JP4731368B2 - Vacuum chuck and vacuum suction device using the same - Google Patents

Vacuum chuck and vacuum suction device using the same Download PDF

Info

Publication number
JP4731368B2
JP4731368B2 JP2006081359A JP2006081359A JP4731368B2 JP 4731368 B2 JP4731368 B2 JP 4731368B2 JP 2006081359 A JP2006081359 A JP 2006081359A JP 2006081359 A JP2006081359 A JP 2006081359A JP 4731368 B2 JP4731368 B2 JP 4731368B2
Authority
JP
Japan
Prior art keywords
mass
glass
vacuum chuck
bonding layer
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006081359A
Other languages
Japanese (ja)
Other versions
JP2007253284A (en
Inventor
和洋 石川
美恵子 八嶋
正治 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006081359A priority Critical patent/JP4731368B2/en
Publication of JP2007253284A publication Critical patent/JP2007253284A/en
Application granted granted Critical
Publication of JP4731368B2 publication Critical patent/JP4731368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Description

本発明は、半導体ウェハやガラス基板等の被処理物を研磨するために、これら被処理物を吸着保持する真空チャック及びこれを用いた真空吸着装置に関するものである。   The present invention relates to a vacuum chuck for sucking and holding workpieces such as semiconductor wafers and glass substrates, and a vacuum suction apparatus using the same.

従来より、半導体ウェハのデバイス形成面の裏面を研削するために吸着面を備え、この吸着面上に真空吸引することで半導体ウェハを固定する真空チャックを備えた真空吸着装置と、半導体ウェハをグラインド加工するダイヤモンドホイールとを備えるウエハ研削装置が用いられている。   Conventionally, a vacuum suction apparatus having a vacuum chuck for fixing a semiconductor wafer by vacuum suction on the suction surface to grind the back surface of the device forming surface of the semiconductor wafer, and grinding the semiconductor wafer A wafer grinding apparatus including a diamond wheel to be processed is used.

真空吸引により吸着面に固定された半導体ウェハは、ダイヤモンドホイールで研削されるが、加工された面には通常加工変質層が発生する。近年、半導体ウェハの極薄化に伴い、加工変質層の影響が相対的に大きくなり、半導体ウェハから半導体素子を形成する工程で、この加工変質層の影響を受け、半導体素子にクラックが入りやすいという問題が顕在化しつつある。   The semiconductor wafer fixed to the suction surface by vacuum suction is ground with a diamond wheel, but a work-affected layer usually occurs on the processed surface. In recent years, due to the ultra-thinning of semiconductor wafers, the influence of the work-affected layer is relatively large, and in the process of forming a semiconductor element from the semiconductor wafer, the semiconductor element is likely to crack due to the influence of the work-affected layer The problem is becoming apparent.

近年では前記加工変質層を除去するため、半導体ウェハのデバイス形成面の裏面を、例えば砥粒が付着した研磨布で磨くというドライポリッシュ方式による追加研磨が提案されている。当初、ドライポリッシュ方式のウエハ研磨装置と組み合わせて用いられる真空吸着装置には、ウエハ研削装置と組み合わせて用いられたアルミナ質焼結体を吸着部材とする真空吸着装置を転用していたが、アルミナ質焼結体の熱伝導率が低いために、ダイヤモンドホイールによる研削中に半導体ウエハから十分熱を逃がすことができず、デバイス形成面を保護するために用いられていた樹脂フィルムが溶けて、デバイス形成面が損傷するという問題が発生していた。   In recent years, in order to remove the work-affected layer, additional polishing by a dry polishing method has been proposed in which the back surface of the device formation surface of a semiconductor wafer is polished with, for example, a polishing cloth to which abrasive grains are attached. Initially, the vacuum suction device used in combination with the dry polish type wafer polishing device was diverted from the vacuum suction device using the alumina sintered body used in combination with the wafer grinding device as the adsorption member. Due to the low thermal conductivity of the sintered material, the resin film that was used to protect the device formation surface melts because the heat from the semiconductor wafer cannot be released sufficiently during grinding with the diamond wheel. There was a problem that the forming surface was damaged.

この問題を解決するために炭化珪素の高い熱伝導性に注目し、以下の特許文献1及び2では炭化珪素質焼結体を吸着部材とする真空チャックが提案されている。   In order to solve this problem, paying attention to the high thermal conductivity of silicon carbide, the following Patent Documents 1 and 2 propose a vacuum chuck using a silicon carbide sintered body as an adsorbing member.

具体的には特許文献1では、半導体ウェハやガラス基板を真空吸着するための炭化珪素を主成分とした多孔質体からなる円板形状の載置部と、この載置部を支持するための炭化珪素を主成分とした緻密質体からなる支持部との間に、ケイ酸ガラス、ホウケイ酸ガラス等を塗布し、1100〜1250℃で溶融することで、載置部と支持部とを接合した真空チャックが提案されている。   Specifically, in Patent Document 1, a disk-shaped mounting portion made of a porous body mainly composed of silicon carbide for vacuum-adsorbing a semiconductor wafer or a glass substrate, and a support for the mounting portion. A silicate glass, a borosilicate glass, etc. are apply | coated between the support parts which consist of a dense body which has silicon carbide as a main component, and a mounting part and a support part are joined by fuse | melting at 1100-1250 degreeC. A vacuum chuck has been proposed.

特許文献2では、半導体ウェハやガラス基板を真空吸着する炭化珪素を主成分とする多孔質体からなる円板形状の載置部と、この載置部を支持する炭化珪素を主成分とする緻密質体からなる支持部との間に、Al,SiO,NaO−SiO,NaO−CaO−SiO,KO−CaO−SiO,KO−PbO−SiO,BaO−SiO−B,NaO−B−SiO等の成分に非酸化物系セラミックス粉末を配合したガラスを挿入し、1000℃で溶融することで、空気の透過を遮断する空気不透過層を形成した真空吸着チャックが提案されている。
特開2002−373873号公報 特開2005−279789号公報
In Patent Document 2, a disk-shaped mounting portion made of a porous body mainly composed of silicon carbide that vacuum-adsorbs a semiconductor wafer or a glass substrate, and a dense body mainly composed of silicon carbide that supports the mounting portion. Al 2 O 3 , SiO 2 , Na 2 O—SiO 2 , Na 2 O—CaO—SiO 2 , K 2 O—CaO—SiO 2 , K 2 O—PbO— By inserting a glass in which a non-oxide ceramic powder is blended into components such as SiO 2 , BaO—SiO 2 —B 2 O 3 , Na 2 O—B 2 O 3 —SiO 2 , and melting at 1000 ° C., There has been proposed a vacuum suction chuck in which an air impervious layer that blocks air permeation is formed.
JP 2002-373873 A JP 2005-279789 A

しかしながら、特許文献1で提案されるように、炭化珪素を主成分とする多孔質体からなる円板形状の載置部と、この載置部を支持する炭化珪素を主成分とする緻密質体からなる支持部をケイ酸ガラスで接合しようとすると、ケイ酸ガラスの溶融温度は1700℃であるために、この温度までケイ酸ガラスを加熱しなければならない。   However, as proposed in Patent Document 1, a disk-shaped mounting portion made of a porous body mainly composed of silicon carbide and a dense body mainly composed of silicon carbide that supports the mounting portion. When the support made of silicate glass is to be joined with silicate glass, the melting temperature of silicate glass is 1700 ° C., so the silicate glass must be heated to this temperature.

しかしながら、この温度では載置部および支持部は酸化し、この酸化に伴って載置部や支持部から気泡が発生する。そして、支持部表面には気泡が残りやすく、この気泡が空隙となって接合を妨げ、載置部と支持部との接合強度を低くするという問題があった。   However, at this temperature, the placing portion and the supporting portion are oxidized, and bubbles are generated from the placing portion and the supporting portion along with this oxidation. And there is a problem that bubbles are likely to remain on the surface of the support part, and the bubbles become gaps to prevent the bonding, thereby reducing the bonding strength between the mounting part and the support part.

また、載置部と支持部とをホウケイ酸ガラスで接合した場合、ケイ酸ガラスより溶融温度は低くなるものの、ホウケイ酸ガラスには通常NaO,KO等のアルカリ金属酸化物が含まれるため、ガラス溶融中、これらアルカリ金属酸化物が溶出して吸着面に付着し、真空吸着された半導体ウェハやガラス基板を汚染するという問題があった。 In addition, when the mounting part and the support part are joined with borosilicate glass, although the melting temperature is lower than that of silicate glass, alkali metal oxides such as Na 2 O and K 2 O are usually included in borosilicate glass. Therefore, during melting of the glass, these alkali metal oxides elute and adhere to the adsorption surface, and there is a problem that the vacuum-adsorbed semiconductor wafer or glass substrate is contaminated.

また、特許文献2で提案されるように、NaO−SiO,NaO−CaO−SiO,KO−CaO−SiO,KO−PbO−SiO,BaO−SiO−B,NaO−B−SiO等の成分非酸化物系セラミックス粉末を配合したガラスを用いた場合、膨潤等の形状変化を起こしにくいものの、上述と同様、アルカリ金属酸化物が含まれるため、ガラス溶融中、これらアルカリ金属酸化物が溶出して、吸着面に付着し、真空吸着された半導体ウェハやガラス基板を汚染するという問題があった。 Moreover, as proposed in Patent Document 2, Na 2 O—SiO 2 , Na 2 O—CaO—SiO 2 , K 2 O—CaO—SiO 2 , K 2 O—PbO—SiO 2 , BaO—SiO 2. When glass containing a component non-oxide ceramic powder such as —B 2 O 3 , Na 2 O—B 2 O 3 —SiO 2 is used, it is difficult to cause shape change such as swelling, but as described above, alkali Since the metal oxide is contained, during the melting of the glass, these alkali metal oxides are eluted, adhere to the adsorption surface, and have a problem of contaminating the vacuum-adsorbed semiconductor wafer or glass substrate.

さらに、特許文献1および特許文献2で提案されたいずれのガラスを用いた場合も、1000℃以上で溶融しているため、載置部や支持部は酸化する。そして、この酸化に伴って、載置部や支持部から気泡が発生して、表面に残った気泡が接合を妨げ、載置部と支持部との接合強度を低くするという問題があった。   Furthermore, when any glass proposed in Patent Document 1 and Patent Document 2 is used, it is melted at 1000 ° C. or higher, so that the mounting portion and the support portion are oxidized. Along with this oxidation, bubbles are generated from the mounting portion and the support portion, and there is a problem that the bubbles remaining on the surface hinder the bonding and lower the bonding strength between the mounting portion and the supporting portion.

本発明は、半導体ウェハやガラス基板を汚染から防止するとともに、載置部と支持部とを強固に接合した信頼性の高い真空チャックおよびこれを用いた真空吸着装置を提供することを目的とする。   An object of the present invention is to provide a highly reliable vacuum chuck in which a semiconductor wafer and a glass substrate are prevented from being contaminated, and a mounting portion and a support portion are firmly bonded, and a vacuum suction device using the same. .

上記に鑑みて本発明は、以下のような構成を有する。
In view of the above, the present invention has the following configuration.

さらに少なくとも炭化珪素を主成分とする多孔質体からなる吸着面を有する載置部と、該載置部を囲繞して支持する炭化珪素を主成分とする緻密質体からなる支持部とをガラス状の結合層で接合した真空チャックにおいて、前記結合層はそれぞれ酸化物換算でSiを30〜65質量%、Alを10〜40質量%、Bを10〜20質量%,Caを4〜5質量%、Mgを1〜5質量%、Baを6質量%以下(0質量%を除く)、Srを5質量%以下(0質量%を除く)で含有することを特徴とする。   Further, a mounting portion having an adsorption surface made of at least a porous body mainly containing silicon carbide and a supporting portion made of a dense body mainly containing silicon carbide that surrounds and supports the mounting portion are made of glass. In the vacuum chuck bonded with the shape of the bonding layer, the bonding layer is 30 to 65% by mass of Si, 10 to 40% by mass of Al, 10 to 20% by mass of B, and 4 to 5% by mass of Ca in terms of oxides. %, Mg 1 to 5 mass%, Ba 6 mass% or less (excluding 0 mass%), and Sr 5 mass% or less (excluding 0 mass%).

さらに前記結合層における重金属とアルカリ金属の合計の比率が300質量ppm以下(0質量ppmを除く)であることを特徴とする。   Furthermore, the total ratio of heavy metal and alkali metal in the bonding layer is 300 ppm by mass or less (excluding 0 ppm by mass).

さらに前記真空チャックを断面視したとき、前記支持部と結合層のなす界面の長さの合計に対して、前記支持部と結合層の間の空隙部の長さの合計の占める割合が45%以下であることを特徴とする。   Further, when the vacuum chuck is viewed in cross section, the ratio of the total length of the gaps between the support portion and the bonding layer to the total length of the interface between the support portion and the bonding layer is 45%. It is characterized by the following.

さらに前記載置部と支持部との間の接合強度が40kg・cm以上であることを特徴とする。   Furthermore, the bonding strength between the mounting portion and the support portion is 40 kg · cm or more.

さらに前記結合層の厚みが5〜100μmであることを特徴とする。   Further, the bonding layer has a thickness of 5 to 100 μm.

本発明の真空チャックに依れば、1000℃未満の低温でガラスが溶融可能なので、1000℃以上の高温接合で発生していた載置部および支持部の各接合面の酸化は抑制される。その結果、酸化に伴って発生していた気泡の発生が抑えられ、載置部と支持部を強固に接合することができる。   According to the vacuum chuck of the present invention, since glass can be melted at a low temperature of less than 1000 ° C., oxidation of each joint surface of the mounting portion and the support portion that has occurred in high-temperature bonding at 1000 ° C. or higher is suppressed. As a result, the generation of bubbles generated with oxidation is suppressed, and the placing portion and the support portion can be firmly joined.

また、結合層からこれら汚染物の流出量は著しく減少するので、半導体ウェハやガラス基板を汚染しにくくなる。   In addition, since the amount of these contaminants flowing out from the bonding layer is significantly reduced, it becomes difficult to contaminate the semiconductor wafer and the glass substrate.

また、ガラスの軟化温度に対する適正温度での接合を制御管理することで、半導体ウェハまたはガラス基板を真空吸着する載置部の吸着面に対し、垂直な断面における支持部と接合する結合層の空隙部の長さの比率を45%以下とし、支持部、結合層間の接合されていない部分が減少するので、載置部、支持部間の接合強度を高くすることができる。   In addition, by controlling and managing bonding at an appropriate temperature with respect to the softening temperature of the glass, the gap of the bonding layer bonded to the support portion in a vertical cross section with respect to the suction surface of the mounting portion for vacuum suction of the semiconductor wafer or the glass substrate The ratio of the length of the portion is set to 45% or less, and the unbonded portion between the support portion and the bonding layer is reduced, so that the bonding strength between the placement portion and the support portion can be increased.

また、前記載置部、支持部間の接合強度を40kg・cm以上とすると、半導体ウェハやガラス基板を真空吸着する面の平坦度を維持するためにこの面を研磨しても、載置部が支持部からはずれるようなことはなくなるので、信頼性を高いものにすることができる。   Further, if the bonding strength between the mounting portion and the supporting portion is 40 kg · cm or more, the mounting portion can be polished even if this surface is polished in order to maintain the flatness of the surface that vacuum-sucks the semiconductor wafer or the glass substrate. Since it will not be detached from the support portion, the reliability can be increased.

また、結合層はガラスから形成されるため、炭化珪素を主成分とする多孔質体からなる載置部や、炭化珪素を主成分とする緻密質体からなる支持部よりも熱伝導率が低いため、結合層の厚みが5〜100μmと薄い場合は特に、熱の移動が滞ることなく支持部から効率的に放熱することができる。   Further, since the bonding layer is made of glass, the thermal conductivity is lower than that of the mounting portion made of a porous body mainly composed of silicon carbide or the supporting portion made of a dense body mainly composed of silicon carbide. Therefore, especially when the thickness of the bonding layer is as thin as 5 to 100 μm, it is possible to efficiently dissipate heat from the support portion without stagnation of heat.

また、本発明の真空吸着装置は、載置部と支持部が強固に接合された前記真空チャックを吸着部材として用いているので、信頼性が高く、好適である。   In addition, the vacuum suction device of the present invention uses the vacuum chuck in which the mounting portion and the support portion are firmly joined as the suction member, and thus is highly reliable and suitable.

以下、本発明を実施するための最良の形態を図面を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の真空チャックの一実施形態を示し、(a)は斜視図、(b)は同図(a)のA−A線における断面図である。   1A and 1B show an embodiment of a vacuum chuck according to the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view taken along line AA in FIG.

本発明は、少なくとも炭化珪素を主成分とする多孔質体からなる吸着面を有する載置部と、該載置部を囲繞して支持する炭化珪素を主成分とする緻密質体からなる支持部とをガラス状の結合層で接合した真空チャックにおいて、前記結合層はそれぞれ酸化物換算でSiを30〜65質量%、Alを10〜40質量%、Bを10〜20質量%,Caを4〜5質量%、Mgを1〜5質量%、Tiを5質量%以下(0質量%を除く)で含有することが重要である。   The present invention provides a mounting portion having an adsorption surface made of a porous body mainly composed of silicon carbide, and a supporting portion made of a dense body mainly composed of silicon carbide that surrounds and supports the mounting portion. Are bonded to each other by a glass-like bonding layer, and the bonding layers are 30 to 65% by mass of Si, 10 to 40% by mass of Al, 10 to 20% by mass of B and 4 to 20% of Ca in terms of oxides. It is important to contain -5 mass%, Mg 1-5 mass%, and Ti 5 mass% or less (except 0 mass%).

または少なくとも炭化珪素を主成分とする多孔質体からなる吸着面を有する載置部と、該載置部を囲繞して支持する炭化珪素を主成分とする緻密質体からなる支持部とをガラス状の結合層で接合した真空チャックにおいて、前記結合層はそれぞれ酸化物換算でSiを30〜65質量%、Alを10〜40質量%、Bを10〜20質量%,Caを4〜5質量%、Mgを1〜5質量%、Baを6質量%以下(0質量%を除く)、Srを5質量%以下(0質量%を除く)で含有することが重要である。   Alternatively, the mounting portion having an adsorption surface made of at least a porous body mainly composed of silicon carbide and the supporting portion made of a dense body mainly composed of silicon carbide that surrounds and supports the mounting portion is made of glass. In the vacuum chuck bonded with the shape of the bonding layer, the bonding layer is 30 to 65% by mass of Si, 10 to 40% by mass of Al, 10 to 20% by mass of B, and 4 to 5% by mass of Ca in terms of oxides. %, Mg is 1 to 5 mass%, Ba is 6 mass% or less (excluding 0 mass%), and Sr is 5 mass% or less (excluding 0 mass%).

たとえば、前記結合層はSiOが30〜65質量%、Alが10〜40質量%、Bが10〜20質量%、CaOが4〜5質量%、MgOが1〜5質量%、TiOが0〜5質量%、BaOが0〜6質量%およびSrOが0〜5質量%のガラスなどである。 For example, the bonding layer SiO 2 is 30 to 65 wt%, Al 2 O 3 is 10 to 40 wt%, B 2 O 3 is 10 to 20 mass%, CaO 4 to 5 wt%, MgO 1 to 5 For example, a glass having 0 to 5% by mass of TiO 2 , 0 to 6% by mass of BaO, and 0 to 5% by mass of SrO.

本発明の真空チャック1は、半導体ウェハまたはガラス基板を真空吸着する炭化珪素を主成分とする多孔質体からなる載置部2と、該載置部2を囲繞して支持する炭化珪素を主成分とする緻密質体からなる支持部3とをガラス状の結合層4で接合したものである。   The vacuum chuck 1 of the present invention mainly includes a mounting portion 2 made of a porous body mainly composed of silicon carbide that vacuum-adsorbs a semiconductor wafer or a glass substrate, and silicon carbide that surrounds and supports the mounting portion 2. A support 3 made of a dense body as a component is joined by a glassy bonding layer 4.

載置部2は円板形状をなし、吸着作用をなす気孔2aが連続した三次元網目構造を有する多孔質体であって、高い熱伝導性および機械的特性が要求されることから炭化珪素を主成分としている。そして、載置部2の吸着面2bに半導体ウェハやガラス基板(いずれも不図示)が置かれ、真空ポンプ(不図示)により、気孔2aを介して吸引することで固定されるようになっている。   The mounting part 2 is a porous body having a disk shape and a three-dimensional network structure in which pores 2a that perform adsorption are continuous, and high thermal conductivity and mechanical characteristics are required. The main component. Then, a semiconductor wafer or a glass substrate (both not shown) is placed on the suction surface 2b of the mounting portion 2, and is fixed by being sucked through the pores 2a by a vacuum pump (not shown). Yes.

また、支持部3は中央に円形の凹部3aを有する略円盤状の緻密質な枠体であって、載置部2をガラスからなる結合層4により凹部3a内で固定、支持するものであり、載置部2と同様、高い熱伝導性および機械的特性が要求されることから炭化珪素を主成分としている。   The support portion 3 is a substantially disk-shaped dense frame having a circular recess 3a in the center, and the mounting portion 2 is fixed and supported in the recess 3a by a bonding layer 4 made of glass. Like the mounting portion 2, silicon carbide is the main component because high thermal conductivity and mechanical properties are required.

なお、本発明における主成分とは、載置部2および支持部3を構成する成分のうち70質量%以上、好適には75質量%以上を占める成分をいう。   In addition, the main component in this invention means the component which occupies 70 mass% or more among the components which comprise the mounting part 2 and the support part 3, Preferably it occupies 75 mass% or more.

そして、載置部2の吸着面2bと支持部3の凹部3aを形成する隔壁の頂面3bとは同一平面上に位置するように構成してあり、吸着面2bは平坦度を維持するために使用頻度に応じて研磨される。支持部3の内部には気孔2aと連通する吸引通路3cが形成され、排気の通路とされている。支持部3の外周縁にはフランジ部3dが備えられ、ネジ止めや係合等の手段によりフランジ部3dを各種装置に取り付けるようになっている。   The suction surface 2b of the mounting portion 2 and the top surface 3b of the partition wall forming the concave portion 3a of the support portion 3 are configured to be located on the same plane, and the suction surface 2b maintains flatness. It is polished according to the frequency of use. A suction passage 3c communicating with the pores 2a is formed inside the support portion 3, and serves as an exhaust passage. A flange portion 3d is provided on the outer peripheral edge of the support portion 3, and the flange portion 3d is attached to various devices by means such as screwing or engagement.

ガラスの構成成分のうち、SiOはガラスの骨格を形成するための主成分であって、
SiOの含有量が少な過ぎると、耐候性が低下したり、熱膨張係数が大きくなったりする。逆に、SiOの含有量が多過ぎると溶融性が悪くなるとともに結合相にトリジマイトやクリストバライトが異物として失透しやすくなる。
Of the glass components, SiO 2 is the main component for forming the glass skeleton,
When the content of SiO 2 is too small, the weather resistance may decrease, the thermal expansion coefficient may become large. On the other hand, when the content of SiO 2 is too large, the meltability is deteriorated and tridymite or cristobalite is easily devitrified as a foreign substance in the binder phase.

本発明では、結合相中SiOの比率を30〜65質量%とすることで、耐候性を低下させず、ガラスの熱膨張係数と炭化珪素の熱膨張係数との差を小さくすることができるとともに、トリジマイトやクリストバライトの失透を防止することができる。 In the present invention, by setting the ratio of SiO 2 in the binder phase to 30 to 65% by mass, it is possible to reduce the difference between the thermal expansion coefficient of glass and the thermal expansion coefficient of silicon carbide without reducing the weather resistance. At the same time, devitrification of tridymite and cristobalite can be prevented.

Alはガラスの耐熱性、耐失透性を高める成分であって、Alの含有量が少な過ぎると、ガラスの耐熱性が低下したり、失透による異物が発生したりする。逆に、Alの含有量が多過ぎると、ガラスの溶融性が低下する。 Al 2 O 3 is a component that increases the heat resistance and devitrification resistance of the glass. If the content of Al 2 O 3 is too small, the heat resistance of the glass is reduced, or foreign matter due to devitrification is generated. To do. Conversely, when the content of Al 2 O 3 is too large, the melting property of the glass is lowered.

本発明では、結合相中、Alの比率を10〜40質量%とすることで、耐候性、溶融性ともに低下させず、失透による異物の発生を防止することができる。 In the present invention, by setting the ratio of Al 2 O 3 in the binder phase to 10 to 40% by mass, it is possible to prevent the occurrence of foreign matters due to devitrification without lowering both weather resistance and meltability.

は融剤として働き、粘性を下げ、ガラスの溶融性を改善する成分であって、Bの含有量が少な過ぎると、溶融性を十分改善することができず、多過ぎると、化学的耐久性が低下したり、失透による異物が発生したりする。 B 2 O 3 is a component that acts as a flux, lowers the viscosity, and improves the meltability of the glass. If the content of B 2 O 3 is too small, the meltability cannot be sufficiently improved, If it is too high, chemical durability may be reduced or foreign matter may be generated due to devitrification.

本発明では、結合相中、Bの比率を10〜20質量%とすることで、ガラスの溶融性を改善すると同時に、化学的耐久性を維持し、失透による異物の発生を防止することができる。 In the present invention, the ratio of B 2 O 3 in the binder phase is 10 to 20% by mass, thereby improving the meltability of the glass and at the same time maintaining the chemical durability and preventing the generation of foreign substances due to devitrification can do.

CaOは歪点を下げずに高温粘性を下げ、ガラスの溶融性を改善したり、熱膨張係数の調整をしたりする成分であり、CaOの含有量が少な過ぎると、熱膨張係数が大きくなり、CaOの含有量が多過ぎると、失透による異物が発生する。   CaO is a component that lowers the high-temperature viscosity without lowering the strain point, improves the meltability of the glass, or adjusts the thermal expansion coefficient. If the CaO content is too small, the thermal expansion coefficient increases. When there is too much content of CaO, the foreign material by devitrification will generate | occur | produce.

本発明では、結合相中、CaOの比率を4〜5質量%とすることで、ガラスの熱膨張係数と炭化珪素の熱膨張係数との差を小さくすることができるとともに、失透による異物の発生を防止することができる。   In the present invention, by setting the CaO ratio in the binder phase to 4 to 5% by mass, the difference between the thermal expansion coefficient of glass and the thermal expansion coefficient of silicon carbide can be reduced, and foreign matter caused by devitrification can be reduced. Occurrence can be prevented.

MgOも歪点を下げずに高温粘性を下げ、ガラスの溶融性を改善したり、熱膨張係数の調整をしたりする成分であり、MgOの含有量が少な過ぎると、熱膨張係数が大きくなり、MgOの含有量が多過ぎると、エンスタタイト(MgO・SiO)が失透による異物として発生する。 MgO is also a component that lowers the high temperature viscosity without lowering the strain point, improves the meltability of the glass, and adjusts the thermal expansion coefficient. If the MgO content is too small, the thermal expansion coefficient will increase. When the content of MgO is too large, enstatite (MgO.SiO 2 ) is generated as a foreign matter due to devitrification.

本発明では、結合相中、MgOの比率を1〜5質量%とすることで、ガラスの熱膨張係数と炭化珪素の熱膨張係数との差を小さくすることができるとともに、エンスタタイト(MgO・SiO)の発生を防止することができる。 In the present invention, by setting the MgO ratio in the binder phase to 1 to 5% by mass, the difference between the thermal expansion coefficient of glass and the thermal expansion coefficient of silicon carbide can be reduced, and enstatite (MgO · Generation of SiO 2 ) can be prevented.

TiOはガラスの機械的強度を向上させる成分であるが、多過ぎると、失透による異物が発生しやすくなる。 TiO 2 is a component that improves the mechanical strength of the glass, but if it is too much, foreign matter due to devitrification tends to be generated.

本発明では、結合相中、TiOの比率を5質量%以下含むことで、ガラスの機械的強度を向上させるとともに、失透による異物の発生を防止することができる。 In the present invention, by including 5 mass% or less of the TiO 2 ratio in the binder phase, it is possible to improve the mechanical strength of the glass and prevent the generation of foreign substances due to devitrification.

但しTiOは0を含まず不可避分程度は含まれていることが必要である。 However, it is necessary that TiO 2 does not contain 0 but contains an inevitable amount.

あるいは上記TiOに代わって、SrOおよびBaOはガラスの耐薬品性を向上させるとともに、ガラスの溶融性を改善する成分であるが、多過ぎても、溶融性を損なって溶融欠陥が発生する。 Alternatively, instead of TiO 2 , SrO and BaO are components that improve the chemical resistance of the glass and improve the meltability of the glass, but if too much, the meltability is impaired and melting defects occur.

本発明では、結合相中、BaOの比率を0〜6質量%、SrOの比率を0〜5質量%とすることで、溶融欠陥を発生させずに、ガラスの溶融性を改善することができる。   In the present invention, the meltability of the glass can be improved without causing melting defects by setting the BaO ratio in the binder phase to 0 to 6 mass% and the SrO ratio to 0 to 5 mass%. .

但しBaO、SrOは0を含まず不可避分程度は含まれていることが必要である。   However, BaO and SrO do not include 0, and it is necessary that an inevitable amount is included.

さらに、ガラスをこのような成分の構成、比率にすることで、1000℃未満の低温でガラスは溶融するので、1000℃以上の高温接合で発生していた載置部2および支持部3の各接合面の酸化は抑制される。その結果、酸化に伴って発生していた気泡の発生が抑えられ、載置部2と支持部3を強固に接合することができる。   Furthermore, since the glass is melted at a low temperature of less than 1000 ° C. by setting the glass to such a composition and ratio, each of the mounting portion 2 and the support portion 3 that has occurred in the high-temperature bonding at 1000 ° C. or higher. Oxidation of the joint surface is suppressed. As a result, the generation of bubbles generated with oxidation is suppressed, and the mounting portion 2 and the support portion 3 can be firmly joined.

なお、結合層4を構成するガラス各成分の比率はICP(Inductivity Coupled Plasma)発光分析法により金属の各比率を求め、それぞれ酸化物換算すればよい。   In addition, what is necessary is just to obtain | require each ratio of a metal by ICP (Inductivity Coupled Plasma) emission analysis method, and to just convert each ratio of the glass component which comprises the coupling layer 4, respectively.

さらに前記結合層における重金属、またはアルカリ金属の比率が合計300質量ppm以下(0質量ppmを除く)であることが好ましい。   Furthermore, the ratio of heavy metals or alkali metals in the tie layer is preferably 300 ppm by mass or less (excluding 0 ppm by mass).

ここで重金属とは比重4以上の重金属(但し、Tiを除く)、アルカリ金属については酸化物を含むものである。   Here, the heavy metal means a heavy metal having a specific gravity of 4 or more (excluding Ti), and the alkali metal contains an oxide.

また、結合層4における重金属(但し、Tiを除く)、アルカリ金属およびこれら金属の酸化物は半導体ウェハやガラス基板の汚染源となるため、少ないほどよい。   Moreover, since the heavy metal (however, except Ti), the alkali metal, and the oxide of these metals in the coupling layer 4 become a contamination source of a semiconductor wafer or a glass substrate, the fewer the better.

前記結合層における重金属とアルカリ金属の比率が合計300質量ppm以下にすることで、結合層4から蒸発した重金属およびアルカリ金属が半導体ウェハに拡散したとしても、半導体ウェハから形成された半導体素子は誤作動を起こすことがない。   By setting the ratio of heavy metal and alkali metal in the bonding layer to 300 ppm by mass or less, even if the heavy metal and alkali metal evaporated from the bonding layer 4 diffuse into the semiconductor wafer, the semiconductor element formed from the semiconductor wafer is erroneous. Does not cause operation.

但し、X線回折法を用いて、結合層4の結晶構造を分析した場合、強度を示すピークは確認できるものの同定できない化合物については前記比率の合計に含まないものとする。   However, when the crystal structure of the bonding layer 4 is analyzed using an X-ray diffraction method, a compound showing an intensity peak but not identifiable is not included in the total ratio.

特に、結合層4の熱膨張係数は炭化珪素や珪素の熱膨張係数に近似していることが好ましく、例えば熱膨張係数が3.0〜4.7×10−6/℃であることが好適である。 In particular, the thermal expansion coefficient of the bonding layer 4 is preferably close to the thermal expansion coefficient of silicon carbide or silicon. For example, the thermal expansion coefficient is preferably 3.0 to 4.7 × 10 −6 / ° C. It is.

さらに前記真空チャックを断面視したとき、前記支持部と結合層のなす界面の長さの合計に対して、前記支持部と結合層の間の空隙部の長さの合計の占める割合が45%以下であることを特徴とする。   Further, when the vacuum chuck is viewed in cross section, the ratio of the total length of the gaps between the support portion and the bonding layer to the total length of the interface between the support portion and the bonding layer is 45%. It is characterized by the following.

半導体ウェハまたはガラス基板を真空吸着する載置部2の吸着面2bに対し、垂直な断面における、支持部3と接合する結合層4の空隙部の長さの比率は、載置部2、支持部3間の接合強度に影響し、この比率が上がれば接合強度が低くなり、比率が下がれば、接合強度が高くなる。   The ratio of the length of the gap portion of the bonding layer 4 joined to the support portion 3 in the vertical cross section to the suction surface 2b of the placement portion 2 that vacuum-sucks the semiconductor wafer or the glass substrate is the placement portion 2, the support If the ratio increases, the bonding strength decreases, and if the ratio decreases, the bonding strength increases.

本発明ではこの比率を45%以下とすることで、支持部3、結合層4間の接合されていない部分が減少するので、載置部2、支持部3間の接合強度を高くすることができる。   In the present invention, by setting the ratio to 45% or less, the unbonded portion between the support portion 3 and the bonding layer 4 is reduced, so that the bonding strength between the placement portion 2 and the support portion 3 can be increased. it can.

図2は、支持部3と接合する結合層4の空隙部4aを模式的に示したものであり、真空チャック1の厚み方向に対して、垂直な方向から見た断面図であって、空隙部4aの長さの比率は、(空隙部4aの長さ/(空隙部4aの長さ+接合部4bの長さ)×100)(%)として定義され、図2では(a1+a2+・・・+a11)/((a1+a2+・・・+a10)+(b1+b2+・・・+b11))×100で求められる値である。   FIG. 2 schematically shows the gap 4 a of the bonding layer 4 joined to the support 3, and is a cross-sectional view seen from a direction perpendicular to the thickness direction of the vacuum chuck 1. The ratio of the length of the portion 4a is defined as (the length of the gap portion 4a / (the length of the gap portion 4a + the length of the joint portion 4b) × 100) (%), and in FIG. 2, (a1 + a2 +... + A11) / ((a1 + a2 +... + A10) + (b1 + b2 +... + B11)) × 100.

空隙部4aの長さの比率は、走査型電子顕微鏡を用い、倍率100〜500倍で得られる画像から、例えば、空隙部4aの長さと接合部4bの長さの合計が0.3〜0.9mmになるような範囲で求めればよい。   The ratio of the length of the gap 4a is, for example, that the total of the length of the gap 4a and the length of the joint 4b is 0.3 to 0 from an image obtained at a magnification of 100 to 500 using a scanning electron microscope. What is necessary is just to obtain | require in the range which becomes .9mm.

さらに前記載置部と支持部との間の接合強度が40kg・cm以上であることが好ましい。   Furthermore, it is preferable that the bonding strength between the mounting portion and the support portion is 40 kg · cm or more.

また、載置部2、支持部3間の接合強度は真空チャック1の信頼性に影響を与える。   Further, the bonding strength between the mounting portion 2 and the support portion 3 affects the reliability of the vacuum chuck 1.

載置部2、支持部3間の接合強度を40kg・cm以上とすることで、吸着面2bの平坦度を維持するために吸着面2bを研磨しても、載置部2が支持部3からはずれるようなことはなくなるので、信頼性を高いものにすることができる。   Even if the suction surface 2b is polished in order to maintain the flatness of the suction surface 2b by setting the bonding strength between the placement portion 2 and the support portion 3 to 40 kg · cm or more, the placement portion 2 supports the support portion 3. Since there is no such thing as deviating from the above, reliability can be improved.

なお、接合強度については真空チャック1より、長手方向略中央に結合層4を挟む10mm×10mm×30mmの試験片を切り出し、多孔質体を固定した後、トルクレンチで緻密質体を捻り、この試験片が破壊したときの強度を読み取り、この値を接合強度とすればよい。   For the bonding strength, a 10 mm × 10 mm × 30 mm test piece sandwiching the bonding layer 4 in the center in the longitudinal direction is cut out from the vacuum chuck 1, and after fixing the porous body, the dense body is twisted with a torque wrench. The strength when the test piece breaks is read, and this value may be used as the bonding strength.

ところで、結合層4はガラスから形成されるため、炭化珪素を主成分とする多孔質体からなる載置部2や炭化珪素を主成分とする緻密質体からなる支持部3より熱伝導率は低くなる。   By the way, since the bonding layer 4 is made of glass, the thermal conductivity is higher than the mounting portion 2 made of a porous body mainly composed of silicon carbide and the support portion 3 made of a dense body mainly composed of silicon carbide. Lower.

従って、真空チャック1の放熱性を向上させようとすると、結合相4の厚みを薄くするのがよく、本発明ではその厚みを100μm以下とすることが好適である。結合層4の厚みを100μm以下と薄くすることで、熱の移動が滞ることなく、支持部から効率的に放熱することができるからである。   Therefore, in order to improve the heat dissipation of the vacuum chuck 1, it is preferable to reduce the thickness of the binder phase 4. In the present invention, the thickness is preferably set to 100 μm or less. This is because by reducing the thickness of the bonding layer 4 to 100 μm or less, it is possible to efficiently dissipate heat from the support portion without delaying heat transfer.

但し、結合層4の厚みを薄くし過ぎると、ガラスによる載置部2へのアンカー効果が低減するため、その厚みは5μm以上とすることが好適である。   However, if the thickness of the bonding layer 4 is made too thin, the anchor effect of the glass on the placement portion 2 is reduced, so that the thickness is preferably 5 μm or more.

なお、結合相4の厚みは、走査型電子顕微鏡で得られる倍率100〜500倍の画像より求めることができる。   In addition, the thickness of the binder phase 4 can be calculated | required from the image of 100-500 times of magnification obtained with a scanning electron microscope.

次に、本発明の真空チャックの製造方法について説明する。   Next, the manufacturing method of the vacuum chuck of this invention is demonstrated.

本発明の真空チャック1の一部を構成する載置部2を得るには、先ず平均粒径105〜350μmのα型炭化珪素粉末100重量部に対して、平均粒径1〜90μmの珪素粉末15〜30重量部を調合し、成形助剤として後の脱脂処理後の残炭率が30%以上となるような熱硬化性樹脂、例えば、フェノール樹脂、エポキシ樹脂、フラン樹脂、フェノキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、メタクリル樹脂の少なくともいずれか1種を添加し、ボールミル、振動ミル、コロイドミル、アトライター、高速ミキサー等で均一に混合する。特に、上記成形助剤として、熱硬化後の低収縮性の点からレゾール型またはノボラック型のフェノール樹脂が好適である。   In order to obtain the mounting portion 2 constituting a part of the vacuum chuck 1 of the present invention, first, silicon powder having an average particle diameter of 1 to 90 μm with respect to 100 parts by weight of α-type silicon carbide powder having an average particle diameter of 105 to 350 μm. A thermosetting resin such as a phenol resin, an epoxy resin, a furan resin, a phenoxy resin, or a melamine is prepared by blending 15 to 30 parts by weight and having a residual carbon ratio after the subsequent degreasing treatment of 30% or more as a molding aid. At least one of resin, urea resin, aniline resin, unsaturated polyester resin, urethane resin, and methacrylic resin is added and mixed uniformly with a ball mill, vibration mill, colloid mill, attritor, high-speed mixer, or the like. In particular, a resol-type or novolac-type phenol resin is suitable as the molding aid from the viewpoint of low shrinkage after thermosetting.

成形助剤の添加量は、成形体の生密度を左右するため、載置部2の気孔率にも強く影響する。載置部2の気孔率を30〜40%とするには、α型炭化珪素粉末100重量部に対し、成形助剤の添加量を1〜2重量部とすればよい。   Since the amount of the molding aid added affects the green density of the molded body, it also strongly affects the porosity of the mounting portion 2. In order to set the porosity of the mounting portion 2 to 30 to 40%, the additive amount of the molding aid may be 1 to 2 parts by weight with respect to 100 parts by weight of the α-type silicon carbide powder.

ところで、炭化珪素にはα型とβ型が存在し、一般的にα型はβ型より耐酸化性が高く、粒子内部には残留炭素や残留珪素を殆ど含まない。このような理由から出発原料にはα型炭化珪素を用いる。   By the way, α type and β type exist in silicon carbide, and generally α type has higher oxidation resistance than β type, and hardly contains residual carbon and residual silicon inside the particle. For this reason, α-type silicon carbide is used as a starting material.

また、このα型炭化珪素粉末の平均粒径を105〜350μmとすることが重要で、平均粒径が105μm以下では、径の小さな粉末が閉気孔を形成したり、気孔自体を小さくしたりすることで、半導体ウェハやガラス基板を真空吸着する場合、圧力損失が高くなり、一方、350μmを超えると、載置部2の密度が低下することで、強度が低下するからである。α型炭化珪素粉末の平均粒径を105〜350μmとすることで、圧力損失が低く、強度低下を招くことのない載置部2を得ることができる。   In addition, it is important that the average particle diameter of the α-type silicon carbide powder is 105 to 350 μm. When the average particle diameter is 105 μm or less, the powder having a small diameter forms closed pores or the pores themselves are reduced. Thus, when vacuum-sucking a semiconductor wafer or a glass substrate, the pressure loss increases. On the other hand, when the thickness exceeds 350 μm, the density of the mounting portion 2 decreases, and the strength decreases. By setting the average particle size of the α-type silicon carbide powder to 105 to 350 μm, it is possible to obtain the placement portion 2 that has low pressure loss and does not cause a decrease in strength.

また、珪素粉末は、後の熱処理で珪素相となって、炭化珪素の結晶粒子を連結する。珪素粉末は、平均粒径1〜90μmの粉末を用い、α型炭化珪素粉末100重量部に対し、その比率を15〜30重量部とすることが重要である。珪素粉末の平均粒径が1μm未満では、珪素粉末の分散性が悪く、局部的にしか炭化珪素の結晶粒子を連結することができないからである。   Further, the silicon powder becomes a silicon phase in the subsequent heat treatment, and connects the silicon carbide crystal particles. As the silicon powder, it is important to use a powder having an average particle diameter of 1 to 90 μm and a ratio of 15 to 30 parts by weight with respect to 100 parts by weight of the α-type silicon carbide powder. This is because if the average particle size of the silicon powder is less than 1 μm, the dispersibility of the silicon powder is poor and the silicon carbide crystal particles can be connected only locally.

一方、90μmを超えると、後の熱処理で珪素粉末は溶融して炭化珪素粉末を被覆するように移動するので、珪素粉末が部分的に凝集して占有していた空間は大きな気孔として残り、強度低下を招くからである。   On the other hand, if it exceeds 90 μm, the silicon powder will melt and move so as to cover the silicon carbide powder in the subsequent heat treatment, so that the space where the silicon powder is partially aggregated and occupied remains as large pores, This is because it causes a decrease.

また、α型炭化珪素粉末100重量部に対し、珪素粉末の比率を15〜30重量部としたのは、珪素粉末の比率が15重量部未満では、炭化珪素の結晶粒子に対する比率が低く、前記結晶粒子を十分連結させられないからである。   Moreover, the ratio of silicon powder to 15 to 30 parts by weight with respect to 100 parts by weight of α-type silicon carbide powder is that when the ratio of silicon powder is less than 15 parts by weight, the ratio of silicon carbide to crystal particles is low, This is because crystal grains cannot be sufficiently connected.

一方、比率が30重量部を超えると、珪素が偏析しやすく、相対的に機械的特性の良好な炭化珪素の比率が下がり、十分な機械的特性を得られないからである。珪素粉末の比率を15〜30重量部とすることで、十分な機械的特性を備えた均質な組織を有する載置部とすることができる。   On the other hand, when the ratio exceeds 30 parts by weight, silicon is easily segregated, the ratio of silicon carbide having relatively good mechanical characteristics is lowered, and sufficient mechanical characteristics cannot be obtained. By setting the ratio of the silicon powder to 15 to 30 parts by weight, it is possible to obtain a placement part having a homogeneous structure with sufficient mechanical characteristics.

なお、珪素粉末の純度は高いほうが望ましく、95%以上の純度のものが好適で、99%以上の高純度珪素の使用が特に好ましい。なお、使用する珪素粉末の形状は特に限定されず、球形又はそれに近い形状のみならず、不規則形状であっても好適に用いることができる。   Note that the purity of the silicon powder is desirably high, that having a purity of 95% or more is preferable, and the use of high-purity silicon having a purity of 99% or more is particularly preferable. In addition, the shape of the silicon powder to be used is not particularly limited, and not only a spherical shape or a shape close thereto, but also an irregular shape can be suitably used.

上記炭化珪素粉末、珪素粉末の各平均粒径は液相沈降法、光投下法、レーザー散乱回折法等により測定することができる。   Each average particle diameter of the silicon carbide powder and the silicon powder can be measured by a liquid phase precipitation method, a light dropping method, a laser scattering diffraction method, or the like.

次に、混合した原料を転動造粒機、スプレードライヤー、圧縮造粒機、押し出し造粒機等各種造粒機を用いて顆粒にする。特に、粒径の大きな顆粒、例えば粒径0.4〜1.6mmの顆粒を得るには、転動造粒機の使用が好適である。   Next, the mixed raw material is granulated using various granulators such as a rolling granulator, a spray dryer, a compression granulator, an extrusion granulator. In particular, in order to obtain granules having a large particle size, for example, granules having a particle size of 0.4 to 1.6 mm, it is preferable to use a rolling granulator.

なお、造粒時間は成形体の潰れ性を考慮すると30分以上にすることが好適である。   The granulation time is preferably 30 minutes or longer in consideration of the crushability of the compact.

また、この造粒で得られる顆粒の粒径は、0.4〜1.6mmとすることが好適で、0.4mm未満あるいは1.6mmを超えても成形体の潰れ性が悪くなったり、ハンドリングが難しくなったりするが、顆粒の粒径を0.4〜1.6mmとすることで成形体の潰れ性もハンドリングも向上する。特に、上記顆粒の粒径は0.5〜1.5mmとすることが好適である。   In addition, the particle size of the granules obtained by this granulation is preferably 0.4 to 1.6 mm, and even if the particle size is less than 0.4 mm or exceeds 1.6 mm, the crushability of the molded product is deteriorated, Although handling becomes difficult, the collapsibility of a molded object and handling improve by making the particle size of a granule into 0.4-1.6 mm. In particular, the particle size of the granules is preferably 0.5 to 1.5 mm.

次に、顆粒を乾式加圧成形、冷間等方静水圧成形等の成形手段で所望の形状に成形して成形体とし、必要に応じて、アルゴン、ヘリウム、ネオン、窒素、真空等の非酸化雰囲気中、400〜600℃で脱脂処理を行った後、脱脂処理と同様、非酸化雰囲気中、1400〜1450℃で熱処理することで珪素−炭化珪素の複合体とすることができる。   Next, the granules are formed into a desired shape by a molding means such as dry pressure molding or cold isostatic pressing, and if necessary, non-condensed such as argon, helium, neon, nitrogen, vacuum, etc. After performing a degreasing treatment at 400 to 600 ° C. in an oxidizing atmosphere, a silicon-silicon carbide composite can be obtained by heat treatment at 1400 to 1450 ° C. in a non-oxidizing atmosphere as in the degreasing treatment.

なお、熱処理の温度を下げるには、珪素の純度を99.5〜99.8質量%とすることが好適である。   In order to lower the temperature of the heat treatment, the purity of silicon is preferably 99.5 to 99.8% by mass.

熱処理では、その温度を1400〜1450℃とすることが重要で、1400℃未満では、珪素粉末が十分溶融しないため、炭化珪素の結晶粒子を珪素相として連結することができないからであり、1450℃を超えると、珪素が蒸発することで強度低下を招きやすいとともに、製造コストが高くなるからである。熱処理温度を1400〜1450℃とすることで、珪素粉末は蒸発することなく適度に溶融するため、隣り合う炭化珪素の結晶粒子間に空洞部が介在して2箇所以上の接合部を発生することなく、炭化珪素の結晶粒子を珪素相として連結することができ、適切な強度及び熱伝導率が得られ、製造コストも削減することができる。特に、熱処理温度を1420〜1450℃にすることが好適で、この温度範囲で熱処理することで3点曲げ強度が30MPa以上、ヤング率が30GPa以上の複合体を得ることができる。また炭化珪素の結晶粒子を珪素で被覆するには、珪素粉末を十分溶融させた上で、珪素が蒸発したり、雰囲気内で浮遊する炭素と一部反応して炭化珪素に変化したりすることのないようにしなければならない。このような観点から炭化珪素の結晶粒子を珪素で被覆するには、1420〜1440℃にすればよい。   In the heat treatment, it is important to set the temperature to 1400 to 1450 ° C. If the temperature is lower than 1400 ° C, the silicon powder is not sufficiently melted, so that silicon carbide crystal particles cannot be connected as a silicon phase. This is because the silicon tends to cause a decrease in strength due to the evaporation of silicon, and the manufacturing cost increases. By setting the heat treatment temperature to 1400 to 1450 ° C., the silicon powder is appropriately melted without evaporating, so that a cavity is interposed between adjacent silicon carbide crystal particles, and two or more joints are generated. In addition, the silicon carbide crystal particles can be connected as a silicon phase, appropriate strength and thermal conductivity can be obtained, and the manufacturing cost can be reduced. In particular, the heat treatment temperature is preferably set to 1420 to 1450 ° C., and by performing heat treatment in this temperature range, a composite having a three-point bending strength of 30 MPa or more and a Young's modulus of 30 GPa or more can be obtained. Also, in order to coat silicon carbide crystal particles with silicon, the silicon powder must be sufficiently melted, and then the silicon will evaporate or react with the carbon floating in the atmosphere and change to silicon carbide. There must be no. In order to coat silicon carbide crystal particles with silicon from such a viewpoint, the temperature may be set to 1420 to 1440 ° C.

このような製造方法で得られた複合体は、その上面を研削、研磨等の機械加工を施して、載置部2とすることができる。   The composite body obtained by such a manufacturing method can be used as the mounting portion 2 by subjecting the upper surface thereof to machining such as grinding and polishing.

なお、吸着面2bはその面状態が加工後の半導体ウエハやガラス基板の精度に影響を与えることから極力平坦化する必要があり、少なくとも平坦度1μm以下、好ましくは平坦度0.3μm以下とすることが望まれる。   The suction surface 2b needs to be flattened as much as possible because the surface state affects the accuracy of the processed semiconductor wafer or glass substrate. The flatness should be at least 1 μm or less, preferably 0.3 μm or less. It is desirable.

次に、炭化珪素を主成分とし、中央に円形の凹部3aを有する略円盤状の緻密質な枠体である支持部3を準備し、SiOが30〜65質量%、Alが10〜40質量%、Bが10〜20質量%、CaOが4〜5質量%、MgOが1〜5質量%、TiOが0〜5質量%、BaOが0〜6質量%およびSrOが0〜5質量%からなるペースト状のガラスを凹部3aに塗布する。ガラス塗布後、載置部2を凹部3aに置き、専用の加圧装置で厚み方向から加圧する。加圧後、950〜980℃で熱処理することにより載置部2と支持部3とは、ガラスからなる結合層4で接合され、本発明の真空チャックをえることができる。 Next, the support part 3 which is a substantially disk-shaped dense frame body which has silicon carbide as a main component and has a circular recess 3a in the center is prepared, and SiO 2 is 30 to 65 mass%, and Al 2 O 3 is 10 to 40 wt%, B 2 O 3 is 10 to 20 mass%, CaO 4 to 5 wt%, MgO 1 to 5 wt%, TiO 2 is 0 to 5 wt%, BaO 0 to 6% by weight and Paste glass composed of 0 to 5% by mass of SrO is applied to the recesses 3a. After the glass application, the mounting portion 2 is placed in the concave portion 3a and pressed from the thickness direction by a dedicated pressurizing device. After the pressurization, the mounting portion 2 and the support portion 3 are bonded by the bonding layer 4 made of glass by heat treatment at 950 to 980 ° C., and the vacuum chuck of the present invention can be obtained.

このような真空チャックは、例えば、吸引通路3cを介して被処理物に吸着作用を及ぼす真空ポンプ(不図示)を備えた真空吸着装置に吸着部材として用いると、載置部2と支持部3とが強固に接合されているため、信頼性が高く好適である。   When such a vacuum chuck is used as an adsorbing member in a vacuum adsorbing device provided with a vacuum pump (not shown) that exerts an adsorbing action on an object to be processed via the suction passage 3c, for example, the mounting portion 2 and the supporting portion 3 are used. Are firmly bonded to each other, which is preferable because of high reliability.

以下本発明の実施例を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

(実施例1)
先ず、α型炭化珪素粉末、珪素粉末及び成形助剤となるフェノール樹脂を均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて成形体を得た。
(Example 1)
First, α-type silicon carbide powder, silicon powder, and a phenol resin as a molding aid were uniformly mixed to prepare a blended raw material. This blended raw material was put into a tumbling granulator to form granules, and a molded body was obtained by dry pressure molding.

次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、1420℃で同じく窒素雰囲気中で熱処理して、気孔率31%、平均気孔径55μmの多孔質体である、図1に示す載置部2を作製した。   Next, this molded body was degreased at 500 ° C. in a nitrogen atmosphere and then heat-treated at 1420 ° C. in the same nitrogen atmosphere to obtain a porous body having a porosity of 31% and an average pore diameter of 55 μm, as shown in FIG. The mounting part 2 was produced.

載置部2の気孔率、気孔2aの平均径についてはそれぞれJIS R 1634−1998に規定されたアルキメデス法、JIS R 1655−2003に準拠して測定した。   The porosity of the mounting portion 2 and the average diameter of the pores 2a were measured in accordance with Archimedes method and JIS R 1655-2003 defined in JIS R 1634-1998, respectively.

次に、炭化珪素を主成分とし、中央に円形の凹部3aを有する略円盤状の緻密質な枠体である支持部3を準備し、接合後の結合層4を構成するガラスの各成分が表1になるように調整されたペースト状のガラスを凹部3aに塗布した。ガラス塗布後、載置部2を凹部3aに置き、専用の加圧装置で厚み方向から加圧した後、980℃で熱処理することで、結合層の厚みが110〜120μmである真空チャックを得た。   Next, the support part 3 which is a substantially disk-shaped dense frame having silicon carbide as a main component and having a circular recess 3a in the center is prepared, and each component of the glass constituting the bonded layer 4 after bonding is prepared. The paste-like glass adjusted so as to become Table 1 was apply | coated to the recessed part 3a. After applying the glass, the mounting portion 2 is placed in the concave portion 3a, pressed in the thickness direction with a dedicated pressurizing device, and then heat treated at 980 ° C. to obtain a vacuum chuck having a bonding layer thickness of 110 to 120 μm. It was.

そして、結合層4を構成するガラス各成分の比率はICP(Inductivity Coupled Plasma)発光分析法により金属の各比率を求め、それぞれ酸化物換算した。   And the ratio of each component of the glass which comprises the coupling layer 4 calculated | required each ratio of the metal by ICP (Inductivity Coupled Plasma) emission spectrometry, and each converted it into oxide.

また、ガラスの熱膨張係数については別途JIS R 3102―1995に準拠して、測定した。   Further, the thermal expansion coefficient of the glass was separately measured in accordance with JIS R 3102-1995.

載置部2、支持部3間の接合強度については、長手方向略中央に結合層4を挟む10mm×10mm×30mmの試験片を切り出し、多孔質体を固定した後、トルクレンチで緻密質体を捻り、この試験片が破壊したときの強度を読み取り、この値を接合強度とした。   Regarding the bonding strength between the mounting part 2 and the support part 3, after cutting out a 10 mm × 10 mm × 30 mm test piece sandwiching the bonding layer 4 in the center in the longitudinal direction and fixing the porous body, the dense body with a torque wrench. The strength when the test piece was broken was read, and this value was defined as the bonding strength.

これら測定結果を表1に示す。   These measurement results are shown in Table 1.

失透による異物については、結合層4の断面を走査型電子顕微鏡を用いて倍率500倍で観察し、観察されたものを×、観察されなかったものを○として表1に示した。

Figure 0004731368
Regarding the foreign matter due to devitrification, the cross section of the bonding layer 4 was observed at a magnification of 500 times using a scanning electron microscope.
Figure 0004731368

表1に示す通り、SiOが30質量%未満である試料No.7、CaOが4質量%未満である試料No.2、MgOが1質量%未満の試料No.1は、は熱膨張係数が5.3×10−6/℃以上と高かったため、冷却時にガラスの収縮が載置部および支持部に比べて大きかった。その結果、結合層4に空隙部が発生し、載置部2、支持部3間の接合強度は低かった。 As shown in Table 1, a sample No. having SiO 2 of less than 30% by mass was obtained. 7, Sample No. whose CaO is less than 4% by mass. 2, sample No. 1 with MgO less than 1% by mass. Since No. 1 had a high thermal expansion coefficient of 5.3 × 10 −6 / ° C. or more, the shrinkage of the glass during cooling was larger than that of the mounting portion and the supporting portion. As a result, a void portion was generated in the bonding layer 4, and the bonding strength between the placement portion 2 and the support portion 3 was low.

また、SiOが65質量%を超える試料No.16、Alが10質量%未満である試料No.15、Bが20質量%を超える試料No.18、CaOが5質量%を超える試料No.19、MgOが5質量%を超える試料No.21およびTiOが5質量%を超える試料No.22は、失透による異物が観察され、この異物の影響により接合強度が低かった。 Further, Sample No. with SiO 2 exceeding 65 mass%. 16, Sample No. in which Al 2 O 3 is less than 10% by mass. 15, Sample No. with B 2 O 3 exceeding 20 mass%. 18, Sample No. with CaO exceeding 5 mass%. 19, Sample No. with MgO exceeding 5 mass%. Sample No. 21 containing 21 mass% and TiO 2 exceeding 5 mass%. In No. 22, foreign matter due to devitrification was observed, and the bonding strength was low due to the influence of this foreign matter.

また、Alが40質量%を超える試料No.5、Bが10質量%未満である試料No.3、BaOが6質量%を超える試料No.24およびSrOが5質量%を超える試料No.26は、接合はしていたものの、ガラスの溶融性が悪かったために、接合強度が低かった。 In addition, Sample No. in which Al 2 O 3 exceeds 40% by mass. 5, Sample B 2 O 3 is less than 10 wt% No. 3, Sample No. with BaO exceeding 6 mass%. No. 24 and SrO exceeding 5% by mass Although No. 26 was bonded, the bonding strength was low because the meltability of the glass was poor.

一方、本発明の範囲内の試料No.4,6,8〜14,17,20,23,25は、ガラスの溶融性が良好で、しかも結合相4の熱膨張係数と載置部2、支持部3の熱膨張係数との差を小さくすることができるとともに、異物が失透することもなく、載置部2、支持部3間の接合強度が高い真空チャックとすることができる。   On the other hand, sample no. 4, 6, 8 to 14, 17, 20, 23, 25 have a good melting property of the glass, and the difference between the thermal expansion coefficient of the binder phase 4 and the thermal expansion coefficients of the mounting part 2 and the support part 3 is shown. While being able to make small, a foreign material does not devitrify, and it can be set as the vacuum chuck with high joint strength between the mounting part 2 and the support part 3. FIG.

(実施例2)
先ず、α型炭化珪素粉末、珪素粉末及び成形助剤となるフェノール樹脂を均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて成形体を得た。次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、1430℃で同じく窒素雰囲気中で熱処理して、気孔率30%、平均気孔径50μmの多孔質体である、図1に示す載置部2を作製した。
(Example 2)
First, α-type silicon carbide powder, silicon powder, and a phenol resin as a molding aid were uniformly mixed to prepare a blended raw material. This blended raw material was put into a tumbling granulator to form granules, and a molded body was obtained by dry pressure molding. Next, this molded body was degreased at 500 ° C. in a nitrogen atmosphere and then heat-treated at 1430 ° C. in the same nitrogen atmosphere to obtain a porous body having a porosity of 30% and an average pore diameter of 50 μm, as shown in FIG. The mounting part 2 was produced.

載置部2の気孔率、気孔2aの平均径については実施例1と同様の方法で測定した。   The porosity of the mounting portion 2 and the average diameter of the pores 2a were measured by the same method as in Example 1.

次に、炭化珪素を主成分とし、中央に円形の凹部3aを有する略円盤状の緻密質な枠体である支持部3を準備し、接合後の結合層4を構成するガラスの各成分が表1になるように調整されたペースト状のガラスを凹部3aに塗布した。ガラス塗布後、載置部2を凹部3aに置き、専用の加圧装置で厚み方向から加圧した後、970℃で熱処理することで、結合層の厚みが110〜120μmである真空チャックを得た。 Next, the support part 3 which is a substantially disk-shaped dense frame having silicon carbide as a main component and having a circular recess 3a in the center is prepared, and each component of the glass constituting the bonded layer 4 after bonding is prepared. The paste-like glass adjusted so as to become Table 1 was apply | coated to the recessed part 3a. After applying the glass, the mounting portion 2 is placed in the concave portion 3a, pressed in the thickness direction with a dedicated pressurizing device, and then heat treated at 970 ° C. to obtain a vacuum chuck having a bonding layer thickness of 110 to 120 μm. It was.

そして、結合層4を構成するガラス各成分の比率は、実施例1と同様の方法で測定した。   And the ratio of each glass component which comprises the coupling layer 4 was measured by the method similar to Example 1. FIG.

支持部3と接合する結合層4の空隙部4aの長さの比率=(空隙部4aの長さ/(空隙部4aの長さ+接合部4bの長さ)×100)については、走査型電子顕微鏡を用い、倍率130倍で得られた画像より空隙部4aの長さと接合部4bの長さの合計が0.3mmになる範囲で求めた。   The ratio of the length of the gap 4a of the bonding layer 4 to be bonded to the support 3 = (the length of the gap 4a / (the length of the gap 4a + the length of the joint 4b) × 100) is a scanning type. Using an electron microscope, an image obtained at a magnification of 130 times was obtained in a range where the sum of the length of the gap 4a and the length of the joint 4b was 0.3 mm.

測定結果を表2に示す。

Figure 0004731368
The measurement results are shown in Table 2.
Figure 0004731368

表2からわかるように、空隙部4aの長さの比率が45%以下である試料No.27,28は、比率が45%を超える試料No.29より接合強度が高く好適である。   As can be seen from Table 2, the sample No. 4 in which the ratio of the length of the gap 4a is 45% or less. Nos. 27 and 28 are sample Nos. Whose ratio exceeds 45%. 29 has a higher bonding strength and is suitable.

(実施例3)
先ず、α型炭化珪素粉末、珪素粉末及び成形助剤となるフェノール樹脂を均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて成形体を得た。次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、1420℃で同じく窒素雰囲気中で熱処理して、気孔率31%、平均気孔径55μmの多孔質体である、図1に示す載置部2を作製した。
(Example 3)
First, α-type silicon carbide powder, silicon powder, and a phenol resin as a molding aid were uniformly mixed to prepare a blended raw material. This blended raw material was put into a tumbling granulator to form granules, and a molded body was obtained by dry pressure molding. Next, this molded body was degreased at 500 ° C. in a nitrogen atmosphere and then heat-treated at 1420 ° C. in the same nitrogen atmosphere to obtain a porous body having a porosity of 31% and an average pore diameter of 55 μm, as shown in FIG. The mounting part 2 was produced.

載置部2の気孔率、気孔2aの平均径については実施例1と同様の方法で測定した。   The porosity of the mounting portion 2 and the average diameter of the pores 2a were measured by the same method as in Example 1.

次に、炭化珪素を主成分とし、中央に円形の凹部3aを有する略円盤状の緻密質な枠体である支持部3を準備し、接合後の結合層4を構成するガラスの各成分が表3になるように調整されたペースト状のガラスを凹部3aに塗布した。ガラス塗布後、載置部2を凹部3aに置き、専用の加圧装置で厚み方向から加圧した後、980℃で熱処理することで、結合層の厚みが110〜120μmである真空チャックを得た。   Next, the support part 3 which is a substantially disk-shaped dense frame having silicon carbide as a main component and having a circular recess 3a in the center is prepared, and each component of the glass constituting the bonded layer 4 after bonding is prepared. The paste-like glass adjusted so as to become Table 3 was apply | coated to the recessed part 3a. After applying the glass, the mounting portion 2 is placed in the concave portion 3a, pressed in the thickness direction with a dedicated pressurizing device, and then heat treated at 980 ° C. to obtain a vacuum chuck having a bonding layer thickness of 110 to 120 μm. It was.

そして、結合層4を構成するガラス各成分の比率は、実施例1と同様の方法で測定した。   And the ratio of each glass component which comprises the coupling layer 4 was measured by the method similar to Example 1. FIG.

載置部2、支持部3間の接合強度については、長手方向略中央に結合層4を挟む10mm×10mm×30mmの試験片を切り出し、多孔質体を固定した後、トルクレンチで緻密質体を捻り、この試験片が破壊したときの強度を読み取り、この値を接合強度とした。   Regarding the bonding strength between the mounting part 2 and the support part 3, after cutting out a 10 mm × 10 mm × 30 mm test piece sandwiching the bonding layer 4 in the center in the longitudinal direction and fixing the porous body, the dense body with a torque wrench. The strength when the test piece was broken was read, and this value was defined as the bonding strength.

併せて、真空チャック1の支持部3の底面に、圧力0.4MPa、流量0.003m/分で水を噴射するという耐圧試験を実施し、吸引通路3cを介して、載置部2が支持部3よりはずれるかどうかを確認した。載置部2が支持部3よりはずれた試料には×、載置部2が支持部3よりはずれなかった試料には○を表3に示した。

Figure 0004731368
At the same time, a pressure resistance test is performed in which water is sprayed onto the bottom surface of the support portion 3 of the vacuum chuck 1 at a pressure of 0.4 MPa and a flow rate of 0.003 m 3 / min. It was confirmed whether or not the support part 3 was detached. Table 3 shows “X” for a sample in which the mounting portion 2 is displaced from the support portion 3, and “◯” for a sample in which the placement portion 2 is not displaced from the support portion 3.
Figure 0004731368

表3からわかるように、載置部2、支持部3間の接合強度が40kg・cm未満の試料No.32は、耐圧試験で載置部2が支持部3よりはずれたが、接合強度が40kg・cmの試料No.30,31は、耐圧試験で載置部2が支持部3よりはずれず、信頼性が高いと言える。   As can be seen from Table 3, a sample No. having a bonding strength between the mounting portion 2 and the support portion 3 of less than 40 kg · cm. No. 32 is a sample No. 32 with a bonding strength of 40 kg · cm, although the mounting portion 2 was displaced from the support portion 3 in the pressure resistance test. Nos. 30 and 31 can be said to be highly reliable because the mounting part 2 does not deviate from the support part 3 in the pressure resistance test.

(実施例4)
先ず、α型炭化珪素粉末、珪素粉末及び成形助剤となるフェノール樹脂を均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて成形体を得た。次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、1430℃で同じく窒素雰囲気中で熱処理して、気孔率33%、平均気孔径52μmの多孔質体である、図1に示す載置部2を作製した。
Example 4
First, α-type silicon carbide powder, silicon powder, and a phenol resin as a molding aid were uniformly mixed to prepare a blended raw material. This blended raw material was put into a tumbling granulator to form granules, and a molded body was obtained by dry pressure molding. Next, this molded body was degreased at 500 ° C. in a nitrogen atmosphere and then heat-treated at 1430 ° C. in the same nitrogen atmosphere to obtain a porous body having a porosity of 33% and an average pore diameter of 52 μm, as shown in FIG. The mounting part 2 was produced.

載置部2の気孔率、気孔2aの平均径については実施例1と同様の方法で測定した。   The porosity of the mounting portion 2 and the average diameter of the pores 2a were measured by the same method as in Example 1.

次に、炭化珪素を主成分とし、中央に円形の凹部3aを有する略円盤状の緻密質な枠体である支持部3を準備し、接合後の結合層4を構成するガラスの各成分が表3になるように調整されたペースト状のガラスを凹部3aに塗布した。ガラス塗布後、載置部2を凹部3aに置き、専用の加圧装置で厚み方向から加圧した後、980℃で熱処理することで、真空チャックを得た。   Next, the support part 3 which is a substantially disk-shaped dense frame having silicon carbide as a main component and having a circular recess 3a in the center is prepared, and each component of the glass constituting the bonded layer 4 after bonding is prepared. The paste-like glass adjusted so as to become Table 3 was apply | coated to the recessed part 3a. After applying the glass, the mounting portion 2 was placed in the concave portion 3a, pressed from the thickness direction with a dedicated pressurizing device, and then heat treated at 980 ° C. to obtain a vacuum chuck.

結合層4の厚みは、後述の熱伝導試験実施後に、走査型電子顕微鏡を用い、倍率130倍で得られた画像より測定し、得られた値を表4に示す。   The thickness of the bonding layer 4 was measured from an image obtained at a magnification of 130 times using a scanning electron microscope after the heat conduction test described later, and the obtained values are shown in Table 4.

得られた真空チャック1は図3に示すような熱伝導試験を実施した。具体的には、炭化珪素からなる均熱板5を挟んで、載置部2を下にした真空チャック1をホットプレート6に置いた後、このホットプレート6で均熱板5を60℃になるまで加熱し、熱が載置部2、結合層4、支持部3を順次伝わり、支持部3の裏面の中心の温度が60℃になるまでの時間を測定した。この時間が短いほど、真空チャックとしての放熱特性が良好であるといえる。   The obtained vacuum chuck 1 was subjected to a heat conduction test as shown in FIG. Specifically, after placing the vacuum chuck 1 with the mounting portion 2 on the hot plate 6 with the soaking plate 5 made of silicon carbide interposed therebetween, the soaking plate 5 is brought to 60 ° C. with the hot plate 6. Until the temperature of the center of the back surface of the support portion 3 reaches 60 ° C., and the heat is sequentially transmitted through the placement portion 2, the bonding layer 4, and the support portion 3. It can be said that the shorter the time, the better the heat dissipation characteristics as a vacuum chuck.

支持部3の裏面3eの中心の温度は、サーモグラフィー7で測定し、60℃になるまでに要した時間を表4に示す。

Figure 0004731368
The temperature at the center of the back surface 3e of the support part 3 is measured by the thermography 7, and Table 4 shows the time required to reach 60 ° C.
Figure 0004731368

表4からわかるように、結合層の厚みが100μmを超える試料No.33は、支持部3の裏面の中心の温度が60℃になるまで70秒要しているのに対し、結合層の厚みが100μm以下の試料No.34,35は、支持部3の裏面の中心の温度が60℃になるまで50秒以下であり、放熱特性が良好な真空チャックであるといえる。   As can be seen from Table 4, the sample nos. No. 33 takes 70 seconds until the temperature at the center of the back surface of the support part 3 reaches 60 ° C., whereas the thickness of the bonding layer is 100 μm or less. It can be said that 34 and 35 are vacuum chucks having good heat dissipation characteristics for 50 seconds or less until the temperature at the center of the back surface of the support portion 3 reaches 60 ° C.

本発明の真空チャックを示す斜視図である。It is a perspective view which shows the vacuum chuck of this invention. 支持部と接合する結合層の空隙部を模式的に示したものであり、真空チャックの厚み方向に対して、垂直な方向から見た断面図である。It is the sectional view seen from the direction perpendicular to the thickness direction of a vacuum chuck, which shows typically the gap of a bonding layer joined to a support part. 熱伝導試験により真空チャックの放熱特性を評価していることを示す断面図である。It is sectional drawing which shows having evaluated the thermal radiation characteristic of a vacuum chuck by the heat conduction test.

符号の説明Explanation of symbols

1:真空チャック
2:載置部
2a:気孔
2b:吸着面
3:支持部
3a:凹部
3b:頂面
3c:吸引通路
3d:フランジ部
4:結合層
4a:空隙部
4b:接合部
5:均熱板
6:ホットプレート
7:サーモグラフィー
1: vacuum chuck 2: mounting portion 2a: pore 2b: suction surface 3: support portion 3a: concave portion 3b: top surface 3c: suction passage 3d: flange portion 4: bonding layer 4a: gap portion 4b: bonding portion 5: uniform Hot plate 6: Hot plate 7: Thermography

Claims (6)

少なくとも炭化珪素を主成分とする多孔質体からなる吸着面を有する載置部と、該載置部を囲繞して支持する炭化珪素を主成分とする緻密質体からなる支持部とをガラス状の結合層で接合した真空チャックにおいて、前記結合層はそれぞれ酸化物換算でSiを30〜65質量%、Alを10〜40質量%、Bを10〜20質量%,Caを4〜5質量%、Mgを1〜5質量%、Baを6質量%以下(0質量%を除く)、Srを5質量%以下(0質量%を除く)含有することを特徴とする真空チャック。   A placing portion having an adsorption surface made of a porous body containing at least silicon carbide as a main component and a supporting portion made of a dense body containing silicon carbide as a main component that surrounds and supports the placing portion. In the vacuum chuck bonded with the bonding layer, the bonding layer is 30 to 65% by mass of Si, 10 to 40% by mass of Al, 10 to 20% by mass of B, and 4 to 5% by mass of Ca in terms of oxides. A vacuum chuck comprising 1 to 5% by mass of Mg, 6% by mass or less (excluding 0% by mass) of Ba, and 5% by mass or less (excluding 0% by mass) of Sr. 前記結合層における重金属とアルカリ金属の合計の比率が300質量ppm以下(0質量ppmを除く)であることを特徴とする請求項に記載の真空チャック。 3. The vacuum chuck according to claim 2 , wherein the total ratio of heavy metal and alkali metal in the bonding layer is 300 ppm by mass or less (excluding 0 ppm by mass). 前記真空チャックを断面視したとき、前記支持部と結合層のなす界面の長さの合計に対して、前記支持部と結合層の間の空隙部の長さの合計の占める割合が45%以下であることを特徴とする請求項1または請求項に記載の真空チャック。 When the vacuum chuck is viewed in cross section, the proportion of the total length of the gap between the support portion and the bonding layer is 45% or less with respect to the total length of the interface between the support portion and the bonding layer. The vacuum chuck according to claim 1 or 2 , wherein: 前記載置部と支持部との間の接合強度が40kg・cm以上であることを特徴とする請求項1乃至請求項のいずれかに記載の真空チャック。 The vacuum chuck according to any one of claims 1 to 3 , wherein the bonding strength between the mounting portion and the support portion is 40 kg · cm or more. 前記結合層の厚みが5〜100μmであることを特徴とする請求項1乃至請求項のいずれかに記載の真空チャック。 Vacuum chuck according to any one of claims 1 to 4 the thickness of the bonding layer is characterized by a 5 to 100 [mu] m. 請求項1乃至のいずれかに記載の真空チャックを吸着部材として用いたことを特徴とする真空吸着装置。 Vacuum suction device, characterized in that the vacuum chuck according used as an adsorption member to one of claims 1 to 5.
JP2006081359A 2006-03-23 2006-03-23 Vacuum chuck and vacuum suction device using the same Active JP4731368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081359A JP4731368B2 (en) 2006-03-23 2006-03-23 Vacuum chuck and vacuum suction device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081359A JP4731368B2 (en) 2006-03-23 2006-03-23 Vacuum chuck and vacuum suction device using the same

Publications (2)

Publication Number Publication Date
JP2007253284A JP2007253284A (en) 2007-10-04
JP4731368B2 true JP4731368B2 (en) 2011-07-20

Family

ID=38628021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081359A Active JP4731368B2 (en) 2006-03-23 2006-03-23 Vacuum chuck and vacuum suction device using the same

Country Status (1)

Country Link
JP (1) JP4731368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935376B1 (en) * 2008-09-01 2011-06-10 Commissariat Energie Atomique METHOD OF REFRACTORALLY MEDIUM ASSEMBLY OF SIC - BASED MATERIAL PARTS BY NON - REACTIVE BRAZING IN OXIDIZING ATMOSPHERE, BRAZING COMPOSITIONS, AND JOINT AND ASSEMBLY OBTAINED BY THIS METHOD.
JP2018051636A (en) * 2016-09-26 2018-04-05 三菱マテリアルテクノ株式会社 Soft sheet manufacturing method and soft sheet polishing device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068087A (en) * 1992-06-25 1994-01-18 Shin Etsu Handotai Co Ltd Wafer grinding suction board
JP2555938Y2 (en) * 1991-07-31 1997-11-26 京セラ株式会社 Vacuum chuck
JPH10128634A (en) * 1996-10-30 1998-05-19 Kyocera Corp Sucker and its manufacture
JP2000021960A (en) * 1998-06-30 2000-01-21 Hitachi Chem Co Ltd Vacuum chuck
JP2002373873A (en) * 2001-06-15 2002-12-26 Sumitomo Metal Ind Ltd Vacuum chuck for holding wafer
JP2003197725A (en) * 2001-12-27 2003-07-11 Sumitomo Metal Ind Ltd Vacuum chuck
JP2005008368A (en) * 2003-06-19 2005-01-13 Mikura Bussan Kk Electronic part handling unit and manufacturing method thereof
JP2005205507A (en) * 2004-01-20 2005-08-04 Taiheiyo Cement Corp Vacuum-sucking device and its manufacturing method
JP2005254412A (en) * 2004-03-15 2005-09-22 Taiheiyo Cement Corp Vacuum suction device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208238A (en) * 1989-02-07 1990-08-17 Hoya Corp Glass ceramics and production thereof
US4973564A (en) * 1989-09-05 1990-11-27 Corning Incorporated Bonding frits for ceramic composites
US5112777A (en) * 1991-01-09 1992-05-12 Corning Incorporated Glass-ceramic-bonded ceramic composites
JP2005118979A (en) * 2003-09-22 2005-05-12 Ibiden Co Ltd Grinding/polishing vacuum chuck and sucking plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555938Y2 (en) * 1991-07-31 1997-11-26 京セラ株式会社 Vacuum chuck
JPH068087A (en) * 1992-06-25 1994-01-18 Shin Etsu Handotai Co Ltd Wafer grinding suction board
JPH10128634A (en) * 1996-10-30 1998-05-19 Kyocera Corp Sucker and its manufacture
JP2000021960A (en) * 1998-06-30 2000-01-21 Hitachi Chem Co Ltd Vacuum chuck
JP2002373873A (en) * 2001-06-15 2002-12-26 Sumitomo Metal Ind Ltd Vacuum chuck for holding wafer
JP2003197725A (en) * 2001-12-27 2003-07-11 Sumitomo Metal Ind Ltd Vacuum chuck
JP2005008368A (en) * 2003-06-19 2005-01-13 Mikura Bussan Kk Electronic part handling unit and manufacturing method thereof
JP2005205507A (en) * 2004-01-20 2005-08-04 Taiheiyo Cement Corp Vacuum-sucking device and its manufacturing method
JP2005254412A (en) * 2004-03-15 2005-09-22 Taiheiyo Cement Corp Vacuum suction device

Also Published As

Publication number Publication date
JP2007253284A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP2008132562A (en) Vacuum chuck and vacuum suction device using it
JP4939232B2 (en) Composite ceramic body, method for producing the same, microchemical chip, and reformer
KR101233129B1 (en) Bonded abrasive article and method of making
CN100467210C (en) Vacuum chuck and suction board
KR101763665B1 (en) Abrasive articles and method of forming same
US7816022B2 (en) Composite structure for microlithography and optical arrangement
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP2009056518A (en) Suction device, machining system having the same, and machining method
JP2008132573A (en) Cmp conditioner
JP4850055B2 (en) Vacuum chuck and vacuum suction device using the same
JP4731368B2 (en) Vacuum chuck and vacuum suction device using the same
JP2008007341A (en) Low thermal expansion ceramic joined body and method for manufacturing the same
JP4948920B2 (en) Vacuum chuck and vacuum suction device using the same
JP5270306B2 (en) Ceramic bonded body and manufacturing method thereof
JP2009033001A (en) Vacuum chuck and vacuum sucker and working device using the same
JP5046859B2 (en) Bonded body, adsorbing member, adsorbing apparatus and processing apparatus
JP2003282685A (en) Cooling plate
TWI589405B (en) A superabrasive grain wheel using a ceramic bonding agent, and a method of manufacturing a wafer using the same
JP4704971B2 (en) Vacuum adsorption device
JP5640064B2 (en) Vitrified bond superabrasive wheel and method of grinding a wafer using the same
JP2005118979A (en) Grinding/polishing vacuum chuck and sucking plate
JP4795529B2 (en) Ceramic substrate, thin film circuit substrate, and method for manufacturing ceramic substrate
JP2008238357A (en) Vacuum chuck, vacuum suction device, suction method, and water retention management method of vacuum chuck
JP6024239B2 (en) Manufacturing method of semiconductor device
JP4766289B2 (en) Silicon carbide sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150