JP2007035878A - Wafer retainer and its manufacturing method - Google Patents

Wafer retainer and its manufacturing method Download PDF

Info

Publication number
JP2007035878A
JP2007035878A JP2005216359A JP2005216359A JP2007035878A JP 2007035878 A JP2007035878 A JP 2007035878A JP 2005216359 A JP2005216359 A JP 2005216359A JP 2005216359 A JP2005216359 A JP 2005216359A JP 2007035878 A JP2007035878 A JP 2007035878A
Authority
JP
Japan
Prior art keywords
wafer
region
intervening layer
temperature
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005216359A
Other languages
Japanese (ja)
Other versions
JP4749072B2 (en
Inventor
Toru Matsuoka
徹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005216359A priority Critical patent/JP4749072B2/en
Publication of JP2007035878A publication Critical patent/JP2007035878A/en
Application granted granted Critical
Publication of JP4749072B2 publication Critical patent/JP4749072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wafer retainer capable of uniformizing a temperatures in the surface of a wafer even if the wafer is abruptly heated by plasma or the like, and to provide its manufacturing method. <P>SOLUTION: The wafer retainer 1 is constituted of a plate-type ceramic body 2 whose upper surface is used as a wafer mounting surface 3, and which is arranged on a base member 4 for cooling the plate-type ceramic body 2 from the lower surface side thereof through an interposing layer 6 having a region 6b different in heat conductivity from that of the interposing layer 6. The region 6b having different heat conductivity is provided in the interposing layer 6, and therefore, heat transfer between the plate-type ceramic body 2 and the base member 4 is changed, whereby the temperatures in the surface of the wafer can be uniform. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シリコン基板等の半導体ウェハや液晶基板等といったウェハを保持するウェハ保持体に関し、特に、半導体ウェハを保持しながら加熱する機能を有したウェハ保持体、あるいはウェハを静電吸着する機能を備えたヒータ付の静電チャックに関するものである。   The present invention relates to a wafer holder that holds a wafer such as a semiconductor wafer such as a silicon substrate or a liquid crystal substrate, and more particularly to a wafer holder that has a function of heating while holding a semiconductor wafer, or a function of electrostatically adsorbing a wafer. The present invention relates to an electrostatic chuck with a heater.

従来、半導体の製造工程において、半導体ウェハへの露光処理や、PVD,CVD,スパッタリング等による成膜処理や、プラズマエッチングや光エッチング等によるエッチング処理や、ダイシング処理では、いずれもウェハを精度良く保持するためウェハ保持体が用いられている。   Conventionally, in the semiconductor manufacturing process, the wafer is accurately held in the exposure process on the semiconductor wafer, the film formation process by PVD, CVD, sputtering, etc., the etching process by plasma etching or photoetching, or the dicing process. For this purpose, a wafer holder is used.

そして、このウェハ保持体は減圧下で使用されることが多く、成膜処理では成膜時の反応ガスによりウェハが加熱され、また、エッチング処理ではプラズマエッチングガスや光励起エッチング時の紫外線や可視光によりウェハが加熱されることから、ウェハの表面温度が高くならない様にウェハに加えられた熱をウェハ保持体によって効率良く逃がす必要があった。   In many cases, the wafer holder is used under reduced pressure. In the film formation process, the wafer is heated by a reaction gas during film formation. In the etching process, plasma etching gas, ultraviolet light or visible light during photoexcited etching is used. Therefore, it is necessary to efficiently release the heat applied to the wafer by the wafer holder so that the surface temperature of the wafer does not increase.

そこで、ウェハの熱を効率良く逃がすために、冷却機能を有するベース部材を備えたウェハ保持体を用いることが提案されている。   Therefore, in order to efficiently release the heat of the wafer, it has been proposed to use a wafer holder provided with a base member having a cooling function.

例えば、図14に断面図で示すウェハ保持体100は、円板状をした板状セラミック体2の一方の主面をウェハを載せるウェハ載置面3とし、板状セラミック体2の中に静電吸着用電極9を埋設した静電チャック部のウェハ載置面3と反対側にベース部材4とが介在層60を介して接着されたもので、ベース部材4の冷却通路5に冷却ガスや冷却水を流してベース部材4を冷やすことで、ウェハ載置面3に吸着保持した不図示のウェハに与えられた熱を逃がすようになっている。   For example, in the wafer holder 100 shown in a cross-sectional view in FIG. 14, one main surface of the disk-shaped plate-shaped ceramic body 2 is a wafer mounting surface 3 on which a wafer is placed, and the wafer-shaped ceramic body 2 is statically placed in the plate-shaped ceramic body 2. A base member 4 is bonded to the side opposite to the wafer mounting surface 3 of the electrostatic chuck portion in which the electrode 9 for electroadsorption is embedded via an intervening layer 60. The base member 4 is cooled by flowing cooling water so that heat applied to a wafer (not shown) sucked and held on the wafer mounting surface 3 is released.

また、図15に断面図で示すように、特許文献1に開示されたウェハ保持体100は、円板状をした板状セラミック体2の一方の主面をウェハを載せるウェハ載置面3とし、他方の主面に静電吸着用電極9を備えた静電チャック部と、この静電チャック部のウェハ載置面3と反対側にベース部材4とが介在層60を介して接着されている。そして、ベース部材4に形成された冷却通路5に冷却ガスや冷却水を流してベース部材4を冷やすことで、ウェハ保持体100に吸着保持した不図示のウェハに加えられた熱を逃がすようになっている。   Further, as shown in a cross-sectional view in FIG. 15, in the wafer holder 100 disclosed in Patent Document 1, one main surface of the disk-shaped plate-shaped ceramic body 2 is a wafer mounting surface 3 on which a wafer is placed. The electrostatic chuck portion having the electrostatic chucking electrode 9 on the other main surface, and the base member 4 are bonded to the opposite side of the wafer mounting surface 3 of the electrostatic chuck portion via the intervening layer 60. Yes. The base member 4 is cooled by flowing cooling gas or cooling water through the cooling passage 5 formed in the base member 4 so as to release heat applied to the wafer (not shown) adsorbed and held on the wafer holder 100. It has become.

ところで、ウェハの表面全体に均質な膜を形成したり、レジスト膜の加熱による反応硬化状態を均質にしたりするためには、ウェハの表面の温度を均一にすることが要求されている。   By the way, in order to form a homogeneous film on the entire surface of the wafer or to make the reaction hardening state uniform by heating the resist film, it is required to make the temperature of the wafer surface uniform.

一方、ウェハとウェハ載置面3とが直接接したり近接していることから、ウェハ面内の温度分布は、ウェハ載置面3の面内温度と高い相関関係を有している。この点から、ウェハ保持体のウェハ載置面3の表面の温度が均一であることが重要である。
特開2003−224180号公報
On the other hand, since the wafer and the wafer placement surface 3 are in direct contact with each other or close to each other, the temperature distribution in the wafer surface has a high correlation with the in-plane temperature of the wafer placement surface 3. From this point, it is important that the surface temperature of the wafer mounting surface 3 of the wafer holder is uniform.
JP 2003-224180 A

しかし、特許文献1に記載の従来のウェハ保持体100は、プラズマ等によりウェハが急速に加熱された場合、ベース部材4へ熱を速やかに逃がすことは可能であるが、ウェハの表面およびウェハ載置面3の表面の温度差が大きく、ウェハの面内の温度を一定の温度(例えば60℃)に、精度良く均一に保つことが困難であった。そして、ウェハの面内の温度が均一でないことからウェハの中の一部分の半導体素子が不良となり、半導体素子の歩留まりが低下する虞があった。   However, the conventional wafer holder 100 described in Patent Document 1 can quickly release heat to the base member 4 when the wafer is rapidly heated by plasma or the like. The temperature difference of the surface of the mounting surface 3 is large, and it is difficult to keep the temperature in the wafer surface constant and constant at a constant temperature (for example, 60 ° C.). And since the temperature in the surface of a wafer is not uniform, there existed a possibility that the semiconductor element of a part in a wafer might become defective, and the yield of a semiconductor element might fall.

また、従来のウェハ保持体100は、ウェハ保持体100を組み立てた後にウェハ載置面3の面内の温度差を小さく調整することができないことから、ウェハ保持体のウェハ載置面3の面内温度差が例えば3℃以下と要求が厳しくなると、ウェハ保持体100の製造歩留まりが著しく低下する虞があった。   Moreover, since the conventional wafer holder 100 cannot adjust the temperature difference in the surface of the wafer mounting surface 3 small after the wafer holder 100 is assembled, the surface of the wafer mounting surface 3 of the wafer holder If the internal temperature difference is 3 ° C. or less, for example, the requirement becomes severe, the production yield of the wafer holder 100 may be significantly reduced.

また、ランプ加熱やプラズマ加熱等によりウェハを加熱する方式では、設定温度の高低によりウェハ面内の温度差が大きく異なる虞があった。また、ウェハの温度が80℃以上に高くなると、ウェハ載置面3の均熱性が悪く、載置面内の温度差が3℃を超える虞があった。   Further, in the method of heating the wafer by lamp heating or plasma heating, the temperature difference in the wafer surface may vary greatly depending on the set temperature. Further, when the temperature of the wafer is higher than 80 ° C., the temperature uniformity of the wafer mounting surface 3 is poor, and the temperature difference in the mounting surface may exceed 3 ° C.

また、ウェハ保持体100を半導体製造装置に組み込み、ランプ加熱やプラズマ加熱等によりウェハ表面を実際に加熱してみないと、ウェハ表面およびウェハ載置面3の温度分布を確認することができないことから、ウェハ保持体100の載置面内の温度差を小さくすることが極めて困難であった。   In addition, the temperature distribution of the wafer surface and the wafer mounting surface 3 cannot be confirmed unless the wafer holder 100 is incorporated in a semiconductor manufacturing apparatus and the wafer surface is actually heated by lamp heating or plasma heating. Therefore, it has been extremely difficult to reduce the temperature difference in the mounting surface of the wafer holder 100.

本発明のウェハ保持体は、上面をウェハ載置面とした板状セラミック体を、該板状セラミック体を下面側から冷却するベース部材の上面に、熱伝導率の異なる領域を有する介在層を介して配置したことを特徴とする。   The wafer holder of the present invention includes an intervening layer having regions having different thermal conductivities on the upper surface of a base member that cools the plate-shaped ceramic body from the lower surface side. It is characterized by having arranged.

また、本発明のウェハ保持体は、上記構成において、前記板状セラミック体と前記ベース部材との間に前記板状セラミック体を下面側から加熱する板状のヒータ部材を配置したことを特徴とする。   Further, the wafer holder of the present invention is characterized in that, in the above configuration, a plate-like heater member for heating the plate-like ceramic body from the lower surface side is disposed between the plate-like ceramic body and the base member. To do.

また、本発明のウェハ保持体は、上記構成において、前記ヒータ部材と前記ベース部材との間に前記介在層を配置したことを特徴とする。   The wafer holder of the present invention is characterized in that, in the above configuration, the intervening layer is disposed between the heater member and the base member.

また、本発明のウェハ保持体は、上記各構成において、前記介在層が接着剤からなることを特徴とする。   Moreover, the wafer holder of the present invention is characterized in that, in each of the above configurations, the intervening layer is made of an adhesive.

また、本発明のウェハ保持体は、上記各構成において、前記介在層の前記熱伝導率の異なる領域は、前記ヒータ部材による加熱時の温度分布に対して、温度が低い部分に対応させて熱伝導率の小さい領域として配置したことを特徴とする。   Further, in the wafer holder of the present invention, in each of the above-described configurations, the region having a different thermal conductivity of the intervening layer is heated corresponding to a portion having a low temperature with respect to a temperature distribution during heating by the heater member. It is characterized by being arranged as a region with low conductivity.

また、本発明のウェハ保持体は、上記構成において、前記介在層は、前記ヒータ部材と前記ベース部材との間であって周辺部に前記熱伝導率の小さい領域を配置したことを特徴とする。   Further, the wafer holder of the present invention is characterized in that, in the above configuration, the intervening layer is disposed between the heater member and the base member, and a region having a low thermal conductivity is disposed in a peripheral portion. .

また、本発明のウェハ保持体は、上記構成において、前記熱伝導率の小さい領域が空隙であることを特徴とする。   The wafer holder of the present invention is characterized in that, in the above configuration, the region having a low thermal conductivity is a void.

また、本発明のウェハ保持体は、上記各構成において、前記介在層の前記熱伝導率の異なる領域は、前記ヒータ部材による加熱時の温度分布に対して、温度が高い部分に対応させて熱伝導率の大きい領域として配置したことを特徴とする。   Further, in the wafer holder of the present invention, in each of the above-described configurations, the region having a different thermal conductivity of the intervening layer is heated corresponding to a portion having a high temperature with respect to a temperature distribution during heating by the heater member. It is characterized by being arranged as a region with high conductivity.

また、本発明のウェハ保持体は、上記各構成において、前記板状セラミック体の下面または内部に、前記ウェハ載置面にウェハを吸着するための吸着用電極を備えたことを特徴とする。   The wafer holder of the present invention is characterized in that, in each of the above-described configurations, an adsorption electrode for adsorbing a wafer to the wafer mounting surface is provided on the lower surface or inside of the plate-like ceramic body.

また、本発明のウェハ保持体の製造方法は、上面をウェハ載置面とした板状セラミック体と、該板状セラミック体を下面側から冷却するベース部材と、前記板状セラミック体と前記ベース部材との間に配置され、前記板状セラミック体を下面側から加熱する板状のヒータ部材とを準備する工程と、前記ヒータ部材を加熱状態にして温度分布を測定する工程と、前記ヒータ部材の前記温度分布に対して温度が低い部分に対応させて熱伝導率の小さい領域を配置するかまたは温度が高い部分に対応させて熱伝導率の大きい領域を配置した介在層を介して、前記ベース部材の上面に前記ヒータ部材を配置する工程と、前記ヒータ部材の上面に介在層を介して前記板状セラミック体を配置する工程とを備えたことを特徴とする。   The method for manufacturing a wafer holder of the present invention includes a plate-shaped ceramic body having an upper surface as a wafer mounting surface, a base member that cools the plate-shaped ceramic body from the lower surface side, the plate-shaped ceramic body, and the base A step of preparing a plate-like heater member disposed between the member and heating the plate-like ceramic body from the lower surface side, a step of measuring the temperature distribution by heating the heater member, and the heater member A region having a low thermal conductivity is arranged corresponding to a portion having a low temperature relative to the temperature distribution of the temperature distribution, or an intervening layer having a region having a high thermal conductivity arranged corresponding to a portion having a high temperature The method includes the steps of disposing the heater member on the upper surface of the base member, and disposing the plate-like ceramic body on the upper surface of the heater member via an intervening layer.

本発明のウェハ保持体は、板状セラミック体の一方の主面(上面)をウェハを載せる載置面とし、この板状セラミック体の他方の主面(下面)側に冷却用のベース部材を備え、これら板状セラミック体とベース部材との間に、熱伝導率の異なる領域を有する介在層を備えていることで、板状セラミック体とベース部材との介在層からなる界面の熱の伝わり方が異なることによって、この介在層の面内の熱伝導率を調整できることから、ベース部材から冷却媒体を介して熱を外部に放出することができるとともに、プラズマ等によるウェハの表面の部分的な過熱やウェハ表面の温度差が大きくなることを防止することができる。さらに、熱伝導率の異なる領域を有する介在層は、熱伝導率の違いによって、板状セラミック体とベース部材との界面にある介在層の各部の熱伝導率を大きくしたり小さくしたりすることで介在層の各部を通過する熱量を調整できることから、室温から100℃程度の低温領域において、ウェハの面内温度差が3℃以下と小さいウェハ保持体を提供できる。そして、このウェハ保持体を使用して製造されたウェハから切り出された半導体素子の歩留を向上させることができる。   In the wafer holder of the present invention, one main surface (upper surface) of the plate-shaped ceramic body is used as a mounting surface on which the wafer is placed, and a cooling base member is provided on the other main surface (lower surface) side of the plate-shaped ceramic body. And providing an intervening layer having regions having different thermal conductivities between the plate-like ceramic body and the base member, thereby transferring heat at the interface formed by the intervening layer between the plate-like ceramic body and the base member. Since the thermal conductivity in the plane of the intervening layer can be adjusted by the difference in the direction, heat can be released to the outside from the base member through the cooling medium, and a partial surface of the wafer by plasma or the like can be emitted. It is possible to prevent overheating and an increase in temperature difference on the wafer surface. Furthermore, an intervening layer having regions with different thermal conductivities should increase or decrease the thermal conductivity of each part of the intervening layer at the interface between the plate-shaped ceramic body and the base member due to the difference in thermal conductivity. Since the amount of heat passing through each part of the intervening layer can be adjusted, a wafer holder having a small in-plane temperature difference of 3 ° C. or less in the low temperature region from room temperature to about 100 ° C. can be provided. And the yield of the semiconductor element cut out from the wafer manufactured using this wafer holder can be improved.

また、ヒータ部材とベース部材との間に介在層を配置すると、この介在層を通過する熱量が大きいので熱伝導率の違いによる介在層の面内で熱の伝わり方の違いが大きくなるので、この介在層の面内における熱量の変化を大きくすることができることから載置面内のより大きな温度差を小さくすることができるようになる。   Also, if an intervening layer is disposed between the heater member and the base member, the amount of heat passing through the intervening layer is large, so the difference in the way heat is transferred in the plane of the intervening layer due to the difference in thermal conductivity, Since the change in the amount of heat in the surface of the intervening layer can be increased, a larger temperature difference in the mounting surface can be reduced.

また、この介在層が接着剤からなるときには、介在層とヒータ部材やベース部材の間に不要な空隙が発生する虞がなくなり、設計通りに載置面の面内温度差が小さなウェハ保持体が得られ易い。   In addition, when this intervening layer is made of an adhesive, there is no risk of unnecessary gaps between the intervening layer and the heater member or base member, and a wafer holder having a small in-plane temperature difference on the mounting surface as designed. It is easy to obtain.

また、ヒータ部材による加熱時の温度分布に対して、温度が低い部分に対応させて熱伝導率の小さい領域を配置したときには、この領域からベース部材への熱の流れを低下させ、この領域に対向する載置面の温度低下を防ぐことができることからウェハ載置面の表面温度差が小さくなる。   In addition, when a region having a low thermal conductivity is arranged corresponding to a portion where the temperature is low with respect to the temperature distribution during heating by the heater member, the flow of heat from this region to the base member is reduced, and Since the temperature drop of the opposing mounting surface can be prevented, the surface temperature difference between the wafer mounting surfaces is reduced.

また、ウェハ保持体においては周辺部の温度が低下し易いとの傾向があるが、ヒータ部材とベース部材との間であって周辺部に熱伝導率の小さい領域を配置したときには、周辺部からベース部材への熱の伝達量が低下し、載置面の周辺部の温度を高めることができることから載置面の面内温度差を小さくすることができる。さらに、この周辺部の熱伝導率の小さい領域が空隙であるときには、一般的には空隙の熱伝導率が非常に小さいことからより効率的に周辺からの熱の伝達量を小さくすることができる。   Further, in the wafer holder, the temperature of the peripheral part tends to decrease, but when a region having a low thermal conductivity is arranged between the heater member and the base member and the peripheral part, Since the amount of heat transferred to the base member is reduced and the temperature of the peripheral portion of the mounting surface can be increased, the in-plane temperature difference of the mounting surface can be reduced. Further, when the region having a small thermal conductivity in the peripheral portion is a gap, generally, the thermal conductivity of the void is very small, so that the amount of heat transferred from the periphery can be reduced more efficiently. .

また、ヒータ部材による加熱時の温度分布に対して、温度が高い部分に対応させて介在層に熱伝導率の大きな領域を配置したときには、熱伝導率の大きな領域でヒータ部材からベース部材への熱が逃げ易いことから、この領域に対向するヒータ部材の温度を低下させることができ、これに対応して載置面内の温度差が小さくすることができる。   In addition, when a region having a high thermal conductivity is disposed in the intervening layer corresponding to a portion where the temperature is high with respect to the temperature distribution during heating by the heater member, the heater member is moved from the heater member to the base member in the region having a high thermal conductivity. Since heat easily escapes, the temperature of the heater member facing this region can be lowered, and the temperature difference in the mounting surface can be reduced correspondingly.

また、上記板状セラミック体の下面または内部に吸着用電極を備えたときには、ウェハと載置面との間に吸着力が働きウェハを載置面に良好に密着させることができるので載置面の温度がウェハに容易に伝わり、ウェハ面内の温度差が小さくなり好ましい。   Further, when an adsorption electrode is provided on the lower surface or inside of the plate-like ceramic body, an adsorption force acts between the wafer and the placement surface, so that the wafer can be satisfactorily adhered to the placement surface. Is easily transmitted to the wafer, and the temperature difference in the wafer surface is reduced.

また、本発明のウェハ保持体の製造方法によれば、上面をウェハ載置面とした板状セラミック体と、該板状セラミック体を下面側から冷却するベース部材と、前記板状セラミック体と前記ベース部材との間に配置され、前記板状セラミック体を下面側から加熱する板状のヒータ部材とを準備する工程と、前記ヒータ部材を加熱状態にして温度分布を測定する工程と、前記ヒータ部材の前記温度分布に対して温度が低い部分に対応させて熱伝導率の小さい領域を配置するかまたは温度が高い部分に対応させて熱伝導率の大きい領域を配置した介在層を介して、前記ベース部材の上面に前記ヒータ部材を配置する工程と、前記ヒータ部材の上面に介在層を介して前記板状セラミック体を配置する工程とを備えることで、温度分布に対して熱伝導率の異なる領域を配置することで載置面の面内温度差を小さくなるように調整できることから載置面の面内温度差の小さなウェハ保持体を安定して製造することができる。   Further, according to the method for manufacturing a wafer holder of the present invention, a plate-shaped ceramic body having an upper surface as a wafer mounting surface, a base member for cooling the plate-shaped ceramic body from the lower surface side, and the plate-shaped ceramic body, A step of preparing a plate-like heater member disposed between the base member and heating the plate-like ceramic body from the lower surface side, a step of measuring the temperature distribution by heating the heater member, A region having a low thermal conductivity is arranged corresponding to a portion where the temperature is low with respect to the temperature distribution of the heater member, or an intervening layer where a region having a high thermal conductivity is arranged corresponding to a portion where the temperature is high. And a step of disposing the heater member on the upper surface of the base member and a step of disposing the plate-like ceramic body on the upper surface of the heater member via an intervening layer, thereby providing thermal conductivity with respect to temperature distribution. The small wafer holder plane temperature difference of the mounting surface from the adjustable so that small-plane temperature difference of the mounting surface by arranging the different regions can be produced stably.

以下、本発明のウェハ保持体1の実施の形態の一例として、ウェハを静電吸着する機能を備えた静電チャック10を例に説明する。   Hereinafter, an electrostatic chuck 10 having a function of electrostatically attracting a wafer will be described as an example of an embodiment of the wafer holder 1 of the present invention.

図1(a)は本発明のウェハ保持体1の実施の形態の一例を示す概略の斜視図であり、図1(b)は図1(a)のX−X線概略断面図である。   FIG. 1A is a schematic perspective view showing an example of an embodiment of a wafer holder 1 of the present invention, and FIG. 1B is a schematic cross-sectional view taken along the line XX of FIG.

このウェハ保持体1は、板状セラミック体2とベース部材4との間に介在層6を備えている。板状セラミック体2の一方の主面(上面)はウェハを載せるウェハ載置面3としてあり、他方の主面(下面)側に介在層6を介してウェハ載置面3を冷却する冷却用のベース部材4を備えている。   The wafer holder 1 includes an intervening layer 6 between the plate-like ceramic body 2 and the base member 4. One main surface (upper surface) of the plate-like ceramic body 2 is a wafer mounting surface 3 on which a wafer is placed, and the other main surface (lower surface) side is for cooling the wafer mounting surface 3 via an intervening layer 6. The base member 4 is provided.

本発明のウェハ保持体1において、板状セラミック体2は、上面をウェハ載置面3としており、このウェハ載置面3に不図示のウェハを高精度に保持できるように、変形が小さなヤング率が200GPa以上のセラミック焼結体で構成されている。また、ウェハ載置面3内の温度を均一に保ち易いことから、熱伝導率が50W/(m・K)以上と大きな窒化物セラミックスや炭化物セラミックス等からなることが好ましい。   In the wafer holder 1 of the present invention, the plate-like ceramic body 2 has a wafer mounting surface 3 on the upper surface, and the Young deformation is small so that a wafer (not shown) can be held on the wafer mounting surface 3 with high accuracy. It is comprised with the ceramic sintered compact whose rate is 200 GPa or more. Moreover, since it is easy to keep the temperature in the wafer mounting surface 3 uniform, it is preferable that it is made of a nitride ceramic or carbide ceramic having a thermal conductivity of 50 W / (m · K) or more.

また、ウェハ保持体1には、ウェハ載置面3に不図示の凹部を設けるとともにこの凹部と連通する不図示のガス供給口を設け、ウェハの下面とウェハ載置面3とで形成される空間にガス供給口からガスを充填することで、ウェハ載置面3からウェハへの熱の伝達効率を高めることもできる。   The wafer holder 1 is provided with a recess (not shown) on the wafer placement surface 3 and a gas supply port (not shown) communicating with the recess, and is formed by the lower surface of the wafer and the wafer placement surface 3. By filling the space with the gas from the gas supply port, the heat transfer efficiency from the wafer mounting surface 3 to the wafer can be increased.

ベース部材4は、アルミニウムや超硬合金等の金属材料、あるいはそれら金属材料とセラミック材料との複合材料からなり、ベース部材4は導電性を有することが好ましい。導電性を備えたベース部材4は、ウェハ載置面3の上方にプラズマを発生させる際の電極として機能させることもできる。また、ベース部材4の内部には、冷却媒体を通す冷却通路5を備え、この冷却通路5に冷却ガスや冷却水等の冷却媒体を流すことにより、ウェハ載置面3やウェハ載置面3に載せたウェハの温度を所望の温度となるように調整することができる。   The base member 4 is made of a metal material such as aluminum or cemented carbide, or a composite material of the metal material and a ceramic material, and the base member 4 preferably has conductivity. The conductive base member 4 can also function as an electrode for generating plasma above the wafer mounting surface 3. In addition, a cooling passage 5 through which a cooling medium passes is provided inside the base member 4, and a cooling medium such as cooling gas or cooling water is allowed to flow through the cooling passage 5, thereby allowing the wafer placement surface 3 and the wafer placement surface 3 to flow. The temperature of the wafer placed on the substrate can be adjusted to a desired temperature.

介在層6は、例えばシリコーン,ポリイミドまたはエポキシ等の樹脂接着剤、あるいはインジウム等による金属接合部材、あるいはシート状の樹脂またはロー材等からなり、介在層6の面内の一部に所望の形状や大きさの熱伝導率の異なる領域6bを備えている。   The intervening layer 6 is made of, for example, a resin adhesive such as silicone, polyimide or epoxy, a metal bonding member made of indium or the like, or a sheet-like resin or brazing material, and has a desired shape on a part of the surface of the intervening layer 6. A region 6b having a slightly different thermal conductivity is provided.

また、板状セラミック体2の他方の主面(下面)にウェハを吸着するための吸着用電極9を備えている。そして、ウェハ載置面3にウェハを載せて吸着用電極9に直流電圧を印加すると、静電気力によりウェハを強固にウェハ載置面3に吸着することができる。また、ベース部材4の冷却通路5に冷却媒体を流し、ウェハに加わった熱を冷却媒体を通して外部に排出することができる。なお、この吸着用電極9は板状セラミック体2の内部に埋設してもよい。   Further, an adsorption electrode 9 for adsorbing the wafer is provided on the other main surface (lower surface) of the plate-like ceramic body 2. When a wafer is placed on the wafer placement surface 3 and a DC voltage is applied to the suction electrode 9, the wafer can be firmly attracted to the wafer placement surface 3 by electrostatic force. Moreover, a cooling medium can be flowed through the cooling passage 5 of the base member 4, and heat applied to the wafer can be discharged to the outside through the cooling medium. The adsorption electrode 9 may be embedded in the plate-like ceramic body 2.

本発明のウェハ保持体1は、上面をウェハ載置面3とした板状セラミック体2を、この板状セラミック体2を下面側から冷却するベース部材4の上面に、熱伝導率の異なる領域6bを有する介在層6を介して配置することでウェハ載置面3やウェハ面内の温度差を小さくすることができる。その理由は、介在層6の中に熱伝導率の異なる領域6bを設けることで、領域6bからベース部材4の上面への熱の伝わり方を領域6aと異ならせることができることから、領域6bに対向するウェハ載置面3やウェハの表面へ加わる熱量が部分的に異なってもウェハ面内やウェハ載置面3内の温度差が小さくなるように熱量の流れを調整することができるからである。例えば、ウェハの表面に加わる熱が多い部分では、この部分に対向する介在層の熱伝導率を大きくして熱をベース部材4へ流れやすくすることでウェハ表面の部分的な温度上昇を防止することができる。そして、介在層6に熱伝導率の異なる領域6bを設けて板状セラミック体2とベース部材との間の介在層6の各部の熱伝導率を異ならしめることで、ウェハやウェハ載置面3の面内の温度差を小さくすることができ、好ましくは3℃以下とすることができる。   The wafer holder 1 of the present invention has a region having different thermal conductivity on the upper surface of a base member 4 that cools the plate-like ceramic body 2 from the lower surface side. By disposing via the intervening layer 6 having 6b, the temperature difference in the wafer placement surface 3 and the wafer surface can be reduced. The reason is that by providing the region 6b with different thermal conductivity in the intervening layer 6, the heat transfer from the region 6b to the upper surface of the base member 4 can be made different from the region 6a. This is because the flow of heat can be adjusted so that the temperature difference in the wafer surface and in the wafer mounting surface 3 is reduced even if the amount of heat applied to the wafer mounting surface 3 and the wafer surface facing each other is partially different. is there. For example, in a portion where a large amount of heat is applied to the surface of the wafer, the thermal conductivity of the intervening layer facing this portion is increased to facilitate the flow of heat to the base member 4, thereby preventing a partial temperature increase on the wafer surface. be able to. Then, by providing the intervening layer 6 with regions 6b having different thermal conductivities and making the thermal conductivities of the respective portions of the intervening layer 6 between the plate-like ceramic body 2 and the base member different, the wafer or the wafer mounting surface 3 The in-plane temperature difference can be reduced, preferably 3 ° C. or less.

例えば、半導体製造装置用のウェハ保持体1のウェハ載置面3にウェハを載せてウェハ載置面3上でプラズマを発生させた場合に、プラズマ密度の違いにより、ウェハ面内の特定の部分が常に高温となることがある。そこで、板状セラミック体2を挟んでウェハの高温部分に対向する介在層6に熱伝導率の異なる領域6bとして熱伝導率の大きい領域を配置することで、ウェハ面内の高温部の温度を低下させ、ウェハ面内の温度差を小さくすることができる。   For example, when a wafer is placed on the wafer placement surface 3 of the wafer holder 1 for a semiconductor manufacturing apparatus and plasma is generated on the wafer placement surface 3, a specific portion within the wafer surface is caused by the difference in plasma density. May always be hot. Therefore, by arranging a region having a high thermal conductivity as a region 6b having a different thermal conductivity in the intervening layer 6 facing the high temperature portion of the wafer with the plate-like ceramic body 2 interposed therebetween, the temperature of the high temperature portion in the wafer surface is set. It is possible to reduce the temperature difference in the wafer surface.

介在層6内に配置する領域6bや領域6aの熱伝導率は、ウェハあるいはウェハ載置面3の面内の温度差から実験的に求めたり計算から求めたりすることができる。熱伝導率の異なる領域6bとして熱伝導率の大きい領域を配置することによって、この領域6bを通じてウェハ載置面3からベース部材4へ速やかに熱を伝えてウェハ載置面3の面内温度差を小さく調整できることから、ウェハ載置面3の面内温度差を例えば3℃以下と小さくすることができる。   The thermal conductivity of the region 6b and the region 6a disposed in the intervening layer 6 can be obtained experimentally from the temperature difference in the surface of the wafer or the wafer mounting surface 3 or can be obtained by calculation. By disposing a region having a high thermal conductivity as the region 6b having a different thermal conductivity, heat is quickly transmitted from the wafer mounting surface 3 to the base member 4 through the region 6b, thereby causing an in-plane temperature difference of the wafer mounting surface 3. Therefore, the in-plane temperature difference of the wafer mounting surface 3 can be reduced to 3 ° C. or less, for example.

また、ウェハ表面の一部に温度の低い部分があり、これに対向してウェハ載置面3の面内の一部に低温となる領域が生じる場合には、温度の低い部分に対向して介在層6内に熱伝導率の異なる領域6bとして熱伝導率の小さい領域を配置することで、領域6bからベース部材4へ逃げる熱量が抑えられ、ウェハ載置面3の低温となる部分の温度の低下を抑えて温度を高めることができることから、ウェハ面内やウェハ載置面3の面内の温度差を例えば3℃以下と小さくすることができる。そして、この様なウェハ保持体1を使ってウェハに各種の加工処理を行なうと、ウェハ面内の各部に複数形成された素子間の温度差がなくなり素子間の膜質や厚み等の均一な素子が形成されるので、ウェハに作製した半導体素子の製造歩留を向上させることができて好ましい。   Further, when a part of the wafer surface has a low temperature part and a region having a low temperature is generated in a part of the wafer mounting surface 3 facing the part, the part facing the low temperature part is opposed. By disposing a region having a low thermal conductivity as the region 6b having a different thermal conductivity in the intervening layer 6, the amount of heat escaping from the region 6b to the base member 4 can be suppressed, and the temperature of the portion of the wafer mounting surface 3 at a low temperature Therefore, the temperature difference within the wafer surface and the wafer mounting surface 3 can be reduced to, for example, 3 ° C. or less. Then, when various kinds of processing are performed on the wafer using such a wafer holder 1, there is no temperature difference between a plurality of elements formed in each part of the wafer surface, and uniform elements such as film quality and thickness between elements are eliminated. Therefore, the manufacturing yield of the semiconductor element manufactured on the wafer can be improved, which is preferable.

次に、ベース部材4に設けられた冷却通路5の形状による影響からウェハの表面温度が部分的に低温となりウェハ面内の温度差が大きくなることがあるが、これを防止してウェハの面内温度差を小さくした本発明のウェハ保持体1の実施の形態の他の例を説明する。   Next, due to the influence of the shape of the cooling passage 5 provided in the base member 4, the wafer surface temperature may be partially lowered and the temperature difference in the wafer surface may be increased. Another example of the embodiment of the wafer holder 1 of the present invention in which the internal temperature difference is reduced will be described.

図2は本発明のウェハ保持体の冷却通路の概略の形状を示す概略上面図である。また、図16は従来のウェハ保持体100の概略の断面図を示す。そして、図17は従来のウェハ保持体100のウェハ載置面3の温度分布を示す概略上面図である。板状セラミック体2をウェハ載置面3側から見て、図2中に点線で示すような渦巻き状の形状をした冷却通路5を備えたベース部材4を均一な介在層60を介して固定した、図16に示す従来のウェハ保持体100のウェハ載置面3の温度分布は、図17に示すようになる。すなわち、図17の領域101の温度は60〜61.5℃と高く、領域102の温度が58.5〜60℃、そして領域103の温度が57〜58.5℃と順に温度が低くなり、冷却通路5の配置に対向して温度の低い領域が発生することがある。   FIG. 2 is a schematic top view showing a schematic shape of the cooling passage of the wafer holder of the present invention. FIG. 16 is a schematic sectional view of a conventional wafer holder 100. FIG. 17 is a schematic top view showing the temperature distribution on the wafer mounting surface 3 of the conventional wafer holder 100. When the plate-like ceramic body 2 is viewed from the wafer mounting surface 3 side, the base member 4 including the cooling passage 5 having a spiral shape as shown by a dotted line in FIG. 2 is fixed through a uniform intervening layer 60. The temperature distribution on the wafer mounting surface 3 of the conventional wafer holder 100 shown in FIG. 16 is as shown in FIG. That is, the temperature of the region 101 in FIG. 17 is as high as 60 to 61.5 ° C., the temperature of the region 102 is 58.5 to 60 ° C., and the temperature of the region 103 is 57 to 58.5 ° C. A region having a low temperature may occur opposite to the arrangement of the cooling passage 5.

一方、図3は本発明のウェハ保持体1における介在層6の一例を示す概略上面図である。そして、図4はこの介在層6を備えた本発明のウェハ保持体1のウェハ載置面3の温度分布を示す概略の上面図である。本発明における介在層6は、図3に示すように熱伝導率の小さい領域6bを冷却通路5の配置に対向して配置することで、ベース部材4の温度の低い冷却通路5の上面からより多くの熱が伝わりこの領域に対向するウェハ載置面3の温度が低下する虞があるが、この領域に対向して熱伝導率の小さい領域があると熱伝達量が低下して温度の低い冷却通路5の形状が載置面に現れることがなく、ウェハ載置面の面内温度差を図4に示すように小さくすることができる。図4に示す領域104の温度は58.5〜60℃で、領域105の温度は57〜58.5℃となり、ウェハ載置面3の面内温度差が3℃以内と小さくなって、冷却通路5の影響によるウェハ載置面3内の温度差の発生を防止することができる。   On the other hand, FIG. 3 is a schematic top view showing an example of the intervening layer 6 in the wafer holder 1 of the present invention. FIG. 4 is a schematic top view showing the temperature distribution of the wafer mounting surface 3 of the wafer holder 1 of the present invention provided with the intervening layer 6. As shown in FIG. 3, the intervening layer 6 in the present invention is arranged from the upper surface of the cooling passage 5 where the temperature of the base member 4 is low by disposing the region 6 b having low thermal conductivity opposite to the arrangement of the cooling passage 5. There is a possibility that a lot of heat is transmitted and the temperature of the wafer mounting surface 3 facing this region is lowered, but if there is a region having a small thermal conductivity facing this region, the amount of heat transfer is lowered and the temperature is low. The shape of the cooling passage 5 does not appear on the mounting surface, and the in-plane temperature difference of the wafer mounting surface can be reduced as shown in FIG. The temperature of the region 104 shown in FIG. 4 is 58.5 to 60 ° C., the temperature of the region 105 is 57 to 58.5 ° C., and the in-plane temperature difference of the wafer mounting surface 3 is reduced to within 3 ° C. Generation of a temperature difference in the wafer placement surface 3 due to the influence of the passage 5 can be prevented.

そして、ウェハ載置面3の面内温度差が3℃以下のウェハ保持体1を量産しようとすると、従来のウェハ保持体を用いた場合ではウェハ載置面内の温度差が小さくないためにその製造歩留まりが40%程度であったものが、本発明のウェハ保持体1では温度差を小さくできるので製造歩留まりが70%以上となり効率の良い量産が可能となる。   Then, when trying to mass-produce the wafer holder 1 having an in-plane temperature difference of 3 ° C. or less on the wafer placement surface 3, the temperature difference in the wafer placement surface is not small when the conventional wafer holder is used. Although the manufacturing yield is about 40%, the temperature difference can be reduced in the wafer holder 1 of the present invention, so that the manufacturing yield is 70% or more and efficient mass production is possible.

また、本発明のウェハ保持体1は、板状セラミック体2とベース部材4との間に板状セラミック体2を下面側から加熱する板状のヒータ部材8を配置することが好ましい。図5に概略断面図で示す板状のヒータ部材8を配置した本発明のウェハ保持体1は、ヒータ部材8がウェハ載置面3を加熱するための熱源であり、ウェハ載置面3を介して不図示のウェハが加熱される。本発明者は、ベース部材4を冷却しながらヒータ部材8を発熱させてウェハを加熱すると、ウェハの加熱設定温度が変わってもウェハ表面の温度分布が同じ傾向を示すことを見出した。また、ベース部材4から熱が外部に常に排出される状態でヒータ部材8から熱が供給されると、ウェハ上方からウェハが加熱されてウェハ載置面3に熱が加わっても、ウェハ表面の温度が変化し難いことが判明した。その理由は、ヒータ部材8からベース部材4へ伝わる熱量Aが大きく、ウェハ上方からウェハを介してウェハ載置面3に伝わる熱量Bが比較的小さくできることから熱量Bによるウェハ面内の温度変化が小さいからと推測できる。そこで、ヒータ部材8の単体の温度分布をあらかじめ測定してから、ヒータ部材8の温度の高い部分や低い部分に対向して介在層6中に熱伝導率の異なる領域6bを配置することで、ウェハ表面およびウェハ載置面3の面内温度差をより小さいものとすることができる。そして、ウェハ表面の上方から供給される熱量のばらつきが大きくてもウェハ面内の温度差を小さくすることができると考えられる。   In the wafer holder 1 of the present invention, it is preferable that a plate-like heater member 8 for heating the plate-like ceramic body 2 from the lower surface side is disposed between the plate-like ceramic body 2 and the base member 4. A wafer holder 1 of the present invention in which a plate-like heater member 8 shown in a schematic cross-sectional view in FIG. 5 is arranged is a heat source for the heater member 8 to heat the wafer placement surface 3. A wafer (not shown) is heated through the gap. The inventor has found that when the wafer is heated by heating the heater member 8 while cooling the base member 4, the temperature distribution on the wafer surface shows the same tendency even if the heating setting temperature of the wafer changes. Further, when heat is supplied from the heater member 8 in a state where the heat is always discharged from the base member 4, even if the wafer is heated from above the wafer and heat is applied to the wafer mounting surface 3, It was found that the temperature was difficult to change. The reason is that the amount of heat A transmitted from the heater member 8 to the base member 4 is large, and the amount of heat B transmitted from above the wafer via the wafer to the wafer mounting surface 3 can be relatively small. I can guess it is small. Then, after measuring the temperature distribution of the single member of the heater member 8 in advance, the region 6b having different thermal conductivity is disposed in the intervening layer 6 so as to face the high temperature portion and the low temperature portion of the heater member 8, The in-plane temperature difference between the wafer surface and the wafer mounting surface 3 can be made smaller. And even if the variation in the amount of heat supplied from above the wafer surface is large, the temperature difference in the wafer surface can be reduced.

具体的な例として、図6に概略上面図で示すように、ヒータ部材8の表面の温度が、領域106の温度が61.5〜63℃と高く、これと連続して領域108の温度が55.5〜57℃と低い場合には、図7に概略上面図で示す介在層6の領域6aの熱伝導率が0.53W/(m・K)に対して、領域106に対向して熱伝導率が1.06W/(m・K)と大きな領域6bと、領域108に対向して熱伝導率が0.27W/(m・K)と小さな領域6cを介在層6として配置する。そして、このような介在層6と図6に示すヒータ部材8とを図5に示すように配置したウェハ保持体1のウェハ載置面3の温度分布は、図8に概略上面図で示すように、領域102aで60〜60.75℃、領域102で58.5〜60℃、領域102bで57.75〜58.5℃となり、ウェハ載置面3の面内の温度差が3℃と小さくなり好ましいものとなった。   As a specific example, as shown in a schematic top view in FIG. 6, the temperature of the surface of the heater member 8 is as high as 61.5 to 63 ° C. in the region 106, and the temperature in the region 108 is continuous with this. When the temperature is as low as 55.5 to 57 ° C., the thermal conductivity of the region 6a of the intervening layer 6 shown in the schematic top view in FIG. 7 is opposed to the region 106, with respect to 0.53 W / (m · K). A region 6b having a large thermal conductivity of 1.06 W / (m · K) and a region 6c having a small thermal conductivity of 0.27 W / (m · K) facing the region 108 are disposed as the intervening layer 6. And the temperature distribution of the wafer mounting surface 3 of the wafer holder 1 in which such an intervening layer 6 and the heater member 8 shown in FIG. 6 are arranged as shown in FIG. 5 is shown in a schematic top view in FIG. Furthermore, the temperature in the region 102a is 60 to 60.75 ° C., the region 102 is 58.5 to 60 ° C., the region 102b is 57.75 to 58.5 ° C., and the in-plane temperature difference of the wafer mounting surface 3 is 3 ° C. It became smaller and preferred.

さらに、このヒータ部材8を設けた構成のウェハ保持体1を量産すると、ウェハ載置面3の面内温度差について3℃以下と小さな基準を設定しても、ウェハ保持体1の製造歩留まりが80%以上と高くなり優れた生産性を示すことが実証された。   Further, when the wafer holder 1 having the heater member 8 is mass-produced, the manufacturing yield of the wafer holder 1 can be increased even if a small standard of 3 ° C. or less is set for the in-plane temperature difference of the wafer mounting surface 3. It was proved that the productivity was as high as 80% or more and showed excellent productivity.

また、前記ヒータ部材8と前記ベース部材4との間に熱伝導率の異なる領域を有する介在層6を配置することが好ましい。ヒータ部材8を、板状セラミック体2とベース部材4の間に備えたウェハ保持体1の例を図9に示す。このウェハ保持体1では、板状セラミック体2とヒータ部材8との間の介在層7と、ヒータ部材8とベース部材4との間の介在層6とがそれぞれ配置されている。熱伝導率の異なる領域6b,7bを有する介在層6,7として、介在層6および/または介在層7に配設することが考えられるが、ヒータ部材8の熱を強制的に逃がす面の介在層6に熱伝導率の異なる領域6bを配置することが好ましい。その理由は、領域6bと領域6aの熱伝導率の差が小さくとも、また、領域6bの熱伝導率の大きさが小さくとも、介在層6を流れる熱量が介在層7を流れる熱量より大きいことから領域6bと領域6aとの熱伝導率の差が小さくとも熱量の変化が大きくなるので、ウェハ載置面3の広い範囲の大きな温度差が小さくなるように調整することができるからである。そして、領域7aと領域7bとを設けるよりも、領域6aと領域6bとを設ける方が、介在層6は介在層7より通過する熱量が大きいことから領域7bより領域6bによるウェハ載置面3内の温度を変化させる効果が大きいので、領域6bと領域6aとの熱伝導率の違いにより、ウェハ載置面3のより大きな温度差をより小さくなるように領域6bの作用が効果的に働き、ウェハ載置面3の温度差を小さくすることができることから好ましい。   Moreover, it is preferable to arrange | position the intervening layer 6 which has the area | region where heat conductivity differs between the said heater member 8 and the said base member 4. FIG. FIG. 9 shows an example of the wafer holder 1 in which the heater member 8 is provided between the plate-like ceramic body 2 and the base member 4. In this wafer holder 1, an intervening layer 7 between the plate-like ceramic body 2 and the heater member 8 and an intervening layer 6 between the heater member 8 and the base member 4 are disposed. It is conceivable that the intervening layers 6 and 7 having regions 6b and 7b having different thermal conductivities are disposed in the intervening layer 6 and / or the intervening layer 7. However, the intervening surface on which the heat of the heater member 8 is forcibly released. It is preferable to arrange the region 6 b having different thermal conductivity in the layer 6. The reason is that the heat amount flowing through the intervening layer 6 is larger than the heat amount flowing through the intervening layer 7 even if the difference in thermal conductivity between the region 6b and the region 6a is small or the thermal conductivity of the region 6b is small. This is because even if the difference in thermal conductivity between the region 6b and the region 6a is small, the change in the amount of heat becomes large, so that a large temperature difference over a wide range of the wafer mounting surface 3 can be adjusted to be small. Further, the provision of the region 6a and the region 6b rather than the region 7a and the region 7b causes the intervening layer 6 to transmit more heat than the intervening layer 7, and thus the wafer placement surface 3 by the region 6b than the region 7b. Since the effect of changing the temperature inside is large, the action of the region 6b works effectively so that the larger temperature difference of the wafer mounting surface 3 becomes smaller due to the difference in thermal conductivity between the region 6b and the region 6a. It is preferable because the temperature difference of the wafer mounting surface 3 can be reduced.

ヒータ部材8で発生した熱は、ウェハ載置面3を加熱するとともにベース部材4から熱を流出させながらウェハ載置面3の面内温度を調整している。ヒータ部材8と介在層6または介在層7との温度差が大きいほど、介在層6,7を通して流れる熱量は大きくなる。ベース部材8は通常冷却されていることから、ヒータ部材8と介在層7との間に比べ、ヒータ部材8と介在層6との間の温度差が大きくなる。そして、介在層7より介在層6を流れる熱量が大きいことから、介在層7より介在層6に熱伝導率の異なる領域6bを設けると熱量の変化が大きく、この影響でウェハ載置面3の温度変化が大きく変わると考えられる。ヒータ部材8との温度差がより大きいのは、介在層7よりも介在層6であることから、介在層6に熱伝導率の異なる領域6bを配置した方が、ウェハ載置面3内のより大きな温度差を小さくなるように調整できることから好ましい。   The heat generated by the heater member 8 heats the wafer placement surface 3 and adjusts the in-plane temperature of the wafer placement surface 3 while allowing the heat to flow out from the base member 4. The greater the temperature difference between the heater member 8 and the intervening layer 6 or 7, the greater the amount of heat flowing through the intervening layers 6, 7. Since the base member 8 is normally cooled, the temperature difference between the heater member 8 and the intervening layer 6 is larger than that between the heater member 8 and the intervening layer 7. Since the amount of heat flowing through the intervening layer 6 is larger than that of the intervening layer 7, if the region 6b having a different thermal conductivity is provided in the intervening layer 6 than the intervening layer 7, the change in the amount of heat is large. It is thought that the temperature change changes greatly. The temperature difference with the heater member 8 is larger in the intervening layer 6 than in the intervening layer 7. Therefore, the region 6 b having different thermal conductivity is disposed in the intervening layer 6 in the wafer mounting surface 3. This is preferable because a larger temperature difference can be adjusted to be smaller.

また、介在層6および介在層7の両方に領域6bや領域7bを備える場合もあるが、介在層6のみに備える場合に比べて領域6b,7bの配置が複雑となり調整が難しくなる虞があるとともに、ウェハ保持体1の生産コストが上昇することから、ヒータ部材8とベース部材4の間の介在層6に熱伝導率の異なる領域6bを備えることがより好ましい。   In some cases, both the intervening layer 6 and the intervening layer 7 include the region 6b and the region 7b, but the arrangement of the regions 6b and 7b may be complicated and adjustment may be difficult as compared with the case where only the intervening layer 6 is provided. In addition, since the production cost of the wafer holder 1 increases, it is more preferable that the intervening layer 6 between the heater member 8 and the base member 4 has a region 6b having different thermal conductivity.

また、介在層6,7が接着剤からなることを特徴とすることが好ましい。その理由は、接着剤で介在層6,7を構成すると、板状セラミック体2やヒータ部材8、ベース部材4との密着性が良いことから、板状セラミック体2と介在層7との界面、介在層7とヒータ部材8との界面、ヒータ部材8と介在層6との界面や介在層6とベース部材4との界面に空隙が生じ難いことから、これらの界面での熱伝導率が部分的にばらつく虞がないからである。例えば、介在層6,7をシート状の樹脂で構成したウェハ保持体1に比べ、介在層6,7を接着剤で構成したウェハ保持体1のウェハ載置面3内の温度差は小さくより好ましいことが分かった。介在層6をシート状の樹脂で構成した場合には、板状セラミック体2とベース部材4に挟まれた介在層6はボルト等で機械的に固定されるが、上記板状セラミック体2あるいは上記ベース部材4と上記介在層6との界面に空隙が生じる場合があり、介在層6の面内で熱伝導率が部分的なばらつきを発生してウェハ載置面3の面内温度差が大きくなる虞があるからである。   The intervening layers 6 and 7 are preferably made of an adhesive. The reason is that, if the intervening layers 6 and 7 are made of an adhesive, the adhesiveness between the plate-shaped ceramic body 2, the heater member 8, and the base member 4 is good. Since there are no voids at the interface between the intervening layer 7 and the heater member 8, the interface between the heater member 8 and the intervening layer 6, and the interface between the intervening layer 6 and the base member 4, the thermal conductivity at these interfaces is low. This is because there is no possibility of partial variation. For example, compared with the wafer holder 1 in which the intervening layers 6 and 7 are made of sheet-like resin, the temperature difference in the wafer mounting surface 3 of the wafer holder 1 in which the intervening layers 6 and 7 are made of adhesive is smaller. It turned out to be preferable. When the intervening layer 6 is composed of a sheet-like resin, the intervening layer 6 sandwiched between the plate-like ceramic body 2 and the base member 4 is mechanically fixed with a bolt or the like. There may be a gap at the interface between the base member 4 and the intervening layer 6, and the thermal conductivity partially varies in the plane of the intervening layer 6, resulting in an in-plane temperature difference of the wafer mounting surface 3. It is because there is a possibility of becoming large.

また、介在層6の熱伝導率の異なる領域6bは、ヒータ部材8による加熱時の温度分布に対して、温度が低い部分に対応させて熱伝導率の小さい領域6bを配置することが好ましい。ヒータ部材8の低温領域に対向する領域6bを通過して、ベース部材4の上面からベース部材4に熱が伝わり上記低温領域の熱が吸収されるが、上記低温領域の温度を低下させないように上記低温領域に対向する介在層6bに熱伝導率の小さい領域6bを配置することで、上記低温領域の熱の伝達を抑えて温度を高める作用を働かせることができる。そして、ヒータ部材8をウェハ保持体1に組み込んでも低温領域がウェハ載置面3に現れることがなく、ウェハ載置面3の面内温度差を小さくできることから好ましい。   Moreover, it is preferable to arrange | position the area | region 6b with small heat conductivity corresponding to the part with low temperature with respect to the temperature distribution at the time of the heating by the heater member 8 in the area | region 6b from which the thermal conductivity of the intervening layer 6 differs. Heat passes from the upper surface of the base member 4 to the base member 4 through the region 6b facing the low temperature region of the heater member 8, and heat in the low temperature region is absorbed, but the temperature in the low temperature region is not lowered. By disposing the region 6b having a low thermal conductivity in the intervening layer 6b facing the low temperature region, it is possible to act to increase the temperature by suppressing the heat transfer in the low temperature region. Even if the heater member 8 is incorporated in the wafer holder 1, the low temperature region does not appear on the wafer placement surface 3, and the in-plane temperature difference of the wafer placement surface 3 can be reduced.

また、図11に概略断面図で示すように、本発明のウェハ保持体1の介在層6は、ヒータ部材8とベース部材4との間であって周辺部に熱伝導率の小さい領域6cを配置することが好ましい。介在層6の周辺に熱伝導率の小さい領域6cを配置した場合には、中心部に比べその効果は比較的狭い範囲に作用する。そして、周辺部の場合は、取り囲まれる範囲が中心部に比べて半分以下と狭く、外周への熱の流出が少ないため、ウェハ載置面3の温度を上げる効果がより大きくなる。そして、周辺部に熱伝導率の小さい部材を配置すると、ウェハ載置面3の温度を上昇させる効果がより大きく現れることから周辺部に領域6cを配置することがより好ましい。   Further, as shown in the schematic cross-sectional view of FIG. 11, the intervening layer 6 of the wafer holder 1 of the present invention is provided with a region 6c having a small thermal conductivity between the heater member 8 and the base member 4 and in the peripheral portion. It is preferable to arrange. When the region 6c having a low thermal conductivity is arranged around the intervening layer 6, the effect acts in a relatively narrow range compared to the central portion. In the case of the peripheral portion, the surrounded range is narrower than half of the central portion, and the outflow of heat to the outer periphery is small, so that the effect of increasing the temperature of the wafer mounting surface 3 is further increased. If a member having a low thermal conductivity is disposed in the peripheral portion, the effect of increasing the temperature of the wafer mounting surface 3 appears more greatly. Therefore, it is more preferable to dispose the region 6c in the peripheral portion.

また、周辺部の環状の領域の全周に熱伝導率の小さい領域6cを配置した場合には、ウェハ載置面3の周辺部全周の温度を上昇させる効果があり好ましい。これまでのウェハ保持体100は、ウェハ載置面3の周辺部はヒータ部材8やウェハの上方のプラズマの中心から距離が大きく離れてことから温度が低くなる傾向があり、ウェハ面内の温度差が大きくなる要因の一つであったが、環状に領域6cを配置することでウェハ面内の温度差を小さく改善することができる。   Further, when the region 6c having a small thermal conductivity is arranged on the entire circumference of the annular region in the peripheral portion, it is preferable because the temperature of the entire periphery of the peripheral portion of the wafer mounting surface 3 is increased. In the conventional wafer holder 100, the peripheral portion of the wafer mounting surface 3 tends to decrease in temperature because the distance from the center of the plasma above the heater member 8 and the wafer tends to be low. Although the difference is one of the factors, the temperature difference within the wafer surface can be reduced by arranging the region 6c in an annular shape.

また、領域6cはウェハ保持体1の周辺部であるため、ベース部材4とヒータ部材8とを一体化または接着した後、あるいはベース部材4とヒータ部材8と板状セラミック体2とを一体化または接着した後に、介在層6の周辺の一部を低熱伝導部材に置き換えることができる。また、ウェハ載置面3の温度分布を確認しながらウェハ載置面3の面内温度差を小さく均一に調整することが可能であることから、ウェハの面内温度差をさらに小さく調整することができる。   Further, since the region 6c is a peripheral portion of the wafer holder 1, the base member 4 and the heater member 8 are integrated or bonded, or after the base member 4, the heater member 8, and the plate-like ceramic body 2 are integrated. Alternatively, after bonding, a part of the periphery of the intervening layer 6 can be replaced with a low heat conductive member. Further, it is possible to adjust the in-plane temperature difference of the wafer mounting surface 3 to be small and uniform while confirming the temperature distribution of the wafer mounting surface 3, so that the in-plane temperature difference of the wafer is further adjusted to be small. Can do.

また、熱伝導率の小さい領域6bが空隙6dであることが好ましい。熱伝導率の小さい領域6dを介在層6に配置する場合、ウェハ載置面3の温度差が小さくなるように領域6dを配置するのであるが、領域6dと領域6dを除く介在層6との熱伝導率の差が大きい方が温度差を調整できる範囲が大きい。介在層6としてシリコン樹脂やポリイミド樹脂を用いることが好ましいが、これらの介在層6の領域6dに配置する熱伝導率の小さい材料としては上記介在層6との熱伝導率の差が大きい空隙を領域6dに用いることで効果的に領域6dの作用を発揮することができる。特に、介在層6の周辺に空隙からなる領域6dを配置すると、形状保持機能が小さい空隙でも領域6dの形状の変化が殆どなく耐久性が優れるとともに、ウェハ載置面3の温度差を補正する作用が大きく好ましい。   Moreover, it is preferable that the area | region 6b with small heat conductivity is the space | gap 6d. When the region 6d having a low thermal conductivity is disposed in the intervening layer 6, the region 6d is disposed so that the temperature difference between the wafer mounting surfaces 3 is reduced. The region 6d and the intervening layer 6 excluding the region 6d are disposed. The greater the difference in thermal conductivity, the greater the range in which the temperature difference can be adjusted. It is preferable to use silicon resin or polyimide resin as the intervening layer 6, but as a material having a small thermal conductivity to be disposed in the region 6 d of these intervening layers 6, a gap having a large thermal conductivity difference from the intervening layer 6 is used. By using the region 6d, the function of the region 6d can be effectively exhibited. In particular, when a region 6d composed of a gap is disposed around the intervening layer 6, the shape of the region 6d is hardly changed even in a gap having a small shape maintaining function, and the durability is excellent and the temperature difference of the wafer mounting surface 3 is corrected. The action is large and preferable.

また、本発明の介在層6の熱伝導率の異なる領域6bは、ヒータ部材8による加熱時の温度分布に対して、温度が高い部分に対応させて熱伝導率の大きい領域6bとして配置することが好ましい。ヒータ部材8の面内温度が高い部分に対向してウェハ載置面3に高温部分が発生する虞があるが、ウェハ載置面3の面内において高温となり易い部分に伝わるヒータ部材8からの熱量を低下させることでウェハ載置面3の面内温度差を小さくすることができる。ウェハ載置面3の温度の高い部分やヒータ部材8の温度の高い部分からの発生する熱をベース部材4へより多く伝えることでウェハ載置面3の温度の高い部分の温度を低下させる作用が働き、ウェハ載置面3の面内温度差を小さくすることができる。そしてウェハ載置面3の温度が高い部分に対向させてヒータ部材8とベース部材4との間の介在層6に熱伝導率の大きな領域6bを配置することで、ヒータ部材8からの熱をベース部材4へ流しヒータ部材8の温度を低下させることでウェハ載置面3の面内温度差を小さく一定とすることができることから好ましい。   Further, the region 6b having a different thermal conductivity of the intervening layer 6 of the present invention is arranged as a region 6b having a high thermal conductivity corresponding to a portion where the temperature is high with respect to the temperature distribution during heating by the heater member 8. Is preferred. There is a possibility that a high temperature portion may be generated on the wafer mounting surface 3 so as to face a portion where the in-plane temperature of the heater member 8 is high, but from the heater member 8 that is transmitted to a portion that tends to be high temperature in the surface of the wafer mounting surface 3. By reducing the amount of heat, the in-plane temperature difference of the wafer mounting surface 3 can be reduced. The action of lowering the temperature of the high temperature portion of the wafer mounting surface 3 by transferring more heat generated from the high temperature portion of the wafer mounting surface 3 and the high temperature portion of the heater member 8 to the base member 4. The in-plane temperature difference of the wafer mounting surface 3 can be reduced. Then, by disposing a region 6b having a high thermal conductivity in the intervening layer 6 between the heater member 8 and the base member 4 so as to face a portion where the temperature of the wafer placement surface 3 is high, the heat from the heater member 8 is increased. It is preferable that the temperature difference of the wafer mounting surface 3 can be made small and constant by flowing to the base member 4 and lowering the temperature of the heater member 8.

また、本発明のウェハ保持体1は、板状セラミック体2の他方の主面または内部に、ウェハ載置面3にウェハを吸着するための吸着用電極9を備えることが好ましい。ウェハ載置面3にウェハを静電気力により吸着することでウェハ載置面3とウェハとの密着性がよくなり、ウェハ載置面3の熱がより速やかにウェハに伝えられることからウェハ載置面3の温度分布がそのままウェハ表面の温度分布に反映されてウェハ面内の温度差がより小さくなり好ましい。   The wafer holder 1 of the present invention preferably includes an adsorption electrode 9 for adsorbing the wafer to the wafer mounting surface 3 on the other main surface or inside of the plate-like ceramic body 2. By adsorbing the wafer to the wafer placement surface 3 by electrostatic force, the adhesion between the wafer placement surface 3 and the wafer is improved, and the heat of the wafer placement surface 3 is transferred to the wafer more quickly. The temperature distribution on the surface 3 is reflected on the temperature distribution on the wafer surface as it is, and the temperature difference in the wafer surface becomes smaller, which is preferable.

次に、本発明のウェハ保持体1の製造方法について、図9に示すウェハ保持体1を例に説明する。本発明のウェハ保持体1は、上面をウェハ載置面3とした板状セラミック体2と、板状セラミック体2を下面側から冷却するベース部材4と、板状セラミック体2とベース部材4との間に配置され、板状セラミック体2を下面側から加熱する板状のヒータ部材8とを準備する工程と、ヒータ部材8を加熱状態にして温度分布を測定する工程と、ヒータ部材8の前記温度分布に対して温度が低い部分に対応させて熱伝導率の小さい領域6bを配置するかまたは温度が高い部分に対応させて熱伝導率の大きい領域6bを配置した介在層6を介して、ベース部材4の上面にヒータ部材8を配置する工程と、ヒータ部材8の上面に介在層7を介して板状セラミック体2を配置する工程とから製造することができる。   Next, a method for manufacturing the wafer holder 1 of the present invention will be described using the wafer holder 1 shown in FIG. 9 as an example. The wafer holder 1 of the present invention includes a plate-shaped ceramic body 2 having an upper surface as a wafer mounting surface 3, a base member 4 that cools the plate-shaped ceramic body 2 from the lower surface side, a plate-shaped ceramic body 2, and a base member 4. And a step of preparing a plate-like heater member 8 that heats the plate-like ceramic body 2 from the lower surface side, a step of measuring the temperature distribution by heating the heater member 8, and the heater member 8 The region 6b having a low thermal conductivity is disposed corresponding to a portion having a low temperature with respect to the temperature distribution, or the intervening layer 6 having a region 6b having a large thermal conductivity corresponding to a portion having a high temperature is disposed. The heater member 8 can be manufactured on the upper surface of the base member 4, and the plate-shaped ceramic body 2 can be manufactured on the upper surface of the heater member 8 via the intervening layer 7.

具体的には、吸着用電極9を備えた板状セラミック体2と、板状のヒータ部材8と、冷却通路5を備えたベース部材4とを準備する。次に、上記ベース部材4の表面にシリコンやエポキシ等の接着剤を、スクリーン印刷等により複数回塗布して積層し、加熱硬化させて介在層6を形成する。そして、ヒータ部材8単体で発熱させてから表面の温度分布を測定して、温度の高い部分に対向して介在層6の一部をカッターナイフ等の工具を用いて切り取る。介在層6aよりも熱伝導率の小さいシリコンやエポキシ等の接着剤、或いはシート状の樹脂等を上記切り取った部分に配置する。この部分は熱伝導率の異なる領域6bとなる。領域6bは熱伝導率の小さな部材を充填したが、ウェハ載置面3の変形等の虞がなければ空隙のままで使用することもできる。次に、介在層6の上面に介在層6aと同じシリコンやエポキシ等の接着剤をスクリーン印刷等により塗布してもよい。次に、上記介在層6の上にヒータ部材8を減圧下で接着する。減圧下で接着するのは接着界面の空隙を防ぎ、熱伝導のバラツキを防ぐためである。ヒータ部材8の上表面にシリコン接着剤を、スクリーン印刷等により均一に塗布し介在層7とする。更に、上記介在層7の上に吸着用電極9を備えた板状セラミック体2を接着してウェハ保持体1を作製することができる。   Specifically, the plate-like ceramic body 2 provided with the adsorption electrode 9, the plate-like heater member 8, and the base member 4 provided with the cooling passage 5 are prepared. Next, an adhesive such as silicon or epoxy is applied to the surface of the base member 4 a plurality of times by screen printing or the like, laminated, and cured by heating to form the intervening layer 6. Then, after the heater member 8 alone generates heat, the temperature distribution on the surface is measured, and a part of the intervening layer 6 is cut away using a tool such as a cutter knife so as to face the high temperature portion. An adhesive such as silicon or epoxy having a thermal conductivity smaller than that of the intervening layer 6a, or a sheet-like resin is disposed in the cut portion. This portion becomes a region 6b having different thermal conductivity. The region 6b is filled with a member having a low thermal conductivity. However, if there is no risk of deformation of the wafer mounting surface 3, the region 6b can be used as a gap. Next, the same adhesive as silicon or epoxy may be applied to the upper surface of the intervening layer 6 by screen printing or the like. Next, the heater member 8 is bonded onto the intervening layer 6 under reduced pressure. The reason for bonding under reduced pressure is to prevent voids at the bonding interface and to prevent variation in heat conduction. A silicon adhesive is uniformly applied to the upper surface of the heater member 8 by screen printing or the like to form the intervening layer 7. Further, the wafer holder 1 can be produced by bonding the plate-like ceramic body 2 provided with the adsorption electrode 9 on the intervening layer 7.

また、作製したウェハ保持体1の介在層6の周辺部を調整することでウェハ載置面3の面内温度差をさらに小さくすることができる。介在層6の周辺部を調整する方法について以下に述べる。先ず、ベース部材4の冷却通路5に冷却媒体を流しながらヒータ部材8に通電し加熱する。そして、ウェハ載置面3の温度分布をサーモビュアにて観察しながら、ウェハ載置面3の平均温度が例えば60℃になるようにヒータ部材8にかける電圧を調整する。その後、ウェハ載置面3の面内温度を測定する。ウェハ載置面3の外周部の一部が温度が低い場合には、対向する介在層6の周辺部の領域の一部分を、カッターナイフ等の工具を用いて切り取る。そして、再びウェハ載置面3の温度分布をサーモビュアにて同様に測定する。ウェハ載置面3の温度の低い部分に対向して介在層6に熱伝導率の小さい領域6c、6dを形成することでウェハ載置面3の面内温度差を小さくなるように調整することができる。   Moreover, the in-plane temperature difference of the wafer mounting surface 3 can be further reduced by adjusting the peripheral portion of the intervening layer 6 of the produced wafer holder 1. A method for adjusting the peripheral portion of the intervening layer 6 will be described below. First, the heater member 8 is energized and heated while flowing a cooling medium through the cooling passage 5 of the base member 4. Then, the voltage applied to the heater member 8 is adjusted so that the average temperature of the wafer mounting surface 3 becomes, for example, 60 ° C. while observing the temperature distribution of the wafer mounting surface 3 with a thermoviewer. Thereafter, the in-plane temperature of the wafer placement surface 3 is measured. When the temperature of a part of the outer peripheral part of the wafer placement surface 3 is low, a part of the peripheral part of the opposing intervening layer 6 is cut out using a tool such as a cutter knife. Then, the temperature distribution on the wafer placement surface 3 is again measured in the same manner using a thermoviewer. Adjusting the temperature difference in the surface of the wafer mounting surface 3 to be small by forming regions 6c and 6d having low thermal conductivity in the intervening layer 6 so as to face the low temperature portion of the wafer mounting surface 3. Can do.

また、本実施形態では、ヒータ部材8を内在するものについて説明したが、ヒータ部材8を内在していない場合についても同様の効果が得られる。   Moreover, although this embodiment demonstrated what contained the heater member 8, the same effect is acquired also when the heater member 8 is not contained.

以上、本発明の実施形態について示したが、本発明は前述した実施形態だけに限定されるものではなく、その要旨を逸脱しない範囲で改良や変更したものにも適用することができることは言うまでもない。   As mentioned above, although embodiment of this invention was shown, this invention is not limited only to embodiment mentioned above, It cannot be overemphasized that it can apply also to what was improved and changed in the range which does not deviate from the summary. .

ここで、図1に示す本発明のウェハ保持体1と図15に示す従来のウェハ保持体100をそれぞれ各10個作製し実験グループNo.1とNo.2とした。そして、それぞれのウェハ載置面3の温度分布を測定した。   Here, ten wafer holders 1 of the present invention shown in FIG. 1 and ten conventional wafer holders 100 shown in FIG. 1 and No. 2. And the temperature distribution of each wafer mounting surface 3 was measured.

板状セラミック体2は、板厚が2mmで直径200mmの窒化アルミニウム質焼結体を用いた。そして、この板状セラミック体2の一方の表面にメッキ法によりNiからなる一対の吸着用電極9を形成した。また、図2のような冷却通路5を形成したアルミニウム製のベース部材4を準備した。   As the plate-like ceramic body 2, an aluminum nitride sintered body having a plate thickness of 2 mm and a diameter of 200 mm was used. Then, a pair of adsorption electrodes 9 made of Ni was formed on one surface of the plate-like ceramic body 2 by a plating method. Further, an aluminum base member 4 having a cooling passage 5 as shown in FIG. 2 was prepared.

板状セラミック体2およびベース部材4は、実験グループNo.1,2ともに同じものを使用した。   The plate-shaped ceramic body 2 and the base member 4 are the same as those of the experimental group No. The same thing was used for 1 and 2.

また、熱伝導率が0.53W/(m・K)のシリコンシートAと、シリコンシートAの熱伝導率の約2分の1で、熱伝導率が0.27W/(m・K)のシリコンシートBを介在層として準備した。   In addition, the silicon sheet A having a thermal conductivity of 0.53 W / (m · K) and about half the thermal conductivity of the silicon sheet A, the thermal conductivity being 0.27 W / (m · K). Silicon sheet B was prepared as an intervening layer.

実験グループNo.1の試料No.10〜19は、シリコンシートAを介在層6aとして、冷却通路5に対抗させて熱伝導率の小さなシリコンシートBを熱伝導率の小さい領域6bとして配置した。   Experiment Group No. Sample No. 1 In Nos. 10 to 19, the silicon sheet A was used as the intervening layer 6a, and the silicon sheet B having low thermal conductivity was arranged as the region 6b having low thermal conductivity so as to oppose the cooling passage 5.

また、実験グループNo.2の試料No.20〜29は、シリコンシートAを介在層60として配置した。   The experimental group No. Sample No. 2 20-29 arrange | positioned the silicon sheet A as the intervening layer 60. FIG.

次に、作製したウェハ保持体の評価方法について説明する。   Next, a method for evaluating the produced wafer holder will be described.

実験グループNo.1およびNo.2の各ウェハ保持体はランプ加熱によってウェハ載置面を約60℃に加熱した。その後、ベース部材4に温度30℃に制御した冷却水を流し、5秒後のウェハ載置面の温度を測定した。そして、ウェハ載置面の面内温度の最高温度から最低温度を差し引いた値を面内最大温度差とした。測定した結果を表1に示す。

Figure 2007035878
Experiment Group No. 1 and no. Each wafer holder of No. 2 heated the wafer mounting surface to about 60 ° C. by lamp heating. Then, the cooling water controlled to the temperature of 30 degreeC was poured through the base member 4, and the temperature of the wafer mounting surface after 5 seconds was measured. A value obtained by subtracting the minimum temperature from the maximum temperature of the in-plane temperature of the wafer mounting surface was defined as the in-plane maximum temperature difference. The measured results are shown in Table 1.
Figure 2007035878

上面をウェハ載置面3とした板状セラミック体2を、この板状セラミック体2を下面側から冷却するベース部材の上面に、熱伝導率の異なる領域を有する介在層を介した実験グループNo.1は、ウェハ載置面3内の面内最大温度差の平均値が2.9℃と実験グループNo.2の3.6℃と比べ小さく、面内最大温度差が3℃以下であった試料は10個中7個であり、製造歩留まり70%と優れていることが分かった。これは、介在層6に熱伝導の異なる領域6bを配置することで、ウェハ載置面3の局部的な冷却を抑え、ウェハ載置面3の面内温度差を小さくすることができたからである。   An experimental group No. in which a plate-shaped ceramic body 2 having an upper surface as a wafer mounting surface 3 is interposed on an upper surface of a base member that cools the plate-shaped ceramic body 2 from the lower surface side through intervening layers having regions having different thermal conductivities. . 1 shows that the average value of the in-plane maximum temperature difference in the wafer mounting surface 3 is 2.9 ° C. It was found that 7 samples out of 10 had a small in-plane maximum temperature difference of 3 ° C. or less as compared with 3.6 ° C. of 2 and an excellent manufacturing yield of 70%. This is because by arranging the region 6b having different heat conduction in the intervening layer 6, the local cooling of the wafer mounting surface 3 can be suppressed and the in-plane temperature difference of the wafer mounting surface 3 can be reduced. is there.

一方、実験グループNo.2は、ウェハ載置面3内の面内最大温度差2.7〜4.7℃と大きく、3℃以下であった試料は10個中4個と少なく製造歩留まり40%と劣ることが分かった。   On the other hand, the experiment group No. 2 shows that the maximum in-plane temperature difference in the wafer mounting surface 3 is as large as 2.7 to 4.7 ° C., and the number of samples that were 3 ° C. or less is as small as 4 out of 10 samples and the manufacturing yield is 40%. It was.

次に、板状セラミック体2とベース部材4とは、実施例1と同様なものを使用して板状セラミック体2とベース部材4との間にヒータ部材8を配置した。   Next, the plate-like ceramic body 2 and the base member 4 were the same as those in Example 1, and the heater member 8 was disposed between the plate-like ceramic body 2 and the base member 4.

そして、板状セラミック体2とヒータ部材8との間に介在層7を配置し、ヒータ部材8とベース部材4の間に介在層6を配置した。介在層6または介在層7のいずれかに熱伝導率の異なる領域6bと領域7bを配置した。領域6b、7bの形状は実施例1と同様に冷却通路5に沿った形状とした。また領域6bは実施例1と同様にシリコンシートBを用い、その他の介在層6aにはシリコンシートAを使用した。また、領域7bは熱伝導率が1.06W/(m・K)のシリコンシートCを用いた。   The intervening layer 7 is disposed between the plate-like ceramic body 2 and the heater member 8, and the intervening layer 6 is disposed between the heater member 8 and the base member 4. A region 6b and a region 7b having different thermal conductivities are arranged in either the intervening layer 6 or the intervening layer 7. The regions 6b and 7b were shaped along the cooling passage 5 as in the first embodiment. In addition, the silicon sheet B was used for the region 6b as in Example 1, and the silicon sheet A was used for the other intervening layer 6a. For the region 7b, a silicon sheet C having a thermal conductivity of 1.06 W / (m · K) was used.

実験グループNo.3の試料No.30〜39は、図10のように介在層7に領域7bを配置し介在層6は均一な熱伝導率のシートを用いた。   Experiment Group No. Sample No. 3 30-39 arrange | positioned the area | region 7b in the intervening layer 7 like FIG. 10, and the intervening layer 6 used the sheet | seat of uniform thermal conductivity.

また、実験グループNo.4の試料No.40〜49は、図9のように介在層6に領域6bを配置した。   The experimental group No. Sample No. 4 40-49 arrange | positioned the area | region 6b in the intervening layer 6 like FIG.

そして実施例1と同様に評価した。実験した結果を表2に示す。

Figure 2007035878
Evaluation was performed in the same manner as in Example 1. The experimental results are shown in Table 2.
Figure 2007035878

実験グループNo.3は、ウェハ載置面3の面内最大温度差の平均値が2.9℃であり、面内最大温度差が3℃を越える試料は10個中8個であり製造歩留まり80%であった。この製造歩留まり80%は、実験グループNo.1の製造歩留まり70%より大きく好ましいことが分かった。   Experiment Group No. 3 shows that the average value of the in-plane maximum temperature difference of the wafer mounting surface 3 is 2.9 ° C., the number of samples in which the in-plane maximum temperature difference exceeds 3 ° C. is 8 out of 10 samples, and the production yield is 80%. It was. This production yield of 80% is determined by the experiment group no. It was found that the production yield of No. 1 was preferable to be larger than 70%.

実験グループNo.4は、ウェハ載置面3の面内最大温度差の平均値が2.6℃と小さく、それが3℃以下であった試料は10個中9個でありさらに好ましいことがわかった。   Experiment Group No. No. 4 shows that the average value of the in-plane maximum temperature difference of the wafer mounting surface 3 is as small as 2.6 ° C., and it is further preferable that 9 out of 10 samples are 3 ° C. or less.

実験グループNo.3に対し実験グループNo.4は、熱伝導の異なる部材を熱源であるヒータ部材8とベース部材4との間に配置したことで、ウェハ載置面3方向へ向かう熱量のコントロールが容易になり、より効率良く面内最大温度差を小さくすることができたと考えられる。   Experiment Group No. 3 for the experimental group no. 4 is that a member having different heat conduction is disposed between the heater member 8 and the base member 4 that are heat sources, so that it becomes easy to control the amount of heat in the direction of the wafer mounting surface 3, and the maximum in-plane is more efficient. It is thought that the temperature difference could be reduced.

実施例1、2の介在層6,7はシリコンシートを使用したが、本実施例ではシリコンシートをシリコン接着剤に変えて実験を行った。シリコン接着剤からなる介在層6、7を使い作製したウェハ保持体1は、実験グループNo.5とした。そして、実施例2で作製した実験グループNo.4のウェハ支持体1と比較した。   Although the silicon layers were used for the intervening layers 6 and 7 in Examples 1 and 2, in this example, the experiment was performed by changing the silicon sheet to a silicon adhesive. The wafer holder 1 manufactured using the intervening layers 6 and 7 made of silicon adhesive is the test group no. It was set to 5. The experimental group No. 1 prepared in Example 2 was used. 4 wafer support 1.

実験グループNo.5の板状セラミック体2およびベース部材4は、実施例1と同様なものを使用した。試料No.50〜59は、図9に示す実験グループNo.4の場合と同様な部材の配置とした。介在層6、7は熱伝導率0.53W/(m・K)のシリコン接着剤Aを使用した。介在層の厚みは実施例1,2と同様に700μmとした。また、熱伝導率の小さい領域6bには、シリコン接着剤Aの熱伝導率の約2分の1の0.27W/(m・K)の接着剤Bを使用した。   Experiment Group No. The same plate-like ceramic body 2 and base member 4 as those in Example 1 were used. Sample No. 50 to 59 are the experimental group Nos. Shown in FIG. The arrangement of members was the same as in the case of No. 4. For the intervening layers 6 and 7, silicon adhesive A having a thermal conductivity of 0.53 W / (m · K) was used. The thickness of the intervening layer was 700 μm as in Examples 1 and 2. Further, the adhesive B of 0.27 W / (m · K), which is about a half of the thermal conductivity of the silicon adhesive A, was used for the region 6b having a low thermal conductivity.

具体的には、図2に示す冷却通路5に対向させて図3の介在層6aをシリコン接着剤Aとして介在層6bをシリコン接着剤Bとした。また、外周部についても、周辺部の環状の領域をシリコン接着剤Bと置き換えた。   Specifically, the intervening layer 6a shown in FIG. 3 is made the silicon adhesive A and the interposing layer 6b is made the silicon adhesive B so as to face the cooling passage 5 shown in FIG. In addition, the annular region in the peripheral portion was replaced with the silicon adhesive B also in the outer peripheral portion.

評価方法は、実施例2と同様に行なった。実験した結果を表3に示す。

Figure 2007035878
The evaluation method was the same as in Example 2. The experimental results are shown in Table 3.
Figure 2007035878

実験グループNo.4の面内最大温度差の平均値は、2.6℃に対し、実験グループNo.5の面内最大温度差の平均値が2.3℃と小さく好ましいことが分かった。また、実験グループNo.4は、面内最大温度差が3℃以下である試料が10個中9個であるのに対し、実験グループNo.5は、面内最大温度差が3℃以下である試料が10個中10個の全ての試料で特性が優れていることが分かった。これは、接着剤で介在層6を構成したため、シリコンシートで構成した場合のようなシートの厚みバラツキによる空隙が介在層の境界面に生じることがないからと考えられる。   Experiment Group No. The average value of the maximum in-plane temperature difference of 4 is 2.6 ° C. It was found that the average value of the maximum in-plane temperature difference of 5 was as small as 2.3 ° C., which was preferable. The experimental group No. No. 4 has 9 samples out of 10 samples having a maximum in-plane temperature difference of 3 ° C. or less. No. 5 was found to have excellent characteristics in all 10 out of 10 samples having a maximum in-plane temperature difference of 3 ° C. or less. This is presumably because the intervening layer 6 is made of an adhesive, so that no gap due to the thickness variation of the sheet as in the case of being made of a silicon sheet occurs on the boundary surface of the intervening layer.

次に、あらかじめヒータ部材8単体で温度分布を測定した。そして、温度の低い部分に対向する介在層6の一部をシリコン接着剤Aからシリコン接着剤Bに置き換えた。   Next, the temperature distribution of the heater member 8 alone was measured in advance. Then, a part of the intervening layer 6 facing the low temperature portion was replaced with the silicon adhesive B from the silicon adhesive A.

なお、実験グループNo.6の試料は、図9に示す実験グループNo.5の場合と同様な部材の配置とした。また、熱伝導率の異なる領域6b(シリコン接着剤B)の配置は、冷却通路とヒータ部材の温度分布を考慮してそれぞれ温度の低い部分に対向する介在層6に熱伝導率の小さい領域を配置した。   The experimental group No. The sample of No. 6 is an experiment group No. shown in FIG. The arrangement of the members was the same as in the case of 5. In addition, the region 6b (silicone adhesive B) having a different thermal conductivity is arranged in such a manner that a region having a low thermal conductivity is provided in the intervening layer 6 facing the low temperature portion in consideration of the temperature distribution of the cooling passage and the heater member. Arranged.

評価方法は、実施例2と同様である。実験した結果を表4に示す。

Figure 2007035878
The evaluation method is the same as in Example 2. The experimental results are shown in Table 4.
Figure 2007035878

実験グループNo.5と比べ、実験グループNo.6は、面内最大温度差の平均値が2.3℃から1.9℃と小さくなり、且つ面内最大温度差が3℃以下であった試料は10個中10個でありさらに好ましいことが分かった。これは、ヒータ部材8の温度分布をあらかじめ個別に確認しておくことで、そのヒータ部材8と組合せる介在層6中に、熱伝導の異なる領域6bを配置する位置を、一対一で対比させて、個別に温度調整できるからと考えられる。   Experiment Group No. In comparison with the experimental group No. 6, the average value of the in-plane maximum temperature difference was reduced from 2.3 ° C. to 1.9 ° C., and the number of samples in which the in-plane maximum temperature difference was 3 ° C. or less was 10 out of 10, more preferably I understood. This is because the temperature distribution of the heater member 8 is confirmed individually in advance, so that the positions where the regions 6b having different heat conduction are arranged in the intervening layer 6 combined with the heater member 8 are compared one-on-one. This is because the temperature can be adjusted individually.

次に、実施例4で作製した実験グループNo.6と同様にウェハ保持体1を作製した。そして、ウェハ保持体1の冷却通路に冷却水を流し、ヒータに通電して加熱し、ウェハ載置面3の温度分布をサーモビュアで測定した。そして、ウェハ載置面3の温度の低い周辺部の一部の介在層を外周側から切り取り、そこへ更に熱伝導の低いシリコン接着剤C(熱伝導率0.14W/(m・K)、)を図11のように熱伝導の異なる領域6cとして埋め込んだ。その大きさは、中心方向に0.2〜1mmの深さとした。   Next, the experimental group No. manufactured in Example 4 was used. A wafer holder 1 was produced in the same manner as in FIG. Then, cooling water was passed through the cooling passage of the wafer holder 1, the heater was energized and heated, and the temperature distribution on the wafer placement surface 3 was measured with a thermoviewer. Then, a part of the intervening layer at the periphery of the wafer mounting surface 3 having a low temperature is cut off from the outer peripheral side, and a silicon adhesive C (thermal conductivity 0.14 W / (m · K)) having a lower thermal conductivity is cut there. ) Is embedded as a region 6c having different heat conduction as shown in FIG. The size was 0.2 to 1 mm deep in the central direction.

なお、板状セラミック体2およびベース部材4は、実施例1と同様なものを使用した。   In addition, the same thing as Example 1 was used for the plate-shaped ceramic body 2 and the base member 4.

評価方法は、実施例2と同様に行なった。その結果を表5に示す。

Figure 2007035878
The evaluation method was the same as in Example 2. The results are shown in Table 5.
Figure 2007035878

実験グループNo.6のウェハ載置面3の面内最大温度差の平均値が1.9℃に比べ、実験グループNo.7のそれは、1.6℃と小さく優れていることが分かった。また、何れの試料も面内最大温度差は3℃以下であり製造歩留まりが100%であり優れていた。これは、ウェハ載置面3の温度分布を確認しながら、介在層6中に熱伝導率の異なる領域6cを配置できたからと考えられる。   Experiment Group No. The average value of the in-plane maximum temperature difference of the wafer mounting surface 3 in FIG. 7 was found to be as small as 1.6 ° C. and excellent. Further, all the samples were excellent because the maximum in-plane temperature difference was 3 ° C. or less and the production yield was 100%. This is presumably because the region 6c having different thermal conductivity could be disposed in the intervening layer 6 while confirming the temperature distribution on the wafer mounting surface 3.

次に、実施例4の実験グループNo.6と同様にウェハ保持体1を作製した。そして、実施例5と同様に、作製したウェハ保持体1のウェハ載置面3の温度を測定した。そして、ウェハ載置面3の周辺部で温度の低い部分の介在層を切り取った。そして、この切り取った部分を図12の領域6dとしてそのまま利用した。   Next, the experimental group No. 4 of Example 4 was used. A wafer holder 1 was produced in the same manner as in FIG. Then, similarly to Example 5, the temperature of the wafer mounting surface 3 of the produced wafer holder 1 was measured. And the intervening layer of the low temperature part in the peripheral part of the wafer mounting surface 3 was cut off. The cut portion was used as it is as the region 6d in FIG.

そして実施例2と同様に評価した。その結果を表6に示す。

Figure 2007035878
Evaluation was performed in the same manner as in Example 2. The results are shown in Table 6.
Figure 2007035878

図11で示すような介在層の周辺部の領域6に熱伝導率の小さい接着剤を充填した実験グループNo.7の面内最大温度差1.6℃に対し、図12に示すように介在層の周辺に空隙を設けた実験グループNo.8の試料の面内最大温度差は1.4℃と最も小さく好ましいことが分かった。   As shown in FIG. 11, the experimental group No. 1 in which the peripheral region 6 of the intervening layer was filled with an adhesive having a low thermal conductivity. In contrast to the maximum in-plane temperature difference of 1.6 ° C., the experimental group No. 1 provided with voids around the intervening layer as shown in FIG. It was found that the in-plane maximum temperature difference of the sample No. 8 was as small as 1.4 ° C. and preferable.

(a)は本発明のウェハ保持体の実施の形態の一例を示す概略の斜視図であり、(b)はそのX−X線概略断面図である。(A) is a schematic perspective view which shows an example of embodiment of the wafer holder of this invention, (b) is the XX schematic sectional drawing. 本発明のウェハ保持体の冷却通路の概略の形状を示す概略上面図である。It is a schematic top view which shows the schematic shape of the cooling channel | path of the wafer holder of this invention. 本発明の熱伝導率の異なる領域を有する介在層を示す概略上面図である。It is a schematic top view which shows the intervening layer which has an area | region from which the heat conductivity of this invention differs. 本発明の熱伝導率の異なる領域を有する介在層を配置したウェハ載置面の温度分布を示す概略上面図である。It is a schematic top view which shows the temperature distribution of the wafer mounting surface which has arrange | positioned the intervening layer which has the area | region where the thermal conductivity of this invention differs. 本発明のウェハ保持体の実施の形態の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of embodiment of the wafer holder of this invention. 本発明のヒータ部材単体の温度分布を示す概略上面図である。It is a schematic top view which shows the temperature distribution of the heater member single-piece | unit of this invention. 本発明の熱伝導率の異なる領域を有する介在層を示す概略上面図である。It is a schematic top view which shows the intervening layer which has an area | region from which the heat conductivity of this invention differs. 本発明の熱伝導率の異なる領域を配置したウェハ載置面の温度分布示す概略上面図である。It is a schematic top view which shows the temperature distribution of the wafer mounting surface which has arrange | positioned the area | region where the heat conductivity of this invention differs. 本発明の他のウェハ保持体を示す概略断面図である。It is a schematic sectional drawing which shows the other wafer holding body of this invention. 本発明の他のウェハ保持体を示す概略断面図である。It is a schematic sectional drawing which shows the other wafer holding body of this invention. 本発明の他のウェハ保持体を示す概略断面図である。It is a schematic sectional drawing which shows the other wafer holding body of this invention. 本発明の他のウェハ保持体を示す概略断面図である。It is a schematic sectional drawing which shows the other wafer holding body of this invention. 従来のウェハ保持体を示す断面図である。It is sectional drawing which shows the conventional wafer holder. 従来の他のウェハ保持体を示す断面図である。It is sectional drawing which shows the other conventional wafer holder. 従来の他のウェハ保持体を示す断面図である。It is sectional drawing which shows the other conventional wafer holder. 従来の他のウェハ保持体を示す断面図である。It is sectional drawing which shows the other conventional wafer holder. 従来のウェハ保持体の載置面の温度分布を示す概略上面図である。It is a schematic top view which shows the temperature distribution of the mounting surface of the conventional wafer holder.

符号の説明Explanation of symbols

1:ウェハ保持体
2:板状セラミック体
3:ウェハ載置面
4:ベース部材
5:冷却通路
6:介在層
7a:熱伝導率の異なる領域を除く部分の介在層
6b:熱伝導率の異なる領域
6c:熱伝導率の小さい領域
6d:空隙
7:介在層
7a:熱伝導率の異なる領域を除く部分の介在層
7b:熱伝導率の異なる領域
8:ヒータ部材
9:吸着用電極
60:介在層
100:ウェハ保持体
1: Wafer holder 2: Plate-like ceramic body 3: Wafer mounting surface 4: Base member 5: Cooling passage 6: Intervening layer 7a: Intervening layer 6b in a portion excluding regions having different thermal conductivities: Different thermal conductivities Area 6c: Area 6d with low thermal conductivity 6d: Gaps 7: Intervening layer 7a: Intervening layer 7b other than areas with different thermal conductivity 7: Area with different thermal conductivity 8: Heater member 9: Adsorption electrode 60: Interposition Layer 100: Wafer holder

Claims (10)

上面をウェハ載置面とした板状セラミック体を、該板状セラミック体を下面側から冷却するベース部材の上面に、熱伝導率の異なる領域を有する介在層を介して配置したことを特徴とするウェハ保持体。 A plate-like ceramic body having an upper surface as a wafer mounting surface is disposed on an upper surface of a base member that cools the plate-like ceramic body from the lower surface side with an intervening layer having regions having different thermal conductivities. Wafer holder. 前記板状セラミック体と前記ベース部材との間に前記板状セラミック体を下面側から加熱する板状のヒータ部材を配置したことを特徴とする請求項1に記載のウェハ保持体。 The wafer holder according to claim 1, wherein a plate-like heater member for heating the plate-like ceramic body from the lower surface side is disposed between the plate-like ceramic body and the base member. 前記ヒータ部材と前記ベース部材との間に前記介在層を配置したことを特徴とする請求項2に記載のウェハ保持体。 The wafer holder according to claim 2, wherein the intervening layer is disposed between the heater member and the base member. 前記介在層が接着剤からなることを特徴とする請求項1〜3のいずれかに記載のウェハ保持体。 The wafer holder according to claim 1, wherein the intervening layer is made of an adhesive. 前記介在層の前記熱伝導率の異なる領域は、前記ヒータ部材による加熱時の温度分布に対して、温度が低い部分に対応させて熱伝導率の小さい領域として配置したことを特徴とする請求項2〜4のいずれかに記載のウェハ保持体。 The region having different thermal conductivity of the intervening layer is arranged as a region having low thermal conductivity corresponding to a portion having a low temperature with respect to a temperature distribution during heating by the heater member. The wafer holder in any one of 2-4. 前記介在層は、前記ヒータ部材と前記ベース部材との間であって周辺部に前記熱伝導率の小さい領域を配置したことを特徴とする請求項5に記載のウェハ保持体。 6. The wafer holder according to claim 5, wherein the intervening layer includes a region having a small thermal conductivity in a peripheral portion between the heater member and the base member. 前記熱伝導率の小さい領域が空隙であることを特徴とする請求項6に記載のウェハ保持体。 The wafer holder according to claim 6, wherein the region having a low thermal conductivity is a gap. 前記介在層の前記熱伝導率の異なる領域は、前記ヒータ部材による加熱時の温度分布に対して、温度が高い部分に対応させて熱伝導率の大きい領域として配置したことを特徴とする請求項2〜4のいずれかに記載のウェハ保持体。 The region having different thermal conductivity of the intervening layer is arranged as a region having high thermal conductivity corresponding to a portion having a high temperature with respect to a temperature distribution during heating by the heater member. The wafer holder in any one of 2-4. 前記板状セラミック体の下面または内部に、前記ウェハ載置面にウェハを吸着するための吸着用電極を備えたことを特徴とする請求項1〜8のいずれかに記載のウェハ保持体。 The wafer holder according to claim 1, further comprising an adsorption electrode for adsorbing a wafer to the wafer mounting surface on a lower surface or inside of the plate-like ceramic body. 上面をウェハ載置面とした板状セラミック体と、該板状セラミック体を下面側から冷却するベース部材と、前記板状セラミック体と前記ベース部材との間に配置され、前記板状セラミック体を下面側から加熱する板状のヒータ部材とを準備する工程と、前記ヒータ部材を加熱状態にして温度分布を測定する工程と、前記ヒータ部材の前記温度分布に対して温度が低い部分に対応させて熱伝導率の小さい領域を配置するかまたは温度が高い部分に対応させて熱伝導率の大きい領域を配置した介在層を介して、前記ベース部材の上面に前記ヒータ部材を配置する工程と、前記ヒータ部材の上面に介在層を介して前記板状セラミック体を配置する工程とを備えたことを特徴とするウェハ保持体の製造方法。 A plate-shaped ceramic body having an upper surface as a wafer mounting surface, a base member for cooling the plate-shaped ceramic body from the lower surface side, and disposed between the plate-shaped ceramic body and the base member. A step of preparing a plate-like heater member for heating the heater member from the lower surface side, a step of measuring the temperature distribution with the heater member in a heated state, and a portion where the temperature of the heater member is lower than the temperature distribution Arranging the heater member on the upper surface of the base member through an intervening layer in which a region having a low thermal conductivity is arranged or a region having a high thermal conductivity is arranged corresponding to a portion having a high temperature. And a step of disposing the plate-like ceramic body on the upper surface of the heater member via an intervening layer.
JP2005216359A 2005-07-26 2005-07-26 Wafer holder Active JP4749072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216359A JP4749072B2 (en) 2005-07-26 2005-07-26 Wafer holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216359A JP4749072B2 (en) 2005-07-26 2005-07-26 Wafer holder

Publications (2)

Publication Number Publication Date
JP2007035878A true JP2007035878A (en) 2007-02-08
JP4749072B2 JP4749072B2 (en) 2011-08-17

Family

ID=37794773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216359A Active JP4749072B2 (en) 2005-07-26 2005-07-26 Wafer holder

Country Status (1)

Country Link
JP (1) JP4749072B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110023A (en) * 2005-10-17 2007-04-26 Shinko Electric Ind Co Ltd Substrate holding apparatus
JP2009267256A (en) * 2008-04-28 2009-11-12 Ngk Insulators Ltd Substrate retainer and method for manufacturing the same
JP2010503208A (en) * 2006-08-29 2010-01-28 ラム リサーチ コーポレーション Method for adjusting the thermal conductivity of an electrostatic chuck support assembly
JP2010040644A (en) * 2008-08-01 2010-02-18 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
JP2011159678A (en) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd Substrate holder equipped with electrostatic chuck
CN102456604A (en) * 2010-10-21 2012-05-16 北京北方微电子基地设备工艺研究中心有限责任公司 Chuck, manufacturing method thereof and wafer treatment equipment with chuck
US8449786B2 (en) 2007-12-19 2013-05-28 Lam Research Corporation Film adhesive for semiconductor vacuum processing apparatus
WO2013180250A1 (en) * 2012-05-30 2013-12-05 京セラ株式会社 Flow path member, and heat exchanger and semiconductor manufacturing apparatus using same
WO2014136538A1 (en) * 2013-03-08 2014-09-12 日本発條株式会社 Substrate-supporting device
JP2017143182A (en) * 2016-02-10 2017-08-17 日本特殊陶業株式会社 Holding device and method of manufacturing the same
JP2017147312A (en) * 2016-02-17 2017-08-24 日本特殊陶業株式会社 Holding device and method for manufacturing holding device
JP2018533216A (en) * 2015-10-19 2018-11-08 ワットロー・エレクトリック・マニュファクチャリング・カンパニー Composite device with cylindrical anisotropic thermal conductivity
WO2019211928A1 (en) * 2018-05-01 2019-11-07 日本特殊陶業株式会社 Method for manufacturing retention device
CN110556319A (en) * 2019-09-10 2019-12-10 北京北方华创微电子装备有限公司 Heater, semiconductor processing chamber and processing equipment
CN112002668A (en) * 2020-08-26 2020-11-27 北京北方华创微电子装备有限公司 Electrostatic chuck assembly in semiconductor processing equipment and semiconductor processing equipment
CN112310256A (en) * 2019-07-29 2021-02-02 隆达电子股份有限公司 Light emitting diode structure and manufacturing method thereof
JP2021034413A (en) * 2019-08-16 2021-03-01 日本特殊陶業株式会社 Holding device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891332B2 (en) * 2015-09-02 2016-03-22 新光電気工業株式会社 Electrostatic chuck
JP6703645B2 (en) 2018-05-28 2020-06-03 日本特殊陶業株式会社 Holding device and method of manufacturing holding device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330402A (en) * 1995-03-30 1996-12-13 Ngk Insulators Ltd Semiconductor wafer holding device
JPH1064983A (en) * 1996-08-16 1998-03-06 Sony Corp Wafer stage
JP2003258065A (en) * 2002-02-27 2003-09-12 Kyocera Corp Wafer-mounting stage
JP2004088063A (en) * 2003-02-28 2004-03-18 Hitachi High-Technologies Corp Wafer processing device, wafer stage, and method of processing wafer
JP2006013302A (en) * 2004-06-29 2006-01-12 Ngk Insulators Ltd Substrate mounting device and substrate temperature adjusting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330402A (en) * 1995-03-30 1996-12-13 Ngk Insulators Ltd Semiconductor wafer holding device
JPH1064983A (en) * 1996-08-16 1998-03-06 Sony Corp Wafer stage
JP2003258065A (en) * 2002-02-27 2003-09-12 Kyocera Corp Wafer-mounting stage
JP2004088063A (en) * 2003-02-28 2004-03-18 Hitachi High-Technologies Corp Wafer processing device, wafer stage, and method of processing wafer
JP2006013302A (en) * 2004-06-29 2006-01-12 Ngk Insulators Ltd Substrate mounting device and substrate temperature adjusting method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110023A (en) * 2005-10-17 2007-04-26 Shinko Electric Ind Co Ltd Substrate holding apparatus
JP2010503208A (en) * 2006-08-29 2010-01-28 ラム リサーチ コーポレーション Method for adjusting the thermal conductivity of an electrostatic chuck support assembly
JP2013157617A (en) * 2006-08-29 2013-08-15 Lam Research Corporation Electrostatic chuck support assembly
CN101512750B (en) * 2006-08-29 2014-09-03 朗姆研究公司 Method of tuning thermal conductivity of electrostatic chuck support assemply
US9028646B2 (en) 2007-12-19 2015-05-12 Lam Research Corporation Film adhesive for semiconductor vacuum processing apparatus
US8449786B2 (en) 2007-12-19 2013-05-28 Lam Research Corporation Film adhesive for semiconductor vacuum processing apparatus
JP2009267256A (en) * 2008-04-28 2009-11-12 Ngk Insulators Ltd Substrate retainer and method for manufacturing the same
JP2010040644A (en) * 2008-08-01 2010-02-18 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
JP2011159678A (en) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd Substrate holder equipped with electrostatic chuck
CN102456604A (en) * 2010-10-21 2012-05-16 北京北方微电子基地设备工艺研究中心有限责任公司 Chuck, manufacturing method thereof and wafer treatment equipment with chuck
US10627173B2 (en) 2012-05-30 2020-04-21 Kyocera Corporation Flow path member, and heat exchanger and semiconductor manufacturing apparatus using same
WO2013180250A1 (en) * 2012-05-30 2013-12-05 京セラ株式会社 Flow path member, and heat exchanger and semiconductor manufacturing apparatus using same
JPWO2013180250A1 (en) * 2012-05-30 2016-01-21 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
WO2014136538A1 (en) * 2013-03-08 2014-09-12 日本発條株式会社 Substrate-supporting device
US9551071B2 (en) 2013-03-08 2017-01-24 Nhk Spring Co., Ltd. Substrate support device
TWI624904B (en) * 2013-03-08 2018-05-21 日本發條股份有限公司 Substrate supporting device
JP2014175491A (en) * 2013-03-08 2014-09-22 Nhk Spring Co Ltd Substrate support device
JP2018533216A (en) * 2015-10-19 2018-11-08 ワットロー・エレクトリック・マニュファクチャリング・カンパニー Composite device with cylindrical anisotropic thermal conductivity
JP2017143182A (en) * 2016-02-10 2017-08-17 日本特殊陶業株式会社 Holding device and method of manufacturing the same
JP2017147312A (en) * 2016-02-17 2017-08-24 日本特殊陶業株式会社 Holding device and method for manufacturing holding device
WO2019211928A1 (en) * 2018-05-01 2019-11-07 日本特殊陶業株式会社 Method for manufacturing retention device
JPWO2019211928A1 (en) * 2018-05-01 2020-05-28 日本特殊陶業株式会社 Holding device manufacturing method
CN112310256A (en) * 2019-07-29 2021-02-02 隆达电子股份有限公司 Light emitting diode structure and manufacturing method thereof
CN112310256B (en) * 2019-07-29 2022-03-29 隆达电子股份有限公司 Light emitting diode structure and manufacturing method thereof
JP2021034413A (en) * 2019-08-16 2021-03-01 日本特殊陶業株式会社 Holding device
JP7108586B2 (en) 2019-08-16 2022-07-28 日本特殊陶業株式会社 holding device
CN110556319A (en) * 2019-09-10 2019-12-10 北京北方华创微电子装备有限公司 Heater, semiconductor processing chamber and processing equipment
CN110556319B (en) * 2019-09-10 2022-10-21 北京北方华创微电子装备有限公司 Heater, semiconductor processing chamber and processing equipment
CN112002668A (en) * 2020-08-26 2020-11-27 北京北方华创微电子装备有限公司 Electrostatic chuck assembly in semiconductor processing equipment and semiconductor processing equipment

Also Published As

Publication number Publication date
JP4749072B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4749072B2 (en) Wafer holder
JP6023829B2 (en) Ceramics-metal joint
JP5324251B2 (en) Substrate holding device
JP5116855B2 (en) Wafer heating device, electrostatic chuck
JP4349952B2 (en) Wafer support member and manufacturing method thereof
KR101769062B1 (en) Electrostatic chuck device
US7068489B2 (en) Electrostatic chuck for holding wafer
KR102508959B1 (en) electrostatic chuck device
US10079167B2 (en) Electrostatic chucking device
JP2013247342A (en) Electrostatic chuck and method of manufacturing electrostatic chuck
JP2006013302A (en) Substrate mounting device and substrate temperature adjusting method
JP4666903B2 (en) Wafer support member
JP5846186B2 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
WO2017130827A1 (en) Electrostatic chuck device
JP5434636B2 (en) Substrate holder with electrostatic chuck
KR101814554B1 (en) Electrostatic chuck equipped with edge electrode and method of manufacturing the chuck
JP2016001757A (en) Electrostatic chuck
JP2003258065A (en) Wafer-mounting stage
JP2015106667A (en) Substrate placement device
JP7164959B2 (en) HOLDING DEVICE AND HOLDING DEVICE MANUFACTURING METHOD
JP4744016B2 (en) Manufacturing method of ceramic heater
JP6639940B2 (en) Holding device and method of manufacturing holding device
JP6597437B2 (en) Electrostatic chuck device
JP6642170B2 (en) Electrostatic chuck device and manufacturing method thereof
JP4788575B2 (en) Holder for semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Ref document number: 4749072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3