるC−C断面の矢視図である。FIG. 3 is a schematic view of the support portion. Fig.3 (a) is the top view seen from the joint surface side, FIG.3 (b) is an arrow line view of CC cross section in Fig.3 (a). 図4は、本発明の真空吸着装置の他の例を示す概略図である。図4(a)は、真空吸着装置の載置面側から見た平面図であり、図4(b)は、図4(a)におけるD−D断面の矢視図であり、図4(c)は、図4(b)におけるニ側から見た矢視図である。FIG. 4 is a schematic view showing another example of the vacuum suction device of the present invention. 4A is a plan view seen from the mounting surface side of the vacuum suction device, and FIG. 4B is a cross-sectional view taken along the DD line in FIG. c) is an arrow view seen from the second side in FIG.

符号の説明Explanation of symbols

1:載置部
1a:載置面
10:真空吸着装置
2:枠部
3、13:把手部
4:吸引孔
5、15:第一吸引溝
6:第二吸引溝
7:支持部
1: mounting part 1a: mounting surface 10: vacuum suction device 2: frame part 3, 13: handle part 4: suction hole 5, 15: first suction groove 6: second suction groove 7: support part

Claims (5)

基板を載置する載置面を有するセラミックス多孔質体からなる載置部と、
該載置部を取り囲む略凹型の緻密質セラミックスからなる枠部と、
該枠部を支持する支持部と、
からなる基板搬送用の真空吸着装置であって、
前記載置部の略中央の気孔に直接連通し、前記枠部の凹型部底面に設けられた吸引孔と、
該吸引孔を介して前記載置部に連通し、前記枠部または前記支持部の接合面に設けられた第一吸引溝と、
を有し、前記載置部と前記枠部とが隙間無く直接接合されていることを特徴とする真空吸着装置。
A mounting portion made of a ceramic porous body having a mounting surface for mounting a substrate;
A frame portion made of a substantially concave dense ceramic surrounding the mounting portion;
A support part for supporting the frame part;
A vacuum suction device for transporting a substrate comprising:
A suction hole provided in the bottom surface of the concave portion of the frame portion, directly communicating with the substantially central pore of the placement portion;
A first suction groove that communicates with the placement portion through the suction hole, and that is provided on a joint surface of the frame portion or the support portion;
The vacuum suction device is characterized in that the mounting portion and the frame portion are directly joined without a gap.
前記載置部の厚みは2mm以下であって、前記載置部を含めた真空吸着装置の全厚みが5mm以下である請求項1記載の真空吸着装置。 The vacuum suction device according to claim 1, wherein a thickness of the placement portion is 2 mm or less, and a total thickness of the vacuum suction device including the placement portion is 5 mm or less. 前記吸引孔及び前記載置部の気孔の双方に直接連通し、前記第一吸引溝とは前記吸引孔を介して連通する前記枠部の凹型部底面に設けた第二吸引溝を有する請求項1または2記載の真空吸着装置。 The second suction groove provided on the bottom surface of the concave portion of the frame portion that communicates directly with both the suction hole and the air hole of the placement portion, and communicates with the first suction groove via the suction hole. The vacuum suction apparatus according to 1 or 2. 前記支持部の材質は、セラミックスを強化材とした金属基複合材料(MMC)または、緻密質セラミックスである請求項1〜3記載の真空吸着装置。 The vacuum suction device according to claim 1, wherein a material of the support portion is a metal matrix composite material (MMC) using ceramics as a reinforcing material or a dense ceramic. 略凹型の枠部にセラミックス粉末と結合材を含むセラミックス多孔質体原料の混合物を投入し、成形体を成形する工程と、
前記成形体を前記枠部とともに前記結合材が溶融する温度以上に加熱して、セラミックス多孔質体を得るとともに、前記結合材によりセラミックス多孔質体と枠部とを隙間無く直接接合する工程と、
前記枠部と支持部とを接合する工程と、
前記枠部と前記セラミックス多孔質体とを共に研磨して載置部を形成する工程と、
を含むことを特徴とする真空吸着装置の製造方法。
Introducing a mixture of ceramic powder and ceramic porous body raw material containing a ceramic powder and a binder into a substantially concave frame, and molding a molded body;
Heating the molded body together with the frame to a temperature at which the binder melts to obtain a ceramic porous body, and directly bonding the ceramic porous body and the frame with the binder without any gaps;
Joining the frame part and the support part;
Polishing the frame part and the ceramic porous body together to form a mounting part;
The manufacturing method of the vacuum suction apparatus characterized by including.
JP2007284482A 2007-10-31 2007-10-31 Vacuum suction apparatus and manufacturing method therefor Pending JP2009111293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284482A JP2009111293A (en) 2007-10-31 2007-10-31 Vacuum suction apparatus and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284482A JP2009111293A (en) 2007-10-31 2007-10-31 Vacuum suction apparatus and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009111293A true JP2009111293A (en) 2009-05-21

Family

ID=40779441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284482A Pending JP2009111293A (en) 2007-10-31 2007-10-31 Vacuum suction apparatus and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009111293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074206A (en) * 2011-09-28 2013-04-22 Taiheiyo Cement Corp Vacuum suction apparatus and method of manufacturing the same
JP2014501440A (en) * 2010-12-14 2014-01-20 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Holding device for holding and mounting a wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356124A (en) * 2003-05-27 2004-12-16 Sumitomo Electric Ind Ltd Semiconductor manufacturing apparatus and component therefor using porous ceramics
JP2005050855A (en) * 2003-07-29 2005-02-24 Lintec Corp Suction transport device
JP2006093492A (en) * 2004-09-27 2006-04-06 Taiheiyo Cement Corp Vacuum suction apparatus
JP2006261377A (en) * 2005-03-17 2006-09-28 Ulvac Japan Ltd Substrate conveyance robot and substrate conveyance system provided with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356124A (en) * 2003-05-27 2004-12-16 Sumitomo Electric Ind Ltd Semiconductor manufacturing apparatus and component therefor using porous ceramics
JP2005050855A (en) * 2003-07-29 2005-02-24 Lintec Corp Suction transport device
JP2006093492A (en) * 2004-09-27 2006-04-06 Taiheiyo Cement Corp Vacuum suction apparatus
JP2006261377A (en) * 2005-03-17 2006-09-28 Ulvac Japan Ltd Substrate conveyance robot and substrate conveyance system provided with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501440A (en) * 2010-12-14 2014-01-20 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Holding device for holding and mounting a wafer
JP2013074206A (en) * 2011-09-28 2013-04-22 Taiheiyo Cement Corp Vacuum suction apparatus and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP2008132562A (en) Vacuum chuck and vacuum suction device using it
JP4718397B2 (en) Manufacturing method of vacuum suction device
JP2005101108A (en) Method for manufacturing placement table
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2009224402A (en) Vacuum suction device
JP5261057B2 (en) Suction board and vacuum suction device
JP2008028170A (en) Vacuum suction device and manufacturing method thereof
JP2008007341A (en) Low thermal expansion ceramic joined body and method for manufacturing the same
JP5143607B2 (en) Vacuum adsorption device
JP2009111293A (en) Vacuum suction apparatus and manufacturing method therefor
JP4850055B2 (en) Vacuum chuck and vacuum suction device using the same
JP4704971B2 (en) Vacuum adsorption device
JP4405887B2 (en) Vacuum adsorption device
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
JP2005279789A (en) Vacuum chuck for grinding/polishing
JP2009147078A (en) Vacuum suction device, and manufacturing method thereof
JP4948920B2 (en) Vacuum chuck and vacuum suction device using the same
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2009246013A (en) Vacuum suction apparatus and method of manufacturing the same
JP4964910B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4405886B2 (en) Vacuum adsorption device
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4468059B2 (en) Hydrostatic bearing device
KR101064207B1 (en) High purity silicon carbide wafer carrier and manufacturing method of the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A621 Written request for application examination

Effective date: 20100825

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110708

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20120528

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20120629

Free format text: JAPANESE INTERMEDIATE CODE: A912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221