JP5270306B2 - Ceramic bonded body and manufacturing method thereof - Google Patents

Ceramic bonded body and manufacturing method thereof Download PDF

Info

Publication number
JP5270306B2
JP5270306B2 JP2008288256A JP2008288256A JP5270306B2 JP 5270306 B2 JP5270306 B2 JP 5270306B2 JP 2008288256 A JP2008288256 A JP 2008288256A JP 2008288256 A JP2008288256 A JP 2008288256A JP 5270306 B2 JP5270306 B2 JP 5270306B2
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
sintered body
joined body
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008288256A
Other languages
Japanese (ja)
Other versions
JP2010111559A (en
Inventor
基宏 梅津
昇 宮田
良太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2008288256A priority Critical patent/JP5270306B2/en
Publication of JP2010111559A publication Critical patent/JP2010111559A/en
Application granted granted Critical
Publication of JP5270306B2 publication Critical patent/JP5270306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low thermal expansion ceramic joint having the bending strength and stiffness almost same to a sintered body and having a small dimensional change with time. <P>SOLUTION: In the low thermal expansion ceramic joint formed by joining sintered compact themselves consisting of the low thermal expansion ceramic without blending an inclusion, a material constituting the sintered body is composed of lithium aluminosilicate, silicon carbide and/or silicon nitride and an average thermal expansion coefficient at 20-30&deg;C is -1&times;10<SP>-6</SP>to 1&times;10<SP>-6</SP>/&deg;C. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、半導体製造装置、検査機器等の部材として用いられるセラミックス接合体及びその製造方法に関する。 The present invention relates to a ceramic bonded body used as a member of a semiconductor manufacturing apparatus, an inspection device, and the like, and a manufacturing method thereof.

半導体製造装置等の部材として、セラミックスが多く用いられている。これは、セラミックスが耐食性や剛性に優れているためである。近年、半導体基板の大口径化や大型FPD用ガラス基板等を扱う装置にもセラミックスが用いられてきており、セラミックス部材の大型化が必要になってきている。 Ceramics are often used as members of semiconductor manufacturing equipment and the like. This is because ceramics are excellent in corrosion resistance and rigidity. In recent years, ceramics have been used in devices that handle large-diameter semiconductor substrates, large FPD glass substrates, and the like, and it has become necessary to increase the size of ceramic members.

しかしながら、セラミックスを大型化しようとすると、セラミックスを焼結させる際に割れや変形が生じやすく、製造は非常に難しい。そこで、セラミックスを接合させることにより、大型の部材を製造することが検討されている。 However, if an attempt is made to increase the size of ceramics, cracking and deformation are likely to occur when the ceramics are sintered, and manufacturing is very difficult. Therefore, it has been studied to manufacture a large member by bonding ceramics.

例えば、特許文献1では、位置決め装置のXYステージの構造部材としてセラミックス接合体が開示されており、その材質としてアルミナや窒化珪素が例示されている。また、その接合方法として再焼結や接着剤を用いた接合が挙げられている。 For example, Patent Document 1 discloses a ceramic joined body as a structural member of an XY stage of a positioning device, and examples of the material include alumina and silicon nitride. Further, as a joining method, re-sintering or joining using an adhesive is cited.

また、本出願人は、再焼結によりセラミックス同士を接合する技術を開発しており、カルシウムシリケート結晶とリチウムアルミノシリケート結晶を必須成分とするカルシウムシリケート系焼結体の接合方法であって、焼結体の間に介在物を配せずに、所定の温度、所定の圧力下で、カルシウムシリケート系焼結体同士を接合することを特徴とするカルシウムシリケート系焼結体の接合方法を開示している(特許文献2)。 Further, the present applicant has developed a technique for joining ceramics by re-sintering, and is a joining method of a calcium silicate-based sintered body containing a calcium silicate crystal and a lithium aluminosilicate crystal as essential components. Disclosed is a method for joining calcium silicate-based sintered bodies, characterized in that the calcium silicate-based sintered bodies are joined to each other at a predetermined temperature and a predetermined pressure without providing inclusions between the bonded bodies. (Patent Document 2).

さらに、本出願人は、接合材を母材の低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスで構成し、接合材の溶融温度よりも高く、母材の溶融温度よりも低い温度で加熱することにより、低い熱膨張係数を維持しつつ、通常のセラミックスと同程度の剛性を有し、接合強度が高い接合体を開示している(特許文献3)。 Further, the present applicant configures the bonding material with a low thermal expansion ceramic having a lower melting temperature than the low thermal expansion ceramic of the base material, and heats the bonding material at a temperature higher than the melting temperature of the bonding material and lower than the melting temperature of the base material. Accordingly, a bonded body having a rigidity comparable to that of ordinary ceramics and a high bonding strength while maintaining a low thermal expansion coefficient is disclosed (Patent Document 3).

特開平11−142555号公報JP-A-11-142555 特開平10−259072号公報Japanese Patent Laid-Open No. 10-259072 特開2004−59402号公報JP 2004-59402 A

特許文献1の接合体によれば、位置決め装置を構成する構造部材を中空構造のセラミックス接合体としたことから軽量、高強度及び高剛性とすることが可能となる。しかしながら、半導体回路は益々精細化する傾向にあり、製造装置のわずかな変形でも歩留まりの低下を招くことから、半導体製造装置等の部材として低熱膨張材料が用いられるようになってきており、特許文献1に記載されたアルミナや窒化珪素では、熱膨張が大きいため好ましくない。 According to the joined body of Patent Document 1, since the structural member constituting the positioning device is a hollow ceramic joined body, it is possible to achieve light weight, high strength, and high rigidity. However, semiconductor circuits tend to become finer, and even a slight deformation of the manufacturing apparatus causes a decrease in yield. Therefore, a low thermal expansion material has been used as a member for semiconductor manufacturing apparatuses, etc. Alumina and silicon nitride described in 1 are not preferable because of large thermal expansion.

特許文献2に記載されたカルシウムシリケート系焼結体同士の接合体の場合には、熱膨張の小さい材料を得ることは可能であるものの、低熱膨張を求めると剛性が低下し、剛性を上げようとすると熱膨張が大きくなるため両方を満足するような材料を得ることができなかった。 In the case of a joined body of calcium silicate-based sintered bodies described in Patent Document 2, it is possible to obtain a material having a low thermal expansion, but if low thermal expansion is required, the rigidity will decrease and the rigidity will increase. As a result, the thermal expansion increases, so that a material satisfying both of them cannot be obtained.

特許文献3の接合材を用いた接合体は、熱膨張及び剛性において優れており、構造部材として十分に実用できるものである。しかしながら、極めて微細な平面を要求される位置決め装置のバーミラーのような部材に用いると、使用時間が経過するにつれ、寸法変化が生じる場合があり問題となっていた。また、中空構造の接合体を作製すると、接合材の染み出しや、接合材中に空隙が生じて、中空部の形状精度が得られなかったり、完全な気密性を確保できなかったりする場合があり、問題となっていた。 A joined body using the joining material of Patent Document 3 is excellent in thermal expansion and rigidity, and can be sufficiently put into practical use as a structural member. However, when a very fine flat surface is used for a member such as a bar mirror of a positioning device, there is a problem that a dimensional change may occur as the usage time elapses. In addition, when a bonded structure having a hollow structure is produced, there is a case where the bonding material oozes out or voids are generated in the bonding material, and the shape accuracy of the hollow portion cannot be obtained or complete airtightness cannot be ensured. There was a problem.

また、接合層を介した接合では、接合層と母材とで熱膨張係数やヤング率を近似させたとしても、その他の物性が異なるために問題となる場合があった。例えば、特許文献3では、母材の体積抵抗率が低く、接合層の体積抵抗率が高いので、接合層で導通が遮断されるため、部材の設計上の制約があった。 Further, in joining via the joining layer, even if the thermal expansion coefficient and Young's modulus are approximated between the joining layer and the base material, there may be a problem because other physical properties are different. For example, in Patent Document 3, since the volume resistivity of the base material is low and the volume resistivity of the bonding layer is high, conduction is interrupted by the bonding layer, so there is a restriction on the design of the member.

本発明は、これらの問題に鑑みてなされたものであり、焼結体単体と同程度の曲げ強度及び剛性を有し、経時的な寸法変化が小さい低熱膨張セラミックス接合体を提供するものである。 The present invention has been made in view of these problems, and provides a low thermal expansion ceramic joined body having bending strength and rigidity comparable to those of a sintered body alone and having a small dimensional change over time. .

本発明は、これらの問題を解決するため、低熱膨張セラミックスからなる焼結体同士を、介在物を配せずに接合してなる低熱膨張セラミックス接合体であって、前記焼結体を構成する材料が、リチウムアルミノシリケートと、炭化珪素および/または窒化珪素とからなり、20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、4点曲げ強度が115MPa以上であり、ヤング率が120GPa以上であり、前記焼結体に含まれる鉄が70〜210ppmであることを特徴とする低熱膨張セラミックス接合体を提供する。 In order to solve these problems, the present invention is a low thermal expansion ceramic joined body formed by joining sintered bodies made of low thermal expansion ceramics without providing inclusions, and constitutes the sintered body. material, lithium aluminosilicate, consists of a silicon carbide and / or silicon nitride, Ri average thermal expansion coefficient of -1 × 10 -6 ~1 × 10 -6 / ℃ der at 20 to 30 ° C., 4 points Provided is a low thermal expansion ceramic joined body characterized in that a bending strength is 115 MPa or more, a Young's modulus is 120 GPa or more, and iron contained in the sintered body is 70 to 210 ppm .

本発明の接合体は、介在物を配せずに接合される。これにより、極めて微細な寸法精度が求められるような部材に用いることができ、経時的な変化も極めて小さくできる。また、体積抵抗率等の特性の異なる接合層のような介在物が無いので、接合体としても焼結体と同様に扱うことができ、部材の設計上の制約を無くすことができる。 The joined body of the present invention is joined without any inclusions. Thereby, it can be used for a member for which extremely fine dimensional accuracy is required, and the change with time can be extremely small. Further, since there is no inclusion such as a bonding layer having different characteristics such as volume resistivity, the bonded body can be handled in the same manner as the sintered body, and the design restrictions of the members can be eliminated.

また、本発明は、前記焼結体を構成する材料が、リチウムアルミノシリケートと、炭化珪素および/または窒化珪素とからなる。このような材料を用いることにより、20〜30℃における平均の熱膨張係数を−1×10−6〜1×10−6/℃とすることができ、曲げ強度115MPa以上、ヤング率120GPa以上の高強度を持ちながら、低熱膨張性の接合体を実現できる。 In the present invention, the material constituting the sintered body is composed of lithium aluminosilicate and silicon carbide and / or silicon nitride. By using such a material, the average thermal expansion coefficient at 20 to 30 ° C. can be set to −1 × 10 −6 to 1 × 10 −6 / ° C., the bending strength is 115 MPa or more, and the Young's modulus is 120 GPa or more. A bonded body having low strength and high thermal expansion can be realized.

さらに、リチウムアルミノシリケートの例としては、β−ユークリプタイト、β−スポジュメン、ペタライト等が挙げられる。これらは低熱膨張係数を有するセラミックスである。なかでもβ−ユークリプタイトが望ましい。βスポジューメンが1×10−6/℃程度であるのに対し、β-ユークリプタイトは負の熱膨張係数を示し、その値は−2×10−6/℃である。正の熱膨張を有し、高剛性材料である炭化珪素および/または窒化珪素と、配合し複合化することで、20〜30℃における平均の熱膨張係数を−1×10−6〜1×10−6/℃とすることができる。 Furthermore, examples of lithium aluminosilicate include β-eucryptite, β-spodumene, petalite and the like. These are ceramics having a low coefficient of thermal expansion. Of these, β-eucryptite is desirable. β-spodumene is about 1 × 10 −6 / ° C., whereas β-eucryptite exhibits a negative thermal expansion coefficient, which is −2 × 10 −6 / ° C. Compounding and compounding with silicon carbide and / or silicon nitride, which has a positive thermal expansion and is a high rigidity material, the average thermal expansion coefficient at 20 to 30 ° C. is −1 × 10 −6 to 1 ×. 10 −6 / ° C.

前記焼結体に含まれる鉄が70〜210ppm(質量百万分率)とすることが好ましい。本発明に用いられる低熱膨張セラミックス焼結体は、温度変化に伴って焼結体の粒子内および粒界にマイクロクラックが生じることによって、熱膨張が吸収されて低熱膨張性を発揮する。本発明者は、鉄の含有量を上記範囲とすることにより、接合体のマイクロクラックの発生を調整し、発明をするに至った。すなわち、鉄の含有量が70ppmよりも少ないと、焼結体の溶融温度が高温化し、接合熱処理自体の処理温度を高温化する必要があるだけでなく、接合面の融着の進行が鈍くなり、接合部に空隙が発生してしまう。一方、210ppmよりも多いと、焼結体の溶融温度が低下するため、接合熱処理時に、粒成長が促進され、焼結体組織中に内在するマイクロクラックを起点として、破壊してしまう。 The iron contained in the sintered body is preferably 70 to 210 ppm (parts per million by mass). The low thermal expansion ceramic sintered body used in the present invention exhibits low thermal expansion by absorbing thermal expansion by generating microcracks in the particles and grain boundaries of the sintered body as the temperature changes. The present inventor has adjusted the occurrence of microcracks in the joined body by adjusting the iron content within the above range, and has come to the invention. That is, if the iron content is less than 70 ppm, the melting temperature of the sintered body becomes high, and it is necessary not only to increase the processing temperature of the bonding heat treatment itself, but also the progress of fusion of the bonding surface becomes slow. As a result, voids are generated at the joint. On the other hand, when the content is higher than 210 ppm, the melting temperature of the sintered body is lowered, so that during the heat treatment for bonding, grain growth is promoted and the microcracks inherent in the sintered body structure are destroyed as a starting point.

本発明の低熱膨張セラミックス接合体の4点曲げ強度は、焼結体の4点曲げ強度の95%以上である。また、ヤング率は、焼結体のヤング率の95%以上である。低熱膨張セラミックス接合体の組織は、接合部においても焼結体と同等であるため、曲げ強度やヤング率において、ほとんど低下は見られない。 The four-point bending strength of the low thermal expansion ceramic joined body of the present invention is 95% or more of the four-point bending strength of the sintered body. The Young's modulus is 95% or more of the Young's modulus of the sintered body. Since the structure of the low thermal expansion ceramic joined body is the same as that of the sintered body in the joined portion, the bending strength and Young's modulus are hardly decreased.

また、本発明は、JISR1601に規定された4点曲げ強度が115MPa以上であり、JISR1602に規定されたヤング率が120GPa以上である低熱膨張セラミックス接合体を提供する。上記のような材料および組成とすることで、低熱膨張性と高強度を両立させることができる。 The present invention also provides a low thermal expansion ceramic joined body having a four-point bending strength defined in JIS R1601 of 115 MPa or more and a Young's modulus defined in JIS R1602 of 120 GPa or more. By setting it as the above materials and compositions, low thermal expansion property and high intensity | strength can be made compatible.

また、前記焼結体の組成はβ−ユークリプタイト50〜95質量%と炭化珪素および/または窒化珪素5〜50質量%とすることが望ましい。この範囲では、比較的低温でかつ多量の液相が焼結体中に生成され、接合時に軟化現象が発生し、接合できる。β−ユークリプタイトが50%より少ないと、正の熱膨張を有する炭化珪素および/または窒化珪素が支配的となり、低熱膨張セラミックスとならない。また、β−ユークリプタイトが95%より多いと、熱膨張率が−1.0×10−6/℃以下となるだけでなく、β−ユークリプタイトは、組織中に、マイクロクラックを有するため、強度、剛性が著しく低下する。 The composition of the sintered body is preferably 50 to 95% by mass of β-eucryptite and 5 to 50% by mass of silicon carbide and / or silicon nitride. In this range, a relatively large amount of liquid phase is generated in the sintered body at a relatively low temperature, and a softening phenomenon occurs at the time of joining and joining can be performed. When β-eucryptite is less than 50%, silicon carbide and / or silicon nitride having positive thermal expansion becomes dominant, and a low thermal expansion ceramic is not obtained. When β-eucryptite is more than 95%, not only does the coefficient of thermal expansion become −1.0 × 10 −6 / ° C. or less, but β-eucryptite has microcracks in the structure. Therefore, the strength and rigidity are remarkably reduced.

本発明の接合体は、低熱膨張セラミックスからなる焼結体同士を、介在物を配せずに接合してなる低熱膨張セラミックスの接合方法により得ることができる。より具体的には、β−ユークリプタイト50〜95質量%と炭化珪素および/または窒化珪素5〜50質量%とからなる焼結体を用意する工程と、
前記焼結体の接合面の表面粗さを0.1〜0.8μmに加工する工程と、前記焼結体の接合面同士を合わせ、2〜50g/cmの荷重を加えながら1000〜1400℃に加熱する熱処理工程と、を含む接合方法により得ることができる。
The joined body of the present invention can be obtained by a joining method of low thermal expansion ceramics obtained by joining sintered bodies made of low thermal expansion ceramics without providing inclusions. More specifically, a step of preparing a sintered body composed of β-eucryptite 50 to 95% by mass and silicon carbide and / or silicon nitride 5 to 50% by mass;
The step of processing the surface roughness of the joint surface of the sintered body to 0.1 to 0.8 μm and the joint surfaces of the sintered body are combined, and 1000 to 1400 while applying a load of 2 to 50 g / cm 2. And a heat treatment step of heating to ° C.

接合面の表面粗さを0.1〜0.8μmとするのは、このような範囲であれば、接合部に境界が存在せず一体化した構造を得ることができるためである。表面粗さが0.1μmよりも小さい場合は、接合面への窒素の供給が著しく低下するため、窒素の固溶による格子定数の伸縮が起き難くなり接合面の融着が進行しないおそれがある。一方、0.8μmよりも大きい場合、接合面の接触状態が悪いため、液相の生成による接合面全域への融着の進行が難しくなる。 The reason why the surface roughness of the bonding surface is 0.1 to 0.8 μm is that, in such a range, an integrated structure can be obtained without a boundary at the bonding portion. When the surface roughness is smaller than 0.1 μm, the supply of nitrogen to the bonding surface is remarkably reduced, so that the expansion and contraction of the lattice constant due to the solid solution of nitrogen hardly occurs, and the fusion of the bonding surface may not proceed. . On the other hand, when it is larger than 0.8 μm, the contact state of the joint surface is poor, and it becomes difficult to progress the fusion to the entire joint surface due to generation of the liquid phase.

2〜50g/cmの荷重とするのは、2g/cmより小さい場合、接合面の融着の進行が困難となるため、接合層に空隙が発生する。50g/cmよりも大きい場合、焼結体の塑性変形が発生するため、接合体の変形に繋がるため好ましくない。 The load of 2 to 50 g / cm 2 is less than 2 g / cm 2 , so that it is difficult for the bonding surface to progress, and voids are generated in the bonding layer. When it is larger than 50 g / cm 2 , plastic deformation of the sintered body occurs, which leads to deformation of the joined body, which is not preferable.

熱処理温度を1000〜1400℃としたのは、1000℃より低温では、接合面の融着が進行しないため好ましくなく、1400℃より高温では、焼結体の結晶粒子が異常粒成長するため、内在するマイクロクラックを起因として接合体に破損が生じるため好ましくない。 The heat treatment temperature of 1000 to 1400 ° C. is not preferable at a temperature lower than 1000 ° C. because the fusion of the joint surface does not proceed. At a temperature higher than 1400 ° C., the crystal grains of the sintered body grow abnormally. This is not preferable because the bonded body is damaged due to the microcracks.

焼結体単体と同程度の曲げ強度及び剛性を有し、経時的な寸法変化が小さい低熱膨張セラミックス接合体を提供する。 Provided is a low thermal expansion ceramic joined body having bending strength and rigidity comparable to those of a single sintered body and small dimensional change with time.

以下、本発明の低熱膨張セラミックス接合体について、より詳細に説明する。 Hereinafter, the low thermal expansion ceramic joined body of the present invention will be described in more detail.

本発明の低熱膨張セラミックス接合体は、焼結体同士が介在物を配せずに接合される。したがって、接合部(接合面であった部分)に境界が存在せず、且つ、各焼結体の粒子同士が、新たなネッキングを起こし、一体化した構造を有する。 In the low thermal expansion ceramic joined body of the present invention, the sintered bodies are joined together without providing inclusions. Therefore, there is no boundary at the joint (the part that was the joint surface), and the particles of each sintered body cause a new necking and have an integrated structure.

このような構造は、次のような方法により確認できる。接合部に境界が存在する場合、接合面に垂直な断面を観察すると、接合部の粒径は、それ以外の部分の粒径とで異なることから目視で境界の有無を識別できる。具体的には、断面に表れた接合部の平均粒径d1とそれ以外の部分の平均粒径d2とを比較することにより把握される。本願発明の接合体では、d1/d2が0.8〜1.2の範囲であるので、境界の存在は確認できない。融着が不十分であったり、異常粒成長が生じたりすると、d1/d2が0.8よりも小さくなったり、1.2よりも大きくなったりする。このような場合は、接合部の境界が目視でも確認でき、また、接合体のヤング率や曲げ強度の低下も認められる。 Such a structure can be confirmed by the following method. When a boundary exists in the joint, when the cross section perpendicular to the joint surface is observed, the particle size of the joint is different from the particle size of the other portions, so that the presence or absence of the boundary can be identified visually. Specifically, it is grasped by comparing the average particle diameter d1 of the joint portion appearing in the cross section with the average particle diameter d2 of the other portion. In the joined body of the present invention, since d1 / d2 is in the range of 0.8 to 1.2, the presence of the boundary cannot be confirmed. If the fusion is insufficient or abnormal grain growth occurs, d1 / d2 becomes smaller than 0.8 or larger than 1.2. In such a case, the boundary of the joint can be confirmed visually, and a decrease in Young's modulus and bending strength of the joined body is also observed.

平均粒径の測定は、インターセプト法により測定する。具体的には、次のような手順で行うことができる。接合体の接合面に垂直な断面を研削加工により表出させた後、鏡面研磨を行って、さらに必要に応じてサーマルエッチング処理等を行う。しかる後に、断面について電子顕微鏡観察を行って、予めマーキングして確認できる接合部とそれ以外の箇所について、所定長さの線分を引き、線分が横切る粒子数を計測する。そして、線分の長さを粒子数で割った値を平均粒径(μm)とする。 The average particle size is measured by the intercept method. Specifically, it can be performed by the following procedure. After a cross section perpendicular to the joint surface of the joined body is exposed by grinding, mirror polishing is performed, and further, thermal etching treatment or the like is performed as necessary. Thereafter, the cross section is observed with an electron microscope, and a line segment of a predetermined length is drawn for the joint portion that can be confirmed by marking in advance and other portions, and the number of particles crossed by the line segment is measured. A value obtained by dividing the length of the line segment by the number of particles is defined as an average particle size (μm).

接合体の曲げ強度およびヤング率は、焼結体単体と同程度のものが得られる。具体的には、接合体の曲げ強度は焼結体の曲げ強度の95%以上となり、接合体のヤング率は、焼結体のヤング率の95%以上となる。上記のように、接合体の組織は、接合部においても焼結体と同等であるため、曲げ強度やヤング率において、ほとんど低下は見られない。 The bending strength and Young's modulus of the joined body are the same as those of the sintered body alone. Specifically, the bending strength of the joined body is 95% or more of the bending strength of the sintered body, and the Young's modulus of the joined body is 95% or more of the Young's modulus of the sintered body. As described above, since the structure of the joined body is equivalent to the sintered body in the joined portion, the bending strength and Young's modulus are hardly reduced.

接合前後の寸法変化は、ほとんど生じない。具体的には、接合面に垂直方向となる厚みで、寸法変化は、0.5%以下である。接合前後で寸法の狂いがほとんどないので、製品の寸法不良を著しく低減することができる。 There is almost no dimensional change before and after joining. Specifically, the thickness is perpendicular to the joint surface, and the dimensional change is 0.5% or less. Since there is almost no dimensional deviation before and after joining, the dimensional defect of the product can be remarkably reduced.

次に、接合体の製造方法について説明する。 Next, a method for manufacturing the joined body will be described.

原料のリチウムアルミノシリケートとしては、β−ユークリプタイト粉末を用いても良いし、アルミナ、シリカ、酸化リチウムを、所定の配合に調整して焼結によりβ−ユークリプタイトとしても良い。いずれの場合にも、鉄の含有量を70〜210ppmに調整する必要がある。鉄の含有量が、210ppmを超えると、接合温度および焼結温度が、著しく低下するため、接合時の異常粒成長や塑性変形を生じてしまう。また、70ppmよりも少ないと、リチウムアルミノシリケートの焼結性が低下するため、接合が困難となる。その他の不純物としては、アルカリ金属酸化物等が挙げられるが、それらは、合計で1000ppm以下であることが望ましい。 As a raw material lithium aluminosilicate, β-eucryptite powder may be used, or alumina, silica, and lithium oxide may be adjusted to a predetermined composition to be β-eucryptite by sintering. In any case, it is necessary to adjust the iron content to 70 to 210 ppm. If the iron content exceeds 210 ppm, the bonding temperature and the sintering temperature are remarkably lowered, so that abnormal grain growth and plastic deformation during bonding occur. On the other hand, if the content is less than 70 ppm, the sinterability of lithium aluminosilicate is lowered, so that joining becomes difficult. Examples of other impurities include alkali metal oxides and the like, and it is desirable that they are 1000 ppm or less in total.

炭化珪素粉末を添加する場合は、α型でも、β型でもよく、純度は、99.9%以上が好ましい。窒化珪素粉末を添加する場合も、純度は99.9%以上が好ましい。 When silicon carbide powder is added, it may be α-type or β-type, and the purity is preferably 99.9% or more. Even when silicon nitride powder is added, the purity is preferably 99.9% or more.

これらの粉末を粉砕・混合するためには、ボールミル粉砕・混合等の公知の混合方法を用いればよく、混合粉末の粒径は、2.0μm以下にすることが望ましい。混合粉末の粒径が2.0μmよりも大きい場合、焼結性が低下し、接合が困難となる。 In order to pulverize and mix these powders, a known mixing method such as ball mill pulverization and mixing may be used, and the particle size of the mixed powder is desirably 2.0 μm or less. When the particle size of the mixed powder is larger than 2.0 μm, the sinterability is lowered and joining becomes difficult.

焼結体の作製は、CIP等の乾式成形など、公知の方法で成形し、適宜バインダー成分等を大気中で脱脂した後、窒素中、1200〜1500℃で焼結する。この温度範囲であれば、緻密化できなかったり、異常粒成長を起こしたりといった問題無く焼結することができる。 The sintered body is formed by a known method such as dry molding such as CIP, and after appropriately degreasing the binder component in the air, it is sintered at 1200 to 1500 ° C. in nitrogen. If it is in this temperature range, it can sinter without the problem that it cannot densify or raise | generates abnormal grain growth.

焼結体接合面の表面粗さの調整は、公知の加工方法により行うことができる。平面研削機を用いる場合は、砥石の番手を#100〜#600のものを使用すると良い。 Adjustment of the surface roughness of the sintered body joint surface can be performed by a known processing method. When a surface grinder is used, it is preferable to use a grindstone with a # 100 to # 600 count.

次に接合面同士を合わせて、2〜50g/cmの荷重を加え、1000〜1400℃で熱処理することにより接合体が得られる。熱処理時の雰囲気は、不活性雰囲気が好ましく、窒素中が、より好ましい。窒素がユークリプタイトに固溶することによって、格子定数の伸縮が起こり、特に接合面近傍の融着が進行し易くなるためである。熱処理温度は、焼結体の焼成温度以下とし、熱処理温度と焼成温度との差は100℃以内とすることが好ましい。接合温度を、焼成温度より高くすると、異常粒成長や塑性変形を生じるのは、言うまでも無く、焼成温度よりも100℃を超えて低温にすると、接合面の融着が不十分になり易く接合できないおそれがある。 Next, the joined surfaces are put together, a load of 2 to 50 g / cm 2 is applied, and a heat treatment is performed at 1000 to 1400 ° C. to obtain a joined body. The atmosphere during the heat treatment is preferably an inert atmosphere, and more preferably in nitrogen. This is because when nitrogen dissolves in eucryptite, the lattice constant expands and contracts, and in particular, the fusion in the vicinity of the joint surface easily proceeds. The heat treatment temperature is preferably equal to or lower than the firing temperature of the sintered body, and the difference between the heat treatment temperature and the firing temperature is preferably within 100 ° C. Needless to say, if the joining temperature is higher than the firing temperature, abnormal grain growth and plastic deformation occur. If the joining temperature is lower than 100 ° C. than the firing temperature, the fusion of the joining surface tends to be insufficient. There is a possibility that it cannot be joined.

以下、本発明の実施例を比較例とともに具体的に挙げ、本発明をより詳細に説明する。 EXAMPLES Hereinafter, the Example of this invention is specifically given with a comparative example, and this invention is demonstrated in detail.

まず、β−ユークリプタイト粉末と炭化珪素粉末とを表1に示す割合でポットミル混合して乾燥させ、セラミックスの原料混合粉末を作製した。この混合粉末を一軸加圧成形して70mm×70mm×50mmの成形体を作製し、150MPaでCIP処理した。窒素雰囲気において、1300〜1430℃の範囲で焼成し、低熱膨張セラミックス焼結体を得た。 First, β-eucryptite powder and silicon carbide powder were mixed in a pot mill at a ratio shown in Table 1 and dried to prepare a ceramic raw material mixed powder. This mixed powder was uniaxially pressed to prepare a molded body of 70 mm × 70 mm × 50 mm, and CIP-treated at 150 MPa. In a nitrogen atmosphere, firing was performed in the range of 1300 to 1430 ° C. to obtain a low thermal expansion ceramic sintered body.

焼結体から3mm×4mm×40mmの試験片を切り出し、これら試験片を用いて、JISR1602に従って共振法にてこれら焼結体のヤング率を測定し、さらに、JIS R1601に従って4点曲げ試験を実施した。また、焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX−1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。焼結体の鉄の含有量をICP質量分析装置(島津製作所社製ICPM−8500)により測定したところ、全て140ppmであった。 Cut out 3 mm x 4 mm x 40 mm test pieces from the sintered body, measure the Young's modulus of these sintered bodies by the resonance method according to JIS R1602, and perform a 4-point bending test according to JIS R1601. did. Further, a 4 mm × 4 mm × 12 mm test piece was cut out from the sintered body, and the displacement amount of the test piece was measured at 20 to 30 ° C. using a laser interference thermal expansion measurement device (LIX-1 manufactured by ULVAC-RIKO), The thermal expansion coefficient was determined. When the iron content of the sintered body was measured with an ICP mass spectrometer (ICPM-8500, manufactured by Shimadzu Corporation), all were 140 ppm.

次に、得られた焼結体を、平面研削機により50mm×50mm×40mmに加工し、特に接合面(50mm×50mm)については、#60〜#170研削ダイヤモンド砥石を用いて加工し、表面粗さを所定値に調整した。接合面同士を重ね合わせ、10g/cmの荷重を載せ、窒素雰囲気において、1000〜1400℃の範囲で熱処理し、低熱膨張セラミックス接合体を得た。 Next, the obtained sintered body was processed into 50 mm × 50 mm × 40 mm by a surface grinder, and in particular, the bonding surface (50 mm × 50 mm) was processed using a # 60 to # 170 ground diamond grindstone. The roughness was adjusted to a predetermined value. The bonded surfaces were overlapped with each other, a load of 10 g / cm 2 was applied, and heat treatment was performed in a nitrogen atmosphere in the range of 1000 to 1400 ° C. to obtain a low thermal expansion ceramic bonded body.

各接合体から接合部が中央にくるように3mm×4mm×40mmの試験片を切り出し、これら試験片を用いて、JISR1602に従って共振法にてこれら接合体のヤング率を測定し、さらに、JIS R1601に従って4点曲げ試験を実施した。 A test piece of 3 mm × 4 mm × 40 mm was cut out from each joined body so that the joined portion was in the center, and using these test pieces, the Young's modulus of these joined bodies was measured by a resonance method according to JIS R1602, and further JIS R1601 A 4-point bending test was performed according to the above.

比較のため接合面に介在物を配した接合体を作製した(試験No.14)。接合材として、β−ユークリプタイトと窒化珪素を65:35でポットミル混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末を無機分が30vol%となるようにエチルセルロースの15%α−テルピネオール溶液と混合し、三本ロールを用いてペースト状にした。なお、この接合材について同じ組成の焼結体を作製して母材の焼結体と同様にして、ヤング率および熱膨張係数を求めたところ、ヤング率160GPa、熱膨張係数0.01×10−6/℃であった。実施例と同様の手順で焼結体を作製し、上記ペーストを、スクリーンマスクを用いて母材の接合面に厚さ30μmに印刷して接合材とした。500℃で脱脂した後、印刷面同士を接着して20g/cmの荷重をかけた。引き続き、窒素雰囲気で1340℃の温度で熱処理し、接合材を溶融させて母材の間に接合材が介在された試験No.14の接合体を得た。 For comparison, a joined body in which inclusions were arranged on the joining surface was produced (Test No. 14). As a bonding material, β-eucryptite and silicon nitride were mixed in a pot mill at 65:35 and dried to prepare a mixed powder for the bonding material. This mixed powder was mixed with a 15% α-terpineol solution of ethyl cellulose so that the inorganic content was 30 vol%, and made into a paste using a three roll. A sintered body having the same composition was produced for this bonding material, and the Young's modulus and thermal expansion coefficient were determined in the same manner as the sintered body of the base material. The Young's modulus was 160 GPa and the thermal expansion coefficient was 0.01 × 10. It was −6 / ° C. A sintered body was prepared in the same procedure as in the example, and the paste was printed on the bonding surface of the base material to a thickness of 30 μm using a screen mask to obtain a bonding material. After degreasing at 500 ° C., the printed surfaces were bonded together and a load of 20 g / cm 2 was applied. Subsequently, test No. 1 in which the heat treatment was performed at a temperature of 1340 ° C. in a nitrogen atmosphere to melt the bonding material and the bonding material was interposed between the base materials. 14 joined bodies were obtained.

また、各試験の接合体について平面度の経時変化を測定するための試験を行った。各試験と同配合の焼結体(A)500mm×32mm×27mm、焼結体(B)500mm×32mm×8mmに機械仕上げ加工を施し、500mm×32mmの面を接合面として、同様の接合条件で、低熱膨張セラミックス接合体を作製した。焼結体(B)の上面(500mm×32mmの面)を、平面度λ/20になるまで、鏡面加工を施した。そして、加工から、1年経過した時の、平面度の経時変化を測定した。平面度の測定は、レーザー干渉計式の形状測定器(ザイゴ社製GPI−XP)を用いて行い、平面度λ/20からの変化率が5%未満であれば○、変化率が5%以上であれば×と評価した。平均粒径の測定は、電子顕微鏡写真を用いてインターセプト法によって行った。 Moreover, the test for measuring the time-dependent change of flatness was done about the joined body of each test. Sintered body (A) 500 mm x 32 mm x 27 mm with the same composition as in each test, sintered body (B) 500 mm x 32 mm x 8 mm was machined, and the same joining conditions were used with a surface of 500 mm x 32 mm as the joint surface. Thus, a low thermal expansion ceramic joined body was produced. The upper surface (surface of 500 mm × 32 mm) of the sintered body (B) was mirror finished until the flatness was λ / 20. And the time-dependent change of flatness when 1 year passed from a process was measured. The flatness is measured using a laser interferometer type shape measuring instrument (GPI-XP manufactured by Zygo Co., Ltd.). If the change rate from the flatness λ / 20 is less than 5%, the change rate is 5%. If it was more, it was evaluated as x. The average particle size was measured by an intercept method using an electron micrograph.

以上の結果を表1に示す。 The results are shown in Table 1.


Figure 0005270306
Figure 0005270306

本発明の範囲内である試験No.1〜10では、4点曲げおよびヤング率ともに焼結体単体と同等の接合体が得られた。具体的には、いずれの接合体も焼結体に対して、4点曲げ強度で95%以上、ヤング率で95%以上であった。また、1年経過した時の、平面度の経時変化は、いずれも5%未満であった。 Test No. within the scope of the present invention. In 1 to 10, a bonded body equivalent to the sintered body alone was obtained in terms of 4-point bending and Young's modulus. Specifically, all the bonded bodies had a 4-point bending strength of 95% or more and a Young's modulus of 95% or more with respect to the sintered body. In addition, the change with time in flatness after one year was less than 5%.

一方、本発明の範囲外である試験No.11〜13では、曲げ強度、ヤング率ともに焼結体単体よりも低下した。また、接合材を介在させた試験No.14では、焼結体単体と同等の曲げ強度およびヤング率は得られたものの、平面度の経時変化が認められた。 On the other hand, Test No. which is outside the scope of the present invention. In 11-13, both bending strength and Young's modulus were lower than those of the sintered body alone. In addition, Test No. in which a bonding material was interposed was used. No. 14, a bending strength and Young's modulus equivalent to those of the sintered body were obtained, but a change in flatness with time was observed.

次に、鉄の含有量を調整して、同様の試験を行った。原料粉末の配合は、試験No.3と同様とし、鉄の含有量を変化させた。 Next, the same test was conducted by adjusting the iron content. The composition of the raw material powder was determined by test no. As in 3, the iron content was changed.


Figure 0005270306
Figure 0005270306

本発明の範囲内である試験No.21〜23では、4点曲げおよびヤング率ともに焼結体単体と同等の接合体が得られた。しかし、鉄含有量が少ないNo.24では、4点曲げおよびヤング率ともに焼結体単体よりも低い値となり、接合部には境界が認められた。また、鉄含有量が多いNo.25では、接合熱処理後に、接合体にクラックが認められ、物性測定までに至らなかった。 Test No. within the scope of the present invention. In Nos. 21 to 23, a joined body equivalent to the sintered body alone was obtained in both the 4-point bending and Young's modulus. However, no. In No. 24, both the 4-point bending and Young's modulus were lower than those of the sintered body alone, and a boundary was observed at the joint. In addition, No. with a large iron content. In No. 25, cracks were observed in the bonded body after bonding heat treatment, and physical properties were not measured.

Claims (5)

低熱膨張セラミックスからなる焼結体同士を、介在物を配せずに接合してなる低熱膨張セラミックス接合体であって、前記焼結体を構成する材料が、リチウムアルミノシリケートと、炭化珪素および/または窒化珪素とからなり、20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、4点曲げ強度が115MPa以上であり、ヤング率が120GPa以上であり、前記焼結体に含まれる鉄が70〜210ppmであることを特徴とする低熱膨張セラミックス接合体。 A low thermal expansion ceramic joined body obtained by joining sintered bodies made of low thermal expansion ceramics without providing inclusions, wherein the material constituting the sintered body is lithium aluminosilicate, silicon carbide, and / or or consists of a silicon nitride, 20 to 30 Ri average thermal expansion coefficient of -1 × 10 -6 ~1 × 10 -6 / ℃ der in ° C., and the bending strength 4 points 115MPa or more, a Young's modulus of 120GPa The low thermal expansion ceramic joined body as described above, wherein iron contained in the sintered body is 70 to 210 ppm . 前記リチウムアルミノシリケートがβ−ユークリプタイトである請求項記載の低熱膨張セラミックス接合体。 Low thermal expansion ceramic bonding article according to claim 1, wherein the lithium aluminosilicate is β- eucryptite. 前記接合体の4点曲げ強度が、焼結体の4点曲げ強度の95%以上である請求項1又は2に記載の低熱膨張セラミックス接合体。 The low thermal expansion ceramic joined body according to claim 1 or 2 , wherein the joined body has a four-point bending strength of 95% or more of a sintered body's four-point bending strength. 前記接合体のヤング率が、焼結体のヤング率の95%以上である請求項1〜3のいずれか一項に低熱膨張セラミックス接合体。 The low thermal expansion ceramic joined body according to any one of claims 1 to 3, wherein Young's modulus of the joined body is 95% or more of Young's modulus of the sintered body. 焼結体の組成はβ−ユークリプタイト50〜95質量%と炭化珪素および/または窒化珪素5〜50質量%である請求項2〜4のいずれか一項に記載の低熱膨張セラミックス接合体。 The composition of a sintered compact is (beta) -eucryptite 50-95 mass%, and a silicon carbide and / or silicon nitride 5-50 mass%, The low thermal expansion ceramic joined body as described in any one of Claims 2-4 .
JP2008288256A 2008-11-10 2008-11-10 Ceramic bonded body and manufacturing method thereof Active JP5270306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288256A JP5270306B2 (en) 2008-11-10 2008-11-10 Ceramic bonded body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288256A JP5270306B2 (en) 2008-11-10 2008-11-10 Ceramic bonded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010111559A JP2010111559A (en) 2010-05-20
JP5270306B2 true JP5270306B2 (en) 2013-08-21

Family

ID=42300433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288256A Active JP5270306B2 (en) 2008-11-10 2008-11-10 Ceramic bonded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5270306B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179026B2 (en) * 2012-09-26 2017-08-16 日本特殊陶業株式会社 Low thermal expansion ceramics and method for producing the same
JP6382579B2 (en) * 2014-05-29 2018-08-29 京セラ株式会社 Cordierite joint
KR102069423B1 (en) * 2017-12-19 2020-01-22 주식회사 티씨케이 Bonding ceramics and manufacturing method thereof
KR102069422B1 (en) * 2017-12-19 2020-01-22 주식회사 티씨케이 Bonding ceramics and manufacturing method thereof
CN114956849A (en) * 2022-06-28 2022-08-30 西安国宏天易智能科技有限公司 Ceramic co-firing connection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2868131B2 (en) * 1990-04-20 1999-03-10 日本電気硝子株式会社 Method of manufacturing electronic component substrate
JPH10259072A (en) * 1997-03-19 1998-09-29 Chichibu Onoda Cement Corp Joining of calcium silicate-based sintered compact
JP4489344B2 (en) * 2002-11-27 2010-06-23 太平洋セメント株式会社 Stage member
JP4870455B2 (en) * 2006-03-15 2012-02-08 太平洋セメント株式会社 Low thermal expansion ceramic joined body having hollow structure

Also Published As

Publication number Publication date
JP2010111559A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5270306B2 (en) Ceramic bonded body and manufacturing method thereof
CN113880430B (en) Glass solder for connecting transparent magnesia-alumina spinel ceramic and method for connecting transparent magnesia-alumina spinel ceramic
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
JP5578507B2 (en) CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body
CN107226692B (en) Cordierite sintered body, method for producing the same, and composite substrate
JP6146413B2 (en) Combination body, member for plasma processing apparatus, plasma processing apparatus, and method of manufacturing focus ring
JP5396176B2 (en) Wafer mounting table and manufacturing method thereof
KR101498410B1 (en) Alumina conjugate and bonding method for alumina sintered bodies
JP2006232667A (en) Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
JP4082953B2 (en) Low thermal expansion ceramic joined body
JP2006347802A (en) Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck
JP4731368B2 (en) Vacuum chuck and vacuum suction device using the same
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP5085959B2 (en) Ceramic material
JP2006347653A (en) Glass substrate adsorption device for display
JP2002283244A (en) Finishing grinding wheel and method of manufacture
JP7148446B2 (en) Zygote and method for producing the zygote
JP2018168050A (en) Adhesive for alumina, burning tool and manufacturing method therefor
CN107226690B (en) Sintered body containing mullite, process for producing the same, and composite substrate
JP6179026B2 (en) Low thermal expansion ceramics and method for producing the same
KR102234171B1 (en) Manufacturing method of low-resistance silicon carbide composite
JP4908089B2 (en) Electrostatic chuck and manufacturing method thereof
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JP6135328B2 (en) Bonding equipment
JP2007031269A (en) Machinable glass ceramic and process for production thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250