JP2005205507A - Vacuum-sucking device and its manufacturing method - Google Patents

Vacuum-sucking device and its manufacturing method Download PDF

Info

Publication number
JP2005205507A
JP2005205507A JP2004012057A JP2004012057A JP2005205507A JP 2005205507 A JP2005205507 A JP 2005205507A JP 2004012057 A JP2004012057 A JP 2004012057A JP 2004012057 A JP2004012057 A JP 2004012057A JP 2005205507 A JP2005205507 A JP 2005205507A
Authority
JP
Japan
Prior art keywords
vacuum suction
mounting portion
suction device
glass
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004012057A
Other languages
Japanese (ja)
Inventor
Shinya Sato
伸也 佐藤
Tomoyuki Ogura
知之 小倉
Akiko Umeki
亜希子 梅木
Tatsuya Shiogai
達也 塩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004012057A priority Critical patent/JP2005205507A/en
Publication of JP2005205507A publication Critical patent/JP2005205507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum sucking device and its manufacturing method for maintaining the flatness of a sucking surface even in use, by having the sucking surface superior in the flatness. <P>SOLUTION: This vacuum-sucking device 10 is composed of a placing part 11 having a porous structure having an opening air hole and sucking and holding a wafer W by its surface, and a support part 12 for supporting the placing part 11. A recess-projection part 18 is formed at the inside bottom of the support part 12, and a recess-projection part 19 fitted to this recess-projection part 18, is formed on an under surface of the placing part 11, and the placing part 11 and the support part 12 are substantially closely and directly joined. A groove part 13a communicating with the opening air hole possessed by the placing part 11 is arranged on a projecting wall 18a of the recess-projection part 18 as a sucking air hole for generating vacuum suction force in the placing part 11. A first through-hole 13b is arranged in the support part 12 so as to communicate with this groove part 13a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば、半導体ウエハやガラス基板等に研磨等の湿式加工を行うために、半導体ウエハ等を真空吸着保持する真空吸着装置、およびその製造法に関する。   The present invention relates to a vacuum suction apparatus that holds a semiconductor wafer or the like by vacuum suction and performs a manufacturing method thereof, for example, in order to perform wet processing such as polishing on a semiconductor wafer or glass substrate.

例えば、半導体装置の製造工程においては、半導体ウエハを搬送、加工、検査する場合に、真空吸引力を利用した真空吸着装置が広く用いられている。このような真空吸着装置としては、吸着面に開口した複数の貫通孔を有するものが一般的であったが、この場合には貫通孔のみが吸着作用を示すために、吸着面内の吸着力が不均一となりやすく、これによって半導体ウエハの加工精度が低下する等の問題を生じていた。   For example, in a semiconductor device manufacturing process, a vacuum suction device using a vacuum suction force is widely used when a semiconductor wafer is transported, processed, or inspected. As such a vacuum suction device, a device having a plurality of through holes opened in the suction surface is generally used. In this case, since only the through holes exhibit an adsorption action, the suction force in the suction surface is This tends to be non-uniform, which causes problems such as a reduction in the processing accuracy of the semiconductor wafer.

そこで、半導体ウエハのより均一な吸着を行うために、多孔質な載置部を有する真空吸着装置が検討されている。例えば、図6の垂直断面図に示すように、多孔質な載置部91と、載置部91の下側に空間部94が形成されるように載置部91を支持し、この空間部94に連通する吸気孔93を有する支持部92とを備え、載置部91と支持部92とが樹脂またはガラス等の接着剤で接合された真空吸着装置90が知られている。   Therefore, in order to perform more uniform adsorption of the semiconductor wafer, a vacuum adsorption apparatus having a porous mounting portion has been studied. For example, as shown in the vertical cross-sectional view of FIG. 6, the mounting portion 91 is supported so that a porous mounting portion 91 and a space portion 94 are formed below the mounting portion 91. There is known a vacuum suction device 90 that includes a support portion 92 having an intake hole 93 that communicates with 94, and in which the mounting portion 91 and the support portion 92 are joined together with an adhesive such as resin or glass.

また、図7の垂直断面図に示すように、多孔質な載置部81と、この載置部81を支持し、載置部81の開気孔と連通する吸気孔83を有する支持部82とを備えた真空吸着装置80や、図8の垂直断面図に示す真空吸着装置80´のように、図7に示した真空吸着装置80の吸気孔83を複数の細い吸気孔83´に変更した形態を有するもの知られている(例えば、特許文献1、2参照)。   Further, as shown in the vertical sectional view of FIG. 7, a porous mounting portion 81, and a support portion 82 that supports the mounting portion 81 and has an intake hole 83 that communicates with the open air holes of the mounting portion 81. The suction holes 83 of the vacuum suction device 80 shown in FIG. 7 have been changed to a plurality of narrow suction holes 83 ′, such as the vacuum suction device 80 provided with the above and the vacuum suction device 80 ′ shown in the vertical sectional view of FIG. Those having a form are known (see, for example, Patent Documents 1 and 2).

これらの真空吸着装置80等ではそれぞれが具備する吸気孔83等を通して載置部81等に真空吸引力を生じさせることにより、半導体ウエハWを載置部81等の全面で吸着保持するため、載置部81等の表面の平坦度を高める必要がある。そこで、載置部81等の表面には、載置部81等が支持部82等に保持された状態で、ダイヤモンド砥石等による平面研削加工が施される。   In these vacuum suction devices 80 and the like, the semiconductor wafer W is sucked and held on the entire surface of the mounting portion 81 and the like by generating a vacuum suction force on the mounting portion 81 and the like through the suction holes 83 and the like provided in the respective vacuum suction devices 80 and the like. It is necessary to increase the flatness of the surface of the mounting portion 81 and the like. Therefore, the surface of the mounting portion 81 and the like is subjected to surface grinding with a diamond grindstone or the like while the mounting portion 81 or the like is held by the support portion 82 or the like.

しかしながら、図6に示した真空吸着装置90では、載置部91の下側に空間部94が形成されているために、載置部91表面の平面研削加工時の撓み変形が大きく、高い平坦度を得ることが困難である。図7および図8に示した真空吸着装置80・80´のように載置部81の下側に空間部94のような空間がない場合でも、平面研削加工時の載置部81の撓み変形によって吸気孔83・83´が載置部81の表面に転写されて凹みが生じ、載置部81の表面の平坦度が低下するという問題がある。   However, in the vacuum suction device 90 shown in FIG. 6, since the space portion 94 is formed on the lower side of the placement portion 91, the deformation of the surface of the placement portion 91 during the surface grinding is large, and the flatness is high. It is difficult to get a degree. Even when there is no space such as the space portion 94 below the placement portion 81 as in the vacuum suction devices 80 and 80 'shown in FIGS. 7 and 8, the deformation of the placement portion 81 during surface grinding is deformed. As a result, the intake holes 83 and 83 ′ are transferred to the surface of the mounting portion 81, and a dent is generated, resulting in a problem that the flatness of the surface of the mounting portion 81 is lowered.

また、これら真空吸着装置80・80´においては、載置部81と支持部82とを樹脂またはガラス等の接着剤により接合しているために、この接着剤が載置部81の内部に浸透して接着剤の厚みが不均一になりやすく、しかも、空隙が発生しやすい。これにより載置部81の接着強度にばらつきが生じ、平面研削加工時の撓み変形によって接着部の空隙が載置部81の表面に転写されて、載置部81表面の平坦度を悪化させる。   Further, in these vacuum suction devices 80 and 80 ′, the mounting portion 81 and the support portion 82 are joined by an adhesive such as resin or glass, so that the adhesive penetrates into the mounting portion 81. As a result, the thickness of the adhesive tends to be non-uniform, and voids are likely to occur. As a result, the adhesive strength of the mounting portion 81 varies, and the gap of the adhesive portion is transferred to the surface of the mounting portion 81 due to the bending deformation during the surface grinding process, and the flatness of the surface of the mounting portion 81 is deteriorated.

このように表面の平坦度が良好でない載置部81等を備えた真空吸着装置80等に半導体ウエハWを真空吸着した場合には、載置部81等の表面形態に倣って半導体ウエハWに反りが生じるため、半導体ウエハWの加工精度が低下する。   In this way, when the semiconductor wafer W is vacuum-sucked to the vacuum suction device 80 or the like having the mounting portion 81 or the like whose surface flatness is not good, the semiconductor wafer W is imitated according to the surface form of the mounting portion 81 or the like. Since the warp occurs, the processing accuracy of the semiconductor wafer W decreases.

さらに、真空吸着装置90では、載置部91がその周縁のみで支持部92に支持されているために、半導体ウエハWの真空吸着時に半導体ウエハWの表面加わる大気圧によって、載置部91および半導体ウエハWに反りが生ずる問題がある。また、真空吸着装置80・80´では、載置部81等の下側に吸気孔83・83´が形成されており、また、載置部81と支持部82との間に空隙が形成されやすいために、この大気圧によって、これら吸気孔83・83´や空隙が載置部81の表面に転写され、これによって載置部81の表面に吸着保持される半導体ウエハWの平坦度も低下するという問題がある。   Further, in the vacuum suction apparatus 90, since the mounting portion 91 is supported by the support portion 92 only at the periphery thereof, the mounting portion 91 and the mounting portion 91 and the surface of the semiconductor wafer W by the atmospheric pressure applied during the vacuum suction of the semiconductor wafer W There is a problem that the semiconductor wafer W is warped. Further, in the vacuum suction devices 80 and 80 ′, suction holes 83 and 83 ′ are formed on the lower side of the mounting portion 81 and the like, and a gap is formed between the mounting portion 81 and the support portion 82. For the sake of simplicity, the atmospheric pressure causes the suction holes 83 and 83 ′ and the air gap to be transferred to the surface of the mounting portion 81, thereby reducing the flatness of the semiconductor wafer W attracted and held on the surface of the mounting portion 81. There is a problem of doing.

さらにまた、上述した真空吸着装置80等のように、載置部81等と支持部82等とが接着された構造では、載置部81等の外周側壁と支持部82等の内周側壁との間に隙間が生じやすく、これによって半導体ウエハWの吸着が不均一となる問題や、半導体ウエハWにはこの隙間部分の上側で窪みが生じて半導体ウエハWの平坦度が低下するという問題もある。
特開昭53−090871号公報 特開昭61−182738号公報
Furthermore, in the structure in which the mounting portion 81 and the like and the support portion 82 and the like are bonded as in the vacuum suction device 80 and the like described above, the outer peripheral side wall of the mounting portion 81 and the inner peripheral side wall of the support portion 82 and the like There is also a problem that a gap is easily generated between the two, thereby causing the semiconductor wafer W to be non-uniformly adsorbed and a problem that the semiconductor wafer W is recessed above the gap and the flatness of the semiconductor wafer W is lowered. is there.
JP-A-53-090871 JP 61-182738 A

本発明はこのような事情に鑑みてなされたものであり、平坦度の良好な吸着面を備え、使用時にもその吸着面の平坦度が維持される真空吸着装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a vacuum suction device having a suction surface with good flatness and capable of maintaining the flatness of the suction surface even during use, and a method for manufacturing the same. With the goal.

すなわち、本発明によれば、開気孔を備えた多孔質組織を有し、その表面で被処理物を吸着保持する載置部と、
前記載置部を支持し、前記載置部が有する開気孔と連通する吸気孔を備えた支持部と、
を具備し、
前記載置部と前記支持部とは、実質的に隙間なく直接に接合されていることを特徴とする真空吸着装置、が提供される。
That is, according to the present invention, the mounting portion has a porous structure having open pores, and holds the object to be treated by adsorption on the surface thereof;
A support unit that supports the mounting unit and includes an intake hole that communicates with an open hole of the mounting unit;
Comprising
There is provided a vacuum suction device characterized in that the mounting portion and the support portion are directly joined substantially without a gap.

この真空吸着装置においては、前記支持部は所定パターンの第1の凹凸部を備え、前記載置部は前記第1の凹凸部と嵌合する第2の凹凸部を備え、前記支持部に設けられた吸気孔は、前記第1の凹凸部の凹部に開口するようにその凸部に設けられた溝部およびこの溝部と連通する孔部とを有することが好ましい。載置部は、アルミナとガラスからなる複合組織、または、炭化珪素とガラスからなる複合組織を有し、支持部はアルミナ、ジルコニア、炭化珪素、窒化珪素のいずれかからなることが好ましい。   In this vacuum suction apparatus, the support portion includes a first uneven portion having a predetermined pattern, and the mounting portion includes a second uneven portion that fits the first uneven portion, and is provided on the support portion. Preferably, the air intake hole includes a groove portion provided in the convex portion so as to open in the concave portion of the first uneven portion and a hole portion communicating with the groove portion. The mounting part preferably has a composite structure made of alumina and glass or a composite structure made of silicon carbide and glass, and the support part is preferably made of any of alumina, zirconia, silicon carbide, and silicon nitride.

また、本発明によれば、器状のセラミック部材を作製する工程と、
所定のセラミックス粉末とガラス粉末とを含むスラリーを調製する工程と、
前記スラリー調製工程において作製したスラリーを前記セラミック部材に充填する工程と、
前記スラリーが充填されたセラミック部材を前記ガラス粉末の軟化点以上の温度で焼成し、前記セラミック部材と直接に接合された多孔質部を形成する工程と、
を有することを特徴とする真空吸着装置の製造方法、が提供される。
Moreover, according to the present invention, a step of producing a vessel-shaped ceramic member;
Preparing a slurry containing a predetermined ceramic powder and glass powder;
Filling the ceramic member with the slurry produced in the slurry preparation step;
Firing the ceramic member filled with the slurry at a temperature equal to or higher than the softening point of the glass powder, and forming a porous portion directly bonded to the ceramic member;
There is provided a method of manufacturing a vacuum suction device characterized by comprising:

このような真空吸着装置の製造方法においては、前記セラミック部材として、その内底に所定パターンの凹凸部が形成され、前記凹凸部の凹部に開口するようにその凸部に吸気孔が形成されたものを用い、前記スラリーを前記セラミック部材に充填する前に前記吸気孔に加熱により焼失する材料を充填し、焼成工程によって、前記吸気孔と前記多孔質部が有する空孔とを連通させることが好ましい。   In such a vacuum suction device manufacturing method, as the ceramic member, a concave and convex portion having a predetermined pattern is formed on the inner bottom thereof, and an intake hole is formed in the convex portion so as to open to the concave portion of the concave and convex portion. Before the ceramic member is filled with the slurry, the suction holes are filled with a material that is burned off by heating, and the suction holes and the pores of the porous portion are communicated by a firing step. preferable.

本発明によれば、載置部と支持部とが実質的に隙間なく直接に接合されているために、載置部の表面の平坦度を著しく高めることができ、しかも被処理物を吸着保持した際の撓み変形(反り)が抑制される。また、吸気漏れがないために、被処理物を均一に吸着保持することができる。さらに、載置部の下面と直接に連通する吸気孔が形成されていないために、載置部の表面を平面研削加工する際の吸気孔の表面転写による平坦度の悪化を抑制することができ、また被処理物の吸着保持時における被吸着物の撓み発生をも防止することができる。   According to the present invention, since the mounting portion and the support portion are directly joined with substantially no gap, the flatness of the surface of the mounting portion can be remarkably increased, and the object to be processed is held by suction. The bending deformation (warpage) at the time of doing is suppressed. Further, since there is no intake air leakage, the object to be processed can be uniformly adsorbed and held. Furthermore, since the intake holes that communicate directly with the lower surface of the mounting portion are not formed, it is possible to suppress deterioration in flatness due to the surface transfer of the intake holes when the surface of the mounting portion is subjected to surface grinding. In addition, it is possible to prevent the object to be bent from being bent at the time of holding the object to be processed.

以下、本発明の実施の形態について図面を参照しながら説明する。ここでは、被処理物の例として半導体ウエハを取り上げ、この半導体ウエハを吸着保持する真空吸着装置について説明することとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, a semiconductor wafer will be taken up as an example of an object to be processed, and a vacuum suction apparatus for sucking and holding the semiconductor wafer will be described.

図1は本発明に係る真空吸着装置20の概略平面図であり、図2は図1中の線AAを含む垂直断面図である。
真空吸着装置20は、連通する気孔(開気孔;図示せず)を備えた多孔質組織を有し、半導体ウエハWを吸着保持する載置部21と、この載置部21を支持する支持部22から構成されている。
FIG. 1 is a schematic plan view of a vacuum suction device 20 according to the present invention, and FIG. 2 is a vertical sectional view including a line AA in FIG.
The vacuum suction apparatus 20 has a porous structure having pores (open pores; not shown) that communicate with each other, a mounting portion 21 that sucks and holds the semiconductor wafer W, and a support portion that supports the mounting portion 21. 22 is comprised.

支持部22は、アルミナ、窒化珪素、炭化珪素 、ジルコニアから選ばれたセラミックスから構成される。支持部22は器状であり、その内側の側面に開口するように、所定位置に複数の吸気孔23が略水平に形成されている。一方、載置部21は、アルミナおよびガラス、または、炭化珪素およびガラスから構成される。載置部21が有する開気孔の平均気孔径は10〜150μm、気孔率は20〜40%であることが好ましい。   The support portion 22 is made of a ceramic selected from alumina, silicon nitride, silicon carbide, and zirconia. The support portion 22 has a bowl shape, and a plurality of intake holes 23 are formed substantially horizontally at predetermined positions so as to open on the inner side surface thereof. On the other hand, mounting portion 21 is made of alumina and glass, or silicon carbide and glass. The average pore diameter of the open pores of the mounting portion 21 is preferably 10 to 150 μm, and the porosity is preferably 20 to 40%.

吸気孔23は載置部21が有する開気孔と連通している。また、載置部21は、その側面および下面で支持部22と実質的に隙間なく直接に接合されている。ここで、「実質的に隙間なく直接に接合された」とは、載置部21の多孔質構造が支持部22の界面と接していることを指す。このため、支持部22の吸気孔23に真空ポンプ等の吸気装置を取り付けて吸気を行うと、吸気孔23に連通する載置部21の開気孔を通して、載置部21の表面全体に吸引力が発生する。このとき、載置部21と支持部22とが実質的に隙間なく接合されているために、吸気漏れが発生せず、これにより確実に半導体ウエハWを吸着保持することができる。   The intake hole 23 communicates with an open hole of the mounting portion 21. In addition, the placement portion 21 is directly joined to the support portion 22 at a side surface and a lower surface thereof with substantially no gap. Here, “directly joined substantially without any gap” means that the porous structure of the placement portion 21 is in contact with the interface of the support portion 22. For this reason, when suction is performed by attaching a suction device such as a vacuum pump to the suction hole 23 of the support part 22, the suction force is applied to the entire surface of the placement part 21 through the open holes of the placement part 21 communicating with the suction hole 23. Will occur. At this time, since the mounting portion 21 and the support portion 22 are joined to each other with substantially no gap, intake air leakage does not occur, and the semiconductor wafer W can be securely held by suction.

載置部21の表面(つまり、吸着面)は、後述するように、製造工程の最終段階において、載置部21の上面と支持部22の外周部上面とを同時に平面研削/研磨加工することにより形成される。真空吸着装置20においては、載置部21と支持部22との間に実質的に隙間がなく、しかも、載置部21の下側に吸気孔がないことから、平面研削/研磨加工時に、載置部21の撓み変形が起こり難く、しかも載置部21の表面への吸気孔等に起因する転写が防止され、高い平坦度を有する吸着面を形成することができる。また、載置部21と支持部22との間に実質的に隙間がないために、半導体ウエハWを吸着保持した際にも、半導体ウエハWの平坦度を高く維持することができる。   As will be described later, the upper surface of the mounting portion 21 and the upper surface of the outer peripheral portion of the support portion 22 are simultaneously subjected to surface grinding / polishing processing on the surface (that is, the suction surface) of the mounting portion 21 at the final stage of the manufacturing process. It is formed by. In the vacuum suction device 20, since there is substantially no gap between the mounting portion 21 and the support portion 22 and there is no suction hole on the lower side of the mounting portion 21, during surface grinding / polishing processing, It is difficult for the mounting portion 21 to be bent and deformed, and transfer due to an intake hole or the like to the surface of the mounting portion 21 is prevented, so that a suction surface having high flatness can be formed. In addition, since there is substantially no gap between the mounting portion 21 and the support portion 22, even when the semiconductor wafer W is sucked and held, the flatness of the semiconductor wafer W can be maintained high.

次に、本発明に係る真空吸着装置の別の実施形態について説明する。図3は本発明に係る真空吸着装置10の概略構造を示す平面図であり、図4は図3に示す線BBを含む垂直断面図、図5は図3に示す線CCを含む垂直断面図である。   Next, another embodiment of the vacuum suction device according to the present invention will be described. 3 is a plan view showing a schematic structure of the vacuum suction apparatus 10 according to the present invention, FIG. 4 is a vertical sectional view including a line BB shown in FIG. 3, and FIG. 5 is a vertical sectional view including a line CC shown in FIG. It is.

真空吸着装置10は、先に説明した真空吸着装置20と同様に、連通する開気孔を備えた多孔質組織を有し、半導体ウエハWを吸着保持する載置部11と、この載置部11を支持し、載置部11が有する開気孔と連通する吸気孔13を備えた支持部12と、を具備している。載置部11を構成する材料は、先に説明した真空吸着装置20の載置部21を構成する各材料と同じであり、支持部12を構成する材料は支持部22を構成する材料と同じである。   Similar to the vacuum suction device 20 described above, the vacuum suction device 10 has a porous structure having open pores communicating therewith, and a placement portion 11 that sucks and holds the semiconductor wafer W, and the placement portion 11. And a support portion 12 having an intake hole 13 communicating with an open hole of the mounting portion 11. The material constituting the placement part 11 is the same as each material constituting the placement part 21 of the vacuum suction device 20 described above, and the material constituting the support part 12 is the same as the material constituting the support part 22. It is.

支持部12は器状の形状を有し、その内底には、同心円状パターンの凹凸部18が形成されている。支持部12に形成される凹凸パターンは、同心円状に限定されるものではなく、格子状、放射状、千鳥模様(市松模様)状等であってもよい。凹凸部18の凸壁18aには、隣接する凸壁18a間の凹部に開口するように、リング状の溝部13aが形成されている。また、この溝部13aと連通するように複数の第1貫通孔13bが所定位置に設けられている。さらに、支持部12の内側の側面に開口するように、略水平に第2貫通孔13cが所定位置に複数設けられている。これら溝部13aと第1貫通孔13bと第2貫通孔13cが吸気孔13を構成する。なお、真空吸着装置10を、第2貫通孔13cを設けない形態に変更してもよい。   The support part 12 has a container-like shape, and concavity and convexity parts 18 having a concentric pattern are formed on the inner bottom thereof. The concavo-convex pattern formed on the support portion 12 is not limited to a concentric shape, and may be a lattice shape, a radial shape, a staggered pattern (checkered pattern), or the like. On the convex wall 18a of the concavo-convex portion 18, a ring-shaped groove portion 13a is formed so as to open in a concave portion between adjacent convex walls 18a. A plurality of first through holes 13b are provided at predetermined positions so as to communicate with the groove 13a. Further, a plurality of second through holes 13c are provided at predetermined positions substantially horizontally so as to open on the inner side surface of the support portion 12. The groove 13a, the first through-hole 13b, and the second through-hole 13c constitute the intake hole 13. In addition, you may change the vacuum suction apparatus 10 to the form which does not provide the 2nd through-hole 13c.

載置部11の外周側面は支持部12に囲繞され、載置部11の底面には凹凸部18と嵌合するパターンを有する凹凸部19が形成されており、載置部11と支持部12とは、実質的に隙間なく直接に接合されている。後に真空吸着装置10の製造方法について説明する通り、凹凸部19は、載置部11の成形段階で支持部12の凹凸部18と嵌合できるように容易に形成することができる。   An outer peripheral side surface of the mounting portion 11 is surrounded by the support portion 12, and an uneven portion 19 having a pattern that fits with the uneven portion 18 is formed on the bottom surface of the mounting portion 11, and the mounting portion 11 and the support portion 12 are formed. Is directly joined with substantially no gap. As will be described later with respect to the manufacturing method of the vacuum suction device 10, the concavo-convex portion 19 can be easily formed so that it can be fitted to the concavo-convex portion 18 of the support portion 12 at the stage of forming the mounting portion 11.

真空吸着装置10では、支持部12に形成された第1貫通孔13bおよび第2貫通孔13cに真空ポンプを取り付けて吸気を行うと、溝部13aおよび溝部13aと連通する載置部11の開気孔を通して、載置部11の表面全体に吸引力が発生する。なお、載置部11に半導体ウエハWを真空吸着させるための必要な吸着力を生じさせることができるように、凹凸部18における凸壁18aの数(段差数)や凹凸部18の段差寸法、溝部13aの数と幅と高さ、第1貫通孔13bの配設数等は、真空吸着装置10の使用条件を考慮して適切に定めればよい。   In the vacuum suction device 10, when suction is performed by attaching a vacuum pump to the first through-hole 13 b and the second through-hole 13 c formed in the support portion 12, the open pores of the mounting portion 11 communicating with the groove 13 a and the groove 13 a Through this, a suction force is generated on the entire surface of the mounting portion 11. Note that the number of convex walls 18a (the number of steps) in the concavo-convex portion 18 and the step size of the concavo-convex portion 18 so that a necessary suction force for vacuum-sucking the semiconductor wafer W to the mounting portion 11 can be generated. The number, width, and height of the grooves 13a, the number of first through holes 13b, and the like may be appropriately determined in consideration of the use conditions of the vacuum suction device 10.

このような構造を有する真空吸着装置10では、載置部11が側面および下面全面で支持部12に保持されているために、平面研削加工時の撓み変形が抑制され、平坦度の高い吸着面を得ることができる。また、支持部12には、載置部11の凹凸部19の垂直面に連通するように溝部13aが形成され、凹凸部19の水平面に連通する吸気孔が形成されていないために、平面研削加工時に、載置部11の表面への溝部13aや第1貫通孔13bの転写は起こらない。さらに、載置部11と支持部12とが直接に実質的に隙間なく接合されているために、吸気漏れがなく、これにより、半導体ウエハWを均一に吸着保持することができる。さらにまた、半導体ウエハWを吸着保持した際にもその平坦度が維持されるために、半導体ウエハWに反りや窪みが生ずることが抑制される。これにより、半導体ウエハWを高い精度で処理することができる。   In the vacuum suction device 10 having such a structure, since the mounting portion 11 is held by the support portion 12 over the entire side surface and lower surface, bending deformation during surface grinding is suppressed, and the suction surface has a high flatness. Can be obtained. Further, since the groove portion 13 a is formed in the support portion 12 so as to communicate with the vertical surface of the concavo-convex portion 19 of the mounting portion 11, and the intake hole communicating with the horizontal surface of the concavo-convex portion 19 is not formed, surface grinding is performed. At the time of processing, the transfer of the groove 13a and the first through hole 13b to the surface of the mounting portion 11 does not occur. Furthermore, since the mounting portion 11 and the support portion 12 are directly joined with substantially no gap, there is no intake air leakage, and the semiconductor wafer W can be uniformly held by suction. Furthermore, since the flatness is maintained even when the semiconductor wafer W is held by suction, it is possible to suppress warping or depression of the semiconductor wafer W. Thereby, the semiconductor wafer W can be processed with high accuracy.

本発明に係る真空吸着装置は、上記真空吸着装置10・20のように、その平面形状が円形のものに限定されず、吸着保持する被処理物の形状に応じた変形が可能である。例えば、本発明に係る真空吸着装置の平面形状は略四角形であってもよい。   The vacuum suction device according to the present invention is not limited to a circular shape as in the vacuum suction devices 10 and 20 described above, and can be modified according to the shape of the workpiece to be sucked and held. For example, the planar shape of the vacuum suction device according to the present invention may be substantially rectangular.

次に、真空吸着装置10を例に、その製造方法について説明する。
最初に、支持部12となる器状のセラミック部材を作製する。例えば、アルミナ等のセラミックス粉末に所定量のバインダを加えて造粒処理し、これを一軸プレス成形し、さらにCIP成形して、円板状のプレス成形体を作製する。次いで、このプレス成形体を器状に加工して内底に所定パターンの凹凸部を形成し、この凹部に開口する溝部と、この溝部に連通する第1貫通孔と、内側の側面に開口する第2貫通孔とを形成する。得られた加工体を必要に応じて脱脂処理した後、所定の雰囲気、温度、時間で焼成することにより、支持部12となるセラミック部材を得ることができる。なお、プレス成形体を仮焼し、得られた仮焼体に凹凸部等を形成する加工を施し、その後に焼成処理を行ってもよい。
Next, the manufacturing method will be described by taking the vacuum suction device 10 as an example.
First, a vessel-shaped ceramic member that becomes the support portion 12 is manufactured. For example, a predetermined amount of a binder is added to ceramic powder such as alumina and granulated, and this is uniaxially press-molded and further CIP-molded to produce a disk-shaped press-molded body. Next, this press-molded body is processed into a container shape to form a concave / convex portion of a predetermined pattern on the inner bottom, a groove portion that opens to the concave portion, a first through hole that communicates with the groove portion, and an inner side surface. A second through hole is formed. The obtained processed body is degreased as necessary, and then fired at a predetermined atmosphere, temperature, and time, whereby a ceramic member to be the support portion 12 can be obtained. In addition, the press-molded body may be calcined, the obtained calcined body may be subjected to a process for forming uneven portions and the like, and then a firing treatment may be performed.

その一方で、載置部11を形成するために用いられるスラリーを調製する。このスラリーは、セラミックス粉末(アルミナ粉末または炭化珪素粉末)およびガラス粉末に、水またはアルコール等の溶剤を加えて、ボールミル、ミキサー等の公知の方法により混合することにより作製することができる。なお、水またはアルコール等の添加量は、特に限定されるものではないが、セラミックス粉末の粒度、ガラス粉末の添加量を考慮して、所望の流動性が得られるように、調節することが好ましい。   On the other hand, the slurry used for forming the mounting part 11 is prepared. This slurry can be prepared by adding a solvent such as water or alcohol to ceramic powder (alumina powder or silicon carbide powder) and glass powder and mixing them by a known method such as a ball mill or a mixer. The amount of water or alcohol added is not particularly limited, but is preferably adjusted so that desired fluidity can be obtained in consideration of the particle size of the ceramic powder and the amount of glass powder added. .

ここで、開気孔の平均気孔径が10〜150μm、気孔率が20〜40%である載置部11を最終的に形成するためには、セラミックス粉末(つまり、アルミナ粉末または炭化珪素粉末)としては、その平均粒径が30μm〜500μmのものを使用することが好ましい。   Here, in order to finally form the mounting portion 11 having an average pore diameter of 10 to 150 μm and a porosity of 20 to 40%, as ceramic powder (that is, alumina powder or silicon carbide powder) It is preferable to use those having an average particle diameter of 30 μm to 500 μm.

載置部11の構成成分の1つであるガラスとしては、その熱膨張係数が、載置部11のもう一方の構成成分であるセラミックスの熱膨張係数より小さいものを用いることが好ましい。これにより、後の焼成段階で、支持部12の界面と実質的に連続している組織を有する載置部11を形成することができる。また、載置部11において結合材としての役割を有するガラスに圧縮応力が加わった状態を作り出すことができる。ガラスは一般的に引張強度に弱いために、ガラスに圧縮応力が加わった状態とすることにより、載置部11の強度が高められ、研削加工時の脱粒や欠け等の発生も抑制される。   As the glass which is one of the constituent components of the mounting portion 11, it is preferable to use a glass whose thermal expansion coefficient is smaller than that of the ceramic which is the other constituent component of the mounting portion 11. Thereby, the mounting part 11 which has a structure | tissue substantially continuous with the interface of the support part 12 can be formed in the subsequent baking step. In addition, it is possible to create a state in which compressive stress is applied to the glass having a role as a binder in the mounting portion 11. Since glass is generally weak in tensile strength, the strength of the mounting portion 11 is increased by setting the glass to a state in which a compressive stress is applied, and the occurrence of degranulation or chipping during grinding is suppressed.

載置部11を形成するための原料であるガラス粉末の平均粒子径は、載置部11のもう一方の原料であるセラミックス粉末の平均粒子径よりも小さいことが好ましい。これは、ガラス粉末の平均粒径がセラミックス粉末よりも大きいと、セラミックス粉末の充填が阻害されて、後のガラス軟化点以上での焼成時に焼成収縮を起こしてしまうからであり、この場合には、セラミック部材と焼成により形成された多孔質部との境界に隙間が生じてしまうこととなる。ガラス粉末の平均粒径は、セラミックス粉末の平均粒径の1/3以下であることが好ましく、1/5以下であることがより好ましい。   It is preferable that the average particle diameter of the glass powder that is a raw material for forming the mounting portion 11 is smaller than the average particle diameter of the ceramic powder that is the other raw material of the mounting portion 11. This is because if the average particle size of the glass powder is larger than that of the ceramic powder, the filling of the ceramic powder is hindered, causing firing shrinkage when firing above the glass softening point. A gap will be generated at the boundary between the ceramic member and the porous portion formed by firing. The average particle size of the glass powder is preferably 1/3 or less of the average particle size of the ceramic powder, and more preferably 1/5 or less.

セラミックス粉末に対して添加するガラス粉末の量は、使用するセラミックス粉末の粒度(粒度分布)や焼成温度におけるガラスの粘性等を考慮して調整されるが、多過ぎるとセラミックス粉末の充填が阻害されて焼成収縮が生じ、逆に少な過ぎるとセラミックス粉末の結合強度が低下し、脱粒や欠け等が生ずる。このため、ガラス粉末の量は、所望の結合強度、気孔率が得られる範囲においてできるだけ少ないことが好ましく、具体的には、概ね、セラミックス粉末100質量部に対して、5〜30質量部とすることが好ましい。   The amount of the glass powder added to the ceramic powder is adjusted in consideration of the particle size (particle size distribution) of the ceramic powder to be used and the viscosity of the glass at the firing temperature. In contrast, if the shrinkage is too small, the bonding strength of the ceramic powder is lowered, and degranulation or chipping occurs. For this reason, the amount of the glass powder is preferably as small as possible within a range where desired bond strength and porosity can be obtained. Specifically, the amount is generally 5 to 30 parts by mass with respect to 100 parts by mass of the ceramic powder. It is preferable.

次に、セラミック部材に形成されている溝部、第1貫通孔および第2貫通孔に、樹脂等の焼失材料を充填する。次いで、作製したスラリーをセラミック部材に充填して、後の焼成により載置部11となる部分を成形する。その際に必要に応じて、スラリー中の残留気泡を除去するための真空脱泡処理や充填率を高めるための振動を加えるとよい。   Next, a burning material such as resin is filled in the groove, the first through hole, and the second through hole formed in the ceramic member. Next, the prepared slurry is filled in a ceramic member, and a portion that becomes the mounting portion 11 is formed by subsequent firing. At that time, if necessary, it is preferable to apply a vacuum defoaming treatment for removing residual bubbles in the slurry and vibration for increasing the filling rate.

こうしてスラリーが充填されたセラミック部材を十分に乾燥させた後、載置部11形成用のガラスの軟化点以上の温度で焼成し、多孔質部を形成する。このとき、焼成温度がガラスの軟化点より低いと、セラミック部材と多孔質部を十分に一体化することができないが、反対に焼成温度が高過ぎると多孔質部が変形や収縮を起こすため、できるだけ低温で焼成することが望ましい。続いて、得られた焼成体の表面全体を研削し、さらに必要に応じて研磨処理することにより、真空吸着装置10が得られる。   Thus, after fully drying the ceramic member with which the slurry was filled, it baked at the temperature more than the softening point of the glass for mounting part 11 formation, and forms a porous part. At this time, if the firing temperature is lower than the softening point of the glass, the ceramic member and the porous part cannot be sufficiently integrated, but conversely if the firing temperature is too high, the porous part is deformed and contracted, It is desirable to fire at as low a temperature as possible. Then, the vacuum adsorption apparatus 10 is obtained by grinding the whole surface of the obtained baked body, and also grind | polishing as needed.

このような真空吸着装置10の製造方法によれば、載置部11と支持部12とを別個に製造する必要がなく、また、支持部12を構成する器状セラミック部材の加工形状にしたがって載置部11となる多孔質部を形成することができるために、載置部11と支持部12との境界の面合わせ加工が不要となる。これにより、製造コストを大幅に低減することができる。さらに、載置部11と支持部12との界面に隙間が生ずることがないために、載置部11を平面研削加工する際に、このような隙間に起因する転写の発生がない。これにより平坦度の高い吸着面を得ることができる。   According to such a manufacturing method of the vacuum suction device 10, it is not necessary to separately manufacture the mounting portion 11 and the support portion 12, and the mounting is performed according to the processing shape of the container-like ceramic member constituting the support portion 12. Since the porous portion to be the placement portion 11 can be formed, the process of aligning the boundary between the placement portion 11 and the support portion 12 becomes unnecessary. Thereby, manufacturing cost can be reduced significantly. Further, since no gap is generated at the interface between the placement portion 11 and the support portion 12, no transfer due to such a gap occurs when the placement portion 11 is surface ground. Thereby, an adsorption surface with high flatness can be obtained.

(実施例)
実施例として図3〜5に示した真空吸着装置10を作製した。すなわち、公知のセラミック部材の製造方法により、支持部12と同構造を有する緻密質アルミナ部材(外径:250mm、内径:200mm、高さ(厚さ):50mm、深さ:40mm、熱膨張係数:8.0×10−6/℃)を作製し、この緻密質アルミナ部材に設けられた吸気孔に樹脂を充填した。また、アルミナ粉末(平均粒径:125μm)とガラス粉末(ほう珪酸ガラス、平均粒径:20μm、熱膨張係数:40×10−7/℃、軟化点:800℃)と蒸留水とを、100:20:20の質量比で秤量し、ミキサーを用いて混練して、スラリーを作製した。
(Example)
As an example, the vacuum suction apparatus 10 shown in FIGS. That is, by a known ceramic member manufacturing method, a dense alumina member (outer diameter: 250 mm, inner diameter: 200 mm, height (thickness): 50 mm, depth: 40 mm, thermal expansion coefficient) having the same structure as the support portion 12. : 8.0 × 10 −6 / ° C.), and a resin was filled into the air intake holes provided in the dense alumina member. Also, alumina powder (average particle size: 125 μm), glass powder (borosilicate glass, average particle size: 20 μm, coefficient of thermal expansion: 40 × 10 −7 / ° C., softening point: 800 ° C.) and distilled water, 100 : Weighed at a mass ratio of 20:20, and kneaded using a mixer to prepare a slurry.

得られたスラリーを緻密質アルミナ部材に注型し、真空脱泡を行った後、振動を加えてスラリーに含まれる粉末を沈降充填させた。これを100℃で乾燥させ、その後に1000℃で焼成した。これによりスラリーが充填された部分にアルミナとガラスからなる多孔質部が形成された。続いて、得られた焼成体の表面をダイヤモンド砥石で平面研削し、真空吸着装置10を得た。   The obtained slurry was cast into a dense alumina member, vacuum defoamed, and then subjected to vibration to settle and fill the powder contained in the slurry. This was dried at 100 ° C. and then fired at 1000 ° C. As a result, a porous portion made of alumina and glass was formed in the portion filled with the slurry. Subsequently, the surface of the obtained fired body was subjected to surface grinding with a diamond grindstone to obtain a vacuum suction device 10.

この真空吸着装置の多孔質部(つまり、載置部11)と緻密質アルミナ部材(つまり、支持部12)との接合界面を観察したところ、亀裂や隙間は観察されなかった。また、多孔質部の表面には脱粒等の欠陥も観察されなかった。さらに、この多孔質部の表面の平坦度と、この多孔質部の表面に直径200mm×厚さ0.1mmの半導体ウエハを吸着保持した際の半導体ウエハの反りとを、真直度測定装置により測定した結果、ともに0.5μm程度と良好であった。   When the bonding interface between the porous portion (that is, the mounting portion 11) and the dense alumina member (that is, the support portion 12) of this vacuum adsorption device was observed, no cracks or gaps were observed. Further, no defects such as degranulation were observed on the surface of the porous part. Further, the flatness of the surface of the porous portion and the warpage of the semiconductor wafer when a semiconductor wafer having a diameter of 200 mm × thickness of 0.1 mm is sucked and held on the surface of the porous portion is measured by a straightness measuring device. As a result, both were as good as about 0.5 μm.

(比較例)
比較例として図8に示す真空吸着装置80´を作製した。すなわち、アルミナ多孔質体を加工して載置部81を作製し、緻密質アルミナ体を加工して支持部82を作製した。この支持部82の内表面にガラスペーストを塗布した後、載置部81を支持部82に挿入して800℃で焼成し、これらをガラス接合した。得られた接合体の表面を平面研削して、真空吸着装置10を得た。
(Comparative example)
As a comparative example, a vacuum suction device 80 ′ shown in FIG. 8 was produced. That is, the placing part 81 was manufactured by processing the alumina porous body, and the supporting part 82 was manufactured by processing the dense alumina body. After applying a glass paste to the inner surface of the support portion 82, the mounting portion 81 was inserted into the support portion 82 and baked at 800 ° C., and these were glass bonded. The surface of the obtained bonded body was surface ground to obtain a vacuum suction device 10.

こうして作製した真空吸着装置における載置部81と支持部82との境界(接合部)を観察したところ、小さな隙間が複数箇所に観察された。また、実施例と同様に、載置部81の表面の平坦度を測定した結果、約5μmと大きかった。さらに載置部81に半導体ウエハを吸着保持させたときの半導体ウエハの反りは約15μmとなり、載置部81表面の平坦度よりも大きな変形が生じていた。   When the boundary (joint part) between the placement part 81 and the support part 82 in the vacuum suction device thus produced was observed, small gaps were observed at a plurality of places. Further, as in the example, the flatness of the surface of the mounting portion 81 was measured, and as a result, it was as large as about 5 μm. Further, when the semiconductor wafer is attracted and held on the mounting portion 81, the warp of the semiconductor wafer is about 15 μm, and deformation larger than the flatness of the surface of the mounting portion 81 occurs.

本発明の真空吸着装置は、例えば、半導体ウエハやガラス基板等の搬送装置、加工装置、検査装置等に好適である。   The vacuum suction device of the present invention is suitable for, for example, a transfer device such as a semiconductor wafer or a glass substrate, a processing device, an inspection device, and the like.

本発明の真空吸着装置の第1の実施形態を示す平面図。The top view which shows 1st Embodiment of the vacuum suction apparatus of this invention. 図1中に示す線AAを含む垂直断面図。FIG. 2 is a vertical sectional view including a line AA shown in FIG. 1. 本発明の真空吸着装置の第2の実施形態を示す平面図。The top view which shows 2nd Embodiment of the vacuum suction apparatus of this invention. 図3中に示す線BBを含む垂直断面図。FIG. 4 is a vertical sectional view including a line BB shown in FIG. 3. 図3中に示す線CCを含む垂直断面図。FIG. 4 is a vertical sectional view including a line CC shown in FIG. 3. 従来の真空吸着装置の一例を示す断面図。Sectional drawing which shows an example of the conventional vacuum suction apparatus. 従来の真空吸着装置の別の例を示す断面図。Sectional drawing which shows another example of the conventional vacuum suction apparatus. 従来の真空吸着装置のさらに別の例を示す断面図。Sectional drawing which shows another example of the conventional vacuum suction apparatus.

符号の説明Explanation of symbols

10;真空吸着装置
11;載置部
12;支持部
13;吸気孔
13a;溝部
13b;第1貫通孔
13c;第2貫通孔
18;凹凸部
18a;凸壁
19;凹凸部
20;真空吸着装置
21;載置部
22;支持部
23;吸気孔
80・80´・90;真空吸着装置
81・91;載置部
82・92;支持部
83・83´・93;吸気孔
94;空間部
DESCRIPTION OF SYMBOLS 10; Vacuum suction apparatus 11; Mounting part 12; Support part 13; Intake hole 13a; Groove part 13b; First through-hole 13c; Second through-hole 18: Uneven part 18a; Convex wall 19; 21; Placement part 22; Support part 23; Intake hole 80/80 '/ 90; Vacuum suction device 81/91; Placement part 82/92; Support part 83/83' / 93; Intake hole 94;

Claims (4)

開気孔を備えた多孔質組織を有し、その表面で被処理物を吸着保持する載置部と、
前記載置部を支持し、前記載置部が有する開気孔と連通する吸気孔を備えた支持部と、
を具備し、
前記載置部と前記支持部とは、実質的に隙間なく直接に接合されていることを特徴とする真空吸着装置。
A mounting portion having a porous structure with open pores and adsorbing and holding an object to be processed on its surface;
A support unit that supports the mounting unit and includes an intake hole that communicates with an open hole of the mounting unit;
Comprising
The vacuum suction device, wherein the placement portion and the support portion are directly joined with substantially no gap.
前記支持部は、所定パターンの第1の凹凸部を備え、
前記載置部は、前記第1の凹凸部と嵌合する第2の凹凸部を備え、
前記吸気孔は、前記第1の凹凸部の凹部に開口するようにその凸部に設けられた溝部および前記溝部と連通する孔部を有することを特徴とする請求項1に記載の真空吸着装置。
The support portion includes a first uneven portion having a predetermined pattern,
The mounting portion includes a second uneven portion that fits with the first uneven portion,
2. The vacuum suction device according to claim 1, wherein the air intake hole includes a groove portion provided in the convex portion so as to open in the concave portion of the first uneven portion and a hole portion communicating with the groove portion. .
前記載置部は、アルミナとガラスからなる複合組織、または、炭化珪素とガラスからなる複合組織を有し、
前記支持部は、アルミナ、ジルコニア、炭化珪素、窒化珪素のいずれかからなることを特徴とする請求項1または請求項2に記載の真空吸着装置。
The placement section has a composite structure made of alumina and glass, or a composite structure made of silicon carbide and glass,
The vacuum suction device according to claim 1, wherein the support portion is made of any one of alumina, zirconia, silicon carbide, and silicon nitride.
器状のセラミック部材を作製する工程と、
所定のセラミックス粉末とガラス粉末とを含むスラリーを調製する工程と、
前記スラリー調製工程において作製したスラリーを前記セラミック部材に充填する工程と、
前記スラリーが充填されたセラミック部材を前記ガラス粉末の軟化点以上の温度で焼成し、前記セラミック部材と直接に接合された多孔質部を形成する工程と、
を有することを特徴とする真空吸着装置の製造方法。
Producing a bowl-shaped ceramic member;
Preparing a slurry containing a predetermined ceramic powder and glass powder;
Filling the ceramic member with the slurry produced in the slurry preparation step;
Firing the ceramic member filled with the slurry at a temperature equal to or higher than the softening point of the glass powder, and forming a porous portion directly bonded to the ceramic member;
A method for manufacturing a vacuum suction device, comprising:
JP2004012057A 2004-01-20 2004-01-20 Vacuum-sucking device and its manufacturing method Pending JP2005205507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012057A JP2005205507A (en) 2004-01-20 2004-01-20 Vacuum-sucking device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012057A JP2005205507A (en) 2004-01-20 2004-01-20 Vacuum-sucking device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005205507A true JP2005205507A (en) 2005-08-04

Family

ID=34898559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012057A Pending JP2005205507A (en) 2004-01-20 2004-01-20 Vacuum-sucking device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005205507A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253284A (en) * 2006-03-23 2007-10-04 Kyocera Corp Vacuum chuck and vacuum suction device using it
JP2008028170A (en) * 2006-07-21 2008-02-07 Taiheiyo Cement Corp Vacuum suction device and manufacturing method thereof
JP2009224402A (en) * 2008-03-13 2009-10-01 Taiheiyo Cement Corp Vacuum suction device
JP2010029984A (en) * 2008-07-29 2010-02-12 Kyocera Corp Sucking disk and vacuum sucking device
JP2010103332A (en) * 2008-10-24 2010-05-06 Tanken Seal Seiko Co Ltd Vacuum suction apparatus
JP2011151277A (en) * 2010-01-23 2011-08-04 Kyocera Corp Member for suction, method of manufacturing the same, and device for vacuum suction
CN102270596A (en) * 2010-06-02 2011-12-07 上海微电子装备有限公司 Sucking disc and sheet-holding table
JP2017195274A (en) * 2016-04-20 2017-10-26 日本特殊陶業株式会社 Vacuum suction device and manufacturing method thereof
JP2018034299A (en) * 2017-11-22 2018-03-08 ローム株式会社 Suction holding device and wafer polishing device
WO2021256317A1 (en) 2020-06-18 2021-12-23 日立造船株式会社 Pressurizing suction-attachment table and pressurizing device equipped with same
KR20220019931A (en) * 2020-08-11 2022-02-18 에스씨플랫 주식회사 Polishing Apparatus For Substrate Of Display Device
JP2023010932A (en) * 2019-01-16 2023-01-20 株式会社東京精密 Wafer chuck and wafer holding device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253284A (en) * 2006-03-23 2007-10-04 Kyocera Corp Vacuum chuck and vacuum suction device using it
JP4731368B2 (en) * 2006-03-23 2011-07-20 京セラ株式会社 Vacuum chuck and vacuum suction device using the same
JP2008028170A (en) * 2006-07-21 2008-02-07 Taiheiyo Cement Corp Vacuum suction device and manufacturing method thereof
JP2009224402A (en) * 2008-03-13 2009-10-01 Taiheiyo Cement Corp Vacuum suction device
JP2010029984A (en) * 2008-07-29 2010-02-12 Kyocera Corp Sucking disk and vacuum sucking device
JP2010103332A (en) * 2008-10-24 2010-05-06 Tanken Seal Seiko Co Ltd Vacuum suction apparatus
JP2011151277A (en) * 2010-01-23 2011-08-04 Kyocera Corp Member for suction, method of manufacturing the same, and device for vacuum suction
CN102270596A (en) * 2010-06-02 2011-12-07 上海微电子装备有限公司 Sucking disc and sheet-holding table
JP2017195274A (en) * 2016-04-20 2017-10-26 日本特殊陶業株式会社 Vacuum suction device and manufacturing method thereof
JP2018034299A (en) * 2017-11-22 2018-03-08 ローム株式会社 Suction holding device and wafer polishing device
JP2023010932A (en) * 2019-01-16 2023-01-20 株式会社東京精密 Wafer chuck and wafer holding device
JP7519576B2 (en) 2019-01-16 2024-07-22 株式会社東京精密 Wafer chuck and wafer holding device
WO2021256317A1 (en) 2020-06-18 2021-12-23 日立造船株式会社 Pressurizing suction-attachment table and pressurizing device equipped with same
EP4170704A4 (en) * 2020-06-18 2024-08-21 Hitachi Zosen Corp Pressurizing suction-attachment table and pressurizing device equipped with same
KR20220019931A (en) * 2020-08-11 2022-02-18 에스씨플랫 주식회사 Polishing Apparatus For Substrate Of Display Device
KR102406293B1 (en) * 2020-08-11 2022-06-10 에스씨플랫 주식회사 Polishing Apparatus For Substrate Of Display Device

Similar Documents

Publication Publication Date Title
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
JP4718397B2 (en) Manufacturing method of vacuum suction device
JP5261057B2 (en) Suction board and vacuum suction device
JP2008028170A (en) Vacuum suction device and manufacturing method thereof
JP4405887B2 (en) Vacuum adsorption device
JP4336532B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6179030B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4405886B2 (en) Vacuum adsorption device
JP4964910B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6989361B2 (en) Substrate adsorption member and its manufacturing method
JP6120702B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5597155B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4468059B2 (en) Hydrostatic bearing device
JP2012204419A (en) Manufacturing method of member for suction
JP6154274B2 (en) Suction board
JP2005212000A (en) Vacuum suction device
JP6199180B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6104075B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2009147078A (en) Vacuum suction device, and manufacturing method thereof
JP2005254412A (en) Vacuum suction device
JP6590675B2 (en) Vacuum adsorption device