JP4908089B2 - Electrostatic chuck and manufacturing method thereof - Google Patents

Electrostatic chuck and manufacturing method thereof Download PDF

Info

Publication number
JP4908089B2
JP4908089B2 JP2006192935A JP2006192935A JP4908089B2 JP 4908089 B2 JP4908089 B2 JP 4908089B2 JP 2006192935 A JP2006192935 A JP 2006192935A JP 2006192935 A JP2006192935 A JP 2006192935A JP 4908089 B2 JP4908089 B2 JP 4908089B2
Authority
JP
Japan
Prior art keywords
metal
weight
electrostatic chuck
thermal expansion
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006192935A
Other languages
Japanese (ja)
Other versions
JP2008021856A (en
Inventor
健司 鈴木
晴男 村山
浩二 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006192935A priority Critical patent/JP4908089B2/en
Publication of JP2008021856A publication Critical patent/JP2008021856A/en
Application granted granted Critical
Publication of JP4908089B2 publication Critical patent/JP4908089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、シリコンウエハやフォトマスクを吸着保持するための静電チャックに関し、特に、高精度のパターン形成が求められている極端紫外線を用いた縮小露光(EUVL:Extreme Ultraviolet Lithography)工程において、フォトマスクを保持することに適した静電チャックおよびその製造方法に関する。   The present invention relates to an electrostatic chuck for attracting and holding a silicon wafer and a photomask, and in particular, in a reduction exposure (EUVL) process using extreme ultraviolet rays for which high-precision pattern formation is required. The present invention relates to an electrostatic chuck suitable for holding a mask and a manufacturing method thereof.

近年、半導体デバイスの製造プロセスにおいては、集積回路の集積度を向上させるために、パターンの微細化が急速に進んでいる。そのため、ウエハやフォトマスクを固定するための静電チャックには、それを構成する部材として、温度変化に対して寸法変動が小さく、しかも表面が平滑な材料を用いる必要がある。   In recent years, in the manufacturing process of semiconductor devices, in order to improve the degree of integration of integrated circuits, pattern miniaturization is rapidly progressing. Therefore, an electrostatic chuck for fixing a wafer or a photomask needs to use a material having a small dimensional variation with respect to a temperature change and a smooth surface as a member constituting the electrostatic chuck.

従来の静電チャックに用いられている低熱膨張材料としては、コーディエライトやLAS(Li0−A1−Si0)系セラミックス等が知られている(例えば、特許文献1参照)。 As low thermal expansion materials used in conventional electrostatic chucks, cordierite, LAS (Li 2 0-A1 2 0 3 —Si0 2 ) -based ceramics, and the like are known (see, for example, Patent Document 1). .

しかしながら、これらの材料の線熱膨張率は1×10−6/Kのオーダーであり、45nmテクノロジーノード以細の露光工程である、例えばEUVL工程に用いるには、線熱膨張率が大き過ぎる。 However, the linear thermal expansion coefficient of these materials is on the order of 1 × 10 −6 / K, and the linear thermal expansion coefficient is too large for use in, for example, the EUVL process, which is an exposure process smaller than the 45 nm technology node.

また、これらは結晶性材料であるため、その表面を研磨した場合に結晶粒界に起因する凹凸が生じる。そのため、吸着面に平滑な面が求められる用途には向いていない。また、このような材料を製造するためには、原料の配合比と合成条件を厳密に制御する必要がある。これは、原料の配合比がずれたり、焼成温度や雰囲気が適切でない場合には、焼結体の内部に気泡が残留したり、組成ずれが生じたりして、物性の均一な焼結体を得ることができなくなるからである。   In addition, since these are crystalline materials, unevenness caused by crystal grain boundaries occurs when the surface is polished. Therefore, it is not suitable for applications where a smooth surface is required for the adsorption surface. In addition, in order to produce such materials, it is necessary to strictly control the mixing ratio of raw materials and synthesis conditions. This is because if the mixing ratio of raw materials is deviated, or if the firing temperature and atmosphere are not appropriate, bubbles may remain inside the sintered body or composition deviation may occur, resulting in a sintered body with uniform physical properties. This is because it cannot be obtained.

このような低熱膨張性セラミックスを用いた静電チャックにおける電極形成方法としては、セラミックス粉末に金属箔や金属メッシュを埋設して成形、焼成する方法がある。しかし、このような製造方法では、金属の面に歪みやうねりが生じやすく、これによって吸着面と電極面との距離を薄くすることが困難となり、また、吸着力に面内ばらつきが生じるといった問題が生じる。   As an electrode forming method in an electrostatic chuck using such a low thermal expansion ceramic, there is a method in which a metal foil or a metal mesh is embedded in a ceramic powder and then molded and fired. However, in such a manufacturing method, distortion and undulation are likely to occur on the metal surface, which makes it difficult to reduce the distance between the adsorption surface and the electrode surface, and also causes in-plane variation in the adsorption force. Occurs.

また、低熱膨張性セラミックスを用いた静電チャックにおける別の電極形成方法としては、表面に導電性ペーストが塗布された円板状の低熱膨張セラミックスをその塗布領域が重なるように貼り合わせて焼結させることにより、電極を形成すると同時にこれらの低熱膨張セラミックスを接合する方法がある。この方法では、ペースト塗布、乾燥、脱脂、焼成という工程が必要であるが、特にペーストの塗布面積が広い場合には中央部分の脱脂が難しく、均一な性状の電極膜を形成することが難しくなる。
特開2004−335742号公報(段落[0010]等)
Another method for forming electrodes in electrostatic chucks using low thermal expansion ceramics is to bond disk-shaped low thermal expansion ceramics with conductive paste applied to the surface so that their application areas overlap and sinter. Thus, there is a method of bonding these low thermal expansion ceramics simultaneously with forming the electrode. This method requires steps of paste application, drying, degreasing, and firing, but it is difficult to degrease the central portion, especially when the paste application area is large, and it is difficult to form an electrode film with uniform properties. .
JP 2004-335742 A (paragraph [0010] etc.)

本発明はかかる事情に鑑みてなされたものであり、線熱膨張率が小さく、しかも吸着面の平滑度を高くすることができる材料を用いた静電チャックおよびその製造方法を提供すること、さらに内包される金属の平面度が良好である静電チャックおよびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an electrostatic chuck using a material that has a low linear thermal expansion coefficient and can increase the smoothness of the attracting surface, and a method for manufacturing the electrostatic chuck. An object of the present invention is to provide an electrostatic chuck in which the flatness of a metal to be contained is good and a method for manufacturing the same.

本発明に係る静電チャックは、18℃〜30℃での平均線熱膨張率の絶対値が5×10−8/K以下の低熱膨張材料に金属が埋設されてなる静電チャックであって、前記低熱膨張材料は、前記静電チャックの吸着面側に設けられる1重量%以上15重量%以下のTiO を含み、残部がSiO の非晶質材料、又は1重量%以上15重量%以下のTiO と1重量%以上6重量%以下のF を含み、残部がSiO の非晶質材料である吸着面部と、この吸着面部と熱融着接合した界面を有する基台部を備え、前記金属は、前記吸着面部と前記基台部間に設けられ、その厚みが0.5μm以上250μm以下の金属薄膜或いは金属箔、または直径φ0.5μm以上φ250μm以下のワイヤーで構成される金属メッシュを備えることを特徴とする。 The electrostatic chuck according to the present invention is an electrostatic chuck in which a metal is embedded in a low thermal expansion material having an absolute value of an average linear thermal expansion coefficient at 18 ° C. to 30 ° C. of 5 × 10 −8 / K or less. The low thermal expansion material contains 1% by weight to 15% by weight of TiO 2 provided on the suction surface side of the electrostatic chuck , and the balance is an amorphous material of SiO 2 or 1% by weight to 15% by weight. A base portion having an adsorption surface portion that includes the following TiO 2 and 1% by weight to 6% by weight of F 2 , and the balance being an amorphous material of SiO 2 , and an interface bonded to the adsorption surface portion by heat fusion bonding And the metal is provided between the adsorption surface portion and the base portion, and a metal thin film or metal foil having a thickness of 0.5 μm or more and 250 μm or less, or a metal constituted by a wire having a diameter of φ0.5 μm or more and φ250 μm or less Featuring a mesh .

このような低熱膨張材料に金属が埋設されてなる静電チャックの製造には、18℃〜30℃での平均線熱膨張率の絶対値が5×10−8/K以下の低熱膨張材料を構成する、1重量%以上15重量%以下のTiO を含み、残部がSiO の非晶質材料、又は1重量%以上15重量%以下のTiO と1重量%以上6重量%以下のF を含み、残部がSiO の非晶質材料である第1の板材と、第2の板材について、それぞれの主面に鏡面研磨を施した後、第1の板材の主と第2の板材の前記主面間に、その厚みが0.5μm以上250μm以下の金属薄膜或いは金属箔、または直径φ0.5μm以上φ250μm以下のワイヤーで構成される金属メッシュを備える金属を挟み込み、1150〜1300℃で加熱すると同時に主面に垂直な方向に所定の圧力を加えることにより、金属を介して第1の板材と前記第2の板材を熱融着接合させる方法が用いられる。 For manufacturing an electrostatic chuck in which a metal is embedded in such a low thermal expansion material, a low thermal expansion material having an absolute value of an average linear thermal expansion coefficient at 18 ° C. to 30 ° C. of 5 × 10 −8 / K or less is used. Consists of 1% by weight to 15% by weight of TiO 2 , the balance being an amorphous material of SiO 2 , or 1% by weight to 15% by weight of TiO 2 and 1% by weight to 6% by weight of F comprises 2, the balance of the first plate member is an amorphous material of SiO 2, the second plate, subjected to mirror polishing on each major surface, the main surface and the second of the first plate Between the main surfaces of the plate material, a metal thin film or metal foil having a thickness of 0.5 μm or more and 250 μm or less, or a metal comprising a metal mesh composed of a wire having a diameter of φ0.5 μm or more and φ250 μm or less is sandwiched, 1150 to 1300 ° C. in the same time perpendicular to the main surface when heated By applying a predetermined pressure in the direction, a method is used in which the first plate and the second plate are bonded by heat fusion via a metal .

本発明の静電チャックは、線熱膨張率の絶対値が従来のセラミックスよりも低い材料で構成されているので温度変化による変形が極めて小さく、そのため短波長光による露光処理におけるパフォーマンスを高めることができる。また、吸着面に非晶質の素材を用いることで、平滑度の極めて高い静電チャックを実現することができる。さらに金属(電極)の平面度が高いので、金属面から吸着面までの厚さを薄く均一なものとすることができ、これにより均一かつ大きな吸着力を得ることができる。   Since the electrostatic chuck of the present invention is made of a material whose absolute value of linear thermal expansion coefficient is lower than that of conventional ceramics, deformation due to temperature change is extremely small, so that performance in exposure processing with short wavelength light can be improved. it can. Further, by using an amorphous material for the attracting surface, an electrostatic chuck with extremely high smoothness can be realized. Furthermore, since the flatness of the metal (electrode) is high, the thickness from the metal surface to the adsorption surface can be made thin and uniform, and thereby a uniform and large adsorption force can be obtained.

以下、本発明の実施の形態について詳細に説明する。図1に静電チャックの概略断面図を示す。この静電チャック10は、低熱膨張材料12に金属14が埋設された構造を有し、この低熱膨張材料12は、吸着面側の薄板状部(吸着面部)12aと、金属14を挟んだ反対側の基台部12bからなる。この薄板状部12aの表面が、ウエハやフォトマスクを吸着保持するための吸着面となる。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a schematic sectional view of the electrostatic chuck. The electrostatic chuck 10 has a structure in which a metal 14 is embedded in a low thermal expansion material 12, and the low thermal expansion material 12 is opposite to a thin plate-like portion (adsorption surface portion) 12 a on the adsorption surface side and the metal 14. It consists of a base 12b on the side. The surface of the thin plate-like portion 12a becomes an adsorption surface for adsorbing and holding a wafer and a photomask.

低熱膨張材料12の18℃〜30℃での平均線熱膨張率の絶対値は5×10−8/K以下である。このような特性が満たされていることで、例えば、静電チャック10をフォトリソグラフィー工程においてフォトマスクを保持するために用いると、露光処理のパフォーマンスが向上する。この効果は、特にEUVL工程のような短波長光によるフォトリソグラフィー処理で顕著である。 The absolute value of the average linear thermal expansion coefficient at 18 ° C. to 30 ° C. of the low thermal expansion material 12 is 5 × 10 −8 / K or less. By satisfying such characteristics, for example, when the electrostatic chuck 10 is used for holding a photomask in a photolithography process, the performance of the exposure process is improved. This effect is particularly remarkable in a photolithography process using short-wavelength light as in the EUVL process.

薄板状部12aと基台部12bの材料が異なる場合の平均線熱膨張率は、[薄板状部12aの体積割合]×[薄板状部12aの線熱膨張率]+[基台部12bの体積割合]×[基台部12bの線熱膨張率]の値で示される。   The average linear thermal expansion coefficient when the materials of the thin plate-like part 12a and the base part 12b are different is [volume ratio of the thin plate-like part 12a] × [linear thermal expansion coefficient of the thin plate-like part 12a] + [of the base part 12b. The volume ratio] × [linear thermal expansion coefficient of the base portion 12b] is indicated.

吸着面側の薄板状部12aは非晶質材料からなる。これにより薄板状部12aの表面を研磨加工すると、表面に結晶粒界がないために粒界による凹凸が発生せず、極めて良好な平滑面を得ることできる。   The thin plate-like portion 12a on the suction surface side is made of an amorphous material. Thus, when the surface of the thin plate-like portion 12a is polished, since there is no crystal grain boundary on the surface, unevenness due to the grain boundary does not occur, and an extremely good smooth surface can be obtained.

薄板状部12aには、具体的には、1重量%以上15重量%以下のTiOを含み、残部がSiOである非晶質材料が好適に用いられる。TiOが1重量%未満の場合には、線熱膨張係数の絶対値が5×10−8/Kを超えるために、吸着物へ熱膨張の影響が出やすくなる。一方、TiOが15重量%超の場合には、結晶化してしまい、平滑な吸着面を得ることができなくなる。 Specifically, an amorphous material containing 1% by weight to 15% by weight of TiO 2 and the balance being SiO 2 is suitably used for the thin plate-like part 12a. When TiO 2 is less than 1% by weight, the absolute value of the linear thermal expansion coefficient exceeds 5 × 10 −8 / K, so that the adsorbent is easily affected by thermal expansion. On the other hand, if TiO 2 exceeds 15% by weight, it will crystallize, making it impossible to obtain a smooth adsorption surface.

このTiO−SiO系材料にFを含有させることも好ましい。すなわち、薄板状部12aには、1重量%以上15重量%以下のTiOと、1重量%以上6重量%以下のFを含み、残部がSiOである非晶質材料も好適に用いられる。Fを含有させることにより、静電チャック10を製造する際の熱融着温度(後述するように、2枚の板材の少なくとも一方が熱融着により他方と接合できるようになる温度)を低下させることができる。なお、F含有量が1重量%未満の場合には熱融着温度を下げる効果が小さい。一方、Fの含有量が多い素材を作製すると気泡が入りやすくなり、Fの含有量が6重量%超の場合にはこの問題が生じやすくなる。 It is also preferable to include F 2 in this TiO 2 —SiO 2 based material. That is, for the thin plate-like portion 12a, an amorphous material containing 1% by weight to 15% by weight of TiO 2 and 1% by weight to 6% by weight of F 2 with the balance being SiO 2 is also preferably used. It is done. By including F 2 , the thermal fusion temperature when manufacturing the electrostatic chuck 10 (the temperature at which at least one of the two plates can be joined to the other by thermal fusion, as will be described later) is reduced. Can be made. When the F 2 content is less than 1% by weight, the effect of lowering the heat fusion temperature is small. On the other hand, if a material having a high F 2 content is produced, bubbles are likely to enter, and if the F 2 content exceeds 6% by weight, this problem is likely to occur.

なお、低熱膨張材料12の18℃〜30℃での平均線熱膨張率の絶対値が5×10−8/K以下である限りにおいて、SiOを主成分とする材料の場合にはTiOとは異なる成分が添加されているものであってもよい。 As long as the absolute value of the average linear thermal expansion coefficient at 18 ° C. to 30 ° C. of the low thermal expansion material 12 is 5 × 10 −8 / K or less, in the case of a material mainly composed of SiO 2 TiO 2. A component different from that may be added.

基台部12bは、薄板状部12aと同じ材料で構成されていてもよいし、異なる材料で構成されていてもよい。また、基台部12bは非晶質であってもよいし、結晶質であってもよい。例えば、薄板状部12aと基台部12bに上記TiO−SiO系材料を用いる場合に、薄板状部12aにはFが含まれているが、基台部12bにはFが含まれていないという構成でもよく、また、薄板状部12aと基台部12bとでTiO含有量が異なっている構成でもよい。さらに、薄板状部12aは非晶質であり、基台部12bは結晶質となっている構成でもよい。 The base part 12b may be comprised with the same material as the thin plate-shaped part 12a, and may be comprised with a different material. The base part 12b may be amorphous or crystalline. For example, when the TiO 2 —SiO 2 material is used for the thin plate portion 12a and the base portion 12b, the thin plate portion 12a contains F 2 but the base portion 12b contains F 2. It may be configured that the TiO 2 content is different between the thin plate-like portion 12a and the base portion 12b. Further, the thin plate portion 12a may be amorphous and the base portion 12b may be crystalline.

静電チャック10では、通常、低熱膨張材料12の殆どは基台部12bが占めるために、低熱膨張材料12の18℃〜30℃での平均線熱膨張率の絶対値が5×10−8/K以下であるという条件を満たすためには、実質的に、基台部12bがこの条件を満足している必要がある。 In the electrostatic chuck 10, since the base portion 12 b usually occupies most of the low thermal expansion material 12, the absolute value of the average linear thermal expansion coefficient of the low thermal expansion material 12 at 18 ° C. to 30 ° C. is 5 × 10 −8. In order to satisfy the condition that it is equal to or less than / K, the base part 12b substantially needs to satisfy this condition.

金属14は、全体的には、吸着面と平行な平面状の形状を有し、金属箔やパンチングメタル,メッシュ,ワイヤー等が用いられる。また、金属14は、静電チャック10の製造時に使用される低熱膨張材料からなる板材(接合後にそれぞれ薄板状部12a,基台部12bとなる板材)に蒸着やメッキ等の方法により所定のパターンに形成されたものであってもよい。   The metal 14 generally has a planar shape parallel to the suction surface, and a metal foil, punching metal, mesh, wire, or the like is used. In addition, the metal 14 has a predetermined pattern by a method such as vapor deposition or plating on a plate material made of a low thermal expansion material (a plate material that becomes the thin plate-like portion 12a and the base portion 12b after joining), which is used when the electrostatic chuck 10 is manufactured. It may be formed.

なお、低熱膨張材料からなる板材に蒸着膜を形成する場合には、それぞれ薄板状部12a,基台部12bとなる板材が同一素材である場合にはどちらの板材に蒸着膜を形成してもよいが、これらの板材の熱融着温度が異なる場合には、熱融着温度の高い方の板材に蒸着膜を形成すると、蒸着膜の平面度を高めることができる。   In addition, when forming a vapor deposition film on the board | plate material which consists of a low thermal expansion material, even if the board | plate material used as the thin plate-shaped part 12a and the base part 12b is the same material, respectively, even if a vapor deposition film is formed in which board | plate material However, when the heat fusion temperatures of these plate materials are different, the flatness of the vapor deposition film can be increased by forming a vapor deposition film on the plate material having a higher heat fusion temperature.

金属14の材質は静電チャック10を作製する温度を考慮して、適宜、好ましいものを選択することができるが、汎用性や反応性の観点から、Ni,Mo,W,Ptが好適に用いられる。   The material of the metal 14 can be appropriately selected in consideration of the temperature at which the electrostatic chuck 10 is manufactured, but Ni, Mo, W, and Pt are preferably used from the viewpoint of versatility and reactivity. It is done.

金属14の厚さ(吸着面に垂直な方向の厚さ)は、0.5μm以上250μm以下とする。金属14にメッシュおよびワイヤーを用いる場合には、金属線の直径が0.5μm以上250μm以下のものを用いる。金属14の厚さが0.5μm未満の場合には、静電チャック10を作製したときに、金属14に割れ(ヒビ)等が発生しやすくなり、250μm超の場合には、低熱膨張材料12に割れ(ヒビ)が発生する確率が高くなる。 The thickness of the metal 14 (thickness in a direction perpendicular to suction surface) shall be the 0.5μm or 250μm or less. When a mesh and a wire are used for the metal 14, a metal wire having a diameter of 0.5 μm or more and 250 μm or less is used. When the thickness of the metal 14 is less than 0.5 μm, cracks (cracks) or the like are likely to occur in the metal 14 when the electrostatic chuck 10 is manufactured, and when the thickness is more than 250 μm, the low thermal expansion material 12. The probability of occurrence of cracks (cracks) increases.

静電チャック10の製造方法については後に詳細に説明するが、その製造方法により、金属14の平面度を50μm以下とすることができる。この平面度とは、仮想的な平面からの歪みを指し、例えば、吸着面から金属14の表面までの最も長い距離と最も短い距離との差で表される。これにより、薄板状部12aの厚さを薄く均一なものとすることができるので、均一かつ大きな吸着力を得ることができる。   Although the manufacturing method of the electrostatic chuck 10 will be described in detail later, the flatness of the metal 14 can be reduced to 50 μm or less by the manufacturing method. The flatness refers to distortion from a virtual plane, and is represented by, for example, the difference between the longest distance and the shortest distance from the adsorption surface to the surface of the metal 14. Thereby, since the thickness of the thin plate-like part 12a can be made thin and uniform, a uniform and large adsorption force can be obtained.

次に、静電チャック10の製造方法について説明する。薄板状部12aとなる板材と、基台部12bとなる板材と、金属14となる金属部材を準備する。各板材の少なくとも一方の主面には鏡面研磨処理が施されており、薄板状部12aとなる板材は非晶質材料からなる。なお、金属14として蒸着膜を用いる場合には、一方の板材の鏡面に金属蒸着膜が形成されていればよい。   Next, a method for manufacturing the electrostatic chuck 10 will be described. A plate material that becomes the thin plate portion 12 a, a plate material that becomes the base portion 12 b, and a metal member that becomes the metal 14 are prepared. At least one main surface of each plate material is mirror-polished, and the plate material that forms the thin plate portion 12a is made of an amorphous material. In addition, when using a vapor deposition film as the metal 14, the metal vapor deposition film should just be formed in the mirror surface of one board | plate material.

これらの2枚の板材の鏡面どうしを向かい合わせ、これらの間に金属部材を挟み込んで、炉内に設置する。2枚の板材の鏡面を接合面として用いることにより、金属部材の平面度を高めることができる。   The mirror surfaces of these two plate materials face each other, and a metal member is sandwiched between them and installed in the furnace. By using the mirror surfaces of the two plate materials as the joining surfaces, the flatness of the metal member can be increased.

炉内雰囲気を真空雰囲気として、所定温度に加熱すると同時に、これらの板材にその主面に垂直な方向で所定の圧力を加える。加熱温度(=接合温度)は2枚の板材の少なくとも一方が熱融着により他方と接合できる温度(=熱融着温度)以上とする。圧力は、接合温度を考慮して、2枚の板材の変形量が大きくならない値に設定する。処理雰囲気を真空雰囲気とすることで、接合面への気泡の巻き込みを防止することができる。   The furnace atmosphere is set to a vacuum atmosphere and heated to a predetermined temperature, and at the same time, a predetermined pressure is applied to these plate members in a direction perpendicular to the main surface. The heating temperature (= joining temperature) is set to be equal to or higher than the temperature at which at least one of the two plate members can be joined to the other by thermal fusion (= thermal fusion temperature). The pressure is set to a value that does not increase the amount of deformation of the two plates in consideration of the bonding temperature. By making the treatment atmosphere a vacuum atmosphere, it is possible to prevent entrainment of bubbles on the bonding surface.

その後、接合体を炉から取り出して、接合体を研削処理し、また、吸着面側を研磨処理する。これにより、静電チャック10が得られる。 Thereafter, the joined body is taken out from the furnace, the joined body is ground, and the suction surface side is polished. Thereby, the electrostatic chuck 10 is obtained.

このような静電チャック10の製造方法において、2枚の板材の熱融着温度に差がある場合には、金属の平面度を良好に保つという観点からは、薄板状部12aとなる板材の熱融着温度の方が、基台部12bとなる板材の熱融着温度よりも高くなるように、これら2枚の板材の材料を選定する。一方、製造を容易に行うことができることを重視すれば、基台部12bとなる板材の熱融着温度の方が、薄板状部12aとなる板材の熱融着温度よりも高くなるように、これら2枚の板材の材料を選定する。   In such a manufacturing method of the electrostatic chuck 10, when there is a difference in the heat fusion temperature between the two plate materials, from the viewpoint of keeping the metal flatness good, the plate material to be the thin plate-like portion 12 a The material of these two plate materials is selected so that the heat fusion temperature is higher than the heat fusion temperature of the plate material used as the base portion 12b. On the other hand, if importance is attached to the ease of manufacturing, the thermal fusion temperature of the plate material that becomes the base portion 12b is higher than the thermal fusion temperature of the plate material that becomes the thin plate portion 12a. The material for these two sheets is selected.

2枚の板材の熱融着温度に差がある場合の接合温度は、熱融着温度の低い方に合わせることが好ましく、これにより2枚の板材の接合界面での変形を抑制し、埋設される金属の平面度を高く維持することができる。これに対して、接合界面の変形が許容される限度において、つまり、埋設される金属の平面度が一定値に維持される限りにおいて、接合温度をより高くしてもよく、その上限は高い方の熱融着温度とすることができる。こうして接合温度を上げることにより、接合強度を高めることができる。   When there is a difference in the heat fusion temperature between the two plate materials, it is preferable to match the bonding temperature to the lower one of the heat fusion temperatures, thereby suppressing the deformation at the joining interface between the two plate materials. The flatness of the metal can be kept high. On the other hand, as long as the deformation of the bonding interface is allowed, that is, as long as the flatness of the buried metal is maintained at a constant value, the bonding temperature may be higher, and the upper limit is higher It can be set as the heat fusing temperature. By increasing the bonding temperature in this way, the bonding strength can be increased.

実施例および比較例について説明する。表1に示す重量%のTiO,Fを含み、残部がSiOである板状の非晶質硝材または粉末と、表1に示す金属部材を用いて、上述した製造方法にしたがって静電チャックを作製した。非晶質硝材の接合は、真空雰囲気中、接合温度を1150℃〜1300℃として1時間保持し、その際のプレス圧力を10MPa〜20MPaとして行った。この接合処理によって得られた構造材の表裏面をそれぞれ平面研削機で研削した後に、吸着面側を研磨機により鏡面に仕上げた。 Examples and comparative examples will be described. Using the plate-like amorphous glass material or powder containing TiO 2 and F 2 in weight percent shown in Table 1 and the balance being SiO 2 , and the metal member shown in Table 1, the static electricity is produced according to the manufacturing method described above. A chuck was produced. The amorphous glass material was joined in a vacuum atmosphere at a joining temperature of 1150 ° C. to 1300 ° C. for 1 hour and a pressing pressure at that time of 10 MPa to 20 MPa. The front and back surfaces of the structural material obtained by this joining treatment were ground with a surface grinder, and then the suction surface side was finished into a mirror surface with a grinder.

走査型電子顕微鏡(SEM)により鏡面における粒界の存在の有無を観察した。また、気泡の有無や金属へのヒビの発生の有無の観察を光学顕微鏡により行い、接合界面の状態を評価した。さらに、埋設された金属の平面度を、吸着面側から超音波変位計により9点以上で寸法測定し、最小二乗法により金属の平面度(平面の歪みの差)を求めた。その結果を表1に併記する。   The presence or absence of grain boundaries on the mirror surface was observed with a scanning electron microscope (SEM). In addition, the presence or absence of bubbles and the presence or absence of cracks in the metal were observed with an optical microscope to evaluate the state of the bonding interface. Furthermore, the flatness of the buried metal was measured at 9 points or more from the suction surface side with an ultrasonic displacement meter, and the flatness of the metal (difference in plane distortion) was determined by the least square method. The results are also shown in Table 1.

この表1に示されるように、製造に低熱膨張材料がSiOのみからなる硝材を用いた比較例1では、平均線熱膨張率の絶対値は5×10−8/Kを超えた。また、TiO−SiO系材料を用いた場合、TiO含有量が17重量%の比較例2では鏡面に粒界が観察され、平滑性が低下した。金属の厚さが280μmの比較例3では、低熱膨張材料にクラックや割れが生じた。金属の厚さが0.3μmの比較例4では、金属部分が断線しており電圧をかけることができないために静電チャックとしては使用できなかった。その他の実施例は良好な静電チャックであることが確認された。比較例5のように、基台部を形成するために粉体を用いた場合には、金属の平面度が低下した。

Figure 0004908089
As shown in Table 1, in Comparative Example 1 in which the low thermal expansion material was made of a glass material made only of SiO 2 , the absolute value of the average linear thermal expansion coefficient exceeded 5 × 10 −8 / K. Further, when a TiO 2 —SiO 2 material was used, a grain boundary was observed on the mirror surface in Comparative Example 2 having a TiO 2 content of 17% by weight, and the smoothness decreased. In Comparative Example 3 in which the metal thickness was 280 μm, cracks and cracks occurred in the low thermal expansion material. In Comparative Example 4 in which the metal thickness was 0.3 μm, the metal part was disconnected and could not be used as an electrostatic chuck because voltage could not be applied. Other examples were confirmed to be good electrostatic chucks. When the powder was used to form the base portion as in Comparative Example 5, the flatness of the metal decreased.
Figure 0004908089

本発明に係る静電チャックは、短波長露光プロセスにおいてウエハやフォトマスクを保持する用途に好適である。また、本発明の静電チャックの構成を有する部材は、温度による寸法変形の少ないXYステージへも応用することができる。さらに、金属が埋没された低熱膨張材料という構成に着目すれば、電磁波等を遮蔽するシールド材としても用いることができ、さらに、金属に抵抗材を用いることでヒータを実現することもできる。   The electrostatic chuck according to the present invention is suitable for holding a wafer or a photomask in a short wavelength exposure process. Further, the member having the configuration of the electrostatic chuck of the present invention can be applied to an XY stage with little dimensional deformation due to temperature. Further, if attention is paid to the configuration of a low thermal expansion material in which a metal is buried, it can be used as a shielding material for shielding electromagnetic waves or the like, and further, a heater can be realized by using a resistance material for the metal.

静電チャックの概略構造を示す断面図。Sectional drawing which shows schematic structure of an electrostatic chuck.

符号の説明Explanation of symbols

10…静電チャック、12…低熱膨張材料、12a…薄板状部(吸着面部)、12b…基台部、14…金属。   DESCRIPTION OF SYMBOLS 10 ... Electrostatic chuck, 12 ... Low thermal expansion material, 12a ... Thin plate part (adsorption surface part), 12b ... Base part, 14 ... Metal.

Claims (5)

18℃〜30℃での平均線熱膨張率の絶対値が5×10−8/K以下の低熱膨張材料に金属が埋設されてなる静電チャックであって、
前記低熱膨張材料は、前記静電チャックの吸着面側に設けられる1重量%以上15重量%以下のTiO を含み、残部がSiO の非晶質材料、又は1重量%以上15重量%以下のTiO と1重量%以上6重量%以下のF を含み、残部がSiO の非晶質材料である吸着面部と、この吸着面部と熱融着接合した界面を有する基台部を備え、
前記金属は、前記吸着面部と前記基台部間に設けられ、その厚みが0.5μm以上250μm以下の金属薄膜或いは金属箔、または直径φ0.5μm以上φ250μm以下のワイヤーで構成される金属メッシュを備えることを特徴とする静電チャック。
An electrostatic chuck in which a metal is embedded in a low thermal expansion material having an average linear thermal expansion coefficient at 18 ° C. to 30 ° C. of 5 × 10 −8 / K or less,
The low thermal expansion material contains 1% by weight to 15% by weight of TiO 2 provided on the suction surface side of the electrostatic chuck , and the balance is an amorphous material of SiO 2 or 1% by weight to 15% by weight. Comprising a sorbent surface part made of an amorphous material of SiO 2 and the balance of the TiO 2 and 1% by weight or more and 6% by weight or less of F 2 , and a base part having an interface bonded to the suction surface part by heat fusion bonding ,
The metal is provided between the adsorption surface portion and the base portion, and a metal mesh composed of a metal thin film or metal foil having a thickness of 0.5 μm or more and 250 μm or less, or a wire having a diameter of φ0.5 μm or more and φ250 μm or less. An electrostatic chuck comprising the electrostatic chuck.
前記金属の平面度が50μm以下であることを特徴とする請求項1に記載の静電チャック。   The electrostatic chuck according to claim 1, wherein the metal has a flatness of 50 μm or less. 18℃〜30℃での平均線熱膨張率の絶対値が5×10−8/K以下の低熱膨張材料を構成する、1重量%以上15重量%以下のTiO を含み、残部がSiO の非晶質材料、又は1重量%以上15重量%以下のTiO と1重量%以上6重量%以下のF を含み、残部がSiO の非晶質材料である第1の板材と、第2の板材について、それぞれの主面に鏡面研磨を施した後、
前記第1の板材の前記主面と前記第2の板材の前記主面間に、その厚みが0.5μm以上250μm以下の金属薄膜或いは金属箔、または直径φ0.5μm以上φ250μm以下のワイヤーで構成される金属メッシュを備える金属を挟み込み、
1150〜1300℃で加熱すると同時に前記主面に垂直な方向に所定の圧力を加えることにより、前記金属を介して前記第1の板材と前記第2の板材を熱融着接合させて、前記低熱膨張材料に前記金属が埋設されてなる静電チャックを形成すること特徴とする静電チャックの製造方法。
1% to 15% by weight of TiO 2 constituting a low thermal expansion material having an absolute value of an average linear thermal expansion coefficient at 18 ° C. to 30 ° C. of 5 × 10 −8 / K or less , with the balance being SiO 2 An amorphous material, or 1% by weight to 15% by weight of TiO 2 and 1% by weight to 6% by weight of F 2 with the balance being a SiO 2 amorphous material , For the second plate, after mirror polishing each main surface,
Between the main surface of the first plate and the main surface of the second plate, a metal thin film or metal foil having a thickness of 0.5 μm to 250 μm, or a wire having a diameter of φ0.5 μm to φ250 μm Sandwiching a metal with a metal mesh,
By heating at 1150 to 1300 ° C. and simultaneously applying a predetermined pressure in a direction perpendicular to the main surface, the first plate member and the second plate member are bonded by heat fusion via the metal, and the low heat An electrostatic chuck manufacturing method comprising forming an electrostatic chuck in which the metal is embedded in an expansion material.
前記所定の圧力は、10〜20MPaであること特徴とする請求項3に記載の静電チャックの製造方法。The method of manufacturing an electrostatic chuck according to claim 3, wherein the predetermined pressure is 10 to 20 MPa. 前記第1の板材と前記第2の板材として熱融着温度に差のあるものを用い、このうち低い方の熱融着温度において前記第1の板材と前記第2の板材を熱融着接合させることを特徴とする請求項3又は請求項に記載の静電チャックの製造方法。 The first plate member and the second plate member having a difference in heat fusion temperature are used, and the first plate member and the second plate member are bonded by heat fusion at the lower heat fusion temperature. The method for manufacturing an electrostatic chuck according to claim 3 or 4 , wherein:
JP2006192935A 2006-07-13 2006-07-13 Electrostatic chuck and manufacturing method thereof Expired - Fee Related JP4908089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192935A JP4908089B2 (en) 2006-07-13 2006-07-13 Electrostatic chuck and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192935A JP4908089B2 (en) 2006-07-13 2006-07-13 Electrostatic chuck and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008021856A JP2008021856A (en) 2008-01-31
JP4908089B2 true JP4908089B2 (en) 2012-04-04

Family

ID=39077605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192935A Expired - Fee Related JP4908089B2 (en) 2006-07-13 2006-07-13 Electrostatic chuck and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4908089B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220123714A (en) * 2020-09-02 2022-09-08 니뽄 도쿠슈 도교 가부시키가이샤 Bonding Body, Retaining Device, and Electrostatic Chuck

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3554460B2 (en) * 1997-03-17 2004-08-18 日本碍子株式会社 Method of manufacturing ceramic member with built-in metal member
JP2002003229A (en) * 2000-06-15 2002-01-09 Toshiba Ceramics Co Ltd Quartz glass product used for semiconductor producing device
JP2002110772A (en) * 2000-09-28 2002-04-12 Kyocera Corp Electrode built-in ceramic and its manufacturing method
EP1359466A1 (en) * 2002-05-01 2003-11-05 ASML Netherlands B.V. Chuck, lithographic projection apparatus, method of manufacturing a chuck and device manufacturing method
JP4467453B2 (en) * 2004-09-30 2010-05-26 日本碍子株式会社 Ceramic member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008021856A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP6137267B2 (en) Power module substrate with heat sink and power module
US20070146961A1 (en) Electrostatic chuck
CN109153231A (en) Glass laminate and its manufacturing method with controlled thermal expansion coefficient
CN106573833A (en) Supporting glass substrate and laminate using same
TWI514441B (en) A substrate substrate, a composite substrate for a semiconductor, a semiconductor circuit substrate, and a method of manufacturing the same
WO2019138875A1 (en) Functional element, method for manufacturing functional element, and electronic device
JP3388453B2 (en) Glass for support of X-ray mask or X-ray mask material, X-ray mask material and X-ray mask
US10580666B2 (en) Carrier substrates for semiconductor processing
JP2610375B2 (en) Method for manufacturing multilayer ceramic substrate
WO2001075522A1 (en) Fabrication of ultra-low expansion silicon mask blanks
JP4908089B2 (en) Electrostatic chuck and manufacturing method thereof
JP6496604B2 (en) Electrostatic chuck and manufacturing method thereof
JP5270306B2 (en) Ceramic bonded body and manufacturing method thereof
JPH0963912A (en) Manufacture of joined substrate
CN202931261U (en) Composite substrate for elastic wave apparatus
JP5030260B2 (en) Electrostatic chuck
JP6860831B2 (en) Disc-shaped glass and its manufacturing method
JP2009032718A (en) Glass-made electrostatic chuck and method of manufacturing the same
JP5031292B2 (en) Electrostatic chuck
JP4731368B2 (en) Vacuum chuck and vacuum suction device using the same
JP4931302B2 (en) Piezoelectric element
JP6180162B2 (en) Substrate bonding method and bonded substrate
JP2001313332A (en) Electrostatic attraction device and semiconductor manufacturing apparatus
WO2022030390A1 (en) Method for producing multilayer body, multilayer body and method for producing semiconductor package
JPH046130A (en) Production of substrate for electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees