JP2008028170A - Vacuum suction device and manufacturing method thereof - Google Patents

Vacuum suction device and manufacturing method thereof Download PDF

Info

Publication number
JP2008028170A
JP2008028170A JP2006199433A JP2006199433A JP2008028170A JP 2008028170 A JP2008028170 A JP 2008028170A JP 2006199433 A JP2006199433 A JP 2006199433A JP 2006199433 A JP2006199433 A JP 2006199433A JP 2008028170 A JP2008028170 A JP 2008028170A
Authority
JP
Japan
Prior art keywords
slurry
mounting portion
vacuum suction
mounting
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006199433A
Other languages
Japanese (ja)
Inventor
Motohiro Umetsu
基宏 梅津
Shinya Sato
伸也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006199433A priority Critical patent/JP2008028170A/en
Publication of JP2008028170A publication Critical patent/JP2008028170A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum suction device capable of grinding a wafer into a very flat surface. <P>SOLUTION: The device is provided with a placing section 2 for sucking and holding a workpiece to be sucked and made of a ceramic porous body, and a supporting section 3 made of dense ceramic and having air inlet ports 4 and/or air inlet trenches 5 communicating to air pores of the placing section. The placing section has a thickness t of 2 mm-6 mm. Further, the diameter of each air inlet port 4 and the width of each air inlet trench 5 are smaller than the thickness t of the placing section, the sinking quantity of the placing section in sucking and holding the workpiece W to be sucked is not more than 3 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体ウエハや液晶用ガラス基板の研削加工を行う際に、半導体ウエハ等を吸着保持するための真空吸着装置に関する。 The present invention relates to a vacuum suction device for sucking and holding a semiconductor wafer or the like when grinding a semiconductor wafer or a glass substrate for liquid crystal.

半導体ウエハを搬送、加工、検査する場合に、真空圧を利用した真空吸着装置が用いられており、均一な吸着を行うために、多孔質体により半導体ウエハの全面を吸着保持する真空吸着装置が検討されている。例えば、多孔質体からなる載置部を緻密質体からなる支持部に樹脂またはガラスなどの接着剤により接合してなり、下方の吸気孔より真空吸引することにより、上記載置部の吸着面に半導体ウエハを固定するものが提案されている(例えば、特許文献1参照)。 When a semiconductor wafer is transported, processed, or inspected, a vacuum suction device using a vacuum pressure is used. In order to perform uniform suction, a vacuum suction device that sucks and holds the entire surface of the semiconductor wafer with a porous body is used. It is being considered. For example, the adsorption portion of the placement portion described above is formed by joining the placement portion made of a porous body to the support portion made of a dense body with an adhesive such as resin or glass, and vacuuming from the lower suction hole. A device for fixing a semiconductor wafer is proposed (for example, see Patent Document 1).

特開昭53−090871号公報JP-A-53-090871

ガラス等の接着剤による接合では、接合面を完全に密着させることができず、不可避的に隙間を有していたため、ウエハ等の被吸着体を加工する場合に、多孔質体からなる載置部が隙間部分で撓み変形を起こし、ウエハ等の加工精度の低下を招来していた。このような撓み変形は、多孔質体の厚みが薄くなると顕著になることから、載置部の厚みは、必然的に厚いものが用いられてきた。 In bonding with an adhesive such as glass, the bonding surface cannot be completely adhered, and there is inevitably a gap. Therefore, when processing an object to be adsorbed such as a wafer, a mounting made of a porous material is used. The portion is bent and deformed in the gap portion, and the processing accuracy of the wafer or the like is lowered. Such bending deformation becomes prominent when the thickness of the porous body is reduced, so that the mounting portion is inevitably thick.

しかしながら、載置部の多孔質体の厚みが大きいと、たとえ支持部と載置部との接合状態が良好であっても、ウエハ等の被吸着体の真空吸着時に載置面にかかる大気圧や、被吸着体の研削時の砥石押圧により、圧縮変形を起こすため、研削加工精度を高めることができなかった。 However, if the thickness of the porous body of the mounting section is large, even if the bonding state between the support section and the mounting section is good, the atmospheric pressure applied to the mounting surface during vacuum suction of the target object such as a wafer In addition, since the compression deformation occurs due to the pressing of the grindstone at the time of grinding the adsorbent, the grinding accuracy cannot be increased.

本発明は、上記課題を解決するために見出されたものであり、載置部の変形を低減し、ウエハ等の被吸着体を高精度に研削加工できる真空吸着装置を提供することを目的とする。 The present invention has been found to solve the above-described problems, and an object of the present invention is to provide a vacuum suction device capable of reducing the deformation of the mounting portion and grinding an object to be adsorbed such as a wafer with high accuracy. And

即ち、本発明の真空吸着装置は、被吸着体を吸着保持するためのセラミックス多孔質体からなる載置部と、前記載置部の気孔に連通する吸気孔および/または吸気溝を有する緻密質セラミックスからなる支持部とを備える真空吸着装置であって、前記載置部の厚みが2mm以上、6mm以下であることを特徴とする。 That is, the vacuum suction device of the present invention has a dense portion having a placement portion made of a ceramic porous body for adsorbing and holding an object to be adsorbed, and an intake hole and / or an intake groove communicating with the pores of the placement portion. A vacuum suction device including a supporting portion made of ceramics, wherein the mounting portion has a thickness of 2 mm or more and 6 mm or less.

これにより、真空吸着時の大気圧や、研削砥石の押圧による圧縮変形が低減でき、ウエハ等の被吸着体の研削精度を飛躍的に高めることができる。載置部の厚みを2mm以上としたのは、2mmより小さいと吸気孔や溝部において局部的な撓みが生じてしまうためである。また載置部の厚みを6mm以下としたのは、6mmよりも大きいと上述のように圧縮変形が大きくなるためである。 Thereby, the atmospheric pressure at the time of vacuum suction and the compression deformation due to the pressing of the grinding wheel can be reduced, and the grinding accuracy of the adherend such as a wafer can be dramatically increased. The reason why the thickness of the mounting portion is 2 mm or more is that if it is smaller than 2 mm, local deflection occurs in the intake holes and the groove portions. The reason why the thickness of the mounting portion is set to 6 mm or less is that when the thickness is larger than 6 mm, the compressive deformation increases as described above.

また、本発明は、前記支持部に連通する吸気孔の孔径および吸気溝の溝幅は、載置部厚みよりも小さいことを特徴とする。 Further, the present invention is characterized in that the diameter of the intake hole communicating with the support portion and the groove width of the intake groove are smaller than the mounting portion thickness.

本発明の真空吸着装置における載置部は、その厚みが小さいため、支持部の吸気孔および吸気溝に連通する部分では局部的に撓み変形を起こし易くなるが、吸気孔の孔径および吸気溝の溝幅を載置部厚みよりも小さくすることで、撓み変形を僅かなものに抑えることができる。したがって、所望の真空吸着力が得られる範囲で、吸気孔の孔径や吸気溝の幅を小さくすることが望ましいが、支持部に対する加工の容易性や強度を考慮すると、吸気孔径および吸気溝幅は0.3mm以上が好ましい。0.3mmより小さくする加工は難しく、支持部に亀裂が生じるおそれもあるからである。なお、吸気孔は真空吸着するために必須であるが、吸気溝は必要に応じて無くすことも可能である。すなわち、十分かつ均一な真空吸着力が得られるのであれば、吸気孔のみでも良い。吸気孔の配置は十分かつ均一な真空吸着力が得られるものであれば良く、特に限定しない。吸気溝形状についても同様であり、同心円を所定間隔で配置したもの、格子状に配置したもの、円と十字を組み合わせたもの等、種々の形状を採用できる。 Since the mounting portion in the vacuum suction device of the present invention is small in thickness, it tends to bend and deform locally locally at the portion communicating with the suction hole and the suction groove of the support portion. By making the groove width smaller than the placement portion thickness, the bending deformation can be suppressed to a slight amount. Therefore, it is desirable to reduce the hole diameter of the intake hole and the width of the intake groove within a range where a desired vacuum suction force can be obtained, but considering the ease of processing and strength of the support portion, the diameter of the intake hole and the width of the intake groove are 0.3 mm or more is preferable. This is because processing to be smaller than 0.3 mm is difficult and a crack may occur in the support portion. The intake hole is essential for vacuum suction, but the intake groove can be eliminated as necessary. That is, as long as a sufficient and uniform vacuum suction force can be obtained, only the intake holes may be used. The arrangement of the intake holes is not particularly limited as long as a sufficient and uniform vacuum suction force can be obtained. The same applies to the shape of the intake groove, and various shapes such as a concentric circle arranged at a predetermined interval, a lattice arranged, and a combination of a circle and a cross can be adopted.

また、本発明の真空吸着装置は、被吸着体を吸着保持した際の載置部の沈み量が3μm以下であることを特徴とする。 In addition, the vacuum suction device of the present invention is characterized in that the sinking amount of the mounting portion when the object to be adsorbed is held by suction is 3 μm or less.

載置部の厚みを小さくし、かつ、吸気孔および吸気溝による撓み変形の影響を抑えることで、載置部の沈み量を小さくすることができる。本発明の載置部の沈み量は3μm以下とすることが可能であり、その結果ウエハ等の加工精度を高めることができる。 By reducing the thickness of the mounting portion and suppressing the influence of bending deformation caused by the intake holes and the intake grooves, the amount of sinking of the mounting portion can be reduced. The sinking amount of the mounting portion of the present invention can be set to 3 μm or less, and as a result, the processing accuracy of a wafer or the like can be increased.

また、本発明に係る真空吸着装置は、セラミックス粉末およびガラス粉末に、水またはアルコールを加えて混合してスラリーを調整するスラリー調整工程と、前記スラリーを載置部が形成される凹部を設けた支持部の該凹部に充填するスラリー充填工程と、該凹部にスラリーが充填された支持部をガラスの軟化点以上の温度で焼成する焼成工程と、を含むことを特徴とする製造方法により得られる。 In addition, the vacuum suction device according to the present invention includes a slurry adjustment step of adjusting slurry by adding water or alcohol to ceramic powder and glass powder, and a recess in which the slurry is placed. It is obtained by a manufacturing method comprising: a slurry filling step for filling the concave portion of the support portion; and a firing step for firing the support portion filled with the slurry in the concave portion at a temperature equal to or higher than the softening point of the glass. .

従来の支持部と載置部とをガラス等の接着剤により接合する製法では、不可避的に隙間ができ、載置部の撓み変形が生じていた。また、その撓み変形を抑えるために載置部の厚みを大きくせざるを得なかった。しかし本発明では、原料スラリーを支持部の載置部が形成される凹部に直接充填して作製するため、支持部と載置部との接合界面に隙間が生じることはない。そのため載置部の厚みを小さくでき、ウエハ等の研削精度を飛躍的に高めることが可能となる。 In the conventional manufacturing method in which the support portion and the placement portion are joined with an adhesive such as glass, a gap is inevitably formed, and the placement portion is deformed flexibly. Moreover, in order to suppress the bending deformation, the thickness of the mounting portion has to be increased. However, in the present invention, since the raw material slurry is directly filled into the concave portion where the mounting portion of the support portion is formed, no gap is generated at the bonding interface between the support portion and the mounting portion. Therefore, the thickness of the mounting portion can be reduced, and the grinding accuracy of the wafer or the like can be dramatically increased.

このように本発明によれば、ウエハ等の被吸着体を真空吸着したときの大気圧や、被吸着体の研削加工時の砥石の押圧による載置部の変形を低減できるため、ウエハ等の研削加工精度を飛躍的に高めることが可能となる。 As described above, according to the present invention, it is possible to reduce the atmospheric pressure when the object to be adsorbed such as the wafer is vacuum-adsorbed and the deformation of the mounting portion due to the pressing of the grindstone during the grinding of the object to be adsorbed. It becomes possible to dramatically improve the grinding accuracy.

以下、図面を参照して、本発明の実施形態について説明する。
図1は本発明の一実施形態に係る真空吸着装置1の概略構成を示す断面図である。真空吸着装置1は、多孔質体からなる載置部2と、該載置部を支持する緻密質体からなる支持部3と、該支持部に形成された吸気孔4とを具備し、載置部表面全体で吸引するために吸気溝5が設けられており、載置面2a上に、被吸着体Wとして例えば半導体ウエハを載置する。載置部2と支持部3との接合界面には載置部の気孔径を超えるような隙間はなく、多孔質構造が支持部との境界面まで連続した構造を有している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a vacuum suction device 1 according to an embodiment of the present invention. The vacuum suction device 1 includes a mounting portion 2 made of a porous body, a support portion 3 made of a dense body that supports the mounting portion, and an intake hole 4 formed in the support portion. An air intake groove 5 is provided to suck the entire surface of the mounting portion, and a semiconductor wafer, for example, is mounted on the mounting surface 2a as the adherend W. There is no gap that exceeds the pore diameter of the mounting portion at the bonding interface between the mounting portion 2 and the supporting portion 3, and the porous structure has a continuous structure up to the boundary surface with the supporting portion.

次に、載置面2aは、載置部2と載置部周囲の支持部表面の3aとともに研削加工により形成される。吸気孔4は、載置部の裏面側に支持部3を貫通するように設けられており、吸気孔4を介して図示しない真空ポンプにより吸引することにより、載置面2aに載置された被吸着体である半導体ウエハ等が真空吸着される。 Next, the placement surface 2a is formed by grinding together with the placement portion 2 and the support surface 3a around the placement portion. The suction hole 4 is provided on the back side of the mounting portion so as to penetrate the support portion 3 and is placed on the placement surface 2 a by being sucked by a vacuum pump (not shown) through the suction hole 4. A semiconductor wafer or the like, which is an object to be adsorbed, is vacuum-adsorbed.

緻密質支持部に用いられるセラミックスとしては、アルミナ、窒化珪素、炭化珪素、ジルコニア等が挙げられる。また、載置部はセラミックス粉末とガラス粉末との複合材からなりセラミックス粉末は、熱膨張の観点から緻密質支持部に用いられたセラミックスと同一のものを用いるのが好ましいが、多孔質体全体としての熱膨張が支持部と同等であれば良いので、これに限定されるものではない。 Examples of the ceramic used for the dense support portion include alumina, silicon nitride, silicon carbide, zirconia and the like. The mounting part is made of a composite material of ceramic powder and glass powder, and the ceramic powder is preferably the same as the ceramic used for the dense support part from the viewpoint of thermal expansion. However, the thermal expansion is not limited to this as long as it is equivalent to that of the support portion.

ここで、多孔質体からなる載置部の気孔は連通しており、真空吸着力および載置面の面精度の観点から平均気孔径が10〜150μm、開気孔率が20〜50%とすることが好ましく、このような気孔径および開気孔率を得るためには、前記載置部の構成原料であるセラミックス粉末の平均粒径が30μm〜150μmのものを使用することが好ましい。 Here, the pores of the mounting portion made of a porous body communicate with each other, and the average pore diameter is 10 to 150 μm and the open porosity is 20 to 50% from the viewpoint of vacuum adsorption force and surface accuracy of the mounting surface. In order to obtain such a pore diameter and open porosity, it is preferable to use a ceramic powder having an average particle diameter of 30 μm to 150 μm, which is a constituent material of the mounting portion.

次に、前記載置部の構成成分であるガラスの熱膨張係数が前記支持部および前記載置部のもう一方の構成成分であるセラミックスの熱膨張係数より小さいものを使用することが好ましい。その理由は、低熱膨張のガラスを使用することにより、焼結後の多孔質体と支持部材との界面の隙間をなくすことができ、また、多孔質体において結合材としての役割を有するガラスに圧縮応力が加わった状態が望ましいからである。 Next, it is preferable to use a glass having a thermal expansion coefficient smaller than that of the ceramic which is the other constituent component of the supporting portion and the mounting portion described above. The reason for this is that by using low thermal expansion glass, it is possible to eliminate the gap at the interface between the porous body after sintering and the support member, and to the glass having a role as a binder in the porous body. This is because a state where compressive stress is applied is desirable.

また、本発明では、前記載置部の構成原料となるガラス粉末の平均粒子径が前記載置部のもう一方の構成原料であるセラミックス粉末の平均粒子径より小さい方が好ましい。その理由は、ガラス粉末の平均粒径がセラミックス粉末よりも大きいと、セラミックス粉末の充填を阻害するため、ガラス軟化点以上で焼結する際に焼成収縮を起こすからである。ガラスの平均粒径は、好ましくは、セラミックス粉末の平均粒径の1/3以下、さらに好ましくは1/5以下が望ましい。 In the present invention, it is preferable that the average particle diameter of the glass powder as the constituent material of the placement portion is smaller than the average particle diameter of the ceramic powder as the other constituent material of the placement portion. The reason is that if the average particle size of the glass powder is larger than that of the ceramic powder, filling of the ceramic powder is hindered, and thus firing shrinkage occurs when sintering at a glass softening point or higher. The average particle size of the glass is preferably 1/3 or less, more preferably 1/5 or less, of the average particle size of the ceramic powder.

添加するガラス粉末の量は、特に限定しないが、ガラス粉末の粒径が大きい場合と同様に大量に添加するとセラミックス粉末の充填を阻害し、焼成収縮を起こすため、少量が望ましい。ただし、少なすぎるとセラミックス粉末の結合強度が低下し、脱粒や欠けの問題が生じるため、結合強度を発揮するような量が必要である。具体的には、目標とする開気孔率、セラミックス粉末の粒度、焼成温度およびガラス粘性等を考慮して調整されるが、概ねセラミックス粉末に対して5%〜30質量%程度添加混合することが望ましい。 The amount of the glass powder to be added is not particularly limited, but a small amount is desirable because when it is added in a large amount as in the case where the particle size of the glass powder is large, filling of the ceramic powder is inhibited and firing shrinkage occurs. However, if the amount is too small, the bonding strength of the ceramic powder is lowered, and problems such as degranulation and chipping occur, so an amount that exhibits the bonding strength is required. Specifically, it is adjusted in consideration of the target open porosity, the particle size of the ceramic powder, the firing temperature, the glass viscosity, and the like. desirable.

次に、本発明の真空吸着装置1の製造方法について説明する。はじめに載置部2を形成する多孔質体の原料粉末であるセラミックス粉末およびガラス粉末に、水またはアルコールを加えて混合してスラリーを調整する。原料の混合は、ボールミル、ミキサー等、公知の方法が適用できる。ここで、水またはアルコール量は特に限定しない。セラミックス粉末の粒度、ガラス粉末の添加量を考慮し所望の流動性が得られるよう水またはアルコールの添加量を調整する。 Next, the manufacturing method of the vacuum suction apparatus 1 of this invention is demonstrated. First, water or alcohol is added to and mixed with ceramic powder and glass powder, which are raw material powders of the porous body forming the mounting portion 2, to prepare a slurry. For mixing the raw materials, a known method such as a ball mill or a mixer can be applied. Here, the amount of water or alcohol is not particularly limited. In consideration of the particle size of the ceramic powder and the addition amount of the glass powder, the addition amount of water or alcohol is adjusted so as to obtain a desired fluidity.

次に、CIP成形や鋳込み成形等の公知の成形方法、電気炉焼成やホットプレス等の公知の焼成方法、およびダイヤモンド砥石等による公知の研削加工方法により作製した緻密質セラミックスの支持部3の載置部が形成される凹部(図示せず)に前記スラリーを充填する。この際、必要に応じて、残留気泡を除去するための真空脱泡や、充填を高めるための振動を加えると良い。また、吸気孔4および吸気溝5は、載置部となる混合物を注ぐ前に、ろう、樹脂等の焼失部材により閉塞しておく。 Next, mounting of the support portion 3 of the dense ceramic produced by a known molding method such as CIP molding or cast molding, a known firing method such as electric furnace firing or hot press, and a known grinding method using a diamond grindstone or the like. The slurry is filled in a recess (not shown) in which the placement portion is formed. At this time, it is advisable to apply vacuum defoaming for removing residual bubbles and vibration for enhancing filling as necessary. In addition, the air intake holes 4 and the air intake grooves 5 are closed by a burned-out member such as wax or resin before pouring the mixture that becomes the mounting portion.

次に、凹部にスラリーを充填した支持部を十分に乾燥させた後、ガラスの軟化点以上の温度で焼成する。この際、焼成温度がガラスの軟化点より低いと十分に一体化できないが、反対に焼成温度が高すぎると変形や収縮を起こすため、できるだけ低温で焼成することが望ましい。 Next, after fully drying the support part which filled the slurry with the recessed part, it baked at the temperature more than the softening point of glass. At this time, if the firing temperature is lower than the softening point of the glass, sufficient integration cannot be achieved. On the other hand, if the firing temperature is too high, deformation or shrinkage occurs.

載置部の焼成後、載置面2aと支持部表面3aとが略同一平面になるように研削加工を行う。このとき載置部の厚みtが2mm以上、6mm以下となるよう調整する。載置面2aおよび支持部表面3aの研削加工はダイヤモンド砥石等の通常用いる研削方法により行うことができる。 After firing the mounting portion, grinding is performed so that the mounting surface 2a and the support portion surface 3a are substantially in the same plane. At this time, the thickness t of the placement portion is adjusted to be 2 mm or more and 6 mm or less. The mounting surface 2a and the support portion surface 3a can be ground by a commonly used grinding method such as a diamond grindstone.

このような製造方法によれば、載置部と支持部が十分に密着しているため、載置部の多孔質体が薄くても、隙間を原因として多孔質体が撓み変形することはない。さらには、載置部と支持部との接合面を合わせるための加工が不要であるため、支持部となる緻密質焼結体を加工することなくそのまま使用できる。したがって、ウエハの加工精度が向上するだけでなく、真空吸着装置の製造コストを大幅に削減できるという効果がある。 According to such a manufacturing method, since the mounting portion and the support portion are sufficiently in close contact with each other, even if the porous body of the mounting portion is thin, the porous body does not bend and deform due to the gap. . Furthermore, since processing for matching the joint surfaces of the mounting portion and the support portion is unnecessary, the dense sintered body serving as the support portion can be used as it is without being processed. Therefore, not only the wafer processing accuracy is improved, but also the manufacturing cost of the vacuum suction device can be greatly reduced.

以下、本発明の実施例と比較例により本発明を詳細に説明する。
(実施例1〜3)アルミナ粉末(平均粒径125μm)、ガラス粉末(ほう珪酸ガラス、平均粒径:20μm、熱膨張係数40×10−7/℃、軟化点800℃)および蒸留水を100:20:20の質量比で混合し、ミキサーを用いて混錬した後、スラリーを外径350mm、高さ20.5mm(凹部内径298mm、深さ2.5、4.5、6.5mm、吸気孔径および吸気溝幅1.5mm)の緻密質アルミナ支持部(熱膨張係数8.0×10−6/℃)に注型し、真空脱泡を行った後、振動を加えて沈降充填させた。100℃で乾燥させた後、1000℃にて焼成した。次に表面をダイヤモンド砥石で研削することにより真空吸着装置の載置面を得た。研削量は、載置部の厚みtが2、4、6mmになるようにそれぞれ調整した。得られた真空吸着装置を使用して、半導体ウエハ(直径300mm、厚さ800μm)を−5kPaの負圧(ゲージ圧)をかけて載置面に密着させた場合と、−50kPa(ゲージ圧)で真空吸着させた場合の載置部厚み方向の変位量(沈み量)を電気マイクロメータにより半導体ウエハ上の任意の73点について測定し、最大値を求めた。実施例1、2及び3(それぞれの載置部厚み2、4及び6mm)のいずれも、上記沈み量の最大値は3μm以下であった。
Hereinafter, the present invention will be described in detail by way of examples and comparative examples of the present invention.
Examples 1 to 3 Alumina powder (average particle size 125 μm), glass powder (borosilicate glass, average particle size: 20 μm, thermal expansion coefficient 40 × 10 −7 / ° C., softening point 800 ° C.) and distilled water 100 After mixing with a mass ratio of 20:20 and kneading using a mixer, the slurry was outer diameter 350 mm, height 20.5 mm (recess inner diameter 298 mm, depth 2.5, 4.5, 6.5 mm, Cast into a dense alumina support (heat expansion coefficient 8.0 × 10-6 / ° C.) with a suction hole diameter and suction groove width of 1.5 mm, vacuum degassing, and then add vibration to settle and fill. It was. After drying at 100 ° C., firing was performed at 1000 ° C. Next, the mounting surface of the vacuum suction device was obtained by grinding the surface with a diamond grindstone. The amount of grinding was adjusted so that the thickness t of the mounting portion was 2, 4, and 6 mm, respectively. Using the obtained vacuum suction device, a semiconductor wafer (diameter 300 mm, thickness 800 μm) was brought into close contact with the mounting surface by applying a negative pressure (gauge pressure) of −5 kPa, and −50 kPa (gauge pressure). The amount of displacement (sink amount) in the thickness direction of the placement portion when vacuum-adsorbed in was measured at an arbitrary 73 points on the semiconductor wafer with an electric micrometer to obtain the maximum value. In each of Examples 1, 2, and 3 (respective mounting portion thicknesses 2, 4, and 6 mm), the maximum value of the sinking amount was 3 μm or less.

(比較例1)実施例と同等のアルミナ多孔質体を所定形状に加工して載置部(直径298mm)とした後、載置部をアルミナ支持部(外径350mm、高さ20.5mm、凹部内径298mm、深さ4.5mm、吸気孔径および吸気溝幅1.5mm)に挿入し、支持部と載置部とを多孔質体のガラス粉末よりも低軟化点のガラス粉末(ほう珪酸ガラス、平均粒径:20μm、熱膨張係数50×10−7/℃、軟化点650℃)を用いて、800℃でガラス接合した後、実施例と同様に表面研磨により載置面を得た。研削量は、載置部の厚みが4mmになるように調整した。上記実施例と同様に半導体ウエハを真空吸着し、変位量を調べたところ、3μmよりも大きな沈み箇所が見られた。沈み量の多い部分の支持部と載置部の接合部を切断して観察したところ、隙間が見られた。 (Comparative example 1) After processing the alumina porous body equivalent to an Example into a predetermined shape and setting it as a mounting part (diameter 298 mm), the mounting part is an alumina support part (outer diameter 350 mm, height 20.5 mm, A glass powder (borosilicate glass) having a softening point lower than that of the porous glass powder is inserted into a concave inner diameter of 298 mm, a depth of 4.5 mm, an intake hole diameter and an intake groove width of 1.5 mm). And an average particle diameter of 20 μm, a thermal expansion coefficient of 50 × 10 −7 / ° C., and a softening point of 650 ° C.) were glass-bonded at 800 ° C., and a mounting surface was obtained by surface polishing in the same manner as in the examples. The amount of grinding was adjusted so that the thickness of the mounting portion was 4 mm. When the semiconductor wafer was vacuum-sucked and the amount of displacement was examined in the same manner as in the above example, a sinking portion larger than 3 μm was found. When the joint between the support portion and the placement portion where the sinking amount is large was cut and observed, a gap was observed.

(比較例2〜4)実施例と同様の方法により、載置部の厚み1mmおよび7mmの真空吸着装置(それぞれ比較例2および3;その他の形状は実施例1〜3に同じ)、並びに載置部の厚み4mm、吸気孔および吸気溝幅5mmの真空吸着装置(比較例4;その他の形状は実施例1〜3に同じ)を作製し、同様の評価を行った。載置部厚みよりも吸気孔および吸気溝幅が大きい比較例2および比較例4では、吸気溝のある部分で3μmよりも大きな沈みが見られた。載置部厚み7mmの比較例3では、載置面の大部分で3μmよりも大きい沈み量となった。 (Comparative Examples 2 to 4) By a method similar to that of the example, vacuum suction devices having a mounting portion thickness of 1 mm and 7 mm (Comparative Examples 2 and 3; other shapes are the same as those of Examples 1 to 3, respectively) A vacuum suction device (Comparative Example 4; other shapes are the same as those in Examples 1 to 3) having a mounting portion thickness of 4 mm and a suction hole and suction groove width of 5 mm was prepared and evaluated in the same manner. In Comparative Example 2 and Comparative Example 4 in which the intake hole and the intake groove width are larger than the mounting portion thickness, a sink larger than 3 μm was observed in a portion where the intake groove was present. In Comparative Example 3 having a mounting portion thickness of 7 mm, the amount of sinking was greater than 3 μm over most of the mounting surface.

本発明の真空吸着装置の概略構成を示す模式断面図である。It is a schematic cross section which shows schematic structure of the vacuum suction apparatus of this invention.

符号の説明Explanation of symbols

1;真空吸着装置
2;載置部
2a;載置面
3;支持部
3a;支持部表面
4;吸気孔
5;吸気溝
W:被吸着体
t;載置部厚み
DESCRIPTION OF SYMBOLS 1; Vacuum suction apparatus 2; Mounting part 2a; Mounting surface 3; Support part 3a; Support part surface 4; Intake hole 5; Intake groove W: Adsorbed object t;

Claims (4)

被吸着体を吸着保持するためのセラミックス多孔質体からなる載置部と、前記載置部の気孔に連通する吸気孔および/または吸気溝を有する緻密質セラミックスからなる支持部とを備える真空吸着装置であって、前記載置部の厚みが2mm以上、6mm以下であることを特徴とする真空吸着装置。 Vacuum adsorption comprising a mounting portion made of a ceramic porous body for adsorbing and holding an object to be adsorbed, and a support portion made of a dense ceramic having suction holes and / or suction grooves communicating with the pores of the mounting portion It is an apparatus, Comprising: The vacuum suction apparatus characterized by the thickness of the said mounting part being 2 mm or more and 6 mm or less. 前記吸気孔の孔径および吸気溝の溝幅は、載置部厚みよりも小さいことを特徴とする請求項1記載の真空吸着装置。 The vacuum suction device according to claim 1, wherein a hole diameter of the intake hole and a groove width of the intake groove are smaller than a mounting portion thickness. 被吸着体を吸着保持した際の載置部の沈み量が3μm以下であることを特徴とする請求項1、2記載の真空吸着装置。 The vacuum suction device according to claim 1 or 2, wherein a sinking amount of the mounting portion when the object to be adsorbed is held by suction is 3 µm or less. セラミックス粉末およびガラス粉末に、水またはアルコールを加えて混合してスラリーを調整するスラリー調整工程と、前記スラリーを載置部が形成される凹部を設けた支持部の該凹部に充填するスラリー充填工程と、該凹部にスラリーが充填された支持部をガラスの軟化点以上の温度で焼成する焼成工程と、を含むことを特徴とする請求項1〜3記載の真空吸着装置の製造方法。 A slurry adjustment step of adjusting the slurry by adding water or alcohol to ceramic powder and glass powder and mixing the slurry, and a slurry filling step of filling the slurry into the concave portion of the support portion provided with the concave portion in which the placement portion is formed And a baking step of baking the support portion in which the concave portion is filled with the slurry at a temperature equal to or higher than the softening point of the glass.
JP2006199433A 2006-07-21 2006-07-21 Vacuum suction device and manufacturing method thereof Pending JP2008028170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199433A JP2008028170A (en) 2006-07-21 2006-07-21 Vacuum suction device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199433A JP2008028170A (en) 2006-07-21 2006-07-21 Vacuum suction device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008028170A true JP2008028170A (en) 2008-02-07

Family

ID=39118492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199433A Pending JP2008028170A (en) 2006-07-21 2006-07-21 Vacuum suction device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008028170A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164719A (en) * 2008-09-29 2011-08-24 日东电工株式会社 Suction sheet
CN102310262A (en) * 2011-08-23 2012-01-11 南通富士通微电子股份有限公司 Heating block device
JP2012015300A (en) * 2010-06-30 2012-01-19 Taiheiyo Cement Corp Vacuum adsorption apparatus and method of manufacturing the same
CN102496589A (en) * 2011-12-22 2012-06-13 南通富士通微电子股份有限公司 Cushion block device for track of chip mounting machine
CN104465459A (en) * 2014-11-12 2015-03-25 南通富士通微电子股份有限公司 Process for brushing wafer with glue
JP2015065356A (en) * 2013-09-26 2015-04-09 京セラ株式会社 Suction pad
KR20150052181A (en) * 2012-08-31 2015-05-13 세미컨덕터 테크놀로지스 앤드 인스트루먼츠 피티이 엘티디 Single ultra-planar wafer table structure for both wafers and film frames

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142548A (en) * 1990-10-03 1992-05-15 Ricoh Co Ltd Registration method for high-polymer film substrate
JPH11226833A (en) * 1998-02-13 1999-08-24 Ckd Corp Adsorptive plate for vacuum chuck and manufacture thereof
JP2002036102A (en) * 2000-07-28 2002-02-05 Ibiden Co Ltd Wafer holding jig
JP2004018354A (en) * 2002-06-20 2004-01-22 Nisshinbo Ind Inc Carbon porous adsorption plate having high porosity, method of producing the same and vacuum chuck equipped therewith
JP2004338082A (en) * 2003-04-25 2004-12-02 Kurenooton Kk Vacuum chuck and its manufacturing method
JP2005022027A (en) * 2003-07-02 2005-01-27 Taiheiyo Cement Corp Vacuum sucking device and its manufacturing method
JP2005205507A (en) * 2004-01-20 2005-08-04 Taiheiyo Cement Corp Vacuum-sucking device and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142548A (en) * 1990-10-03 1992-05-15 Ricoh Co Ltd Registration method for high-polymer film substrate
JPH11226833A (en) * 1998-02-13 1999-08-24 Ckd Corp Adsorptive plate for vacuum chuck and manufacture thereof
JP2002036102A (en) * 2000-07-28 2002-02-05 Ibiden Co Ltd Wafer holding jig
JP2004018354A (en) * 2002-06-20 2004-01-22 Nisshinbo Ind Inc Carbon porous adsorption plate having high porosity, method of producing the same and vacuum chuck equipped therewith
JP2004338082A (en) * 2003-04-25 2004-12-02 Kurenooton Kk Vacuum chuck and its manufacturing method
JP2005022027A (en) * 2003-07-02 2005-01-27 Taiheiyo Cement Corp Vacuum sucking device and its manufacturing method
JP2005205507A (en) * 2004-01-20 2005-08-04 Taiheiyo Cement Corp Vacuum-sucking device and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164719A (en) * 2008-09-29 2011-08-24 日东电工株式会社 Suction sheet
JP2012015300A (en) * 2010-06-30 2012-01-19 Taiheiyo Cement Corp Vacuum adsorption apparatus and method of manufacturing the same
CN102310262A (en) * 2011-08-23 2012-01-11 南通富士通微电子股份有限公司 Heating block device
CN102496589A (en) * 2011-12-22 2012-06-13 南通富士通微电子股份有限公司 Cushion block device for track of chip mounting machine
CN102496589B (en) * 2011-12-22 2014-01-29 南通富士通微电子股份有限公司 Cushion block device for track of chip mounting machine
KR20150052181A (en) * 2012-08-31 2015-05-13 세미컨덕터 테크놀로지스 앤드 인스트루먼츠 피티이 엘티디 Single ultra-planar wafer table structure for both wafers and film frames
JP2015528643A (en) * 2012-08-31 2015-09-28 セミコンダクター テクノロジーズ アンド インストゥルメンツ ピーティーイー リミテッド Single ultra-flat wafer table structure for both wafer and film frame
US10312124B2 (en) 2012-08-31 2019-06-04 Semiconductor Technologies & Instruments Pte Ltd Single ultra-planar wafer table structure for both wafers and film frames
KR102110000B1 (en) * 2012-08-31 2020-05-12 세미컨덕터 테크놀로지스 앤드 인스트루먼츠 피티이 엘티디 Single ultra-planar wafer table structure for both wafers and film frames
JP2015065356A (en) * 2013-09-26 2015-04-09 京セラ株式会社 Suction pad
CN104465459A (en) * 2014-11-12 2015-03-25 南通富士通微电子股份有限公司 Process for brushing wafer with glue

Similar Documents

Publication Publication Date Title
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP4718397B2 (en) Manufacturing method of vacuum suction device
JP2008028170A (en) Vacuum suction device and manufacturing method thereof
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5261057B2 (en) Suction board and vacuum suction device
JP4336532B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4405887B2 (en) Vacuum adsorption device
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
JP4545536B2 (en) Vacuum suction jig
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4704971B2 (en) Vacuum adsorption device
JP6179030B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4964910B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4405886B2 (en) Vacuum adsorption device
JP4519457B2 (en) Substrate fixing device for processing and manufacturing method thereof
JP5709600B2 (en) Method for manufacturing adsorption member
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5597155B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6120702B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005212000A (en) Vacuum suction device
JP2009148868A (en) Vacuum suction device
JP4468059B2 (en) Hydrostatic bearing device
JP2005254412A (en) Vacuum suction device
JP2009147078A (en) Vacuum suction device, and manufacturing method thereof
JP6154274B2 (en) Suction board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

RD02 Notification of acceptance of power of attorney

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20100823

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Effective date: 20101227

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329