JP4489344B2 - Stage member - Google Patents

Stage member Download PDF

Info

Publication number
JP4489344B2
JP4489344B2 JP2002343132A JP2002343132A JP4489344B2 JP 4489344 B2 JP4489344 B2 JP 4489344B2 JP 2002343132 A JP2002343132 A JP 2002343132A JP 2002343132 A JP2002343132 A JP 2002343132A JP 4489344 B2 JP4489344 B2 JP 4489344B2
Authority
JP
Japan
Prior art keywords
thermal expansion
plate material
bonding
stage member
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002343132A
Other languages
Japanese (ja)
Other versions
JP2004179353A (en
Inventor
昌子 片岡
守 石井
真仁 井口
基宏 梅津
中村  浩章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2002343132A priority Critical patent/JP4489344B2/en
Publication of JP2004179353A publication Critical patent/JP2004179353A/en
Application granted granted Critical
Publication of JP4489344B2 publication Critical patent/JP4489344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置、検査機器等に用いられるステージ部材に関するもので、さらに詳しくは、低熱膨張セラミックスからなる軽量なステージ部材に関するものである。
【0002】
【従来技術】
近年、半導体回路は益々精細化する傾向にあり、例えば、ステージ部材を搭載した半導体露光装置では、極めて高精度な位置決めが要求されるため、各部材の構成に種々の工夫が鋭意検討されている。(たとえば、特許文献1参照)
【0003】
このような状況下で、周囲の温度変化による熱膨張によるわずかな変形でも製品歩留まりの低下を招くことから、半導体製造装置の構成部材としてコージエライトを主成分とする低熱膨張材料が用いられるようになってきた。(たとえば、特許文献2参照)
【0004】
また、半導体製造装置の大型化、高速移動化にともない、このような構成部材の軽量化が要求されており、軽量化の手段として、部材を中空構造にすることが検討されている。具体的には、内部をくり抜いたセラミックス同士を接合することで内部空間を確保し、これにより大幅な重量減少を図ろうとしている。
このように低熱膨張セラミックス同士を接合する技術が求められており、このような場合には、従来、接合材としてガラスが多用されていた。
【0005】
【特許文献1】
特開2002−118050号公報
【特許文献2】
特開平11−209171号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来から接合材として用いられているガラスは低熱膨張材でないため、接合部にガラスの溶融温度から室温まで冷却する間に応力が残留するという問題がある。また、ガラスは剛性が低いため、接合後の部材全体の剛性が低下し、半導体製造において精細な描画が困難となる。さらには、接着強度が弱いという欠点も抱えている。
【0007】
本発明はかかる事情に鑑みてなされたものであって、熱膨張係数が低く、接合部に内部応力が残留せず、通常のセラミックスと同程度の剛性を有し、接合強度が高い低熱膨張セラミックスからなる軽量なステージ部材を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の目的は、以下の(1)〜()によって達成される。
(1)少なくとも一方が箱蓋構造を有する低熱膨張セラミックス底板材と同材質の上板材とを、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなるステージ部材であって、前記板材を構成する複合材料が、β−ユークリプタイト50〜95質量%と炭化珪素5〜50質量%とからなり、前記接合材を構成する複合材料が、β−ユークリプタイト40〜85質量%と窒化珪素15〜60質量%とからなることを特徴とするステージ部材。
(2)上記(1)において、低熱膨張セラミックス底板材と一端から一端まで連通する溝部を有する同材質の上板材とを、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなることを特徴とするステージ部材。
(3)上記(1)、(2)において、板材および接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とするステージ部材。
(4)上記(1)〜(3)において、板材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とするステージ部材。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明に係るステージ部材は、低熱膨張セラミックスからなる板材を、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる。
【0010】
このように接合材として板材よりも溶融温度の低い低熱膨張セラミックスを用いることにより、接合に際して接合材の溶融温度よりも高く、板材の溶融温度よりも低い温度で加熱することにより、接合材のみが溶融して複数の母材同士を接合することができる。この場合に、接合材が低熱膨張セラミックスであるから、接合部に残留する応力が小さく、接合部の剛性が高いため材料全体の剛性が高く、かつ接合部自体の強度がガラスより大きいから接合強度が大きい。
【0011】
ここで、前記板材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10-6〜1×10-6/℃であることが好ましい。この範囲であれば、半導体製造装置部材として用いられた場合に、半導体回路の精細化に適合可能である。また、板材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10-6/℃以内であることが好ましい。熱膨張係数の差がこの範囲を超えると、接合のための熱処理後、冷却過程で内部応力がたまり、強度低下を招くおそれがある。
【0012】
前記板材および前記接合材を構成する複合材料としては、リチウムアルミノシリケート、コーディエライト、リン酸ジルコニウムカリウムから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、炭化ホウ素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウムから選ばれる1種以上の第2の材料とからなるものが好適である。これら構成材料のうち第1の材料は熱膨張が極めて小さく、第2の材料は熱膨張係数は第1の材料よりも大きいがヤング率が高く、これらを複合化することにより、所望の低熱膨張および高剛性を兼備した材料とすることができる。
【0013】
上記第1の材料としては、リチウムアルミノシリケートであるβ−ユークリプタイトやスポジューメンが好ましい。また、その中でもβ−ユークリプタイトはマイナスの熱膨張を示すので、プラスの熱膨張を示す第2の材料と組み合わせることにより、極めて低い熱膨張係数を得ることが可能であるし、また、配合を調節することにより熱膨張係数をマイナスからプラスの広い範囲で調節することが可能となる。なお、β−ユークリプタイトやスポジューメンに代表されるリチウムアルミノシリケートは、Ca、Mg、Fe、K、Ti、Zn等の他の成分と固溶体を形成するが、本発明ではこのような固溶体も適用可能である。
【0014】
一方、接合材における第2の材料の選択は、接合材の溶融温度が板材の溶融温度よりも低くなるように上記材料の中から適宜選択される。
【0015】
なお、接合材および板材を構成する複合材料において、実質的な化学的反応が生じなければ、第1の材料として複数の材料を組み合わせて用いることも可能である。また、第2の材料も同様に、実質的な化学的反応が生じなければ、複数の材料を組み合わせて用いることも可能である。
【0016】
ここで、板材を構成する複合材料の構成材料のうち1種以上が、接合材を構成する複合材料の構成材料と共通であることが好ましい。これにより、共通の構成材料が拡散しやすく強固に接合することができるとともに、接合面がきれいである。
【0017】
この場合に、板材の組成としてはβ−ユークリプタイト50〜95質量%と炭化珪素5〜50質量%であり、接合材の組成としてはβ−ユークリプタイト40〜85質量%と窒化珪素15〜60質量%であることが好ましい。
【0018】
次に、本発明のステージ部材の製造方法について説明する。
本発明のステージ部材は、軽量化を目的として、基本的には板材に中空構造を有している。
より具体的には、少なくとも一方が箱蓋構造(いわゆる弁当箱の箱蓋形状の構造)を有する低熱膨張セラミックス底板材と同材質の上板材とを、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してステージ部材を製造する。ここで、底板材と上板材は両方とも外形寸法が略同一の箱蓋構造を有していても良いし(箱蓋と箱蓋が接合面でお互いに対象となり、内部に中空構造を形成するように側板同士を接合する。)、いずれか一方が箱蓋構造を有し、他方が平板であっても良い(平板に箱蓋をかぶせて内部に中空構造を形成するように接合する。)ことは勿論である。
また本発明のステージ部材は、低熱膨張セラミックス底板材と一端から一端まで連通する溝部を有する同材質の上板材とを、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合して製造しても良い。ここで、一端から一端まで連通する溝部とは、一端から他の一端まで連通する溝部であっても良いし、一端から蛇行して同一の一端まで戻って連通する溝部であっても良い。このような溝部を形成した場合、この溝部に水や空気を冷却媒体として流せば、ステージの冷却をすることも可能となる。
【0019】
つぎに板材同士の接合は、接合材粉末を適宜のバインダーとともに混練して粘糊性のあるペーストとし、このペーストを板材の接合面に塗布し、脱脂した後に接合面同士を密着させ、接合材は溶融するけれども板材は溶融しない温度で熱処理することによる。これにより、接合材が溶融し、一部は板材に拡散して板材同士を接合できる。
この際の熱処理雰囲気は、材料が全て酸化物系のものであれば、大気雰囲気を用いることができるが、非酸化物系の材料が含まれている場合には、非酸化雰囲気を用いることが好ましい。
【0020】
【実施例】
以下、本発明の実施例について説明する。
(実施例A)
まず、β−ユークリプタイト粉末と炭化珪素粉末とを表1の割合でポットミル混合して乾燥させ、板材セラミックスの原料混合粉末を作製した。この混合粉末を一軸加圧成形して、300mm×150mm×厚み10mmの板状成形体を作製し、150MPaでCIP処理した。窒素雰囲気において、表1に示す温度で焼成し、底板材となる低熱膨張セラミックス焼結体を得た。同様にして、300mm×150mm×60mm(肉厚:10mm)の箱蓋構造を有する上板成形体を作製し、同様に焼成して上板材を得た。
ここで、焼成して得られた板材から試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX-1)を用いて熱膨張係数を求めた。また、共振法にてこれら板材のヤング率を測定した。これらの評価結果についても表1にまとめて示した。
【0021】
【表1】

Figure 0004489344
【0022】
次に、β−ユークリプタイトと窒化珪素を表2に示す割合でポットミル混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末を無機分が30vol%となるようにエチルセルロースの15%α−テルピネオール溶液と混合し、三本ロールを用いてペースト状にした。なお、この接合材について同じ組成の焼結体を作製して板材と同様にして熱膨張係数を求めた。その結果についても表2にまとめて示した。
【0023】
【表2】
Figure 0004489344
【0024】
次に、上記底板材と上板材の接合する面に、上記接合材ペーストをスクリーンマスクを用いて厚さ30μmに印刷し500℃で脱脂した後、印刷面同士を密着して0.5g/mm2の荷重をかけた。引き続き、窒素雰囲気で、表2に示した温度で熱処理し、接合材を溶融させて底板材と上板材を接合してステージ部材を得た。
【0025】
図1に本実施例で得られたステージ部材の模式的な斜視図(a)とその横断面図(b)を示した。ここで、1は低熱膨張セラミックスからなる底板材で、2は、箱蓋構造を有する底板材と同材質の上板材であり、3は、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で底板材と上板材を接合した接合部である。
【0026】
次に、以上のようにして得られたステージ部材から接合部を含む試験片を切り出して曲げ強度とヤング率を評価した結果を表3に示した。
本発明のステージ部材は、全体の熱膨張係数が小さく、また、板材と接合材との熱膨張差が著しく小さいため接合部に内部応力がほとんど残留せず、また、表3に示したように、接合部は板材の剛性を維持し、しかも板材の強度からの大幅な低下を招かない程度の大きな曲げ強度を有していることが確認された。
【0027】
【表3】
Figure 0004489344
【0028】
さらに、本発明のステージ部材は、中空構造を有しているために、中空構造でない場合と比較して約40%だけ軽量化できた。
【0029】
(実施例B)
実施例Aに示した方法と同様にして510mm×300mm×厚み10mmの底板状成形体と一端から反対の他の一端まで連通する5個の溝部(溝形状:90mm×300mm×溝深さ50mm)を有する同材質の上板成形体(外形寸法:510mm×300mm×60mm、肉厚:10mm)とを作製し、150MPaでCIP処理した。次に、窒素雰囲気において、実施例Aと同じ温度で焼成した。
【0030】
次に、上記底板材と上板材の接合する面に、実施例Aと同様にして接合材ペーストを塗布し脱脂した後、印刷面同士を密着して0.5g/mm2の荷重をかけた。引き続き、窒素雰囲気で実施例Aと同じ温度で熱処理し、接合材を溶融させて底板材と上板材を接合してステージ部材を得た。
【0031】
図2に実施例Bで得られたステージ部材の模式的な横断面を示した。ここで、1は低熱膨張セラミックスからなる底板材で、4は、上板材の一端から反対の他の一端まで連通する溝部であり、5は溝部を有する上板材であり、3は、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合した接合部である。
【0032】
得られたステージ部材を実施例Aと同様にして評価した結果、ステージ部材の熱膨張係数は十分に低く、かつ、通常のセラミックスと同程度の剛性を有し、接合部の曲げ強度が高いことが確認できた。さらに、本実施例のステージ部材は、上板材の一端から反対の他端まで連通した溝部を有しているために、溝部を有しない場合と比較して約60%だけ軽量化できた。
【0033】
【発明の効果】
以上説明したように、本発明によれば、低い熱膨張係数を維持しつつ、通常のセラミックスと同程度の剛性を有し、接合部の曲げ強度が高いステージ部材を得ることができる。
さらには、本発明のステージ部材は、中空構造または一端から反対の他の一端まで連通した溝部を有しているために、そうでない場合と比較して大幅に軽量化できる効果がある。
また、一端から一端まで連通した溝部を有しているため、この溝部に水や空気を冷却媒体として流せば、ステージを冷却できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施例を模式的に示した斜視図と断面図である。
【図2】本発明の他の実施例を模式的に示した断面図である。
【符号の説明】
1 底板材
2 箱蓋構造を有する上板材
3 接合材で接合した接合部
4 溝部
5 溝部を有する上板材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stage member used for a semiconductor manufacturing apparatus, inspection equipment, and the like, and more particularly to a lightweight stage member made of low thermal expansion ceramics.
[0002]
[Prior art]
In recent years, semiconductor circuits have been increasingly refined. For example, in a semiconductor exposure apparatus equipped with a stage member, since extremely high-precision positioning is required, various devices have been intensively studied for the configuration of each member. . (For example, see Patent Document 1)
[0003]
Under such circumstances, even a slight deformation due to thermal expansion due to a change in ambient temperature leads to a decrease in product yield. Therefore, a low thermal expansion material mainly composed of cordierite has been used as a component of semiconductor manufacturing equipment. I came. (For example, see Patent Document 2)
[0004]
In addition, with the increase in size and movement of semiconductor manufacturing equipment, there is a demand for weight reduction of such components, and as a means for weight reduction, it has been studied to make the member a hollow structure. Specifically, an internal space is secured by bonding ceramics that have been hollowed out, thereby reducing the weight significantly.
Thus, a technique for joining low thermal expansion ceramics is required. In such a case, conventionally, glass is often used as a joining material.
[0005]
[Patent Document 1]
JP 2002-1118050 A [Patent Document 2]
Japanese Patent Laid-Open No. 11-209171 [0006]
[Problems to be solved by the invention]
However, since glass conventionally used as a bonding material is not a low thermal expansion material, there is a problem that stress remains in the bonded portion while cooling from the melting temperature of the glass to room temperature. In addition, since the rigidity of glass is low, the rigidity of the entire member after bonding is lowered, and fine drawing becomes difficult in semiconductor manufacturing. Furthermore, it has the disadvantage that the adhesive strength is weak.
[0007]
The present invention has been made in view of such circumstances, and has a low thermal expansion coefficient, no internal stress remains in the joint, has a rigidity comparable to that of ordinary ceramics, and has a high joint strength. It aims at providing the lightweight stage member which consists of.
[0008]
[Means for Solving the Problems]
The object of the present invention is achieved by the following (1) to ( 4 ).
(1) A stage member formed by joining at least one of a low thermal expansion ceramic bottom plate having a box lid structure and an upper plate of the same material with a bonding material made of low thermal expansion ceramic having a melting temperature lower than that of the plate. The composite material constituting the plate material is composed of 50 to 95% by mass of β-eucryptite and 5 to 50% by mass of silicon carbide, and the composite material constituting the bonding material is β-eucryptite 40 to 85%. stage member characterized by comprising a weight percent and the silicon nitride 15 to 60% by weight.
(2) In (1) above, the bottom plate material of low thermal expansion ceramic and the upper plate material of the same material having a groove communicating from one end to the other end are joined by a joining material made of low thermal expansion ceramic having a melting temperature lower than that of the plate material. A stage member characterized by comprising:
(3) above (1), characterized in that (2) in a plate member and an average thermal expansion coefficient of -1 × 10 -6 ~1 × 10 -6 / ℃ at 20 to 30 ° C. of the bonding material Stage member.
(4) In said (1)-(3), the difference of the average thermal expansion coefficient in 20-30 degreeC between a board | plate material and a joining material is less than +/- 0.1x10 < -6 > / degreeC. A featured stage member.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The stage member according to the present invention is formed by joining a plate material made of low thermal expansion ceramics with a bonding material made of low thermal expansion ceramics having a melting temperature lower than that of the plate material.
[0010]
Thus, by using a low thermal expansion ceramic having a lower melting temperature than the plate material as the bonding material, only the bonding material is heated by heating at a temperature higher than the melting temperature of the bonding material and lower than the melting temperature of the plate material at the time of bonding. A plurality of base materials can be joined by melting. In this case, since the bonding material is a low thermal expansion ceramic, the residual stress in the bonded portion is small, the rigidity of the bonded portion is high, the rigidity of the entire material is high, and the strength of the bonded portion itself is larger than glass, so the bonding strength Is big.
[0011]
Here, it is preferable thermal expansion coefficient of the mean at 20 to 30 ° C. of the plate and said bonding material is -1 × 10 -6 ~1 × 10 -6 / ℃. Within this range, when used as a semiconductor manufacturing apparatus member, it can be adapted to refinement of a semiconductor circuit. Moreover, it is preferable that the difference of the average thermal expansion coefficient in 20-30 degreeC between a board | plate material and a joining material is less than +/- 0.1x10 < -6 > / degreeC . If the difference in thermal expansion coefficient exceeds this range, internal stress accumulates during the cooling process after heat treatment for bonding, which may lead to a decrease in strength.
[0012]
As the composite material constituting the plate material and the bonding material, one or more first materials selected from lithium aluminosilicate, cordierite, potassium zirconium phosphate, silicon carbide, silicon nitride, boron carbide, sialon, What consists of 1 or more types of 2nd materials chosen from an alumina, a zirconia, a mullite, a zircon, aluminum nitride, and a calcium silicate is suitable. Of these constituent materials, the first material has a very low thermal expansion, and the second material has a higher coefficient of thermal expansion than the first material, but has a higher Young's modulus. And it can be set as the material which has high rigidity.
[0013]
As the first material, lithium aluminosilicate β-eucryptite and spodumene are preferable. Of these, β-eucryptite exhibits a negative thermal expansion, so that it can be combined with a second material exhibiting a positive thermal expansion to obtain an extremely low thermal expansion coefficient. It is possible to adjust the thermal expansion coefficient in a wide range from minus to plus by adjusting. In addition, although lithium aluminosilicate represented by β-eucryptite and spodumene forms a solid solution with other components such as Ca, Mg, Fe, K, Ti, and Zn, such a solid solution is also applied in the present invention. Is possible.
[0014]
On the other hand, the selection of the second material in the bonding material is appropriately selected from the above materials so that the melting temperature of the bonding material is lower than the melting temperature of the plate material.
[0015]
In addition, in the composite material which comprises a joining material and a board | plate material, if a substantial chemical reaction does not arise, it is also possible to use combining several materials as a 1st material. Similarly, the second material can be used in combination with a plurality of materials as long as no substantial chemical reaction occurs.
[0016]
Here, it is preferable that at least one of the constituent materials of the composite material constituting the plate material is the same as the constituent material of the composite material constituting the bonding material. As a result, the common constituent material can be easily diffused and firmly bonded, and the bonding surface is clean.
[0017]
In this case, the composition of the plate material is 50 to 95% by mass of β-eucryptite and 5 to 50% by mass of silicon carbide, and the composition of the bonding material is 40 to 85% by mass of β-eucryptite and 15% of silicon nitride. It is preferable that it is -60 mass%.
[0018]
Next, the manufacturing method of the stage member of this invention is demonstrated.
The stage member of the present invention basically has a hollow structure in the plate material for the purpose of weight reduction.
More specifically, a low thermal expansion ceramic bottom plate material having at least one of a box lid structure (a so-called box lid shape structure of a lunch box) and an upper plate material of the same material are combined with a low thermal expansion ceramic having a melting temperature lower than that of the plate material. A stage member is manufactured by bonding with a bonding material comprising: Here, both the bottom plate material and the top plate material may have a box lid structure having substantially the same external dimensions (the box lid and the box lid are mutually targeted at the joint surface, and form a hollow structure inside). The side plates may be joined to each other as described above.) Either one may have a box lid structure and the other may be a flat plate (the flat plate is covered with a box lid and joined so as to form a hollow structure inside). Of course.
The stage member of the present invention is formed by joining a low thermal expansion ceramic bottom plate material and an upper plate material of the same material having a groove communicating from one end to one end with a bonding material made of low thermal expansion ceramic having a melting temperature lower than that of the plate material. It may be manufactured. Here, the groove part communicating from one end to one end may be a groove part communicating from one end to the other end, or may be a groove part meandering from one end and returning to the same one end. When such a groove is formed, the stage can be cooled by flowing water or air as a cooling medium in the groove.
[0019]
Next, the bonding between the plate materials is performed by kneading the bonding material powder together with an appropriate binder to obtain a paste having a sticky property, applying this paste to the bonding surface of the plate material, degreasing the bonding surfaces, and bonding the bonding materials together. Is due to heat treatment at a temperature that melts but does not melt the plate. As a result, the bonding material is melted, and part of the bonding material is diffused into the plate material so that the plate materials can be bonded to each other.
As the heat treatment atmosphere in this case, an air atmosphere can be used if the material is all oxide-based, but if a non-oxide-based material is included, a non-oxidizing atmosphere should be used. preferable.
[0020]
【Example】
Examples of the present invention will be described below.
(Example A)
First, β-eucryptite powder and silicon carbide powder were mixed in a pot mill at a ratio shown in Table 1 and dried to prepare a raw material mixed powder of plate ceramics. The mixed powder was uniaxially pressed to prepare a plate-like molded body of 300 mm × 150 mm × thickness 10 mm, and CIP-treated at 150 MPa. Firing was performed at a temperature shown in Table 1 in a nitrogen atmosphere to obtain a low thermal expansion ceramic sintered body serving as a bottom plate material. Similarly, an upper plate molded body having a box lid structure of 300 mm × 150 mm × 60 mm (thickness: 10 mm) was produced and fired in the same manner to obtain an upper plate material.
Here, a test piece was cut out from the plate material obtained by firing, and the thermal expansion coefficient was determined using a laser interference thermal expansion measurement device (LIX-1 manufactured by ULVAC-RIKO). Further, the Young's modulus of these plate materials was measured by a resonance method. These evaluation results are also summarized in Table 1.
[0021]
[Table 1]
Figure 0004489344
[0022]
Next, β-eucryptite and silicon nitride were mixed in a pot mill at a ratio shown in Table 2 and dried to prepare a mixed powder for a bonding material. This mixed powder was mixed with a 15% α-terpineol solution of ethyl cellulose so that the inorganic content was 30 vol%, and made into a paste using a three roll. In addition, the sintered compact of the same composition was produced about this joining material, and the thermal expansion coefficient was calculated | required like the board | plate material. The results are also summarized in Table 2.
[0023]
[Table 2]
Figure 0004489344
[0024]
Next, after printing the bonding material paste to a thickness of 30 μm using a screen mask on the surface where the bottom plate material and the upper plate material are bonded and degreasing at 500 ° C., the printed surfaces are adhered to each other at 0.5 g / mm. A load of 2 was applied. Subsequently, heat treatment was performed at a temperature shown in Table 2 in a nitrogen atmosphere, the joining material was melted, and the bottom plate material and the upper plate material were joined to obtain a stage member.
[0025]
FIG. 1 shows a schematic perspective view (a) and a cross-sectional view (b) of the stage member obtained in this example. Here, 1 is a bottom plate material made of low thermal expansion ceramics, 2 is an upper plate material made of the same material as the bottom plate material having a box cover structure, and 3 is a bonding made of low thermal expansion ceramics having a lower melting temperature than the plate material. This is a joined portion obtained by joining the bottom plate material and the top plate material.
[0026]
Next, Table 3 shows the results of cutting out a test piece including a joint from the stage member obtained as described above and evaluating the bending strength and Young's modulus.
The stage member of the present invention has a small coefficient of thermal expansion as a whole, and the thermal expansion difference between the plate material and the bonding material is extremely small, so that almost no internal stress remains in the bonded portion. As shown in Table 3, It has been confirmed that the joint has a bending strength that maintains the rigidity of the plate and does not cause a significant decrease from the strength of the plate.
[0027]
[Table 3]
Figure 0004489344
[0028]
Furthermore, since the stage member of the present invention has a hollow structure, the weight can be reduced by about 40% compared to the case without the hollow structure.
[0029]
(Example B)
Similarly to the method shown in Example A, the bottom plate-like molded body having a size of 510 mm × 300 mm × thickness 10 mm and five grooves communicating from one end to the other opposite end (groove shape: 90 mm × 300 mm × groove depth 50 mm) An upper plate molded body (outer dimensions: 510 mm × 300 mm × 60 mm, wall thickness: 10 mm) of the same material having a thickness of 10 mm was produced and CIP-treated at 150 MPa. Next, it was fired at the same temperature as Example A in a nitrogen atmosphere.
[0030]
Next, a bonding material paste was applied and degreased on the surface where the bottom plate material and the upper plate material were joined in the same manner as in Example A, and then the printed surfaces were brought into close contact with each other and a load of 0.5 g / mm 2 was applied. . Subsequently, heat treatment was performed at the same temperature as in Example A in a nitrogen atmosphere, the joining material was melted, and the bottom plate material and the top plate material were joined to obtain a stage member.
[0031]
FIG. 2 shows a schematic cross section of the stage member obtained in Example B. Here, 1 is a bottom plate material made of low thermal expansion ceramics, 4 is a groove portion communicating from one end of the upper plate material to the other opposite end, 5 is an upper plate material having a groove portion, and 3 is from the plate material Is also a joint portion joined by a joining material made of a low thermal expansion ceramic having a low melting temperature.
[0032]
As a result of evaluating the obtained stage member in the same manner as in Example A, the coefficient of thermal expansion of the stage member is sufficiently low, the rigidity is comparable to that of ordinary ceramics, and the bending strength of the joint is high. Was confirmed. Furthermore, since the stage member of the present example has a groove portion that communicates from one end of the upper plate material to the other end, the weight can be reduced by about 60% compared to the case without the groove portion.
[0033]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a stage member having the same degree of rigidity as that of ordinary ceramics while maintaining a low thermal expansion coefficient and having a high bending strength at the joint.
Furthermore, since the stage member of the present invention has a hollow structure or a groove portion communicating from one end to the other opposite end, there is an effect that the weight can be significantly reduced as compared with the case where it is not.
Moreover, since the groove part communicated from one end to the other end is provided, there is an effect that the stage can be cooled by flowing water or air as a cooling medium in the groove part.
[Brief description of the drawings]
FIG. 1 is a perspective view and a sectional view schematically showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view schematically showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bottom plate material 2 Upper plate material which has box cover structure 3 Joint part 4 joined by joining material Groove part 5 Upper plate material which has a groove part

Claims (4)

少なくとも一方が箱蓋構造を有する低熱膨張セラミックス底板材と同材質の上板材とを、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなるステージ部材であって、前記板材を構成する複合材料が、β−ユークリプタイト50〜95質量%と炭化珪素5〜50質量%とからなり、前記接合材を構成する複合材料が、β−ユークリプタイト40〜85質量%と窒化珪素15〜60質量%とからなることを特徴とするステージ部材。A stage member formed by joining at least one of a low thermal expansion ceramic bottom plate material having a box lid structure and an upper plate material of the same material with a bonding material made of low thermal expansion ceramic having a melting temperature lower than that of the plate material, Is composed of 50 to 95% by mass of β-eucryptite and 5 to 50% by mass of silicon carbide, and the composite material constituting the bonding material is 40 to 85% by mass of β-eucryptite. A stage member comprising 15 to 60% by mass of silicon nitride. 低熱膨張セラミックス底板材と一端から一端まで連通する溝部を有する同材質の上板材とを、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる請求項1に記載のステージ部材。The stage according to claim 1, wherein the low thermal expansion ceramic bottom plate material and the upper plate material of the same material having a groove communicating from one end to the other end are joined by a joining material made of low thermal expansion ceramic having a melting temperature lower than that of the plate material. Element. 前記板材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃である請求項1または2に記載のステージ部材。The stage member according to claim 1 or 2, wherein an average thermal expansion coefficient of the plate material and the bonding material at 20 to 30 ° C is -1 × 10 -6 to 1 × 10 -6 / ° C. 前記板材と前記接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内である請求項1〜3に記載のステージ部材。The stage member according to any one of claims 1 to 3, wherein a difference in average thermal expansion coefficient at 20 to 30 ° C between the plate material and the bonding material is within ± 0.1 x 10-6 / ° C.
JP2002343132A 2002-11-27 2002-11-27 Stage member Expired - Lifetime JP4489344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343132A JP4489344B2 (en) 2002-11-27 2002-11-27 Stage member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343132A JP4489344B2 (en) 2002-11-27 2002-11-27 Stage member

Publications (2)

Publication Number Publication Date
JP2004179353A JP2004179353A (en) 2004-06-24
JP4489344B2 true JP4489344B2 (en) 2010-06-23

Family

ID=32704981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343132A Expired - Lifetime JP4489344B2 (en) 2002-11-27 2002-11-27 Stage member

Country Status (1)

Country Link
JP (1) JP4489344B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4382586B2 (en) * 2004-06-17 2009-12-16 国立大学法人東北大学 Exposure equipment
JP4870455B2 (en) * 2006-03-15 2012-02-08 太平洋セメント株式会社 Low thermal expansion ceramic joined body having hollow structure
JP4870454B2 (en) * 2006-03-15 2012-02-08 太平洋セメント株式会社 Ceramic bonded body having hollow structure
GB2445573B (en) * 2007-01-10 2009-08-26 Vistec Lithography Ltd Apparatus support structure
JP5270306B2 (en) * 2008-11-10 2013-08-21 太平洋セメント株式会社 Ceramic bonded body and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141667A (en) * 1983-12-28 1985-07-26 日本碍子株式会社 Material for ceramic honeycomb structure
JPS6126572A (en) * 1984-07-16 1986-02-05 株式会社日本自動車部品総合研究所 Ceramic product and manufacture
JP4416191B2 (en) * 1997-08-29 2010-02-17 京セラ株式会社 Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
JPH11142555A (en) * 1997-11-11 1999-05-28 Canon Inc Positioning device, exposure device and manufacture of the device
JP2000120973A (en) * 1998-10-14 2000-04-28 Asahi Glass Co Ltd Jointing method for ceramic pipe and jointing structure
JP2001302338A (en) * 2000-04-24 2001-10-31 Taiheiyo Cement Corp Composite ceramic and manufacturing method thereof
JP2002160972A (en) * 2000-11-21 2002-06-04 Hitachi Chem Co Ltd High rigidity and low thermal expansion ceramic and its manufacturing method
JP4803872B2 (en) * 2000-11-28 2011-10-26 京セラ株式会社 JOINT BODY AND MANUFACTURING METHOD THEREOF
JP4610076B2 (en) * 2000-12-06 2011-01-12 京セラ株式会社 Lithium aluminosilicate ceramics
JP2002321967A (en) * 2001-04-24 2002-11-08 Toray Ind Inc Low thermal expansion ceramic
JP4082953B2 (en) * 2002-07-31 2008-04-30 太平洋セメント株式会社 Low thermal expansion ceramic joined body

Also Published As

Publication number Publication date
JP2004179353A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP5641451B2 (en) Metal ceramic substrate
JPH0525397B2 (en)
JP2009504547A (en) Metal ceramic substrate
JP4489344B2 (en) Stage member
JP5664949B2 (en) Method for producing metal-ceramic substrate or copper-ceramic substrate and support for use in the method
JPH09283671A (en) Ceramics-metal composite circuit board
JP4082953B2 (en) Low thermal expansion ceramic joined body
JP4870455B2 (en) Low thermal expansion ceramic joined body having hollow structure
JP2012082095A (en) Method of joining two or more ceramic members mutually
JP4088515B2 (en) Electrostatic chuck
JP2005035839A (en) Low thermal expansion ceramic joined body
JP4259647B2 (en) Ceramic firing jig and manufacturing method thereof
JPH0624880A (en) Metal-ceramic material and production thereof
JP2004335742A (en) Electrostatic chuck
JP2004186400A (en) Vacuum chuck for semiconductor manufacturing apparatus
JPH0992748A (en) Package for semiconductor element
JP4417189B2 (en) Honeycomb structure
JP2002059272A (en) Al COMPOSITE MATERIAL WITH CERAMIC POWDER LAYER INTERPOSED AND ITS PRODUCTION METHOD
JP3412801B2 (en) Manufacturing method of bonded body
JP2001339155A (en) Ceramic circuit board
JPH0744281B2 (en) Method for manufacturing semiconductor pressure transducer
JPS5988851A (en) Silicon carbide substrate for electronic circuit and manufacture thereof
JP2004169599A (en) Gas turbine nozzle formed of non-oxide ceramic material, and its manufacturing/reaction bonding methods
JP2582494B2 (en) Ceramic joint and its joining method
JP2005308306A (en) Heat exchanger made out of recrystallized silicon carbide and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081105

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4489344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250