JP5469305B2 - Bonding material, manufacturing method thereof, and honeycomb structure using the same - Google Patents

Bonding material, manufacturing method thereof, and honeycomb structure using the same Download PDF

Info

Publication number
JP5469305B2
JP5469305B2 JP2007550217A JP2007550217A JP5469305B2 JP 5469305 B2 JP5469305 B2 JP 5469305B2 JP 2007550217 A JP2007550217 A JP 2007550217A JP 2007550217 A JP2007550217 A JP 2007550217A JP 5469305 B2 JP5469305 B2 JP 5469305B2
Authority
JP
Japan
Prior art keywords
filler
bonding material
bonding
honeycomb
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007550217A
Other languages
Japanese (ja)
Other versions
JPWO2007069674A1 (en
Inventor
崇弘 冨田
浩基 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007550217A priority Critical patent/JP5469305B2/en
Publication of JPWO2007069674A1 publication Critical patent/JPWO2007069674A1/en
Application granted granted Critical
Publication of JP5469305B2 publication Critical patent/JP5469305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2448Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the adhesive layers, i.e. joints between segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24495Young's modulus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • C04B38/0019Honeycomb structures assembled from subunits characterised by the material used for joining separate subunits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2265/00Casings, housings or mounting for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2265/04Permanent measures for connecting different parts of the filter, e.g. welding, glueing or moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/068Oxidic interlayers based on refractory oxides, e.g. zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Description

本発明は、セラミックス部材の複数を接合するセラミックス構造体、特に、ハニカムセグメントの複数を一体的に接合するハニカム構造体に用いられる接合材に関する。   The present invention relates to a ceramic structure for bonding a plurality of ceramic members, and more particularly to a bonding material used for a honeycomb structure for integrally bonding a plurality of honeycomb segments.

ハニカム構造体が、排ガス用の捕集フィルタとして、例えば、ディーゼルエンジン等からの排ガスに含まれている粒子状物質(パティキュレート)を捕捉して除去するために、ディーゼルパティキュレートフィルタ(DPF)として、ディーゼルエンジンの排気系等に組み込まれて用いられている。   The honeycomb structure as a collection filter for exhaust gas, for example, as a diesel particulate filter (DPF) for capturing and removing particulate matter (particulates) contained in exhaust gas from a diesel engine or the like It is incorporated in the exhaust system of diesel engines.

このようなハニカム構造体は、例えば、炭化珪素(SiC)等からなる多孔質の隔壁によって区画、形成された流体の流路となる複数のセルが中心軸方向に互いに並行するように配設された構造を有している。また、隣接したセルの端部は、交互に(市松模様状に)目封じされている。すなわち、一のセルは、一方の端部が開口し、他方の端部が目封じされており、これと隣接する他のセルは、一方の端部が目封じされ、他方の端部が開口している。   Such a honeycomb structure is disposed so that a plurality of cells that are partitioned and formed by porous partition walls made of, for example, silicon carbide (SiC) are parallel to each other in the central axis direction. Have a structure. Moreover, the edge part of the adjacent cell is plugged alternately (in a checkered pattern). That is, one cell is open at one end and the other end is sealed, and another cell adjacent thereto is sealed at one end and the other end is open. doing.

このような構造とすることにより、一方の端部から所定のセル(流入セル)に流入させた排ガスを、多孔質の隔壁を通過させることによって流入セルに隣接したセル(流出セル)を経由して流出させ、隔壁を通過させる際に排ガス中の粒子状物質(パティキュレート)を隔壁に捕捉させることによって、排ガスの浄化をすることができる。   By adopting such a structure, the exhaust gas flowing into a predetermined cell (inflow cell) from one end is passed through a cell (outflow cell) adjacent to the inflow cell by passing through a porous partition wall. When the particulate matter (particulates) in the exhaust gas is captured by the partition wall when it is allowed to flow out and pass through the partition wall, the exhaust gas can be purified.

このようなハニカム構造体(フィルタ)を長期間継続して使用するためには、フィルタを再生させる必要がある。すなわち、フィルタ内部に経時的に堆積したパティキュレートによる圧力損失の増大を取り除くため、フィルタ内部に堆積したパティキュレートを燃焼させて除去する必要がある。このフィルタ再生時には大きな熱応力が発生し、この熱応力がハニカム構造体にクラックや破壊等の欠陥を発生させるという問題があった。このような熱応力に対する耐熱衝撃性の向上の要請に対応して、複数のハニカムセグメントを接合材層によって一体的に接合することによって熱応力を分散、緩和する機能を持たせた分割構造のハニカム構造体が提案され、その耐熱衝撃性をある程度改善することができるようになった。このような分割構造のハニカム構造体は、それぞれが全体構造の一部を構成する形状を有するとともに、中心軸に対して垂直な方向に組み付けられることによって全体構造を構成することになる形状を有する複数のハニカムセグメントが、接合材層によって一体的に接合されて、中心軸に対して垂直な平面で切断した全体の断面形状が円形等の所定の形状となるように成形された後、その外周面がコーティング材により被覆された構造となっている。   In order to continuously use such a honeycomb structure (filter) for a long period of time, it is necessary to regenerate the filter. That is, in order to remove the increase in pressure loss due to the particulates accumulated with time in the filter, it is necessary to burn and remove the particulates accumulated in the filter. When the filter is regenerated, a large thermal stress is generated, and this thermal stress causes a defect such as a crack or breakage in the honeycomb structure. In response to such a demand for improvement in thermal shock resistance against thermal stress, a honeycomb having a divided structure having a function of dispersing and relaxing thermal stress by integrally bonding a plurality of honeycomb segments with a bonding material layer. A structure has been proposed, and its thermal shock resistance can be improved to some extent. Each of the honeycomb structures having such a divided structure has a shape that constitutes a part of the entire structure, and a shape that constitutes the entire structure by being assembled in a direction perpendicular to the central axis. A plurality of honeycomb segments are integrally bonded by a bonding material layer, and the entire cross-sectional shape cut by a plane perpendicular to the central axis is formed into a predetermined shape such as a circle, and then the outer periphery thereof. The surface is covered with a coating material.

しかし、近年、フィルタはさらに大型化の要請が高まり、再生時に発生する熱応力も増大することになり、上述の欠陥を防止するため、構造体としての耐熱衝撃性の向上が強く望まれるようになった。中でも、複数のハニカムセグメントを一体的に接合するための接合材層には、優れた応力緩和機能と接合強度とを実現することによって耐熱衝撃性に優れたハニカム構造体を実現することが望まれている。   However, in recent years, the demand for larger filters has increased, and the thermal stress generated during regeneration has also increased. In order to prevent the above-described defects, it is strongly desired to improve the thermal shock resistance of the structure. became. In particular, a bonding material layer for integrally bonding a plurality of honeycomb segments is desired to realize a honeycomb structure excellent in thermal shock resistance by realizing an excellent stress relaxation function and bonding strength. ing.

このような問題に対応して、シール材(接合材層)に、無機繊維や有機バインダーを添加することにより、乾燥硬化の過程でのマイグレーションの発生を抑制し、上述の欠陥の発生を抑制して、耐久性を向上させることを企図したセラミック構造体(ハニカム構造体)が開示されている(特許文献1参照)。   In response to these problems, the addition of inorganic fibers and organic binders to the sealing material (bonding material layer) suppresses the occurrence of migration during the drying and curing process and suppresses the occurrence of the aforementioned defects. Thus, a ceramic structure (honeycomb structure) intended to improve durability has been disclosed (see Patent Document 1).

また、ハニカムセグメント間の接合層材質のヤング率をハニカムセグメント材質の20%以下、又は接合層の材料強度がハニカムセグメントの材料強度より小さくすることのいずれか一方を満足させるハニカム構造体(低ヤング率接合材の使用)が開示されている(特許文献2参照)。   Also, a honeycomb structure that satisfies either the Young's modulus of the bonding layer material between the honeycomb segments is 20% or less of the honeycomb segment material, or the material strength of the bonding layer is smaller than the material strength of the honeycomb segment (low Young (Use of rate bonding material) is disclosed (see Patent Document 2).

しかしながら、特許文献1に開示されたセラミックス構造体(ハニカム構造体)に用いられるシール材(接合材層)において、構成する無機繊維と有機バインダーとが相互に絡み合うことにより実現した均一な組織では、セグメント/接合材層界面の接合強度の確保と接合材層自体の応力緩和機能の確保との両立が難しいという問題があった。   However, in the sealing material (bonding material layer) used in the ceramic structure (honeycomb structure) disclosed in Patent Document 1, in the uniform structure realized by the entanglement of the inorganic fibers and the organic binder, There has been a problem that it is difficult to ensure both the bonding strength at the segment / bonding material layer interface and the stress relaxation function of the bonding material layer itself.

また、特許文献2で開示された接合層を形成する接合材の低ヤング率化は、ハニカムセグメント間で発生する熱応力や熱変形を緩和する点で有効であるが、低ヤング率化のために、接合材を高気孔率化すると、ハニカムセグメント間の接合強度が不十分となり、健全なハニカムセグメント接合体を得ることができないという問題点があった。   Further, the lower Young's modulus of the bonding material forming the bonding layer disclosed in Patent Document 2 is effective in reducing thermal stress and thermal deformation generated between the honeycomb segments. In addition, when the porosity of the bonding material is increased, the bonding strength between the honeycomb segments becomes insufficient, and a sound bonded honeycomb segment assembly cannot be obtained.

特許第3121497号公報Japanese Patent No. 3121497 特開2001−190916号公報JP 2001-190916 A

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的とするところは、高ヤング率の接合層を形成するとともに、低膨張化を図ることができるため、発生する熱応力によるハニカムセグメントの変形を接合層で抑制することができ、クラック等の欠陥の発生を低減することができる排ガス用の捕集フィルタ、中でも、ディーゼルエンジンの排ガス中の粒子状物質(パティキュレート)等を捕集するディーゼルパティキュレートフィルタ(DPF)の作製時に好適に用いることができる接合材を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and the object thereof is to form a bonding layer having a high Young's modulus and to achieve low expansion, and thus occurs. An exhaust gas collection filter that can suppress deformation of honeycomb segments due to thermal stress at the bonding layer and reduce the occurrence of defects such as cracks, especially particulate matter (particulates) in diesel engine exhaust gas It is to provide a bonding material that can be suitably used during the production of a diesel particulate filter (DPF) that collects the like.

上記目的を達成するため、本発明によって、下記の接合材とその製造方法、及びそれを用いたハニカム構造体が提供される。   In order to achieve the above object, according to the present invention, the following bonding material, a manufacturing method thereof, and a honeycomb structure using the same are provided.

[1] 25〜800℃における平均線熱膨張係数が被接合物の50%以下のフィラー(1)と、ヤング率が100GPa以上のフィラー(2)との2種以上のフィラー及びマトリックスから主に構成された接合材組成物によって形成され、硬化後のヤング率が被接合物の20%以上であり、且つ硬化後の25〜800℃における平均線熱膨張係数が0.1×10−6〜2.0×10−6・K−1かつ被接合物の70%以下であるとともに、前記被接合物の材料は、炭化珪素(SiC)、炭化珪素(SiC)を骨材としてかつ珪素(Si)を結合材として形成された珪素−炭化珪素系複合材料、珪素−炭化珪素複合材からなる群から選択される少なくとも一種から構成され、前記フィラー(1)と前記フィラー(2)との総和の体積分率と前記マトリックス体積分率とが等しく、前記フィラー(1)と前記フィラー(2)との総和における体積分率がフィラー(1):フィラー(2)=550〜910であり、前記フィラー(1)が、コージェライトであり、前記フィラー(2)が、炭化珪素、窒化ホウ素、タルク、マイカ、及びガラスフレークからなる群から選択された少なくとも1種以上であり、かつ、板状粒子である窒化ホウ素、タルク、マイカ、およびガラスフレークからなる群から選ばれる少なくとも1種以上を含み、前記マトリックスが、コロイダルシリカ、コロイダルアルミナ、エチルシリケート、水ガラス、シリカポリマー、リン酸アルミニウム、ベントナイトからなる群から選択された少なくとも1種以上である接合材。 [1] Mainly from two or more kinds of fillers and matrices of a filler (1) having an average linear thermal expansion coefficient at 25 to 800 ° C. of 50% or less of the article to be joined and a filler (2) having a Young's modulus of 100 GPa or more. The Young's modulus after curing is 20% or more of the object to be bonded, and the average linear thermal expansion coefficient at 25 to 800 ° C. after curing is 0.1 × 10 −6 to 2.0 × 10 −6 · K −1 and 70% or less of the object to be bonded, and the material of the object to be bonded is silicon carbide (SiC), silicon carbide (SiC) as an aggregate, and silicon (Si ) silicon is formed as the bonding material to - silicon carbide based composite material, silicofluoride-containing - is composed of at least one selected from silicon carbide composite material or Ranaru group, the filler (1) and said filler (2) before and the volume fraction of the total sum Equal to the volume fraction of the matrix, the volume fraction of filler in total of said filler (1) and the filler (2) (1): filler (2) = 5 0: 50-9 0: is 10, the filler (1), a Kojerai bets, the filler (2) is silicon carbide, nitride boron, and talc, mica, and at least one or more selected from the group consisting of glass flakes, and the plate At least one selected from the group consisting of boron nitride, talc, mica, and glass flakes that are shaped particles, and the matrix is colloidal silica, colloidal alumina, ethyl silicate, water glass, silica polymer, aluminum phosphate, A joining material that is at least one selected from the group consisting of bentonite.

] 前記フィラー(1)の25〜800℃における平均線熱膨張係数が、2.5×10−6・K−1以下である前記[1]に記載の接合材。 [ 2 ] The bonding material according to [1 ], wherein the filler (1) has an average linear thermal expansion coefficient at 25 to 800 ° C. of 2.5 × 10 −6 · K −1 or less.

] 前記マトリックスが、コロイダルシリカである前記[1]または2]に記載の接合材。 [ 3 ] The bonding material according to [1] or [ 2], wherein the matrix is colloidal silica.

] ハニカムセグメントの接合に用いる前記[1]〜[]のいずれかに記載の接合材。 [ 4 ] The bonding material according to any one of [1] to [ 3 ], which is used for bonding honeycomb segments.

] 前記[1]〜[]のいずれかに記載の接合材を得るための接合材の製造方法であって、前記フィラー(1)、前記フィラー(2)、及び前記マトリックスを混合し、混練を行うことにより、ペースト状の接合材組成物を得る工程を含む、接合材の製造方法。 [ 5 ] A method for producing a bonding material for obtaining the bonding material according to any one of [1] to [ 4 ], wherein the filler (1), the filler (2), and the matrix are mixed. The manufacturing method of a joining material including the process of obtaining a paste-like joining material composition by kneading | mixing.

] 前記[1]〜[]のいずれかに記載の接合材で、複数のセラミックス部材を接合して作製されたセラミックス構造体。 [ 6 ] A ceramic structure produced by bonding a plurality of ceramic members with the bonding material according to any one of [1] to [ 4 ].

] 前記[1]〜[]のいずれかに記載の接合材で、複数のハニカムセグメントを接合して作製されたハニカム構造体。 [7] above [1] to the bonding material according to any one of [4], the honeycomb structure manufactured by bonding a plurality of honeycomb segments.

本発明のハニカム構造体の一の実施の形態(中心軸に対して垂直な平面で切断した全体の断面形状が円形)を模式的に示す斜視図である。1 is a perspective view schematically showing an embodiment of a honeycomb structure of the present invention (the entire cross-sectional shape cut by a plane perpendicular to the central axis is circular). 本発明のハニカム構造体の他の実施の形態(中心軸に対して垂直な平面で切断した全体の断面形状が正方形)の一部を端面側から見た正面図である。It is the front view which looked at a part of other embodiment (the whole cross-sectional shape cut | disconnected by the plane perpendicular | vertical with respect to a center axis | shaft is square) of the honeycomb structure of this invention from the end surface side. 本発明のハニカム構造体の他の実施の形態に用いられるハニカムセグメントを模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing a honeycomb segment used in another embodiment of the honeycomb structure of the present invention. 図3におけるA−A線断面図である。It is the sectional view on the AA line in FIG.

符号の説明Explanation of symbols

1:ハニカム構造体、2:ハニカムセグメント、4:コーティング材、5:セル、6:隔壁、7:充填材、9:接合材層、10:ハニカムセグメント接合体。 1: honeycomb structure, 2: honeycomb segment, 4: coating material, 5: cell, 6: partition wall, 7: filler, 9: bonding material layer, 10: honeycomb segment bonded body.

以下、本発明の接合材を具体的な実施形態に基づき詳細に説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。   Hereinafter, the bonding material of the present invention will be described in detail on the basis of specific embodiments. However, the present invention is not construed as being limited thereto, and those skilled in the art do not depart from the scope of the present invention. Various changes, modifications and improvements can be made based on the knowledge.

本発明に係る接合材は、二つ以上の被接合物が、接合材層を介して一体化されてなる接合体において、接合材層のヤング率が被接合物の20%以上(より好ましくは、25%以上200%以下)であり、且つ平均線熱膨張係数が被接合物の70%以下(より好ましくは、1%以上65%以下)である。   In the bonded material according to the present invention, in a bonded body in which two or more objects to be bonded are integrated via a bonding material layer, the Young's modulus of the bonding material layer is 20% or more of the object to be bonded (more preferably 25% or more and 200% or less) and the average linear thermal expansion coefficient is 70% or less (more preferably 1% or more and 65% or less) of the object to be joined.

これにより、本発明の接合材は、従来の接合材(例えば、特許文献2参照)と比較して、低ヤング率化のように、ハニカムセグメント間で発生する熱応力や熱変形を緩和するのとは異なり、新たに高ヤング率化することにより、ハニカムセグメント間で発生する熱応力や熱変形を抑制するとともに、ハニカムセグメント間の接合強度を十分に確保することができるため、健全なハニカムセグメント接合体を得ることができ、しいては、ハニカム構造体の生産性や品質の向上に寄与することができる。   As a result, the bonding material of the present invention relieves thermal stress and thermal deformation generated between the honeycomb segments as compared with a conventional bonding material (for example, see Patent Document 2), such as lower Young's modulus. In contrast to this, the new Young's modulus is increased to suppress the thermal stress and thermal deformation generated between the honeycomb segments and to ensure sufficient bonding strength between the honeycomb segments. A joined body can be obtained, which can contribute to improvement of productivity and quality of the honeycomb structure.

また、本発明の接合材は、平均線熱膨張係数を3×10−6・K−1以下(より好ましくは、2.5×10−6・K−1以下、更に好ましくは、0.1×10−6・K−1以上2.0×10−6・K−1以下)にすることが好ましい。これは、接合材の熱膨張係数が小さいほど、ハニカムセグメント間で発生する熱応力や熱変形を抑制しやすくなるからである。The bonding material of the present invention has an average linear thermal expansion coefficient of 3 × 10 −6 · K −1 or less (more preferably 2.5 × 10 −6 · K −1 or less, and still more preferably 0.1. X10 −6 · K −1 or more and 2.0 × 10 −6 · K −1 or less). This is because the smaller the thermal expansion coefficient of the bonding material, the easier it is to suppress thermal stress and thermal deformation that occur between the honeycomb segments.

尚、本発明の接合材は、フィラーとマトリックスが主成分であり、有機バインダーや水等の添加物を含有する接合材組成物を硬化することにより得られる。接合材組成物中に占めるフィラーの割合は、10〜95体積%(より好ましくは、20〜90体積%)であることが好ましく、マトリックスの割合は、5〜90体積%(より好ましくは、10〜80体積%)であることが好ましい。   The bonding material of the present invention is obtained by curing a bonding material composition containing a filler and a matrix as main components and containing an additive such as an organic binder and water. The proportion of the filler in the bonding material composition is preferably 10 to 95% by volume (more preferably 20 to 90% by volume), and the proportion of the matrix is 5 to 90% by volume (more preferably 10%). ~ 80% by volume).

更に、本発明の接合材は、平均線熱膨張係数が被接合物の50%以下のフィラー(以下、フィラー(1)と呼称する)と、ヤング率が100GPa以上のフィラー(以下、フィラー(2)と呼称する)との2種類以上のフィラー及びマトリックスから主に構成された接合材組成物から得られてもよい。   Furthermore, the bonding material of the present invention comprises a filler having an average linear thermal expansion coefficient of 50% or less of that to be bonded (hereinafter referred to as filler (1)) and a filler having a Young's modulus of 100 GPa or more (hereinafter referred to as filler (2). May be obtained from a bonding material composition mainly composed of two or more fillers and a matrix.

このとき、本発明の接合材が得られる接合材組成物中のフィラーの体積分率は、フィラー(1):フィラー(2)=5:95〜95:5(より好ましくは、10:90〜90:10)であることが好ましい。   At this time, the volume fraction of the filler in the bonding material composition from which the bonding material of the present invention is obtained is filler (1): filler (2) = 5: 95 to 95: 5 (more preferably 10:90 to 90:10).

また、本発明の接合材は、平均線熱膨張係数が被接合物の50%以下であり、且つヤング率が100GPa以上のフィラー(以下、フィラー(3)と呼称する)及びマトリックスから主に構成された接合材組成物から得られることが好ましい。   Further, the bonding material of the present invention is mainly composed of a filler (hereinafter referred to as filler (3)) having an average linear thermal expansion coefficient of 50% or less of an object to be bonded and a Young's modulus of 100 GPa or more and a matrix. It is preferable to be obtained from the obtained bonding material composition.

このとき、本発明の接合材は、フィラー(1)及びフィラー(3)の平均線熱膨張係数が、2.5×10−6・K−1以下(より好ましくは、2.0×10−6・K−1以下、更に好ましく、0.01×10−6・K−1以上1.5×10−6・K−1以下)であることが好ましい。これは、接合材を構成する材料(フィラー及びマトリックス)の特性が接合材の特性に反映されるため、接合材の平均線熱膨張係数を3×10−6・K−1以下とするためにはフィラーの平均線熱膨張係数はそれよりもやや低い値2.5×10−6・K−1以下が必要であるからである。At this time, as for the joining material of this invention, the average linear thermal expansion coefficient of a filler (1) and a filler (3) is 2.5 * 10 <-6> * K- 1 or less (more preferably, 2.0 * 10 < - >). 6 × K −1 or less, more preferably 0.01 × 10 −6 · K −1 or more and 1.5 × 10 −6 · K −1 or less). This is because the characteristic of the material (filler and matrix) constituting the bonding material is reflected in the characteristic of the bonding material, so that the average linear thermal expansion coefficient of the bonding material is 3 × 10 −6 · K −1 or less. This is because the average linear thermal expansion coefficient of the filler needs to be a value slightly lower than that of 2.5 × 10 −6 · K −1 or less.

ここで、本発明で用いるフィラー(1)は、コージェライト、β-スポジュメン、非晶質シリカ、チタン酸アルミニウム、及びリン酸ジルコニウムからなる群から選択された少なくとも1種以上(より好ましくは、1〜2種程度)であることが好ましい。   Here, the filler (1) used in the present invention is at least one selected from the group consisting of cordierite, β-spodumene, amorphous silica, aluminum titanate, and zirconium phosphate (more preferably, 1 It is preferable to be about ~ 2 types).

また、本発明で用いるフィラー(2)は、炭化珪素、アルミナ、石英、窒化アルミニウム、BC、ムライト、SiAlON、窒化珪素、ジルコニア、コージェライト、チタン酸アルミニウム、リン酸ジルコニウム、窒化ホウ素、タルク、マイカ、及びガラスフレークからなる群から選択された少なくとも1種以上であることが好ましい。特に、本発明で用いるフィラー(2)は、窒化ホウ素、タルク、マイカ、ガラスフレークのような板状粒子を含有させることにより、本発明の接合材(硬化後の接合材組成物)における機械的特性を向上させることができる。The filler (2) used in the present invention is silicon carbide, alumina, quartz, aluminum nitride, B 4 C, mullite, SiAlON, silicon nitride, zirconia, cordierite, aluminum titanate, zirconium phosphate, boron nitride, talc. , Mica, and at least one selected from the group consisting of glass flakes. In particular, the filler (2) used in the present invention contains plate-like particles such as boron nitride, talc, mica, and glass flakes, so that it is mechanical in the bonding material (bonding material composition after curing) of the present invention. Characteristics can be improved.

更に、本発明で用いるフィラー(3)は、コージェライト、チタン酸アルミニウム、及びリン酸ジルコニウムからなる群から選択された少なくとも1種以上であることが好ましい。
したがって、具体的には、本発明の接合材を構成する接合材組成物としては、コージェライト、β-スポジュメン、非晶質シリカ、チタン酸アルミニウム、及びリン酸ジルコニウムからなる群から選択された少なくとも1種以上のフィラーと、炭化珪素、アルミナ、石英、窒化アルミニウム、BC、ムライト、SiAlON、窒化珪素、ジルコニア、コージェライト、チタン酸アルミニウム、リン酸ジルコニウム、窒化ホウ素、タルク、マイカ、及びガラスフレークからなる群から選択された少なくとも1種以上のフィラーとの2種以上のフィラー、及びマトリックスを含むものであるか、あるいは、コージェライト、チタン酸アルミニウム、及びリン酸ジルコニウムからなる群から選択された少なくとも1種以上のフィラー、及びマトリックスを含むものであることが好ましい。
Furthermore, the filler (3) used in the present invention is preferably at least one selected from the group consisting of cordierite, aluminum titanate, and zirconium phosphate.
Therefore, specifically, the bonding material composition constituting the bonding material of the present invention is at least selected from the group consisting of cordierite, β-spodumene, amorphous silica, aluminum titanate, and zirconium phosphate. One or more fillers and silicon carbide, alumina, quartz, aluminum nitride, B 4 C, mullite, SiAlON, silicon nitride, zirconia, cordierite, aluminum titanate, zirconium phosphate, boron nitride, talc, mica, and glass Two or more fillers with at least one filler selected from the group consisting of flakes, and a matrix, or at least selected from the group consisting of cordierite, aluminum titanate, and zirconium phosphate One or more fillers and matrix It preferably contains a scan.

尚、本発明で用いるフィラー(1)〜(3)の形状は、球状、板状、破砕物のような不定形、繊維状、針状等、どのような形状であっても特に限定されないが、コスト面から破砕物のような不定形であることが好ましく、また硬化後の接合材の強度の観点から、板状、針状、繊維状等のアスペクト比の高い形状であることが好ましく、健康面への配慮から板状であることがさらに好ましい。更に、本発明で用いるフィラー(1)〜(3)の平均粒径は、0.01μm以上100μm以下であることが好ましく、その粒度分布は正規分布であっても、2つ以上の正規分布が存在する分布でもよい。   The shape of the fillers (1) to (3) used in the present invention is not particularly limited in any shape such as a spherical shape, a plate shape, an irregular shape such as a crushed material, a fibrous shape, a needle shape, or the like. From the viewpoint of cost, it is preferably an irregular shape such as a crushed material, and from the viewpoint of the strength of the bonding material after curing, it is preferably a shape having a high aspect ratio such as a plate shape, needle shape, fiber shape, A plate shape is more preferable from the viewpoint of health. Furthermore, the average particle size of the fillers (1) to (3) used in the present invention is preferably 0.01 μm or more and 100 μm or less, and even when the particle size distribution is a normal distribution, two or more normal distributions are present. It may be an existing distribution.

本発明で用いるマトリックスは、フィラー粒子同士および被接合物とフィラー間を適度に接着する必要があるため、無機接着剤であることが好ましく、コロイダルシリカ、コロイダルアルミナ、エチルシリケート、水ガラス、シリカポリマー、リン酸アルミニウム、ベントナイト、などが例としてあげられるが、特に、コロイダルシリカであることがより好ましい。これは、接着力、フィラーとのなじみやすさ、化学的安定性、耐熱性等に優れているからである。   The matrix used in the present invention is preferably an inorganic adhesive because it is necessary to appropriately bond filler particles to each other and between an object to be bonded and a filler. Colloidal silica, colloidal alumina, ethyl silicate, water glass, silica polymer Examples thereof include aluminum phosphate and bentonite, but colloidal silica is particularly preferable. This is because it has excellent adhesive strength, ease of compatibility with fillers, chemical stability, heat resistance, and the like.

次に、本発明の接合材の製造方法は、上記フィラー(1)及び上記フィラー(2)、又は上記フィラー(3)を混合し、場合によって、有機バインダー(例えば、メチルセルロース(MC)、カルボキシメチルセルロース(CMC)等)、発泡樹脂及び分散剤を加え、更に、マトリックスとして、無機接着剤(例えば、コロイダルシリカ等)、場合によっては、水を混合し、ミキサーにて、所定時間の混練を行うことにより、ペースト状の接合材組成物を製造することができる。   Next, in the method for producing a bonding material of the present invention, the filler (1) and the filler (2), or the filler (3) are mixed, and an organic binder (for example, methyl cellulose (MC), carboxymethyl cellulose, depending on the case. (CMC) etc.), a foamed resin and a dispersing agent are added, and further, an inorganic adhesive (for example, colloidal silica) as a matrix, and optionally water are mixed and kneaded for a predetermined time in a mixer. Thus, a paste-like bonding material composition can be produced.

また、本発明の接合材を用いて被接合物同士を接合させる際、被接合物との接合温度が、1000℃以下(より好ましくは、50℃以上900℃以下、さらに好ましくは100℃以上800℃以下)であることが、十分な強度や接合状態を発現できるという観点から望ましい。1000℃を超過した場合であっても問題なく接合させることができるが、所望の特性(ヤング率や熱膨張係数など)が得られ難くなるため、好ましくない。   Further, when the objects to be bonded are bonded to each other using the bonding material of the present invention, the bonding temperature with the objects to be bonded is 1000 ° C. or lower (more preferably, 50 ° C. or higher and 900 ° C. or lower, more preferably 100 ° C. or higher and 800 ° C. (Degrees C or less) is desirable from the viewpoint that sufficient strength and bonding state can be expressed. Even if the temperature exceeds 1000 ° C., bonding can be performed without any problem, but it is not preferable because desired characteristics (such as Young's modulus and thermal expansion coefficient) are hardly obtained.

次に、本発明の接合材を適用したハニカム構造体の構造の一例を具体的に説明する。
本発明のハニカム構造体1は、図1及び図2に示すように、多孔質の隔壁6によって区画、形成された流体の流路となる複数のセル5がハニカム構造体1の中心軸方向に互いに並行するように配設された構造を有し、それぞれが全体構造の一部を構成する形状を有するとともに、ハニカム構造体1の中心軸に対して垂直な方向に組み付けられることによって全体構造を構成することになる形状を有する複数のハニカムセグメント2が、本発明の接合材から形成された接合材層9によって一体的に接合されたハニカムセグメント接合体10として構成されてなるものである。
Next, an example of the structure of the honeycomb structure to which the bonding material of the present invention is applied will be specifically described.
As shown in FIG. 1 and FIG. 2, the honeycomb structure 1 of the present invention has a plurality of cells 5 that are partitioned and formed by porous partition walls 6 and are formed in the direction of the central axis of the honeycomb structure 1. The structure is arranged so as to be parallel to each other, each has a shape constituting a part of the whole structure, and the whole structure is assembled by being assembled in a direction perpendicular to the central axis of the honeycomb structure 1. A plurality of honeycomb segments 2 having a shape to be configured are configured as a honeycomb segment bonded body 10 integrally bonded by a bonding material layer 9 formed from the bonding material of the present invention.

ここで、接合材層9によるハニカムセグメント2の接合の後、ハニカム構造体1の中心軸に対して垂直な平面で切断した全体の断面形状が円形、楕円形、三角形、正方形、その他の形状となるように研削加工され、外周面がコーティング材4によって被覆される。このハニカム構造体1をDPFとして用いる場合、ディーゼルエンジンの排気系等に配置することにより、ディーゼルエンジンから排出されるスートを含む粒子状物質(パティキュレート)を捕捉することができる。   Here, after the bonding of the honeycomb segments 2 by the bonding material layer 9, the overall cross-sectional shape cut along a plane perpendicular to the central axis of the honeycomb structure 1 is circular, elliptical, triangular, square, and other shapes. The outer peripheral surface is covered with the coating material 4. When this honeycomb structure 1 is used as a DPF, particulate matter (particulates) containing soot discharged from the diesel engine can be captured by disposing the honeycomb structure 1 in an exhaust system or the like of the diesel engine.

また、図1においては、一つのハニカムセグメント2においてのみ、セル5及び隔壁6を示している。それぞれのハニカムセグメント2は、図3、4に示すように、ハニカム構造体1(ハニカムセグメント接合体10)(図1参照)の全体構造の一部を構成する形状を有するとともに、ハニカム構造体1(図1参照)の中心軸に対して垂直な方向に組み付けられることによって全体構造を構成することになる形状を有している。セル5はハニカム構造体1の中心軸方向に互いに並行するように配設されており、隣接しているセル5におけるそれぞれの端部が交互に充填材7によって目封じされている。   In FIG. 1, the cells 5 and the partition walls 6 are shown only in one honeycomb segment 2. As shown in FIGS. 3 and 4, each honeycomb segment 2 has a shape constituting a part of the entire structure of the honeycomb structure 1 (honeycomb segment bonded body 10) (see FIG. 1). It has a shape that constitutes the entire structure by being assembled in a direction perpendicular to the central axis (see FIG. 1). The cells 5 are arranged so as to be parallel to each other in the central axis direction of the honeycomb structure 1, and the respective end portions of the adjacent cells 5 are alternately sealed with the fillers 7.

所定のセル5(流入セル)においては、図3、4における左端部側が開口している一方、右端部側が充填材7によって目封じされており、これと隣接する他のセル5(流出セル)においては、左端部側が充填材7によって目封じされるが、右端部側が開口している。このような目封じにより、図2に示すように、ハニカムセグメント2の端面が市松模様状を呈するようになる。このような複数のハニカムセグメント2が接合されたハニカム構造体1を排ガスの排気系内に配置した場合、排ガスは図4における左側から各ハニカムセグメント2のセル5内に流入して右側に移動する。   In the predetermined cell 5 (inflow cell), the left end side in FIGS. 3 and 4 is open, while the right end side is sealed with the filler 7, and another cell 5 (outflow cell) adjacent thereto is sealed. In FIG. 2, the left end side is sealed with the filler 7, but the right end side is open. By such sealing, as shown in FIG. 2, the end face of the honeycomb segment 2 has a checkered pattern. When the honeycomb structure 1 to which such a plurality of honeycomb segments 2 are joined is disposed in the exhaust gas exhaust system, the exhaust gas flows into the cells 5 of the honeycomb segments 2 from the left side in FIG. 4 and moves to the right side. .

図4においては、ハニカムセグメント2の左側が排ガスの入口となる場合を示し、排ガスは、目封じされることなく開口しているセル5(流入セル)からハニカムセグメント2内に流入する。セル5(流入セル)に流入した排ガスは、多孔質の隔壁6を通過して他のセル5(流出セル)から流出する。そして、隔壁6を通過する際に排ガス中のスートを含む粒子状物質(パティキュレート)が隔壁6に捕捉される。このようにして、排ガスの浄化を行うことができる。このような捕捉によって、ハニカムセグメント2の内部にはスートを含む粒子状物質(パティキュレート)が経時的に堆積して圧力損失が大きくなるため、スート等を燃焼させる再生が行われる。なお、図2〜4には、全体の断面形状が正方形のハニカムセグメント2を示すが、三角形、六角形等の形状であってもよい。また、セル5の断面形状も、三角形、六角形、円形、楕円形、その他の形状であってもよい。   FIG. 4 shows a case where the left side of the honeycomb segment 2 serves as an exhaust gas inlet, and the exhaust gas flows into the honeycomb segment 2 from the open cells 5 (inflow cells) without being sealed. The exhaust gas flowing into the cell 5 (inflow cell) passes through the porous partition wall 6 and flows out from the other cell 5 (outflow cell). When passing through the partition walls 6, particulate matter (particulates) containing soot in the exhaust gas is captured by the partition walls 6. In this way, exhaust gas can be purified. By such trapping, particulate matter containing particulates (particulates) containing soot accumulates with time in the honeycomb segment 2 and the pressure loss increases, so regeneration that soot is burned is performed. 2 to 4 show the honeycomb segment 2 having a square cross section as a whole, it may be triangular, hexagonal or the like. The cross-sectional shape of the cell 5 may also be a triangle, a hexagon, a circle, an ellipse, or other shapes.

図2に示すように、接合材層9は、本発明の接合材から形成されており、ハニカムセグメント2の外周面に塗布されて、ハニカムセグメント2を接合するように機能する。接合材層9の塗布は、隣接しているそれぞれのハニカムセグメント2の外周面に行ってもよいが、隣接したハニカムセグメント2の相互間においては、対応した外周面の一方に対してだけ行ってもよい。このような対応面の片側だけへの塗布は、接合材層9の使用量を節約できる点で好ましい。接合材層9の厚さは、ハニカムセグメント2の相互間の接合力を勘案して決定され、例えば、0.5〜3.0mmの範囲で適宜選択される。   As shown in FIG. 2, the bonding material layer 9 is formed from the bonding material of the present invention, and is applied to the outer peripheral surface of the honeycomb segment 2 to function to bond the honeycomb segment 2. The bonding material layer 9 may be applied to the outer peripheral surfaces of the adjacent honeycomb segments 2, but only between one of the corresponding outer peripheral surfaces between the adjacent honeycomb segments 2. Also good. Such application to only one side of the corresponding surface is preferable in that the amount of the bonding material layer 9 used can be saved. The thickness of the bonding material layer 9 is determined in consideration of the bonding force between the honeycomb segments 2 and is appropriately selected within a range of 0.5 to 3.0 mm, for example.

本実施の形態に用いられるハニカムセグメント2の材料としては、強度、耐熱性の観点から、炭化珪素(SiC)、炭化珪素(SiC)を骨材としてかつ珪素(Si)を結合材として形成された珪素−炭化珪素系複合材料、窒化珪素、コージェライト、ムライト、アルミナ、スピネル、炭化珪素−コージェライト系複合材、珪素−炭化珪素複合材、リチウムアルミニウムシリケート、チタン酸アルミニウム、Fe−Cr−Al系金属からなる群から選択される少なくとも一種から構成された物を挙げることができる。中でも、炭化珪素(SiC)又は珪素−炭化珪素系複合材料から構成されてなるものが好ましい。   As a material of the honeycomb segment 2 used in the present embodiment, silicon carbide (SiC), silicon carbide (SiC) is used as an aggregate, and silicon (Si) is used as a binder from the viewpoint of strength and heat resistance. Silicon-silicon carbide composite material, silicon nitride, cordierite, mullite, alumina, spinel, silicon carbide-cordierite composite material, silicon-silicon carbide composite material, lithium aluminum silicate, aluminum titanate, Fe-Cr-Al system The thing comprised from at least 1 type selected from the group which consists of metals can be mentioned. Among these, those made of silicon carbide (SiC) or a silicon-silicon carbide based composite material are preferable.

ハニカムセグメント2の作製は、例えば、上述の材料から適宜選択したものに、メチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等のバインダー、界面活性剤、溶媒としての水等を添加して、可塑性の坏土とし、この坏土を上述の形状となるように押出成形し、次いで、マイクロ波、熱風等によって乾燥した後、焼結することにより行うことができる。   For example, the honeycomb segment 2 is prepared by adding a binder such as methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol, a surfactant, water as a solvent, and the like to those appropriately selected from the above materials. Thus, it is possible to obtain a plastic clay, extrude the clay so as to have the above-mentioned shape, and then dry it with microwaves, hot air or the like and then sinter.

セル5の目封じに用いる充填材7としては、ハニカムセグメント2と同様な材料を用いることができる。充填材7による目封じは、目封じをしないセル5をマスキングした状態で、ハニカムセグメント2の端面をスラリー状の充填材7に浸漬することにより開口しているセル5に充填することにより行うことができる。充填材7の充填は、ハニカムセグメント2の成形後における焼成前に行っても、焼成後に行ってもよいが、焼成前に行うことの方が、焼成工程が1回で終了するため好ましい。   As the filler 7 used for plugging the cells 5, the same material as that of the honeycomb segment 2 can be used. Sealing with the filler 7 is performed by filling the open cells 5 by immersing the end faces of the honeycomb segments 2 in the slurry-like filler 7 in a state where the cells 5 that are not sealed are masked. Can do. The filling of the filler 7 may be performed before or after firing after the formation of the honeycomb segment 2, but it is preferable to perform the filling before firing because the firing process is completed once.

以上のようなハニカムセグメント2の作製の後、ハニカムセグメント2の外周面にペースト状の接合材組成物を塗布し、接合材層9を形成し、所定の立体形状(ハニカム構造体1の全体構造)となるように複数のハニカムセグメント2を組み付け、この組み付けた状態で圧着した後、加熱乾燥する。このようにして、複数のハニカムセグメント2が一体的に接合された接合体が作製される。その後、この接合体を上述の形状に研削加工し、外周面をコーティング材4によって被覆し、加熱乾燥する。このようにして、図1に示すハニカム構造体1が作製される。コーティング材4の材質としては、接合材層9と同様のものを用いることができる。コーティング材4の厚さは、例えば、0.1〜5mmの範囲で適宜選択される。   After manufacturing the honeycomb segment 2 as described above, a paste-like bonding material composition is applied to the outer peripheral surface of the honeycomb segment 2 to form a bonding material layer 9, and a predetermined three-dimensional shape (the entire structure of the honeycomb structure 1) is formed. ), A plurality of honeycomb segments 2 are assembled so as to be pressure-bonded in this assembled state, and then dried by heating. In this manner, a joined body in which the plurality of honeycomb segments 2 are integrally joined is manufactured. Thereafter, the joined body is ground into the above-described shape, and the outer peripheral surface is covered with the coating material 4 and heated and dried. In this way, the honeycomb structure 1 shown in FIG. 1 is manufactured. As the material of the coating material 4, the same material as the bonding material layer 9 can be used. The thickness of the coating material 4 is appropriately selected within a range of 0.1 to 5 mm, for example.

以下、本発明を実施例によってさらに具体的に説明するが、本発明は、これらの実施例によっていかなる制限を受けるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

参考例1)
(ハニカムセグメントの作製)
ハニカムセグメント原料として、SiC粉末及び金属Si粉末を80:20の質量割合で混合し、これに造孔材、有機バインダー、界面活性剤及び水を添加して、可塑性の坏土を作製した。この坏土を押出成形し、乾燥して隔壁の厚さが310μm、セル密度が約46.5セル/cm(300セル/平方インチ)、断面が一辺35mmの正四角形、長さが152mmのハニカムセグメント成形体を得た。このハニカムセグメント成形体を、端面が市松模様状を呈するように、セルの両端面を目封じした。すなわち、隣接するセルが、互いに反対側の端部で封じられるように目封じを行った。目封じ材としては、ハニカムセグメント原料と同様な材料を用いた。セルの両端面を目封じし、乾燥させた後、大気雰囲気中約400℃で脱脂し、その後、Ar不活性雰囲気、約1450℃で焼成して、SiC結晶粒子をSiで結合させた、多孔質構造を有するハニカムセグメントを得た。
( Reference Example 1)
(Manufacture of honeycomb segments)
As a honeycomb segment raw material, SiC powder and metal Si powder were mixed at a mass ratio of 80:20, and a pore former, an organic binder, a surfactant and water were added thereto to produce a plastic clay. This kneaded material is extruded and dried, and the partition wall thickness is 310 μm, the cell density is about 46.5 cells / cm 2 (300 cells / square inch), the cross section is a regular square with a side of 35 mm, and the length is 152 mm. A honeycomb segment formed body was obtained. In this honeycomb segment molded body, both end faces of the cells were sealed so that the end faces had a checkered pattern. That is, the sealing was performed so that adjacent cells were sealed at opposite ends. As the plugging material, the same material as the honeycomb segment material was used. After sealing and drying both end faces of the cell, degreasing at about 400 ° C. in an air atmosphere, and then firing at about 1450 ° C. in an Ar inert atmosphere to bond SiC crystal particles with Si. A honeycomb segment having a quality structure was obtained.

(接合材組成物の調製)
表1に示す条件で、フィラーA及び/又はフィラーBを混合したものに、分散剤、発泡樹脂及び有機バインダー(CMC)を添加し、更にマトリックスとしてコロイダルシリカを混合し、ミキサーにて30分間混練を行い、種類及び組成比の異なるペースト状の接合材組成物(接合材組成物No.1〜13)をそれぞれ得た。尚、このときの接合材組成物中の全フィラーの割合は表1の「接合材組成物中のフィラー体積分率」欄のフィラーAとフィラーBの合計である。例えば、接合材組成物No.1の場合は、50%であり、また、接合材組成物中のマトリックスの割合は、表1の「接合材組成物中のフィラー体積分率」欄のフィラーAとフィラーBの合計を100から除したものである。例えば、接合材組成物No.1の場合は、50%である。また、表1の「その他」の欄、分散剤、発泡樹脂及び有機バインダーは、全フィラーおよびマトリックスの合計に対し、外配で添加した。
(Preparation of bonding material composition)
Under the conditions shown in Table 1, a dispersant, a foamed resin, and an organic binder (CMC) are added to a mixture of filler A and / or filler B, and colloidal silica is further mixed as a matrix and kneaded for 30 minutes with a mixer. Then, paste-like bonding material compositions (bonding material compositions No. 1 to 13) having different types and composition ratios were obtained. The ratio of all fillers in the bonding material composition at this time is the total of filler A and filler B in the “Filler volume fraction in bonding material composition” column of Table 1. For example, the bonding material composition No. In the case of 1, it is 50%, and the ratio of the matrix in the bonding material composition is 100 from the total of filler A and filler B in the “Filler volume fraction in bonding material composition” column of Table 1. Divided. For example, the bonding material composition No. In the case of 1, it is 50%. Moreover, the column of “Others” in Table 1, the dispersant, the foamed resin, and the organic binder were added externally with respect to the total of all fillers and the matrix.

(ハニカム構造体の作製)
ハニカムセグメントの外壁面に、厚さ約1mmとなるように接合材組成物No.1をコーティングして接合材層を形成し、その上に別のハニカムセグメントを載置する工程を繰り返し、4×4に組み合わされた16個のハニカムセグメントからなるハニカムセグメント積層体を作製し、適宜、外部より圧力を加えるなどして、全体を接合させた後、140℃、2時間乾燥してハニカムセグメント接合体を得た。得られたハニカムセグメント接合体の外周を円筒状に切断後、その外周面をコーティング材で塗布し、700℃、2時間、乾燥硬化させ、ハニカム構造体を得た。
(Preparation of honeycomb structure)
On the outer wall surface of the honeycomb segment, the bonding material composition No. 1 has a thickness of about 1 mm. 1 is coated to form a bonding material layer, and another honeycomb segment is placed thereon, and a honeycomb segment laminated body composed of 16 honeycomb segments combined in 4 × 4 is manufactured. After joining the whole by applying pressure from the outside, it was dried at 140 ° C. for 2 hours to obtain a joined honeycomb segment. The outer periphery of the obtained bonded honeycomb segment assembly was cut into a cylindrical shape, and the outer peripheral surface was applied with a coating material and dried and cured at 700 ° C. for 2 hours to obtain a honeycomb structure.

(接合材層(硬化後の接合材組成物)の評価)
得られたハニカム構造体の中の接合材部分(硬化後の接合材組成物)のヤング率、平均熱膨張係数、気孔率は、ハニカム構造体の接合材部分を切断して所定の形状のサンプルを切り出し、JIS R1601に準じた3点曲げ試験における荷重-変位曲線よりヤング率を、JIS R1618に順じた平均線熱膨張係数を、アルキメデス法により気孔率をそれぞれ測定した。その結果を表2に示す。
(Evaluation of bonding material layer (bonding material composition after curing))
The Young's modulus, average thermal expansion coefficient, and porosity of the bonding material portion (cured bonding material composition) in the obtained honeycomb structure were determined by cutting the bonding material portion of the honeycomb structure into a predetermined shape. The Young's modulus was measured from the load-displacement curve in a three-point bending test according to JIS R1601, the average linear thermal expansion coefficient in accordance with JIS R1618, and the porosity was measured by Archimedes method. The results are shown in Table 2.

(ハニカム接合体の評価)
得られたハニカム構造体の接合状態、急速加熱試験(バーナースポーリング試験B−sp)、急速冷却試験(電気炉スポーリング試験E−sp)及びエンジン試験(E/G試験)をそれぞれ行った。その結果を表2に示す。
(Evaluation of honeycomb bonded body)
A bonding state, a rapid heating test (Burner spalling test B-sp), a rapid cooling test (electric furnace spalling test E-sp), and an engine test (E / G test) of the obtained honeycomb structure were respectively performed. The results are shown in Table 2.

(1)接合状態
接合・硬化後の接合部の状態を目視観察するとともに、接合強度を手の感触で観測した。尚、表2の表示では、○の場合、強固な接合状態でクラックや欠陥が無い状態であり、×の場合、簡単にはがれるあるいは外れる程度の接合状態、もしくはクラックや欠陥が多い状態を意味する。
(1) Joining state While visually observing the state of the joined part after joining and curing, the joining strength was observed by hand feeling. In addition, in the display of Table 2, in the case of ○, it is a state in which there is no crack or defect in a strong bonding state, and in the case of x, it means a bonding state that is easily peeled or detached, or a state in which there are many cracks or defects. .

(2)「B−sp」試験[バーナースポーリング試験(急速加熱試験)]
ハニカム構造体にバーナーで加熱した空気を流すことにより中心部分と外側部分との温度差をつくり、ハニカム構造体のクラックの発生しない温度により耐熱衝撃性を評価する試験(温度が高いほど耐熱衝撃性が高い)である。尚、表2の表示では、○の場合、クラック発生なし、×の場合、クラック発生ありを意味する。
(2) “B-sp” test [Burner spalling test (rapid heating test)]
A test that creates a temperature difference between the central part and the outer part by flowing air heated by a burner through the honeycomb structure, and evaluates the thermal shock resistance based on the temperature at which the honeycomb structure does not crack. Is high). In Table 2, the symbol “◯” indicates that no crack is generated, and the symbol “×” indicates that a crack is generated.

(3)「E−sp」試験[電気炉スポーリング試験(急速冷却試験)]
ハニカム構造体を電気炉にて550℃×2h加熱し、均一な温度(450℃)にした後、室温に取り出し、ハニカム構造体のクラック発生の有無により耐熱衝撃性を評価する試験である。尚、表2の表示では、○の場合、クラック発生なし、×の場合、クラック発生ありを意味する。
(3) “E-sp” test [Electric furnace spalling test (rapid cooling test)]
In this test, the honeycomb structure is heated in an electric furnace at 550 ° C. for 2 hours to obtain a uniform temperature (450 ° C.), taken out to room temperature, and the thermal shock resistance is evaluated based on the presence or absence of cracks in the honeycomb structure. In Table 2, the symbol “◯” indicates that no crack is generated, and the symbol “×” indicates that a crack is generated.

(4)「E/G」試験[エンジン試験1000℃]
フィルター再生のために堆積したパーティキュレートを燃焼させ、ハニカム中心止部の温度が1000℃となる条件にて、ハニカム構造体のクラックの有無により耐熱衝撃性を評価する試験である。尚、表2の表示では、○の場合、クラック発生なし、×の場合、クラック発生ありを意味する。
(4) "E / G" test [engine test 1000 ° C]
This test evaluates thermal shock resistance based on the presence or absence of cracks in the honeycomb structure under the condition that the particulates deposited for filter regeneration are burned and the temperature of the honeycomb center stop is 1000 ° C. In Table 2, the symbol “◯” indicates that no crack is generated, and the symbol “×” indicates that a crack is generated.

考例2〜1、比較例1及び比較例2)
参考例2〜11は、参考例1において、接合材を、表1に示す接合材組成物No.2〜11に変えたこと以外、参考例1と同様に、ハニカム構造体を作製した。また、比較例1及び比較例2は、接合材組成物No.12及びNo.13に変えたこと以外は参考例1と同様に、ハニカム構造体を作製した。それぞれ得られたハニカム構造体(考例2〜1、比較例1及び比較例2)について、参考例1と同様の評価及び試験を行った。その結果を表2に示す。
(Ref Reference Example 2 to 1, Comparative Example 1 and Comparative Example 2)
Reference Examples 2 to 11 are the same as those in Reference Example 1 except that the bonding materials are the bonding material composition Nos. 1 and 2 shown in Table 1. A honeycomb structure was manufactured in the same manner as in Reference Example 1 except that it was changed to 2-11. Moreover, Comparative Example 1 and Comparative Example 2 are bonding material composition Nos. 12 and no. A honeycomb structure was manufactured in the same manner as in Reference Example 1 except that it was changed to 13. The honeycomb structures obtained respectively (Ref Reference Example 2 to 1, Comparative Example 1 and Comparative Example 2) were subjected to the same evaluation and test as in Reference Example 1. The results are shown in Table 2.

Figure 0005469305
Figure 0005469305

Figure 0005469305
Figure 0005469305

(考察:参考例1〜1、比較例1及び比較例2)
表2の結果から、参考例1〜1は、接合材のヤング率が被接合物の20%以上、かつ、接合材の平均線熱膨張係数が被接合物の70%以下であるため、各種試験後、ハニカム構造体にクラックは見られなかった。
(Discussion: ginseng Reference Example 1 to 1 1, Comparative Example 1 and Comparative Example 2)
The results in Table 2, ginseng Reference Example 1 to 1 1, the Young's modulus of the bonding material 20% or more of the objects to be bonded, and, since the average linear thermal expansion coefficient of the bonding material is less than 70% of the object to be bonded After various tests, no cracks were found in the honeycomb structure.

一方、比較例1は、接合材の線熱膨張係数/被接合物の線熱膨張係数が70%より大きいため、各種試験後、クラックが発生した。また、比較例2は、接合材のヤング率/被接合物のヤング率が20%未満であるため、接合状態が悪く、以降の試験に供する試料が作製できなかった。   On the other hand, in Comparative Example 1, the coefficient of linear thermal expansion of the bonding material / the coefficient of linear thermal expansion of the object to be joined was greater than 70%, and therefore cracks occurred after various tests. In Comparative Example 2, since the Young's modulus of the bonding material / Young's modulus of the object to be bonded was less than 20%, the bonding state was poor and a sample to be used for the subsequent tests could not be prepared.

本発明の接合材は、排ガス用の捕集フィルタ、中でも、ディーゼルエンジンの排ガス中の粒子状物質(パティキュレート)等を捕集するディーゼルパティキュレートフィルタ(DPF)の作製時に好適に用いることができる。   The bonding material of the present invention can be suitably used for producing a collection filter for exhaust gas, and in particular, a diesel particulate filter (DPF) that collects particulate matter (particulates) and the like in exhaust gas from a diesel engine. .

Claims (7)

25〜800℃における平均線熱膨張係数が被接合物の50%以下のフィラー(1)と、ヤング率が100GPa以上のフィラー(2)との2種以上のフィラー及びマトリックスから主に構成された接合材組成物によって形成され、
硬化後のヤング率が被接合物の20%以上であり、且つ硬化後の25〜800℃における平均線熱膨張係数が0.1×10−6〜2.0×10−6・K−1かつ被接合物の70%以下であるとともに、
前記被接合物の材料は、炭化珪素(SiC)、炭化珪素(SiC)を骨材としてかつ珪素(Si)を結合材として形成された珪素−炭化珪素系複合材料、珪素−炭化珪素複合材からなる群から選択される少なくとも一種から構成され、
前記フィラー(1)と前記フィラー(2)との総和の体積分率と前記マトリックス体積分率とが等しく
前記フィラー(1)と前記フィラー(2)との総和における体積分率がフィラー(1):フィラー(2)=550〜910であり、
前記フィラー(1)が、コージェライトであり、
前記フィラー(2)が、炭化珪素、窒化ホウ素、タルク、マイカ、及びガラスフレークからなる群から選択された少なくとも1種以上であり、かつ、板状粒子である窒化ホウ素、タルク、マイカ、およびガラスフレークからなる群から選ばれる少なくとも1種以上を含み、
前記マトリックスが、コロイダルシリカ、コロイダルアルミナ、エチルシリケート、水ガラス、シリカポリマー、リン酸アルミニウム、ベントナイトからなる群から選択された少なくとも1種以上である接合材。
Mainly composed of two or more fillers and a matrix of a filler (1) having an average linear thermal expansion coefficient at 25 to 800 ° C. of 50% or less of the article to be joined and a filler (2) having a Young's modulus of 100 GPa or more. Formed by the bonding material composition,
The Young's modulus after curing is 20% or more of the article to be bonded, and the average linear thermal expansion coefficient at 25 to 800 ° C. after curing is 0.1 × 10 −6 to 2.0 × 10 −6 · K −1. And 70% or less of the object to be joined,
The material of the object to be bonded is silicon carbide (SiC), silicon carbide (SiC) is formed as a bonding material a and silicon (Si) as aggregate - silicon carbide based composite material, silicofluoride-containing - carbide composites is composed of at least one selected one of Ranaru group,
The volume fraction of the sum of the filler (1) and the filler (2) is equal to the volume fraction of the matrix,
Filler (1) the volume fraction of the sum of said filler (1) and the filler (2): filler (2) = 5 0: 50-9 0: is 10,
The filler (1) is a Kojerai bets,
Wherein the filler (2), silicon carbide, nitride boron, talc, and a mica, and at least one or more selected from the group consisting of glass flakes, and boron nitride is a plate-like particles, talc, mica, and Including at least one selected from the group consisting of glass flakes,
The bonding material, wherein the matrix is at least one selected from the group consisting of colloidal silica, colloidal alumina, ethyl silicate, water glass, silica polymer, aluminum phosphate, and bentonite.
前記フィラー(1)の25〜800℃における平均線熱膨張係数が、2.5×10−6・K−1以下である請求項1に記載の接合材。 2. The bonding material according to claim 1, wherein the filler (1) has an average linear thermal expansion coefficient at 25 to 800 ° C. of 2.5 × 10 −6 · K −1 or less. 前記マトリックスが、コロイダルシリカである請求項1または2に記載の接合材。   The bonding material according to claim 1, wherein the matrix is colloidal silica. ハニカムセグメントの接合に用いる請求項1〜3のいずれかに記載の接合材。   The bonding material according to claim 1, which is used for bonding honeycomb segments. 請求項1〜4のいずれかに記載の接合材を得るための接合材の製造方法であって、
前記フィラー(1)、前記フィラー(2)、及び前記マトリックスを混合し、混練を行うことにより、ペースト状の接合材組成物を得る工程を含む、接合材の製造方法。
A method for producing a bonding material for obtaining the bonding material according to claim 1,
The manufacturing method of a joining material including the process of obtaining the paste-like joining material composition by mixing the said filler (1), the said filler (2), and the said matrix, and knead | mixing.
請求項1〜4のいずれかに記載の接合材で、複数のセラミックス部材を接合して作製されたセラミックス構造体。   A ceramic structure produced by bonding a plurality of ceramic members with the bonding material according to claim 1. 請求項1〜4のいずれかに記載の接合材で、複数のハニカムセグメントを接合して作製されたハニカム構造体。   A honeycomb structure manufactured by bonding a plurality of honeycomb segments with the bonding material according to claim 1.
JP2007550217A 2005-12-14 2006-12-14 Bonding material, manufacturing method thereof, and honeycomb structure using the same Active JP5469305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007550217A JP5469305B2 (en) 2005-12-14 2006-12-14 Bonding material, manufacturing method thereof, and honeycomb structure using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005360634 2005-12-14
JP2005360634 2005-12-14
JP2007550217A JP5469305B2 (en) 2005-12-14 2006-12-14 Bonding material, manufacturing method thereof, and honeycomb structure using the same
PCT/JP2006/324908 WO2007069674A1 (en) 2005-12-14 2006-12-14 Bonding material, process for producing the same, and honeycomb structure made with the same

Publications (2)

Publication Number Publication Date
JPWO2007069674A1 JPWO2007069674A1 (en) 2009-05-28
JP5469305B2 true JP5469305B2 (en) 2014-04-16

Family

ID=38162976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007550217A Active JP5469305B2 (en) 2005-12-14 2006-12-14 Bonding material, manufacturing method thereof, and honeycomb structure using the same

Country Status (5)

Country Link
US (1) US8039086B2 (en)
EP (1) EP1964823A4 (en)
JP (1) JP5469305B2 (en)
KR (1) KR20080073792A (en)
WO (1) WO2007069674A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069674A1 (en) 2005-12-14 2007-06-21 Ngk Insulators, Ltd. Bonding material, process for producing the same, and honeycomb structure made with the same
PL2006264T3 (en) * 2006-03-28 2013-09-30 Ngk Insulators Ltd Honeycomb structure and method for producing same
EP2008985B1 (en) 2006-03-30 2015-06-24 NGK Insulators, Ltd. Bonded element and honeycomb sutructure using the same
US8956436B2 (en) 2006-06-30 2015-02-17 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10501375B2 (en) 2006-06-30 2019-12-10 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US8092624B2 (en) 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same
EP1939261B1 (en) 2006-12-25 2010-03-31 Ngk Insulators, Ltd. Joined body and method for manufacturing the same
JP4997068B2 (en) * 2006-12-25 2012-08-08 日本碍子株式会社 JOINT BODY AND MANUFACTURING METHOD THEREOF
EP2138475B1 (en) * 2007-03-26 2018-10-03 NGK Insulators, Ltd. Bonding material composition, process for producing the same, and bonded article and process for producing the same
JP5486305B2 (en) 2007-07-26 2014-05-07 日本碍子株式会社 Bonding material for honeycomb structure and honeycomb structure using the bonding material
KR20100135699A (en) * 2007-12-17 2010-12-27 이머리 Ceramic honeycomb structures
WO2009118873A1 (en) * 2008-03-27 2009-10-01 イビデン株式会社 Honeycomb structure
PL2358359T3 (en) 2008-12-15 2019-10-31 Unifrax I Llc Ceramic honeycomb structure skin coating
US8999483B2 (en) 2010-11-29 2015-04-07 Corning Incorporated Honeycomb structure comprising an outer cement skin and a cement therefor
JPWO2012105478A1 (en) * 2011-02-04 2014-07-03 日本碍子株式会社 Silicon carbide-based material, honeycomb structure, and electrically heated catalyst carrier
US10526249B2 (en) * 2012-11-30 2020-01-07 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
DK2981513T3 (en) * 2013-04-03 2019-04-29 Dinex As HONEY BOARD UNIT
RU2015150550A (en) * 2013-06-06 2017-07-17 Порвэйр Плс CERAMIC FOAM FILTERS WITH BN OR Y2O3 COATING APPLICABLE FOR FILTERING ALUMINUM-LITHIUM ALLOYS AND OTHER REACTIVE ALLOYS
JP6389045B2 (en) 2014-03-04 2018-09-12 日本碍子株式会社 Honeycomb structure
JP6320798B2 (en) 2014-03-04 2018-05-09 日本碍子株式会社 Honeycomb structure
JP6231910B2 (en) * 2014-03-14 2017-11-15 日本碍子株式会社 Plugged honeycomb structure
JP6729143B2 (en) * 2015-10-29 2020-07-22 三菱マテリアル株式会社 Resin composition, bonded body and semiconductor device
CN108911717B (en) * 2018-08-20 2021-04-13 福建省德化县昱晟工艺品有限责任公司 Preparation method of ceramic with good thermal shock resistance
CN109437876B (en) * 2018-09-25 2021-07-27 天津大学 Ceramic rotational flow sheet component and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293297A (en) * 1988-09-29 1990-04-04 Ngk Insulators Ltd Ceramic heat exchanger and manufacture thereof
WO2003048072A1 (en) * 2001-12-06 2003-06-12 Ngk Insulators, Ltd. Honeycomb structure body and method for manufacturing the same
JP2004059402A (en) * 2002-07-31 2004-02-26 Taiheiyo Cement Corp Low thermal expansion ceramic junction body
JP2004261623A (en) * 2003-01-08 2004-09-24 Ngk Insulators Ltd Honeycomb structure
JP2004331485A (en) * 2003-05-12 2004-11-25 Ngk Insulators Ltd Honeycomb structure and its manufacturing process
JP2005035839A (en) * 2003-07-15 2005-02-10 Taiheiyo Cement Corp Low thermal expansion ceramic joined body
WO2005047209A1 (en) * 2003-11-12 2005-05-26 Ngk Insulators, Ltd. Honeycomb structure
JP2005154202A (en) * 2003-11-26 2005-06-16 Ngk Insulators Ltd Honeycomb structure, its production method, and joining material
WO2005089901A1 (en) * 2004-03-23 2005-09-29 Ngk Insulators, Ltd. Honeycomb structure and method for manufacturing the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2637675A (en) * 1952-03-07 1953-05-05 Glidden Co Process for preparing laminated bodies of cellulosic materials and product
US2933552A (en) * 1955-06-06 1960-04-19 Champion Spark Plug Co Composite glass seal
US4090881A (en) * 1976-06-30 1978-05-23 The Babcock & Wilcox Company High temperature refractory adhesive
JP3121497B2 (en) 1994-07-14 2000-12-25 イビデン株式会社 Ceramic structure
DK1306358T4 (en) 1996-01-12 2012-10-22 Ibiden Co Ltd sealing
DE20023988U1 (en) * 1999-09-29 2008-09-18 IBIDEN CO., LTD., Ogaki-shi Ceramic filter arrangement
JP3889194B2 (en) 2000-01-13 2007-03-07 日本碍子株式会社 Honeycomb structure
WO2002026932A2 (en) * 2000-09-26 2002-04-04 Duke University Rna aptamers and methods for identifying the same
JP4246425B2 (en) 2001-10-15 2009-04-02 日本碍子株式会社 Honeycomb filter
JP3893049B2 (en) * 2001-11-20 2007-03-14 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
DE60319756T3 (en) 2002-02-05 2014-04-17 Ibiden Co., Ltd. Honeycomb filter for exhaust gas purification, adhesive, coating material and method for producing such a honeycomb filter body
JPWO2003067042A1 (en) * 2002-02-05 2005-06-02 イビデン株式会社 Honeycomb filter for exhaust gas purification
JP4246475B2 (en) 2002-04-26 2009-04-02 日本碍子株式会社 Manufacturing method of honeycomb structure
US7314496B2 (en) * 2002-09-13 2008-01-01 Ibiden Co., Ltd. Honeycomb structure
US7147804B2 (en) * 2003-01-24 2006-12-12 E. I. Du Pont De Nemours And Company Terminal electrode compositions for multilayer ceramic capacitors
JP4267947B2 (en) 2003-03-19 2009-05-27 日本碍子株式会社 Honeycomb structure
US8663545B2 (en) 2004-03-31 2014-03-04 Ngk Insulators, Ltd. Method of manufacturing honeycomb structure and honeycomb structure
US7510755B2 (en) 2004-04-30 2009-03-31 Ngk Insulators, Ltd. Honeycomb structure and method for producing same
KR100810476B1 (en) * 2005-03-28 2008-03-07 이비덴 가부시키가이샤 Honeycomb structure
JP5037809B2 (en) * 2005-10-25 2012-10-03 日本碍子株式会社 Honeycomb structure
WO2007069674A1 (en) 2005-12-14 2007-06-21 Ngk Insulators, Ltd. Bonding material, process for producing the same, and honeycomb structure made with the same
EP1806329A3 (en) * 2006-01-05 2008-09-03 Asahi Glass Company, Limited Composition for ceramic bonding and ceramic bonded article
WO2007111279A1 (en) 2006-03-24 2007-10-04 Ngk Insulators, Ltd. Junction element, junction material composition, honeycomb segment junction element, and honeycomb structure therefrom
US8092624B2 (en) 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293297A (en) * 1988-09-29 1990-04-04 Ngk Insulators Ltd Ceramic heat exchanger and manufacture thereof
WO2003048072A1 (en) * 2001-12-06 2003-06-12 Ngk Insulators, Ltd. Honeycomb structure body and method for manufacturing the same
JP2004059402A (en) * 2002-07-31 2004-02-26 Taiheiyo Cement Corp Low thermal expansion ceramic junction body
JP2004261623A (en) * 2003-01-08 2004-09-24 Ngk Insulators Ltd Honeycomb structure
JP2004331485A (en) * 2003-05-12 2004-11-25 Ngk Insulators Ltd Honeycomb structure and its manufacturing process
JP2005035839A (en) * 2003-07-15 2005-02-10 Taiheiyo Cement Corp Low thermal expansion ceramic joined body
WO2005047209A1 (en) * 2003-11-12 2005-05-26 Ngk Insulators, Ltd. Honeycomb structure
JP2005154202A (en) * 2003-11-26 2005-06-16 Ngk Insulators Ltd Honeycomb structure, its production method, and joining material
WO2005089901A1 (en) * 2004-03-23 2005-09-29 Ngk Insulators, Ltd. Honeycomb structure and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2007069674A1 (en) 2009-05-28
KR20080073792A (en) 2008-08-11
WO2007069674A1 (en) 2007-06-21
US20080248238A1 (en) 2008-10-09
EP1964823A4 (en) 2010-08-04
US8039086B2 (en) 2011-10-18
EP1964823A1 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP5469305B2 (en) Bonding material, manufacturing method thereof, and honeycomb structure using the same
JP5485546B2 (en) Bonded body, honeycomb segment bonded body, and honeycomb structure using the same
JP5367363B2 (en) Bonded body, bonded material composition, honeycomb segment bonded body, and honeycomb structure using the same
JP4927710B2 (en) Honeycomb structure
EP2644580B1 (en) Honeycomb structure
JP5244619B2 (en) Bonding material composition and method for producing the same, joined body and method for producing the same
KR20090020547A (en) Honeycomb structure and bonding material to be used for same
JP4997068B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP5103378B2 (en) Honeycomb structure
WO2013125713A1 (en) Honeycomb structure
JP4997064B2 (en) Bonding material composition and method for producing the same, joined body and method for producing the same
JP5478243B2 (en) Bonding material composition and method for producing the same, joined body and method for producing the same
JP5318753B2 (en) JOINT BODY, MANUFACTURING METHOD THEREOF, JOINT MATERIAL COMPOSITION, AND MANUFACTURING METHOD THEREOF
JPWO2008096569A1 (en) DPF honeycomb segment bonded body and bonded material composition for bonded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140131

R150 Certificate of patent or registration of utility model

Ref document number: 5469305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150