JP2005254412A - Vacuum suction device - Google Patents
Vacuum suction device Download PDFInfo
- Publication number
- JP2005254412A JP2005254412A JP2004071840A JP2004071840A JP2005254412A JP 2005254412 A JP2005254412 A JP 2005254412A JP 2004071840 A JP2004071840 A JP 2004071840A JP 2004071840 A JP2004071840 A JP 2004071840A JP 2005254412 A JP2005254412 A JP 2005254412A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum suction
- suction device
- mounting
- placement
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manipulator (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本発明は、例えば、ラップ等の湿式加工を行うために半導体ウエハやガラス基板などの被処理物を吸着保持する真空吸着装置に関するものである。 The present invention relates to a vacuum suction apparatus for sucking and holding an object to be processed such as a semiconductor wafer or a glass substrate in order to perform wet processing such as lapping.
半導体装置の製造工程においては、半導体ウエハを搬送、加工、検査する場合に、真空圧を利用した真空吸着装置が一般的に用いられている。このような真空吸着装置としては、吸着面に開口した複数の貫通孔を有するものが一般的であったが、貫通孔のみで吸着作用をするため、吸着面内の吸着力が不均一となりやすく、半導体ウエハの加工精度が低下するなどの問題があった。 In the manufacturing process of a semiconductor device, a vacuum suction device using a vacuum pressure is generally used when a semiconductor wafer is transported, processed, or inspected. As such a vacuum suction device, a device having a plurality of through holes opened in the suction surface is generally used. However, since the suction action is performed only with the through holes, the suction force in the suction surface is likely to be uneven. There has been a problem that the processing accuracy of the semiconductor wafer is lowered.
そこで、より均一な吸着を行うために、多孔質部材からなるチャック本体を保持金具に取り付けた真空吸着装置が検討されている。例えば、図1に示したように、多孔質体からなる載置部1を支持部2に樹脂またはガラスなどの接着剤により接合してなり、下方の吸引孔3より真空吸引することにより、上記載置部の吸着面1aに半導体ウエハWを吸着するものが提案されており(例えば、特許文献1、2参照)、従来から図1のような真空吸着装置が知られている。
このような半導体ウエハの真空吸着装置では、載置部上面の平坦度を高める必要があるため、ダイヤモンド砥石等による載置部上面の平面研削加工が行われる。しかしながら載置部を構成する多孔質体と支持部を構成する緻密質体とは強度および硬度が相違し加工性に差異があるため、載置部上面の研削加工の際に支持部と載置部との接合部に図2に示したような段差が生じていた。このような段差があると、載置面の平坦度が得られないだけでなく、吸気漏れが生じやすくなるため、均一な吸着が難しくなる。その結果、被処理物である半導体ウエハの加工精度が悪くなるという問題があった。 In such a semiconductor wafer vacuum suction apparatus, since it is necessary to increase the flatness of the upper surface of the mounting portion, surface grinding of the upper surface of the mounting portion is performed using a diamond grindstone or the like. However, since the porous body constituting the placement portion and the dense body constituting the support portion are different in strength and hardness and in workability, the support portion and the placement portion are placed during grinding of the placement portion upper surface. The level | step difference as shown in FIG. 2 has arisen in the junction part with a part. If there is such a step, not only the flatness of the mounting surface cannot be obtained, but also air intake leakage tends to occur, so that uniform suction becomes difficult. As a result, there is a problem that the processing accuracy of the semiconductor wafer as the object to be processed is deteriorated.
さらに、従来の真空吸着装置の作製方法である載置部材と支持部材を接着する方法では、載置部側面とそれを取囲む支持部側面との界面に生じる隙間は不可避であったため、吸気漏れを起こし、載置面の吸着力が不均一化するためウエハの加工精度の低下を招来していた。
本発明は、かかる事情に鑑みてなされたものであって、載置部と支持部との接合部の段差および隙間を無くし、ウエハの平坦加工精度を大幅に向上させることを目的とする。
Furthermore, in the conventional method of bonding a mounting member and a supporting member, which is a method for manufacturing a vacuum suction device, a gap generated at the interface between the side surface of the mounting portion and the side surface of the supporting portion surrounding it is unavoidable. As a result, the adsorption force on the mounting surface becomes non-uniform, leading to a reduction in wafer processing accuracy.
The present invention has been made in view of such circumstances, and an object of the present invention is to eliminate steps and gaps at the joint portion between the mounting portion and the support portion, and to greatly improve the wafer flat processing accuracy.
上記した本発明の目的は、下記した手段によって達成される。
(1)開気孔を備えた多孔質組織を有し、その表面で被処理物を吸着保持する載置部と、前記載置部を支持し、前記載置部が有する開気孔と連通する吸気孔を備えた支持部とを、具備する真空吸着装置であって、前記載置部と前記支持部とは、実質的に隙間なく直接に接合されており、かつ、前記載置部上縁には支持部側に鍔状に張り出した薄肉部が形成されていることを特徴とする真空吸着装置。
(2)前記(1)において、前記載置部の鍔状薄肉部上面で被処理物の外縁が吸着保持されていることを特徴とする真空吸着装置。
The object of the present invention described above is achieved by the following means.
(1) having a porous structure with open pores, a placement portion that holds the object to be treated by adsorption on its surface, and an intake air that supports the placement portion and communicates with the open pores of the placement portion A vacuum suction device comprising a support portion provided with a hole, wherein the placement portion and the support portion are directly joined substantially without a gap, and on the upper edge of the placement portion. Is a vacuum suction device characterized in that a thin-walled portion protruding in a hook shape is formed on the support portion side.
(2) The vacuum suction apparatus according to (1), wherein the outer edge of the object to be processed is sucked and held on the upper surface of the bowl-shaped thin portion of the mounting portion.
本発明によれば、多孔質体からなる載置部と緻密質体からなる支持部とを具備する真空吸着装置において、載置部上縁部の支持部材側に鍔状に張り出した載置部と同質の薄肉部を形成したことにより、載置面の研削加工時に載置部材と支持部材の加工性の違いに起因して生じる段差を極めて小さく抑えることができる。また、被吸着物を均一に吸着できることから、半導体ウエハ等被処理物の極めて高精度な加工が可能となる。 According to the present invention, in the vacuum suction device including the mounting portion made of the porous body and the support portion made of the dense body, the mounting portion projecting like a bowl on the support member side of the upper edge portion of the mounting portion. By forming the thin wall portion of the same quality as the above, it is possible to suppress the step generated due to the difference in workability between the mounting member and the support member during grinding of the mounting surface. In addition, since the object to be adsorbed can be adsorbed uniformly, it is possible to process the object to be processed such as a semiconductor wafer with extremely high accuracy.
以下、図面を参照して、本発明の実施形態について説明する。
図3は本発明の一実施形態に係る真空吸着装置の概略構成を示す断面図であり、図4および図5は要部断面の拡大図である。多孔質体からなる載置部4と、該載置部の外縁を囲繞、支持する緻密質体からなる支持部5と、該支持部に形成された吸引部6とを具備しており、載置面4a上に、被処理物として例えば半導体ウエハWを載置する。載置部4と支持部5との接合界面は実質的に隙間はなく直接に接合されている。ここで「実質的に隙間はなく直接に接合されている」とは、載置部の多孔質構造が支持部材の界面と接していることを指す。吸引部6は、載置部の下面側に支持部5を貫通するように設けられた孔状を有しており、吸引部6を介して図示しない真空ポンプにより吸引することにより、載置部4の載置面4aに半導体ウエハWが真空吸着される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 3 is a cross-sectional view showing a schematic configuration of a vacuum suction apparatus according to an embodiment of the present invention, and FIGS. A mounting
ここで、吸着面となる載置面4aは、載置部4と載置部周囲の支持部5とともに研磨加工されることにより形成される。本発明に係る真空吸着装置においては、載置面の研磨加工の際、載置部上縁部の支持部材側に鍔状に張り出した載置部と同質の薄肉部4bを形成したことにより、載置部材と支持部材の強度および硬度差に起因して生じる段差を極めて小さく抑えることができる。ただし、鍔状薄肉部4bと薄肉部に係らない支持部上面5aとの間には段差が生じてしまうことから、半導体ウエハ等の被吸着物の外縁部は鍔状薄肉部4b上で保持するようにすることが好ましい。(請求項2に係わる構成要件である。)
Here, the
ただし、鍔状薄肉部は載置部と同質の多孔体であるため、被吸着物の外縁を鍔上部分で保持すると、吸気漏れが生じてしまう。しかしながら、鍔状部分を薄化することで、吸気漏れによる吸着力の低下を抑えることができる。また、吸気漏れが生じても、鍔状部分は均質な多孔質体であり、支持部材と隙間なく接合されていることから、吸気漏れが局部的に発生することはなく、吸着力にばらつきが発生することはない。したがって、半導体ウエハ等の被処理物を均一に吸着することができ、研削精度を高めることができる。 However, since the bowl-shaped thin part is a porous body of the same quality as the placement part, if the outer edge of the object to be adsorbed is held by the upper part, intake air leakage occurs. However, by reducing the thickness of the bowl-shaped portion, it is possible to suppress a decrease in the suction force due to intake air leakage. Even if air intake leakage occurs, the bowl-shaped part is a homogeneous porous body and is joined to the support member without any gaps, so that air intake leakage does not occur locally and the adsorption force varies. It does not occur. Therefore, a workpiece such as a semiconductor wafer can be adsorbed uniformly, and the grinding accuracy can be increased.
ここで、鍔状薄肉部の厚さ、幅等の寸法形状は特に限定されるものではない。しかしながら、鍔状部分4bの幅が狭すぎたり、厚さが大きすぎたりすると支持部5aとの間に生じる段差の影響が大きくなる。逆に鍔状部分4bの厚さが小さすぎると、載置部と同質の鍔状部分4bを設けた効果が小さくなり、鍔状部分4bと載置面4aとの間に段差が生じてしまう。したがって、適度な厚みと幅を持たせる必要がある。具体的には、所望の吸着力が得られるように、載置部材の気孔径および粒子径、被吸着物の大きさ等を考慮して決定する。
Here, the dimensional shape such as the thickness and width of the bowl-shaped thin portion is not particularly limited. However, if the width of the bowl-
上記した本発明に係る真空吸着装置は、アルミナ等のセラミックス粉末およびガラス粉末に、水等の溶媒を加えて混合してスラリーを調整するスラリー調整工程と、前記スラリーを載置部が形成される凹部を設けた支持部の該空隙に充填するスラリー充填工程と、空隙にスラリーが充填された支持部をガラスの軟化点以上の温度で焼成する焼成工程とからなる製法により作製される。したがって、本発明に係る真空吸着装置のように載置部材および支持部材の合せ面が比較的複雑な構造を有しているため従来の方法では極めて高精度の加工が必要であった場合であっても、精度加工をすることなく容易に作製することできる。 The vacuum adsorption apparatus according to the present invention includes a slurry adjustment step of adjusting a slurry by adding a solvent such as water to a ceramic powder such as alumina and a glass powder, and a placement portion for forming the slurry. It is produced by a manufacturing method comprising a slurry filling step for filling the voids of the support portion provided with the recesses and a firing step for firing the support portion filled with the slurry in the voids at a temperature equal to or higher than the softening point of the glass. Therefore, since the mating surfaces of the mounting member and the supporting member have a relatively complicated structure as in the vacuum suction device according to the present invention, the conventional method requires extremely high-precision processing. However, it can be easily manufactured without precision processing.
次に本発明の真空吸着装置は、前記支持部がアルミナ、窒化珪素、炭化珪素、ジルコニアから選ばれるセラミックスの1種からなり、かつ、載置部がアルミナおよびガラス、または、炭化珪素およびガラスからなることを特徴とする。 Next, in the vacuum suction device of the present invention, the support portion is made of one type of ceramics selected from alumina, silicon nitride, silicon carbide, and zirconia, and the mounting portion is made of alumina and glass, or silicon carbide and glass. It is characterized by becoming.
ここで、多孔質体からなる載置部の気孔は連通しており、平均気孔径が10〜150μm、気孔率が20〜40%とすることが好ましく、このような気孔径および気孔率を得るためには、前記載置部のもう一方の構成原料であるアルミナ粉末または炭化珪素粉末の平均粒径が30μm〜500μmのものを使用することが好ましい。 Here, the pores of the mounting portion made of a porous body are in communication, and the average pore diameter is preferably 10 to 150 μm and the porosity is preferably 20 to 40%, and such pore diameter and porosity are obtained. For this purpose, it is preferable to use an alumina powder or silicon carbide powder having an average particle size of 30 μm to 500 μm, which is another constituent material of the mounting portion.
次に、前記載置部の構成成分であるガラスの熱膨張係数が前記支持部および前記載置部のもう一方の構成成分であるセラミックスの熱膨張係数より小さいものを使用することが好ましい。
その理由は、低熱膨張のガラスを使用することにより、焼結後の多孔質体と支持部材との界面の隙間をなくすことができ、また、多孔質体において結合材としての役割を有するガラスに圧縮応力が加わった状態が望ましいからである。
Next, it is preferable to use a glass whose thermal expansion coefficient is smaller than that of the ceramic which is the other constituent component of the support portion and the mounting portion.
The reason for this is that by using low thermal expansion glass, it is possible to eliminate the gap at the interface between the porous body after sintering and the support member, and to the glass having a role as a binder in the porous body. This is because a state where compressive stress is applied is desirable.
また、本発明では、前記載置部の構成原料となるガラス粉末の平均粒子径が前記載置部のもう一方の構成原料であるセラミックス粉末の平均粒子径より小さい方が好ましい。
その理由は、ガラス粉末の平均粒径がセラミックス粉末よりも大きいと、セラミックス粉末の充填を阻害するため、ガラス軟化点以上で焼結する際に焼成収縮を起こすからである。ガラスの平均粒径は、好ましくは、セラミックス粉末の平均粒径の1/3以下、さらに好ましくは1/5以下が望ましい。
添加するガラス粉末の量は、特に限定しないが、ガラス粉末の粒径が大きい場合と同様に大量に添加するとセラミックス粉末の充填を阻害し、焼成収縮を起こすため、少量が望ましい。ただし、少なすぎるとセラミックス粉末の結合強度が低下し、脱粒や欠けの問題が生じるため、結合強度を発揮するような量が必要である。具体的には、目標とする気孔率、セラミックス粉末の粒度、焼成温度およびガラス粘性等を考慮して調整されるが、概ねセラミックス粉末に対して5%〜30質量%程度添加混合することが望ましい。
In the present invention, it is preferable that the average particle diameter of the glass powder as the constituent material of the placement portion is smaller than the average particle diameter of the ceramic powder as the other constituent material of the placement portion.
The reason is that if the average particle size of the glass powder is larger than that of the ceramic powder, filling of the ceramic powder is hindered, and thus firing shrinkage occurs when sintering at a glass softening point or higher. The average particle size of the glass is preferably 1/3 or less, more preferably 1/5 or less, of the average particle size of the ceramic powder.
The amount of the glass powder to be added is not particularly limited, but a small amount is desirable because when it is added in a large amount as in the case where the particle size of the glass powder is large, filling of the ceramic powder is inhibited and firing shrinkage occurs. However, if the amount is too small, the bonding strength of the ceramic powder is lowered, and problems such as degranulation and chipping occur, so an amount that exhibits the bonding strength is required. Specifically, it is adjusted in consideration of the target porosity, the particle size of the ceramic powder, the firing temperature, the glass viscosity, etc., but it is generally desirable to add and mix about 5% to 30% by mass with respect to the ceramic powder. .
次に、本発明の真空吸着装置の製造方法について説明する。
はじめに載置部を形成する多孔質体の原料粉末であるアルミナ粉末およびガラス粉末、または、炭化珪素粉末およびガラス粉末に、水またはアルコールを加えて混合してスラリーを調整する。原料の混合は、ボールミル、ミキサー等、公知の方法が適用できる。ここで、水またはアルコール量は特に限定しない。セラミックス粉末の粒度、ガラス粉末の添加量を考慮し所望の流動性が得られるよう水またはアルコールの添加量を調整する。
Next, the manufacturing method of the vacuum suction apparatus of this invention is demonstrated.
First, water or alcohol is added to and mixed with alumina powder and glass powder, or silicon carbide powder and glass powder, which are raw material powders of the porous body forming the mounting portion, to prepare a slurry. For mixing the raw materials, a known method such as a ball mill or a mixer can be applied. Here, the amount of water or alcohol is not particularly limited. In consideration of the particle size of the ceramic powder and the addition amount of the glass powder, the addition amount of water or alcohol is adjusted so as to obtain a desired fluidity.
次に、得られたスラリーを載置部が形成される凹部(図示せず。載置部と同形状。)を設けたアルミナ、ジルコニア、炭化珪素または窒化珪素からなるセラミックス支持部の該空隙に充填する。この際、必要に応じて、残留気泡を除去するための真空脱泡や、充填を高めるための振動を加えると良い。また、吸引孔または吸引溝は、載置部となる混合物を注ぐ前に、ろう、樹脂等の焼失部材により閉塞しておく。 Next, the obtained slurry is placed in the gap of the ceramic support portion made of alumina, zirconia, silicon carbide, or silicon nitride provided with a recess (not shown; the same shape as the placement portion) in which the placement portion is formed. Fill. At this time, it is advisable to apply vacuum defoaming for removing residual bubbles and vibration for enhancing filling as necessary. Further, the suction hole or suction groove is closed by a burned-out member such as wax or resin before pouring the mixture to be the placement portion.
次に、空隙にスラリーを充填した支持部を十分に乾燥させた後、ガラスの軟化点以上の温度で焼成する。この際、焼成温度がガラスの軟化点より低いと十分に一体化できないが、反対に焼成温度が高すぎると変形や収縮を起こすため、できるだけ低温で焼成することが望ましい。 Next, after sufficiently drying the support part in which the slurry is filled with the slurry, the support part is fired at a temperature equal to or higher than the softening point of the glass. At this time, if the firing temperature is lower than the softening point of the glass, sufficient integration cannot be achieved. On the other hand, if the firing temperature is too high, deformation or shrinkage occurs.
このような製造方法によれば、載置部と支持部とを別個に製造することなく、一体的に載置部と支持部材を焼成でき、従来の載置部と支持部との接合面を合わせるための加工が不要であるため、大幅な製造コストの低減を実現できる。さらに本発明に係る真空吸着装置においては、従来の載置部材と支持部材との接合により作製された真空吸着装置において見られた載置部材と支持部材の接合界面の隙間は生じないため、接合界面の隙間に起因する研削精度不良を解消することができる。 According to such a manufacturing method, the mounting portion and the supporting member can be integrally fired without separately manufacturing the mounting portion and the supporting portion, and the conventional joint surface between the mounting portion and the supporting portion can be formed. Since processing for matching is not necessary, a significant reduction in manufacturing cost can be realized. Furthermore, in the vacuum suction device according to the present invention, there is no gap between the joint interface between the mounting member and the support member seen in the vacuum suction device produced by joining the conventional mounting member and the support member. Grinding accuracy defects due to the gaps at the interface can be eliminated.
以下、本発明の実施例と比較例により本発明を詳細に説明する。実施例として図3、比較例として図1に記載の真空吸着装置を試作した。 Hereinafter, the present invention will be described in detail by way of examples and comparative examples of the present invention. A vacuum suction device described in FIG. 3 as an example and FIG. 1 as a comparative example was prototyped.
(実施例)
アルミナ粉末(平均粒径125μm)、ガラス粉末(ほう珪酸ガラス、平均粒径:20μm、熱膨張係数40×10-7/℃、軟化点800℃)および蒸留水を100:20:20の質量比で混合し、ミキサーを用いて混錬した後、スラリーを緻密質アルミナ支持部5(外径250mm、内径200mm、高さ50mm、深さ40mm、熱膨張係数8.0×10-6/℃)に注型し、真空脱泡を行った後、振動を加えて沈降充填させた。100℃で乾燥させた後、1000℃にて焼成した。次に表面をダイヤモンド砥石で研磨することにより真空吸着装置の吸着面となる載置面4aを得た。載置部上縁の鍔状薄肉部4b(厚み2.0mm、内径200mm、外径220mm)と支持部5の接合界面を観察したところ、亀裂や隙間は観察されなかった。試作した真空吸着装置について8インチウエハ接触面(直径203.2mm)の平坦度およびウエハ(8インチ×0.1mm)吸着時の反り量を真直度測定装置により測定したところ、8インチウエハ接触面の平坦度は0.3μmであり、ウエハの反り量も平坦度と同等の値を示した。
(Example)
Alumina powder (average particle size 125 μm), glass powder (borosilicate glass, average particle size: 20 μm, thermal expansion coefficient 40 × 10 −7 / ° C., softening point 800 ° C.) and distilled water in a mass ratio of 100: 20: 20 And kneading using a mixer, the slurry is then packed into a dense alumina support 5 (outer diameter 250 mm, inner diameter 200 mm, height 50 mm, depth 40 mm, thermal expansion coefficient 8.0 × 10 −6 / ° C.) After vacuum defoaming, the mixture was shaken and settled and filled. After drying at 100 ° C., firing was performed at 1000 ° C. Next, the
(比較例)
アルミナ多孔質体を所定形状に加工して載置部1とした後、載置部1をアルミナ支持部2(外径250mm、内径200mm、高さ50mm、深さ40mm、熱膨張係数8.0×10-6/℃)に挿入し、支持部2と載置部1とを800℃でガラス接合した。その結果、支持部2と載置部1との接合部に、小さな隙間が観察された。そして、実施例同様、ダイヤモンド砥石で研磨することにより吸着面となる載置面1aを形成した。実施例と同様に作製した真空吸着装置について載置面の平坦度およびウエハ吸着時の反り量を測定したところ、載置面の平坦度は5μmであった。また、ウエハの反り量は13μmであり、載置面の平坦度以上の変形が生じた。
(Comparative example)
After processing the porous alumina body into a predetermined shape to form the mounting
以上の結果より、本発明によれば載置面の研削加工時に載置部材と支持部材の加工性の違いに起因して生じる段差を極めて小さく抑えることができるため、半導体ウエハ等被処理物の極めて高精度な加工が可能となることが確認できた。 From the above results, according to the present invention, the level difference caused by the difference in workability between the mounting member and the support member during grinding of the mounting surface can be suppressed to an extremely low level. It was confirmed that extremely high precision machining is possible.
1,4 :載置部
1a,4a:吸着面
2,5 :支持部
3,6 :支持部に形成された吸引孔
5b :鍔状薄肉部
W :半導体ウエハ(被処理物)
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004071840A JP2005254412A (en) | 2004-03-15 | 2004-03-15 | Vacuum suction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004071840A JP2005254412A (en) | 2004-03-15 | 2004-03-15 | Vacuum suction device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005254412A true JP2005254412A (en) | 2005-09-22 |
Family
ID=35080638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004071840A Pending JP2005254412A (en) | 2004-03-15 | 2004-03-15 | Vacuum suction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005254412A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007253284A (en) * | 2006-03-23 | 2007-10-04 | Kyocera Corp | Vacuum chuck and vacuum suction device using it |
CN106425652A (en) * | 2016-12-05 | 2017-02-22 | 无锡市创恒机械有限公司 | Vacuum grabbing device |
-
2004
- 2004-03-15 JP JP2004071840A patent/JP2005254412A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007253284A (en) * | 2006-03-23 | 2007-10-04 | Kyocera Corp | Vacuum chuck and vacuum suction device using it |
JP4731368B2 (en) * | 2006-03-23 | 2011-07-20 | 京セラ株式会社 | Vacuum chuck and vacuum suction device using the same |
CN106425652A (en) * | 2016-12-05 | 2017-02-22 | 无锡市创恒机械有限公司 | Vacuum grabbing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4666656B2 (en) | Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed | |
JP4718397B2 (en) | Manufacturing method of vacuum suction device | |
JP4908263B2 (en) | Vacuum adsorption apparatus and method for manufacturing the same | |
JP2008132562A (en) | Vacuum chuck and vacuum suction device using it | |
JPH10128634A (en) | Sucker and its manufacture | |
JP2008028170A (en) | Vacuum suction device and manufacturing method thereof | |
JP4336532B2 (en) | Vacuum adsorption apparatus and method for manufacturing the same | |
JP5261057B2 (en) | Suction board and vacuum suction device | |
JPH068086A (en) | Vacuum suction device | |
JP2005205507A (en) | Vacuum-sucking device and its manufacturing method | |
JP4545536B2 (en) | Vacuum suction jig | |
JP5681481B2 (en) | Dense-porous joint | |
JP4405887B2 (en) | Vacuum adsorption device | |
JP4704971B2 (en) | Vacuum adsorption device | |
JP4964910B2 (en) | Vacuum adsorption apparatus and method for manufacturing the same | |
JP6179030B2 (en) | Vacuum adsorption apparatus and method for manufacturing the same | |
JP5279550B2 (en) | Vacuum adsorption apparatus and method for manufacturing the same | |
JP2004283936A (en) | Vacuum sucking device | |
JP2005254412A (en) | Vacuum suction device | |
JP4405886B2 (en) | Vacuum adsorption device | |
JP5530275B2 (en) | Vacuum adsorption apparatus and method for manufacturing the same | |
JP4468059B2 (en) | Hydrostatic bearing device | |
JP5597155B2 (en) | Vacuum adsorption apparatus and method for manufacturing the same | |
JP2005212000A (en) | Vacuum suction device | |
JP2009148868A (en) | Vacuum suction device |