JP2005035839A - Low thermal expansion ceramic joined body - Google Patents

Low thermal expansion ceramic joined body Download PDF

Info

Publication number
JP2005035839A
JP2005035839A JP2003274442A JP2003274442A JP2005035839A JP 2005035839 A JP2005035839 A JP 2005035839A JP 2003274442 A JP2003274442 A JP 2003274442A JP 2003274442 A JP2003274442 A JP 2003274442A JP 2005035839 A JP2005035839 A JP 2005035839A
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
base material
joining
expansion ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003274442A
Other languages
Japanese (ja)
Inventor
Mamoru Ishii
守 石井
Masahito Iguchi
真仁 井口
Masako Kataoka
昌子 片岡
Motohiro Umetsu
基宏 梅津
Hiroaki Nakamura
中村  浩章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003274442A priority Critical patent/JP2005035839A/en
Publication of JP2005035839A publication Critical patent/JP2005035839A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low thermal expansion ceramic joined body having low thermal expansion coefficient, no residual internal stress in the joined part, rigidity comparable to that of a conventional ceramic and high joining strength. <P>SOLUTION: The low thermal expansion ceramic joined body is formed by joining a base material composed of a low thermal expansion ceramic with a joining material composed of a low thermal expansion ceramic having a melting temperature lower than that of the base material. The average coefficient of thermal expansion of the base material and the joining material at 20-30°C is -1×10<SP>-6</SP>to 1×10<SP>-6</SP>/°C and the joining material is constituted of a composite material composed of lithium aluminosilicate, nitride and magnesium oxide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体製造装置、検査機器等に用いられる低熱膨張セラミックス接合体に関する。   The present invention relates to a low thermal expansion ceramic joined body used in a semiconductor manufacturing apparatus, inspection equipment, and the like.

近年、半導体回路は益々精細化する傾向にあり、製造装置のわずかな変形でも歩留まりの低下を招くことから、半導体製造装置用部材として低熱膨張材料が用いられるようになってきた。このようにこの種の部材は変形に対する抵抗が高いことが必要であることから、高い剛性も求められている。このため、このような低熱膨張材料としては剛性の高いセラミックスが用いられている。   In recent years, semiconductor circuits have been increasingly refined, and even a slight deformation of the manufacturing apparatus causes a decrease in yield, so that a low thermal expansion material has been used as a member for a semiconductor manufacturing apparatus. Thus, since this type of member needs to have high resistance to deformation, high rigidity is also required. For this reason, ceramics with high rigidity are used as such a low thermal expansion material.

また、装置の大型化、高速移動化にともない、このような半導体装置用部材の軽量化が要求されており、軽量化の手段として、部材を中空構造にすることが行われている。具体的には、内部をくり抜いたセラミックス同士を接合することで内部空間を確保する方法が採用され、これにより大幅な重量減少を図ることができる。   In addition, with the increase in size and speed of the apparatus, it is required to reduce the weight of such a member for a semiconductor device. As a means for reducing the weight, the member is made to have a hollow structure. Specifically, a method of securing an internal space by joining ceramics that have been hollowed out is employed, which can greatly reduce the weight.

さらに、この種の部材として形状が複雑なものを製造する場合、複数の部品に分けて製造し、最終的に各々の部品を接合する方法が採用されることがある。この方法によれば、一体ものでは加工が困難な形状のものでも製造することができる。   Further, when manufacturing a member having a complicated shape as this kind of member, there is a case where a method of manufacturing the member divided into a plurality of parts and finally joining the parts is employed. According to this method, it is possible to manufacture even one having a shape that is difficult to process with one.

セラミックス同士を接合する技術としては、例えば特許文献1に示すように接合材としてガラスを用いるものが知られており、低熱膨張セラミックスの接合においても同様に接合材としてガラスを使用することが考えられる。   As a technique for joining ceramics, for example, as shown in Patent Document 1, a technique using glass as a joining material is known, and it is conceivable to use glass as a joining material in joining low thermal expansion ceramics as well. .

しかしながら、従来から接合材として用いられているガラスは低熱膨張材でないため、接合部にガラスの溶融温度から室温まで冷却する間に応力が残留するという問題がある。また、ガラスは剛性が低いため、接合後の部材全体の剛性が低下し、半導体製造において精細な描画が困難となる。さらには、接着強度が弱いという欠点も抱えている。
特開平5−4876号公報
However, since glass conventionally used as a bonding material is not a low thermal expansion material, there is a problem that stress remains in the bonded portion while cooling from the melting temperature of the glass to room temperature. In addition, since the rigidity of glass is low, the rigidity of the entire member after bonding is lowered, and fine drawing becomes difficult in semiconductor manufacturing. Furthermore, it has the disadvantage that the adhesive strength is weak.
Japanese Patent Laid-Open No. 5-4876

本発明はかかる事情に鑑みてなされたものであって、熱膨張係数が低く、接合部に内部応力が残留せず、通常のセラミックスと同程度の剛性を有し、接合強度が高い低熱膨張セラミックス接合体を提供することを目的とする。   The present invention has been made in view of such circumstances, and has a low thermal expansion coefficient, no internal stress remains in the joint, has a rigidity comparable to that of ordinary ceramics, and has a high joint strength. An object is to provide a joined body.

本発明者らは、先に、接合材を母材の低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスで構成し、接合材の溶融温度よりも高く、母材の溶融温度よりも低い温度で加熱することにより、低い熱膨張係数を維持しつつ、通常のセラミックスと同程度の剛性を有し、接合強度が高い接合体が得られることを見出し、特許出願した(特願2002−223053)。また、この出願においては、接合材として、低熱膨張材料、好ましくは負の熱膨張係数を有する材料と、剛性の高い正の熱膨張係数を有する材料とを複合化させることも示されており、これにより、低熱膨張かつ高剛性の接合材を得ることができるとともに、母材に合わせて任意に熱膨張係数を変化させることが可能である。   The inventors of the present invention first constituted the bonding material with a low thermal expansion ceramic having a lower melting temperature than the low thermal expansion ceramic of the base material, at a temperature higher than the melting temperature of the bonding material and lower than the melting temperature of the base material. It has been found that by heating, a bonded body having a rigidity comparable to that of ordinary ceramics and having a high bonding strength can be obtained while maintaining a low coefficient of thermal expansion (Japanese Patent Application No. 2002-223053). In this application, it is also shown that a low thermal expansion material, preferably a material having a negative coefficient of thermal expansion, and a material having a high positive coefficient of thermal expansion are combined as a bonding material, Thereby, it is possible to obtain a bonding material having low thermal expansion and high rigidity, and it is possible to arbitrarily change the thermal expansion coefficient in accordance with the base material.

低熱膨張材料、好ましくは負の熱膨張係数を有する材料としては、リチウムアルミノシリケートが適しており、本発明者らは、先に、リチウムアルミノシリケートと窒化物を複合させると格子中に窒素が固溶して溶融温度が低下するため、緻密な焼結体が得られることを見出し、特許出願した(特願2003−87730)。   As a low thermal expansion material, preferably a material having a negative coefficient of thermal expansion, lithium aluminosilicate is suitable, and the inventors of the present invention first fixed nitrogen in the lattice when lithium aluminosilicate and nitride are combined. It was found that a dense sintered body can be obtained because the melting temperature is lowered by melting, and a patent application was filed (Japanese Patent Application No. 2003-87730).

しかし、接合材としてリチウムアルミノシリケートと窒化物のみの複合体を用いると、母材の焼成温度と接合温度との差が30〜40℃程度と小さくなる場合があり、その場合には炉内温度管理を厳密に行う必要がある。特に大型品の接合においては、炉内温度分布があるため、一部の制御温度がずれて母材の一部が焼結温度以上となって変形したり、接合材に溶融し難い箇所が発生したりする可能性がある。   However, if a composite of only lithium aluminosilicate and nitride is used as the bonding material, the difference between the firing temperature of the base material and the bonding temperature may be as small as about 30 to 40 ° C. Strict management is required. Especially when joining large products, there is a temperature distribution in the furnace, so some of the control temperature shifts and some of the base metal deforms above the sintering temperature, and some parts of the joint are difficult to melt. There is a possibility of doing.

そこで、本願発明者らがさらに検討を重ねた結果、接合材を構成する複合材料として、リチウムアルミノシリケートおよび窒化物の他に酸化マグネシウムを添加することにより、接合材の溶融温度を一層低下させることができ、接合温度範囲を広くすることが可能なことを見出した。   Therefore, as a result of further studies by the inventors of the present application, the melting temperature of the bonding material can be further lowered by adding magnesium oxide in addition to lithium aluminosilicate and nitride as a composite material constituting the bonding material. It was found that the bonding temperature range can be widened.

本発明はこのような知見に基づいて完成されたものであり、以下の(1)〜(5)を提供する。
(1)低熱膨張セラミックスからなる母材を、該母材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる低熱膨張セラミックス接合体であって、前記母材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、かつ前記接合材が、リチウムアルミノシリケート、窒化物および酸化マグネシウムからなる複合材料であることを特徴とする低熱膨張セラミックス接合体。
(2)低熱膨張セラミックスからなる母材を、該母材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる低熱膨張セラミックス接合体であって、前記母材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、かつ前記接合材が、リチウムアルミノシリケート、窒化珪素および酸化マグネシウムからなる複合材料であることを特徴とする低熱膨張セラミックス接合体。
(3)低熱膨張セラミックスからなる母材を、該母材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる低熱膨張セラミックス接合体であって、前記母材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、かつ前記接合材が、リチウムアルミノシリケート、窒化アルミニウムおよび酸化マグネシウムからなる複合材料であることを特徴とする低熱膨張セラミックス接合体。
(4)上記(1)〜(3)において、前記母材が、リチウムアルミノシリケート、コーディエライト、リン酸ジルコニウムカリウムから選ばれる1種以上の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウムから選ばれる1種以上の材料とからなる複合材料であることを特徴とする低熱膨張セラミックス接合体。
(5)上記(1)〜(4)において、前記母材と前記接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とする低熱膨張セラミックス接合体。
The present invention has been completed based on such findings and provides the following (1) to (5).
(1) A low thermal expansion ceramic joined body obtained by joining a base material made of low thermal expansion ceramics with a joining material made of low thermal expansion ceramics having a melting temperature lower than that of the base material, the base material and the joining material The average thermal expansion coefficient at 20 to 30 ° C. is −1 × 10 −6 to 1 × 10 −6 / ° C., and the bonding material is a composite material made of lithium aluminosilicate, nitride, and magnesium oxide. Low thermal expansion ceramic joined body characterized by
(2) A low thermal expansion ceramic joined body obtained by joining a base material made of low thermal expansion ceramics with a joining material made of low thermal expansion ceramics having a melting temperature lower than that of the base material, wherein the base material and the joining material The average coefficient of thermal expansion at 20 to 30 ° C. is −1 × 10 −6 to 1 × 10 −6 / ° C., and the bonding material is a composite material made of lithium aluminosilicate, silicon nitride, and magnesium oxide. Low thermal expansion ceramic joined body characterized by
(3) A low thermal expansion ceramic joined body obtained by joining a base material made of low thermal expansion ceramics with a joining material made of low thermal expansion ceramics having a melting temperature lower than that of the base material, wherein the base material and the joining material The average thermal expansion coefficient at 20 to 30 ° C. is −1 × 10 −6 to 1 × 10 −6 / ° C., and the bonding material is a composite material made of lithium aluminosilicate, aluminum nitride, and magnesium oxide. Low thermal expansion ceramic joined body characterized by
(4) In the above (1) to (3), the base material is at least one material selected from lithium aluminosilicate, cordierite, and potassium zirconium phosphate, silicon carbide, silicon nitride, sialon, alumina, A low thermal expansion ceramic joined body comprising a composite material composed of at least one material selected from zirconia, mullite, zircon, aluminum nitride, and calcium silicate.
(5) In said (1)-(4), the difference of the average thermal expansion coefficient in 20-30 degreeC between the said base material and the said joining material is less than +/- 0.1x10 < -6 > / degreeC. A low thermal expansion ceramic joined body characterized by being.

本発明によれば、接合材として母材よりも溶融温度の低い低熱膨張セラミックスを用いて、接合に際して接合材の溶融温度よりも高く、母材の溶融温度よりも低い温度で加熱することにより、接合材のみを溶融させて複数の母材同士を接合する低熱膨張セラミックス接合体において、接合材として、リチウムアルミノシリケート、窒化物および酸化マグネシウムからなる複合材料からなる低熱膨張セラミックスを用いたので、接合部に残留する応力が小さく、接合部の剛性が高いため材料全体の剛性が高く、かつ接合部自体の強度がガラスより大きいから接合強度が大きいという特性を有しつつ、さらにリチウムアルミノシリケートと窒化物の存在により格子中に窒素が固溶して溶融温度が低下することに加えて、酸化マグネシウムの存在によりさらに溶融温度が低下し、接合温度範囲を広くすることが可能となる。   According to the present invention, using a low thermal expansion ceramic having a melting temperature lower than that of the base material as the joining material, heating at a temperature higher than the melting temperature of the joining material and lower than the melting temperature of the base material during joining, In a low thermal expansion ceramic joined body in which only a bonding material is melted to join a plurality of base materials, a low thermal expansion ceramic made of a composite material made of lithium aluminosilicate, nitride and magnesium oxide is used as the joining material. Since the residual stress is small and the rigidity of the joint is high, the rigidity of the entire material is high, and the strength of the joint itself is higher than that of glass. In addition to the solid solution of nitrogen in the lattice due to the presence of the material and the melting temperature being lowered, the presence of magnesium oxide Risarani melting temperature decreases, it becomes possible to widen the bonding temperature range.

以下、本発明について詳細に説明する。
本発明に係る低熱膨張セラミックス接合体は、低熱膨張セラミックスからなる母材を、該母材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、前記母材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、かつ前記接合材が、リチウムアルミノシリケート、窒化物および酸化マグネシウムからなる複合材料である。
Hereinafter, the present invention will be described in detail.
The low thermal expansion ceramic joined body according to the present invention is obtained by joining a base material made of low thermal expansion ceramic with a joining material made of low thermal expansion ceramic having a melting temperature lower than that of the base material. The average thermal expansion coefficient at 20 to 30 ° C. is −1 × 10 −6 to 1 × 10 −6 / ° C., and the bonding material is a composite material made of lithium aluminosilicate, nitride, and magnesium oxide.

このように接合材として母材よりも溶融温度の低い低熱膨張セラミックスを用いることを前提にしているため、接合に際して接合材の溶融温度よりも高く、母材の溶融温度よりも低い温度で加熱することによって、接合材のみが溶融して複数の母材同士を接合することができる。この場合に、前記母材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であるので、半導体製造装置部材として用いられた場合に、半導体回路の精細化に適合可能である。また、接合材が、リチウムアルミノシリケート、窒化物および酸化マグネシウムからなる複合材料からなる低熱膨張セラミックスであるから、接合部に残留する応力が小さく、接合部の剛性が高いため材料全体の剛性が高く、かつ接合部自体の強度がガラスより大きいから接合強度が大きいという特性を有しつつ、さらにリチウムアルミノシリケートと窒化物の存在により格子中に窒素が固溶して溶融温度が低下することに加えて、酸化マグネシウムの存在によりさらに溶融温度が低下し、接合温度範囲を広くすることが可能となる。 As described above, it is assumed that a low thermal expansion ceramic having a lower melting temperature than that of the base material is used as the bonding material, so that the bonding material is heated at a temperature higher than the melting temperature of the bonding material and lower than the melting temperature of the base material. As a result, only the bonding material can be melted to bond a plurality of base materials. In this case, since the average thermal expansion coefficient at 20 to 30 ° C. of the base material and the bonding material is −1 × 10 −6 to 1 × 10 −6 / ° C., it is used as a semiconductor manufacturing apparatus member In addition, it can be adapted to refinement of semiconductor circuits. In addition, since the bonding material is a low thermal expansion ceramic made of a composite material composed of lithium aluminosilicate, nitride, and magnesium oxide, the residual stress is small and the rigidity of the bonding portion is high, so the rigidity of the entire material is high. In addition, the strength of the joint itself is greater than that of glass, so that the joint strength is high. In addition, the presence of lithium aluminosilicate and nitride causes nitrogen to dissolve in the lattice and lowers the melting temperature. Thus, the presence of magnesium oxide further lowers the melting temperature, and the bonding temperature range can be widened.

接合材を構成する窒化物としては窒化珪素または窒化アルミニウムを好適に用いることができる。すなわち、接合材として、リチウムアルミノシリケート、窒化珪素および酸化マグネシウムからなる複合材料、およびリチウムアルミノシリケート、窒化アルミニウムおよび酸化マグネシウムからなる複合材料が好適である。もちろん、窒化物として窒化珪素および窒化アルミニウムの両方を用いてもよい。   Silicon nitride or aluminum nitride can be preferably used as the nitride constituting the bonding material. That is, as the bonding material, a composite material made of lithium aluminosilicate, silicon nitride and magnesium oxide, and a composite material made of lithium aluminosilicate, aluminum nitride and magnesium oxide are suitable. Of course, both silicon nitride and aluminum nitride may be used as the nitride.

リチウムアルミノシリケートとしては、β−ユークリプタイトやスポジューメンが好ましい。また、その中でもβ−ユークリプタイトは大きなマイナスの熱膨張を示すので、プラスの熱膨張を示す窒化物と組み合わせることにより、0に近い熱膨張係数を得ることが可能であるし、また、配合を調節することにより熱膨張係数をマイナスからプラスの広い範囲で調節することが可能となる。なお、β−ユークリプタイトやスポジューメンに代表されるリチウムアルミノシリケートは、Ca、Mg、Fe、K、Ti、Zn等の他の成分と固溶体を形成するが、本発明ではこのような固溶体も適用可能である。   As the lithium aluminosilicate, β-eucryptite and spodumene are preferable. Of these, β-eucryptite exhibits a large negative thermal expansion, and therefore, when combined with a nitride exhibiting a positive thermal expansion, a thermal expansion coefficient close to 0 can be obtained. It is possible to adjust the thermal expansion coefficient in a wide range from minus to plus by adjusting. In addition, although lithium aluminosilicate represented by β-eucryptite and spodumene forms a solid solution with other components such as Ca, Mg, Fe, K, Ti, and Zn, such a solid solution is also applied in the present invention. Is possible.

母材と接合材との間の20〜30℃における平均の熱膨張係数の差は、±0.1×10−6/℃以内であることが好ましい。熱膨張係数の差がこの範囲を超えると、接合のための熱処理後、冷却過程で内部応力がたまり、強度低下を招くおそれがある。 The difference in average thermal expansion coefficient between the base material and the bonding material at 20 to 30 ° C. is preferably within ± 0.1 × 10 −6 / ° C. If the difference in thermal expansion coefficient exceeds this range, internal stress accumulates during the cooling process after heat treatment for bonding, which may lead to a decrease in strength.

母材は、リチウムアルミノシリケート、コーディエライト、リン酸ジルコニウムカリウムから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウムから選ばれる1種以上の第2の材料とからなる複合材料で構成されていることが好ましい。これら構成材料のうち第1の材料は熱膨張係数が極めて小さく、第2の材料は熱膨張係数は第1の材料よりも大きいがヤング率が高く、これらを複合化することにより、所望の低熱膨張および高剛性を兼備した材料とすることができる。   The base material is at least one first material selected from lithium aluminosilicate, cordierite, and potassium zirconium phosphate, silicon carbide, silicon nitride, sialon, alumina, zirconia, mullite, zircon, aluminum nitride, silicic acid It is preferably made of a composite material composed of one or more second materials selected from calcium. Of these constituent materials, the first material has a very small coefficient of thermal expansion, and the second material has a coefficient of thermal expansion larger than that of the first material, but has a higher Young's modulus. The material can have both expansion and high rigidity.

上記母材を構成する第1の材料としては、接合材の場合と同様の理由で、リチウムアルミノシリケートであるβ−ユークリプタイトやスポジューメンが好ましい。
一方、第2の材料は、母材の必要特性に応じて適宜選択される。
As the first material constituting the base material, β-eucryptite or spodumene which is lithium aluminosilicate is preferable for the same reason as in the case of the bonding material.
On the other hand, the second material is appropriately selected according to the required characteristics of the base material.

母材を構成する複合材料において、実質的な化学的反応が生じなければ、第1の材料として複数の材料を組み合わせて用いることも可能である。また、第2の材料も同様に、実質的な化学的反応が生じなければ、複数の材料を組み合わせて用いることも可能である。   In the composite material constituting the base material, a combination of a plurality of materials can be used as the first material as long as no substantial chemical reaction occurs. Similarly, the second material can be used in combination with a plurality of materials as long as no substantial chemical reaction occurs.

次に、本発明の接合体の製造方法について説明する。
本発明の接合体は、接合材粉末を適宜のバインダーとともに混練して粘糊性のあるペーストとし、このペーストを介して母材同士を接着させ、接合材は溶融するけれども母材は溶融しない温度で熱処理する。これにより、接合材が溶融し、一部は母材に拡散して母材同士を接合する。この際の熱処理雰囲気は、材料が全て酸化物系のものであれば、大気雰囲気を用いることができるが、非酸化物系の材料が含まれている場合には、非酸化雰囲気を用いることが好ましい。
Next, the manufacturing method of the joined body of this invention is demonstrated.
The bonded body of the present invention is a paste in which the bonding material powder is kneaded with an appropriate binder to form a paste having a sticky property, and the base materials are bonded to each other through the paste. Heat treatment with As a result, the bonding material is melted and part of the bonding material diffuses into the base material to join the base materials. As the heat treatment atmosphere in this case, an air atmosphere can be used if the material is all oxide-based, but if a non-oxide-based material is included, a non-oxidizing atmosphere should be used. preferable.

以下、本発明の実施例について説明する。
(実施例1)
まず、低熱膨張材料であるβ−ユークリプタイト粉末、スポジューメン粉末、またはコーディエライト粉末と、炭化珪素粉末、ケイ酸カルシウム(ウォラストナイト)粉末、アルミナ粉末、ジルコニア粉末、窒化アルミニウム粉末、ムライト粉末、ジルコン粉末またはサイアロン粉末とを表1に示す割合でポットミル混合して乾燥させ、母材セラミックスの原料混合粉末を作製した。この混合粉末を一軸加圧成形して70mm×70mm×50mmの成形体を作製し、150MPaでCIP処理した。窒素雰囲気または大気中(No.6,7,9,10,11,12,14,15)において表1に示す温度で焼成し、母材となるセラミックス焼結体を得た。焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX-1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。また、共振法にてこれら焼結体のヤング率を測定した。これらの結果を表1に示す。
Examples of the present invention will be described below.
(Example 1)
First, β-eucryptite powder, spodumene powder or cordierite powder, which is a low thermal expansion material, silicon carbide powder, calcium silicate (wollastonite) powder, alumina powder, zirconia powder, aluminum nitride powder, mullite powder Then, zircon powder or sialon powder was mixed in a pot mill at a ratio shown in Table 1 and dried to prepare a base material ceramic raw material mixed powder. This mixed powder was uniaxially pressed to prepare a molded body of 70 mm × 70 mm × 50 mm, and CIP-treated at 150 MPa. Firing was performed at a temperature shown in Table 1 in a nitrogen atmosphere or in the air (No. 6, 7, 9, 10, 11, 12, 14, 15) to obtain a ceramic sintered body serving as a base material. A test piece of 4 mm × 4 mm × 12 mm was cut out from the sintered body, and the amount of displacement of the test piece was measured at 20-30 ° C. using a laser interference type thermal expansion measuring device (LIX-1 manufactured by ULVAC-RIKO Co., Ltd.). The coefficient was obtained. In addition, the Young's modulus of these sintered bodies was measured by a resonance method. These results are shown in Table 1.

次に、β−ユークリプタイトと窒化珪素と酸化マグネシウムを表1に示す割合でポットミル混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末をエチルセルロース系バインダーと混合し、混練してペーストを作製した。なお、この接合材について同じ組成の焼結体を作製して母材と同様にして熱膨張係数を求めた。その結果も表1に示す。   Next, β-eucryptite, silicon nitride, and magnesium oxide were mixed in a pot mill at a ratio shown in Table 1 and dried to prepare a mixed powder for a bonding material. This mixed powder was mixed with an ethyl cellulose binder and kneaded to prepare a paste. A sintered body having the same composition was produced for this bonding material, and the thermal expansion coefficient was determined in the same manner as the base material. The results are also shown in Table 1.

一方、上記セラミックス焼結体から20mm×30mm×40mmの直方体を2個切り出し母材とし、上記ペーストをスクリーンマスクを用いて母材の30mm×40mmの面に厚さ30μmに印刷して接合材とした。500℃で脱脂した後、印刷面同士を接着して0.5g/mmの荷重をかけ、窒素雰囲気で表1に示すように1270〜1330℃の温度で熱処理し、接合材を溶融させて母材の間に接合材が介在されたNo.1〜15の接合体を得た。なお、表1に示す母材の溶融温度は、母材の材料系において−1×10−6〜+1×10−6/℃の低熱膨張を維持することができる配合範囲における溶融温度範囲を示す(以下、同じ)。 Meanwhile, two 20 mm × 30 mm × 40 mm rectangular parallelepipeds are cut out from the ceramic sintered body as a base material, and the paste is printed on a 30 mm × 40 mm surface of the base material to a thickness of 30 μm using a screen mask. did. After degreasing at 500 ° C., the printed surfaces are bonded to each other, a load of 0.5 g / mm 2 is applied, and heat treatment is performed at a temperature of 1270 to 1330 ° C. as shown in Table 1 in a nitrogen atmosphere to melt the bonding material. No. in which a bonding material is interposed between the base materials. 1 to 15 joined bodies were obtained. In addition, the melting temperature of the base material shown in Table 1 indicates the melting temperature range in the blending range in which low thermal expansion of −1 × 10 −6 to + 1 × 10 −6 / ° C. can be maintained in the material system of the base material. (same as below).

各接合体から接合部が中央にくるように3mm×4mm×40mmの試験片を切り出し、これら試験片を用いてJIS R1601に従って4点曲げ試験を実施した。また、共振法にてヤング率を測定した。これらの結果を表1に併記する。   A test piece of 3 mm × 4 mm × 40 mm was cut out from each joined body so that the joined portion was in the center, and a four-point bending test was performed according to JIS R1601 using these test pieces. Further, Young's modulus was measured by a resonance method. These results are also shown in Table 1.

Figure 2005035839
Figure 2005035839

(実施例2)
実施例1と同様の材料を用いて同様の方法で表2に示すような組成の母材となるセラミックス焼結体を得た。焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX-1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。また、共振法にてこれら焼結体のヤング率を測定した。これらの結果を表2に示す。
(Example 2)
Using the same material as in Example 1, a ceramic sintered body serving as a base material having the composition shown in Table 2 was obtained in the same manner. A test piece of 4 mm × 4 mm × 12 mm was cut out from the sintered body, and the amount of displacement of the test piece was measured at 20-30 ° C. using a laser interference type thermal expansion measuring device (LIX-1 manufactured by ULVAC-RIKO Co., Ltd.). The coefficient was obtained. Further, the Young's modulus of these sintered bodies was measured by a resonance method. These results are shown in Table 2.

次に、β−ユークリプタイトと窒化アルミニウムと酸化マグネシウムを表2に示す割合でポットミル混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末をエチルセルロース系バインダーと混合し、混練してペーストを作製した。なお、この接合材について同じ組成の焼結体を作製して母材と同様にして熱膨張係数を求めた。その結果も表2に示す。   Next, β-eucryptite, aluminum nitride, and magnesium oxide were mixed in a pot mill at a ratio shown in Table 2 and dried to prepare a mixed powder for a bonding material. This mixed powder was mixed with an ethyl cellulose binder and kneaded to prepare a paste. A sintered body having the same composition was produced for this bonding material, and the thermal expansion coefficient was determined in the same manner as the base material. The results are also shown in Table 2.

上記焼結体および接合材を用いて実施例1と同様の手順で、母材の間に接合材が介在されたNo.16〜30の接合体を得た。   In the same procedure as in Example 1 using the sintered body and the bonding material, No. 1 in which the bonding material was interposed between the base materials. 16 to 30 joined bodies were obtained.

各接合体から接合部が中央にくるように3mm×4mm×40mmの試験片を切り出し、これら試験片を用いてJIS R1601に従って4点曲げ試験を実施した。また、共振法にてヤング率を測定した。これらの結果を表2に併記する。   A test piece of 3 mm × 4 mm × 40 mm was cut out from each joined body so that the joined portion was in the center, and a four-point bending test was performed according to JIS R1601 using these test pieces. Further, Young's modulus was measured by a resonance method. These results are also shown in Table 2.

Figure 2005035839
Figure 2005035839

(実施例3)
低熱膨張材料であるβ−ユークリプタイト粉末、スポジューメン粉末、またはコーディエライト粉末と、炭化珪素粉末、アルミナ粉末、ケイ酸カルシウム(ウォラストナイト)粉末、ジルコニア粉末、窒化アルミニウム粉末、ジルコン粉末またはサイアロン粉末とを用い、実施例1と同様の方法で表3に示すような組成の母材となるセラミックス焼結体を得た。焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX-1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。また、共振法にてこれら焼結体のヤング率を測定した。これらの結果を表3に示す。
(Example 3)
Β-eucryptite powder, spodumene powder or cordierite powder, which is a low thermal expansion material, silicon carbide powder, alumina powder, calcium silicate (wollastonite) powder, zirconia powder, aluminum nitride powder, zircon powder or sialon Using the powder, a ceramic sintered body serving as a base material having the composition shown in Table 3 was obtained in the same manner as in Example 1. A test piece of 4 mm × 4 mm × 12 mm was cut out from the sintered body, and the amount of displacement of the test piece was measured at 20-30 ° C. using a laser interference type thermal expansion measuring device (LIX-1 manufactured by ULVAC-RIKO Co., Ltd.). The coefficient was obtained. In addition, the Young's modulus of these sintered bodies was measured by a resonance method. These results are shown in Table 3.

次に、β−ユークリプタイトと窒化珪素と窒化アルミニウムと酸化マグネシウムを表3に示す割合でポットミル混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末をエチルセルロース系バインダーと混合し、混練してペーストを作製した。なお、この接合材について同じ組成の焼結体を作製して母材と同様にして熱膨張係数を求めた。その結果も表3に示す。   Next, β-eucryptite, silicon nitride, aluminum nitride, and magnesium oxide were mixed in a pot mill at a ratio shown in Table 3 and dried to prepare a mixed powder for a bonding material. This mixed powder was mixed with an ethyl cellulose binder and kneaded to prepare a paste. A sintered body having the same composition was produced for this bonding material, and the thermal expansion coefficient was determined in the same manner as the base material. The results are also shown in Table 3.

上記焼結体および接合材を用いて実施例1と同様の手順で、母材の間に接合材が介在されたNo.31〜37の接合体を得た。   In the same procedure as in Example 1 using the sintered body and the bonding material, No. 1 in which the bonding material was interposed between the base materials. 31 to 37 joined bodies were obtained.

各接合体から接合部が中央にくるように3mm×4mm×40mmの試験片を切り出し、これら試験片を用いてJIS R1601に従って4点曲げ試験を実施した。また、共振法にてヤング率を測定した。これらの結果を表3に併記する。   A test piece of 3 mm × 4 mm × 40 mm was cut out from each joined body so that the joined portion was in the center, and a four-point bending test was performed according to JIS R1601 using these test pieces. Further, Young's modulus was measured by a resonance method. These results are also shown in Table 3.

Figure 2005035839
Figure 2005035839

(比較例)
低熱膨張材料であるβ−ユークリプタイト粉末、スポジューメン粉末、またはコーディエライト粉末と、炭化珪素粉末、アルミナ粉末、ケイ酸カルシウム(ウォラストナイト)粉末、サイアロン粉末、またはジルコニア粉末とを用い、実施例1と同様の方法で表4に示すような組成の母材となるセラミックス焼結体を得た。焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX-1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。また、共振法にてこれら焼結体のヤング率を測定した。これらの結果を表4に示す。
(Comparative example)
Implemented using β-eucryptite powder, spodumene powder, or cordierite powder, which is a low thermal expansion material, and silicon carbide powder, alumina powder, calcium silicate (wollastonite) powder, sialon powder, or zirconia powder A ceramic sintered body serving as a base material having a composition as shown in Table 4 was obtained in the same manner as in Example 1. A test piece of 4 mm × 4 mm × 12 mm was cut out from the sintered body, and the amount of displacement of the test piece was measured at 20-30 ° C. using a laser interference type thermal expansion measuring device (LIX-1 manufactured by ULVAC-RIKO Co., Ltd.). The coefficient was obtained. In addition, the Young's modulus of these sintered bodies was measured by a resonance method. These results are shown in Table 4.

次に、β−ユークリプタイトと窒化珪素または窒化アルミニウムとを表4に示す割合でポット混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末をエチルセルロース系バインダーと混合し、混練してペーストを作製した。なお、この接合材について同じ組成の焼結体を作製して母材と同様にして熱膨張係数を求めた。その結果も表4に示す。   Next, β-eucryptite and silicon nitride or aluminum nitride were pot-mixed at a ratio shown in Table 4 and dried to prepare a mixed powder for a bonding material. This mixed powder was mixed with an ethyl cellulose binder and kneaded to prepare a paste. A sintered body having the same composition was produced for this bonding material, and the thermal expansion coefficient was determined in the same manner as the base material. The results are also shown in Table 4.

上記焼結体のうちβ−ユークリプタイトと炭化珪素とを用い、かつ上記接合材を用いて、実施例1と同様の手順で母材の間に接合材が介在されたNo.38〜44の接合体を得た。   Among the sintered bodies, β-eucryptite and silicon carbide were used, and the above-mentioned bonding material was used to obtain No. 1 in which the bonding material was interposed between the base materials in the same procedure as in Example 1. 38 to 44 joined bodies were obtained.

また、接合材としてガラスを用いた接合体も以下のようにして作製した。鉛ガラスとジブチルフタレートの40%α−テルピネオール溶液を混合して、無機分50vol%のペーストを作製し、このペーストをヘラを用いて、上述のようにして作製した低熱膨張セラミックス焼結体からなる20mm×30mm×40mmの直方体の母材の30mm×40mmの面に厚さ50μmに塗布し接合材とした。塗布面同士を接着して0.5g/mmの荷重をかけ、大気中450℃で熱処理し、接合材を溶融させて母材の間に接合材が介在されたNo.45〜48の接合体を得た。なお、接合材として用いたガラスの熱膨張係数も同様に求めた。その結果も表4に示す。 Moreover, the joined body using glass as a joining material was also produced as follows. A 40% α-terpineol solution of lead glass and dibutyl phthalate is mixed to prepare a paste with an inorganic content of 50 vol%, and this paste is made of a low thermal expansion ceramic sintered body prepared as described above using a spatula. A 20 mm × 30 mm × 40 mm rectangular parallelepiped base material was applied to a 30 mm × 40 mm surface to a thickness of 50 μm to obtain a bonding material. The coated surfaces were bonded to each other, applied with a load of 0.5 g / mm 2 , heat-treated at 450 ° C. in the atmosphere, the bonding material was melted, and the bonding material was interposed between the base materials. 45 to 48 joined bodies were obtained. The thermal expansion coefficient of the glass used as the bonding material was also obtained in the same manner. The results are also shown in Table 4.

各接合体から接合部が中央にくるように3mm×4mm×40mmの試験片を切り出し、これら試験片を用いてJIS R1601に従って4点曲げ試験を実施した。また、共振法にてヤング率を測定した。これらの結果を表4に併記する。   A test piece of 3 mm × 4 mm × 40 mm was cut out from each joined body so that the joined portion was in the center, and a four-point bending test was performed according to JIS R1601 using these test pieces. Further, Young's modulus was measured by a resonance method. These results are also shown in Table 4.

Figure 2005035839
Figure 2005035839

以上のように、実施例1〜3および比較例のNo.38〜44の各接合体は、全体の熱膨張係数が小さく、また、母材と接合材との熱膨張差が著しく小さいため接合部に内部応力がほとんど残留せず、母材の剛性を維持し、しかも母材の強度からの大幅な低下を招かない程度の大きな接合強度を有していることが確認された。   As described above, Examples 1 to 3 and Comparative Example No. Each of the joined bodies 38 to 44 has a small coefficient of thermal expansion as a whole, and the difference in thermal expansion between the base material and the joining material is extremely small, so that almost no internal stress remains in the joint portion, and the rigidity of the base material is maintained. In addition, it was confirmed that the bonding strength was high enough not to cause a significant decrease from the strength of the base material.

一方、接合材としてリチウムアルミノシリケートと窒化物とを用い、さらに酸化マグネシウムを添加した実施例1〜3は、酸化マグネシウムを添加しない比較例のNo.38〜44に比べて10〜80℃程度低温で溶融可能であり、比較例よりも接合可能な温度範囲が広く、接合時の炉内温度制御マージンを広くすることができることが確認された。   On the other hand, Examples 1 to 3, in which lithium aluminosilicate and nitride were used as the bonding material and magnesium oxide was further added, were comparative examples No. 1 to No magnesium oxide. It was confirmed that it can be melted at a low temperature of about 10 to 80 ° C. compared to 38 to 44, has a wider temperature range that can be joined than the comparative example, and can widen the furnace temperature control margin during joining.

また、比較例のNo.45〜48については、母材と接合材との熱膨張係数の値が大きく異なっており、接合部に大きな応力が残留していることが推測された。また、接合体の4点曲げ強度は実施例の20%以下と非常に小さく、ヤング率は母材に比較して非常に小さい値であった。このことから、接合材としてガラスを用いた比較例は、熱膨張差によって接合部に応力が残留し、強度および剛性も母材より大きく低下することが確認された。   Moreover, No. of the comparative example. About 45-48, the value of the thermal expansion coefficient of a base material and a joining material differed greatly, and it was estimated that the big stress remains in a junction part. Further, the four-point bending strength of the joined body was very small as 20% or less of the example, and the Young's modulus was a very small value compared to the base material. From this, it was confirmed that in the comparative example using glass as the bonding material, stress remains in the bonded portion due to the difference in thermal expansion, and the strength and rigidity are greatly reduced as compared with the base material.

本発明によれば、熱膨張係数が低く、接合部に内部応力が残留せず、通常のセラミックスと同程度の剛性を有し、接合強度が高い低熱膨張セラミックス接合体が得られるので、半導体製造装置、検査機器等に好適である。   According to the present invention, a low thermal expansion ceramic joined body having a low coefficient of thermal expansion, no internal stress remaining in the joint, the same degree of rigidity as ordinary ceramics, and a high joining strength can be obtained. Suitable for devices, inspection equipment, etc.

Claims (5)

低熱膨張セラミックスからなる母材を、該母材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる低熱膨張セラミックス接合体であって、
前記母材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、
かつ前記接合材が、リチウムアルミノシリケート、窒化物および酸化マグネシウムからなる複合材料であることを特徴とする低熱膨張セラミックス接合体。
A low thermal expansion ceramic joined body obtained by joining a base material made of low thermal expansion ceramic with a joining material made of low thermal expansion ceramic having a melting temperature lower than that of the base material,
The average thermal expansion coefficient at 20 to 30 ° C. of the base material and the bonding material is −1 × 10 −6 to 1 × 10 −6 / ° C.,
The bonding material is a composite material composed of lithium aluminosilicate, nitride, and magnesium oxide, and a low thermal expansion ceramic bonded body.
低熱膨張セラミックスからなる母材を、該母材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる低熱膨張セラミックス接合体であって、
前記母材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、
かつ前記接合材が、リチウムアルミノシリケート、窒化珪素および酸化マグネシウムからなる複合材料であることを特徴とする低熱膨張セラミックス接合体。
A low thermal expansion ceramic joined body obtained by joining a base material made of low thermal expansion ceramic with a joining material made of low thermal expansion ceramic having a melting temperature lower than that of the base material,
The average thermal expansion coefficient at 20 to 30 ° C. of the base material and the bonding material is −1 × 10 −6 to 1 × 10 −6 / ° C.,
The bonding material is a composite material composed of lithium aluminosilicate, silicon nitride and magnesium oxide, and a low thermal expansion ceramic bonded body.
低熱膨張セラミックスからなる母材を、該母材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる低熱膨張セラミックス接合体であって、
前記母材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であり、
かつ前記接合材が、リチウムアルミノシリケート、窒化アルミニウムおよび酸化マグネシウムからなる複合材料であることを特徴とする低熱膨張セラミックス接合体。
A low thermal expansion ceramic joined body obtained by joining a base material made of low thermal expansion ceramic with a joining material made of low thermal expansion ceramic having a melting temperature lower than that of the base material,
The average thermal expansion coefficient at 20 to 30 ° C. of the base material and the bonding material is −1 × 10 −6 to 1 × 10 −6 / ° C.,
A low thermal expansion ceramic joined body, wherein the joining material is a composite material made of lithium aluminosilicate, aluminum nitride, and magnesium oxide.
前記母材が、リチウムアルミノシリケート、コーディエライト、リン酸ジルコニウムカリウムから選ばれる1種以上の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウムから選ばれる1種以上の材料とからなる複合材料であることを特徴とする請求項1から請求項3のいずれか1項に記載の低熱膨張セラミックス接合体。   The base material is one or more materials selected from lithium aluminosilicate, cordierite, and potassium zirconium phosphate, and silicon carbide, silicon nitride, sialon, alumina, zirconia, mullite, zircon, aluminum nitride, and calcium silicate. The low thermal expansion ceramic joined body according to any one of claims 1 to 3, which is a composite material composed of one or more kinds of materials selected. 前記母材と前記接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とする請求項1から請求項4のいずれか1項に記載の低熱膨張セラミックス接合体。 5. The difference in average thermal expansion coefficient at 20 to 30 ° C. between the base material and the bonding material is within ± 0.1 × 10 −6 / ° C. 5. The low thermal expansion ceramic joined body according to any one of the above.
JP2003274442A 2003-07-15 2003-07-15 Low thermal expansion ceramic joined body Pending JP2005035839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274442A JP2005035839A (en) 2003-07-15 2003-07-15 Low thermal expansion ceramic joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274442A JP2005035839A (en) 2003-07-15 2003-07-15 Low thermal expansion ceramic joined body

Publications (1)

Publication Number Publication Date
JP2005035839A true JP2005035839A (en) 2005-02-10

Family

ID=34211392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274442A Pending JP2005035839A (en) 2003-07-15 2003-07-15 Low thermal expansion ceramic joined body

Country Status (1)

Country Link
JP (1) JP2005035839A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232256A (en) * 2013-03-01 2013-08-07 西北工业大学 Method for improving connection performances of C/C composite material-Li-Al-Si ceramic joint
JP5469305B2 (en) * 2005-12-14 2014-04-16 日本碍子株式会社 Bonding material, manufacturing method thereof, and honeycomb structure using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469305B2 (en) * 2005-12-14 2014-04-16 日本碍子株式会社 Bonding material, manufacturing method thereof, and honeycomb structure using the same
CN103232256A (en) * 2013-03-01 2013-08-07 西北工业大学 Method for improving connection performances of C/C composite material-Li-Al-Si ceramic joint

Similar Documents

Publication Publication Date Title
JP5673106B2 (en) Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
WO2013008919A1 (en) Ceramic circuit board
JP2005082451A (en) SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
JP2009013056A (en) Lead-free glass composite with low thermal expansion coefficient
JPH0715101A (en) Oxide ceramic circuit board and its manufacture
KR20200021019A (en) Production method of nitride ceramics active metal brazing substrate having excellent bonding strength
US6475938B1 (en) Method of forming a glass ceramic material
JP4082953B2 (en) Low thermal expansion ceramic joined body
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JP3017372B2 (en) Compound for ceramic joining
JP2005035839A (en) Low thermal expansion ceramic joined body
JP2012082095A (en) Method of joining two or more ceramic members mutually
JP2010111559A (en) Ceramic joint and its manufacturing method
JP4489344B2 (en) Stage member
JP4870455B2 (en) Low thermal expansion ceramic joined body having hollow structure
JP6717379B2 (en) SiC heater
JP2006232667A (en) Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
KR20190079114A (en) Glass bonding member, and manufacturing method and using method of the same
JPH0753278A (en) Ceramics-metal joined body
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP4088515B2 (en) Electrostatic chuck
JPH11135906A (en) Board and manufacture thereof
JP2582494B2 (en) Ceramic joint and its joining method