JP2011159678A - Substrate holder equipped with electrostatic chuck - Google Patents

Substrate holder equipped with electrostatic chuck Download PDF

Info

Publication number
JP2011159678A
JP2011159678A JP2010018079A JP2010018079A JP2011159678A JP 2011159678 A JP2011159678 A JP 2011159678A JP 2010018079 A JP2010018079 A JP 2010018079A JP 2010018079 A JP2010018079 A JP 2010018079A JP 2011159678 A JP2011159678 A JP 2011159678A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
substrate
temperature difference
cooling mechanism
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010018079A
Other languages
Japanese (ja)
Other versions
JP5434636B2 (en
Inventor
Kenji Niima
健司 新間
Masuhiro Natsuhara
益宏 夏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010018079A priority Critical patent/JP5434636B2/en
Publication of JP2011159678A publication Critical patent/JP2011159678A/en
Application granted granted Critical
Publication of JP5434636B2 publication Critical patent/JP5434636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate holder whose electrostatic chuck is neither warped nor broken even when a cooling speed is increased. <P>SOLUTION: The substrate holder includes the electrostatic chuck 10 and an electrostatic chuck support 20. In this case, a deformation preventive plate 21 and a cooling mechanism 22, which constitute the electrostatic chuck support 20, are arranged in this order from a side close to the electrostatic chuck 10, the deformation preventive plate 21 is held slidably on both surfaces thereof, and ΔT<SB>1</SB>/ΔT<SB>4</SB><0.1 and ΔT<SB>2</SB>/ΔT<SB>4</SB><0.1 and ΔT<SB>3</SB>/ΔT<SB>4</SB><0.1 are satisfied, wherein ΔT<SB>1</SB>is a temperature difference between top and reverse sides of the electrostatic chuck 10 in processing on a substrate W, ΔT<SB>2</SB>is a temperature difference between top and reverse sides of the deformation preventive plate 21, ΔT<SB>3</SB>is a temperature difference between top and reverse sides of the cooling mechanism 22, and ΔT<SB>4</SB>is a temperature difference between a temperature of a substrate mounting surface 10a of the electrostatic chuck 10 and a temperature of the surface of the cooling mechanism 22 on the opposite side from the surface opposed to the deformation preventive plate 21. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体製造装置などに用いられる静電チャックを備えた基板保持体に関するものである。   The present invention relates to a substrate holder provided with an electrostatic chuck used in a semiconductor manufacturing apparatus or the like.

半導体製造におけるスパッタリングやエッチングなどの処理工程においては、処理を施すシリコンウェハなどの基板を保持する基板保持体が用いられている。この基板保持体は、被処理対象である基板を載置して固定する静電チャックと、該静電チャックを支持する静電チャック支持体とを備えている。静電チャック支持体は、静電チャックを支持する役割を有しているだけでなく、基板の処理に際して基板および静電チャックが過度に昇温するのを防止するための冷却機構を備えている。   In processing steps such as sputtering and etching in semiconductor manufacturing, a substrate holder that holds a substrate such as a silicon wafer to be processed is used. The substrate holder includes an electrostatic chuck that places and fixes a substrate to be processed, and an electrostatic chuck support that supports the electrostatic chuck. The electrostatic chuck support not only has a role of supporting the electrostatic chuck, but also includes a cooling mechanism for preventing the substrate and the electrostatic chuck from being excessively heated during the processing of the substrate. .

このような静電チャックと静電チャック支持体と備えた基板保持体の構造には、これまで様々なものが提案されている。例えば特許文献1には、静電チャック支持体として冷媒通路を備えた金属プレートを使用し、この金属プレート上に、絶縁体膜および絶縁性接着剤層を介在させて静電チャックとしての誘電体基板を接合する構造が記載されている。さらに、絶縁性接着剤に、アルミナや窒化アルミのフィラーを添加したシリコーン樹脂を使用することが記載されている。   Various structures have been proposed so far for the structure of the substrate holder including the electrostatic chuck and the electrostatic chuck support. For example, in Patent Document 1, a metal plate having a coolant passage is used as an electrostatic chuck support, and an insulating film and an insulating adhesive layer are interposed on the metal plate to form a dielectric as an electrostatic chuck. A structure for bonding substrates is described. Further, it is described that a silicone resin to which an alumina or aluminum nitride filler is added is used for the insulating adhesive.

また、特許文献2には、基板保持体の冷却効率を高めるために、熱伝導率の低い樹脂に代えてアルミニウムを含む金属の接合膜を用い、この接合膜を介して静電チャックと静電チャック支持体とを接合する構造が提案されている。   In Patent Document 2, in order to increase the cooling efficiency of the substrate holder, a metal bonding film containing aluminum is used in place of the resin having low thermal conductivity, and the electrostatic chuck and the electrostatic are interposed through the bonding film. A structure for joining a chuck support has been proposed.

特開2007−251124号公報JP 2007-251124 A 特開2009−141204号公報JP 2009-141204 A

近年、半導体製造ではスループット向上への要求は極めて厳しくなっており、それに伴い静電チャックの冷却速度を向上させる必要性が益々高くなっている。冷却速度の向上自体は、前述の特許文献2に記載されているように、静電チャック支持体にアルミニウムなどの熱伝導率の高い金属プレートを接合膜として使用し、これを静電チャックに接合すれば可能である。   In recent years, the demand for improving throughput in semiconductor manufacturing has become extremely strict, and accordingly, the necessity for improving the cooling rate of the electrostatic chuck has been increasing. As described in Patent Document 2, the cooling rate itself is improved by using a metal plate having high thermal conductivity such as aluminum as a bonding film on the electrostatic chuck support and bonding it to the electrostatic chuck. This is possible.

しかし、冷却速度の向上を企図してかかる構成を採用した場合、静電チャックの基板載置面とその反対側の面との間に大きな温度差が生じ、その結果静電チャックの反りが大きくなって基板を正常にチャッキングできないという問題が顕在化してきている。この場合、基板載置面の方がその反対側の面より高温になり膨張するため、基板載置面側に凸状に膨らむように、すなわち上に凸に変形する。   However, when such a configuration is employed in order to improve the cooling rate, a large temperature difference occurs between the substrate mounting surface of the electrostatic chuck and the opposite surface, resulting in a large warp of the electrostatic chuck. As a result, the problem that the substrate cannot be normally chucked has become apparent. In this case, the substrate placement surface becomes hotter and expands than the opposite surface, so that the substrate placement surface bulges convexly toward the substrate placement surface, that is, deforms upward.

さらに上記従来技術に示す方法で静電チャックと金属プレートとを接合した場合、静電チャックと金属プレートとの間の温度差や、これら部材の熱膨張係数の差により、接合面に無理な応力が掛かり、静電チャックおよび静電チャック支持体が破損する問題も発生している。   Further, when the electrostatic chuck and the metal plate are joined by the method shown in the above prior art, an excessive stress is applied to the joining surface due to a temperature difference between the electrostatic chuck and the metal plate and a difference in thermal expansion coefficient of these members. As a result, the electrostatic chuck and the electrostatic chuck support are damaged.

以上の問題点は、近年の冷却速度の向上に伴って顕著になったものであり、これまで特に考慮されていなかったものである。本発明者らは、これらの問題を解決するために鋭意検討を重ねた結果、冷却速度を向上させた場合であっても、静電チャックの反りを抑制でき破損の恐れもない構造を見出し本発明に至った。   The above-mentioned problems have become prominent with the recent improvement of the cooling rate, and have not been particularly considered so far. As a result of intensive studies in order to solve these problems, the present inventors have found a structure that can suppress warping of the electrostatic chuck and can be prevented from being damaged even when the cooling rate is improved. Invented.

すなわち、本発明が提供する基板保持体は、被処理対象である基板を載置する基板載置面を有する静電チャックと、該静電チャックを基板載置面の反対側の面から支持し、変形防止板および冷却機構を少なくとも含む静電チャック支持体とを備えており、これら変形防止板および冷却機構はこの順序で前記静電チャックに近い側から配置されており、前記変形防止板はその両面において摺動可能となるように挟持されており、基板処理の際の前記静電チャックの表裏面の温度差をΔT、前記変形防止板の表裏面の温度差をΔT、前記冷却機構の表裏面の温度差をΔT、前記静電チャックの基板載置面の温度と前記冷却機構において変形防止板に対向する面とは反対側の面の温度との温度差をΔTとした時、これらがΔT/ΔT<0.1かつΔT/ΔT<0.1かつΔT/ΔT<0.1の関係を有していることを特徴としている。 That is, a substrate holder provided by the present invention supports an electrostatic chuck having a substrate mounting surface on which a substrate to be processed is mounted, and the electrostatic chuck from a surface opposite to the substrate mounting surface. An electrostatic chuck support including at least a deformation prevention plate and a cooling mechanism, and the deformation prevention plate and the cooling mechanism are arranged in this order from the side close to the electrostatic chuck, and the deformation prevention plate The temperature difference between the front and back surfaces of the electrostatic chuck during substrate processing is ΔT 1 , the temperature difference between the front and back surfaces of the deformation preventing plate is ΔT 2 , and the cooling is performed. The temperature difference between the front and back surfaces of the mechanism is ΔT 3 , and the temperature difference between the temperature of the substrate mounting surface of the electrostatic chuck and the temperature of the surface opposite to the surface facing the deformation prevention plate in the cooling mechanism is ΔT 4 . These are ΔT 1 / ΔT 4 <0.1 and ΔT 2 / ΔT 4 <0.1 and ΔT 3 / ΔT 4 <0.1.

本発明によれば、冷却速度を向上しても静電チャックの反りを抑制できる上、基板保持体が破損することもない。よって、高品質の製品を高いスループットで作製することが可能になる。   According to the present invention, even when the cooling rate is improved, the warping of the electrostatic chuck can be suppressed and the substrate holder is not damaged. Therefore, a high quality product can be manufactured with high throughput.

本発明の一実施形態に係る基板保持体の概略の横断面図、および基板の処理の際にこの基板保持体に生じる温度勾配を示すグラフである。1 is a schematic cross-sectional view of a substrate holder according to an embodiment of the present invention, and a graph showing a temperature gradient generated in the substrate holder during substrate processing. 図1の右側に示す基板保持体が、図1の左側に示す温度勾配を有した時に呈する形状を示す模式図である。It is a schematic diagram which shows the shape which the board | substrate holding body shown on the right side of FIG. 1 exhibits when it has the temperature gradient shown on the left side of FIG. 従来の基板保持体の概略の横断面図、および基板の処理の際にこの従来の基板保持体に生じる温度勾配を示すグラフである。It is a graph which shows the schematic cross-sectional view of the conventional substrate holder, and the temperature gradient which arises in this conventional substrate holder in the case of a process of a board | substrate. 図3の右側に示す従来の基板保持体が、図3の左側に示す温度勾配を有した時に呈する形状を示す模式図である。It is a schematic diagram which shows the shape which the conventional board | substrate holding body shown on the right side of FIG. 3 exhibits when it has the temperature gradient shown on the left side of FIG. 変形防止板が過度に変形した時の基板保持体の形状を示す模式図である。It is a schematic diagram which shows the shape of a board | substrate holding body when a deformation | transformation prevention board deform | transforms excessively. 実施例の静電チャック、変形防止板および冷却機構に設けた熱電対埋め込み用溝の形状を示す平面図および断面図である。It is the top view and sectional drawing which show the shape of the groove | channel for thermocouple embedding provided in the electrostatic chuck, deformation | transformation prevention board, and cooling mechanism of an Example.

以下、添付図面に基づいて本発明に係る基板保持体を具体的に説明する。図1の右側には、本発明の一実施形態における、静電チャック10と静電チャック支持体20とを備えた基板保持体の縦断面図が概略的に示されている。この静電チャック10は略円板形状を有しており、その上面側に被処理対象である基板Wを載置して固定する基板載置面10aが設けられている。さらに静電チャック10の内部には、図示しない静電吸着用電極や抵抗発熱体が設けられており、これらにより基板載置面10aに載置した基板Wのチャッキングおよび加熱がそれぞれ行われる。   Hereinafter, the substrate holder according to the present invention will be described in detail with reference to the accompanying drawings. The right side of FIG. 1 schematically shows a longitudinal sectional view of a substrate holder including an electrostatic chuck 10 and an electrostatic chuck support 20 according to an embodiment of the present invention. The electrostatic chuck 10 has a substantially disk shape, and a substrate placement surface 10a for placing and fixing the substrate W to be processed is provided on the upper surface side thereof. Furthermore, an electrostatic chucking electrode and a resistance heating element (not shown) are provided inside the electrostatic chuck 10, and chucking and heating of the substrate W placed on the substrate placement surface 10a are performed by these.

静電チャック10の下側には当該静電チャック10を支持する静電チャック支持体20が設けられている。すなわち、静電チャック支持体20は、静電チャック10をその基板載置面10aの反対側の面から支持している。この静電チャック支持体20は、後述するように、静電チャック10の過度の変形を防止する役割を担う変形防止板21と、静電チャック10およびその基板載置面10aに載置された基板Wを冷却する役割を担う冷却機構22とを少なくとも有している。これら変形防止板21および冷却機構22は、この記載の順序で静電チャック10に近い側から配置されている。すなわち、変形防止板21を挟んでその上下にそれぞれ静電チャック10および冷却機構22が配置された構成になっている。   An electrostatic chuck support 20 that supports the electrostatic chuck 10 is provided below the electrostatic chuck 10. In other words, the electrostatic chuck support 20 supports the electrostatic chuck 10 from the surface opposite to the substrate mounting surface 10a. As will be described later, the electrostatic chuck support 20 is placed on the deformation prevention plate 21 that plays a role of preventing excessive deformation of the electrostatic chuck 10, and the electrostatic chuck 10 and its substrate placement surface 10a. It has at least a cooling mechanism 22 that plays a role of cooling the substrate W. The deformation preventing plate 21 and the cooling mechanism 22 are arranged from the side close to the electrostatic chuck 10 in the order described. In other words, the electrostatic chuck 10 and the cooling mechanism 22 are arranged above and below the deformation prevention plate 21, respectively.

冷却機構22の内部には冷媒通路22aが設けられている。この冷媒通路22aに水やフロリナートなどの冷媒を流通させることにより、変形防止板21を経て静電チャック10から冷却機構22に伝わってきた熱を系外に排出することができる。よって、静電チャック10およびその基板載置面10aに載置された基板Wを素早く冷却できる。   A refrigerant passage 22 a is provided inside the cooling mechanism 22. By circulating a coolant such as water or Fluorinert through the coolant passage 22a, the heat transmitted from the electrostatic chuck 10 to the cooling mechanism 22 via the deformation prevention plate 21 can be discharged out of the system. Therefore, the electrostatic chuck 10 and the substrate W placed on the substrate placement surface 10a can be quickly cooled.

これら静電チャック10と静電チャック支持体20とを備えた基板保持体は、例えば半導体製造装置(図示せず)のチャンバ内部に設置され、半導体製造に供される。具体的には、被処理対象となる基板Wが静電チャック10の基板載置面10a上に載置され、静電吸着によって固定されると共に抵抗発熱体によって加熱される。この状態で、スパッタリングやエッチングなどの処理が基板Wに施される。処理が完了した基板Wは、冷却された後、基板載置面10a上から取り上げられて次の処理工程に搬送される。静電チャック10の基板載置面10a上には引き続き別の基板Wが載置され、以降は同様の処理が繰り返される。   The substrate holder including the electrostatic chuck 10 and the electrostatic chuck support 20 is installed in a chamber of a semiconductor manufacturing apparatus (not shown), for example, and used for semiconductor manufacturing. Specifically, the substrate W to be processed is placed on the substrate placement surface 10a of the electrostatic chuck 10, fixed by electrostatic adsorption, and heated by the resistance heating element. In this state, the substrate W is subjected to processing such as sputtering and etching. The substrate W that has been processed is cooled, then picked up from the substrate placement surface 10a, and transported to the next processing step. Another substrate W is continuously placed on the substrate placement surface 10a of the electrostatic chuck 10, and thereafter the same processing is repeated.

静電チャック10と冷却機構22とは、例えば図1の右側の縦断面図に示すように、変形防止板21をその両面から挟持した状態で、ネジ止め等の結合手段30によって結合される。この結合方法では、静電チャック10と変形防止板21との間、および変形防止板21と冷却機構22との間は、隙間なく接触しているものの、接着剤などの固着手段を用いて固定しているわけではないので、摺動可能となっている。   The electrostatic chuck 10 and the cooling mechanism 22 are coupled to each other by a coupling means 30 such as screwing in a state where the deformation preventing plate 21 is sandwiched from both sides as shown in the vertical sectional view on the right side of FIG. In this coupling method, the electrostatic chuck 10 and the deformation prevention plate 21 and the deformation prevention plate 21 and the cooling mechanism 22 are in contact with each other without any gap, but are fixed using a fixing means such as an adhesive. Because it is not, it is slidable.

かかる構造の基板保持体を用いて基板Wの処理を行った場合、スパッタリングやエッチングなどの処理に伴って、基板Wには図1の上方からの入熱がある。また、前述したように静電チャック10の内部に抵抗発熱体が設けられている場合は、そこからの入熱もある。一方、これら入熱を伴う処理に引き続いて、あるいはその処理に並行して冷却を行う場合は、冷却機構22によって静電チャック10の下方からの冷却が行われる。   In the case where the substrate W is processed using the substrate holder having such a structure, the substrate W has heat input from above in FIG. 1 due to the processing such as sputtering and etching. Further, as described above, when a resistance heating element is provided inside the electrostatic chuck 10, there is also heat input from there. On the other hand, when cooling is performed subsequent to or in parallel with the process involving heat input, the cooling mechanism 22 cools the electrostatic chuck 10 from below.

その結果、静電チャック10および静電チャック支持体20の内部には、図1の左側に示すような温度勾配が生じる。すなわち、静電チャック10には表裏面の温度差ΔTの温度勾配が生じ、変形防止板21には表裏面の温度差ΔTの温度勾配が生じ、冷却機構22には表裏面の温度差ΔTの温度勾配が生じる。さらに、静電チャック10の基板載置面10aの温度と冷却機構22において変形防止板21に対向する面とは反対側の面の温度との温度差はΔTとなる。 As a result, a temperature gradient as shown on the left side of FIG. 1 is generated inside the electrostatic chuck 10 and the electrostatic chuck support 20. That is, the electrostatic chuck 10 has a temperature gradient ΔT 1 between the front and back surfaces, the deformation prevention plate 21 has a temperature gradient ΔT 2 between the front and back surfaces, and the cooling mechanism 22 has a temperature difference between the front and back surfaces. A temperature gradient of ΔT 3 occurs. Furthermore, the temperature difference between the temperature of the surface opposite to the surface facing the deformation inhibitor 21 in the temperature and the cooling mechanism 22 of the substrate mounting surface 10a of the electrostatic chuck 10 becomes [Delta] T 4.

各部材の温度差は表面側(すなわち、基板載置面10a側)が裏面側より高温になっており、その結果、各部材は基板載置面10a側に凸状に変形する。しかしながら、基板保持体の各部材の表裏面の温度差であるΔT、ΔTおよびΔTが、基板保持体全体としての表裏面の温度差ΔTに比べて十分に小さければ、各部材の変形を小さく抑えることができる。具体的には、上記温度差が、ΔT/ΔT<0.1かつΔT/ΔT<0.1かつΔT/ΔT<0.1の関係を有している場合は、各部材の変形を小さく抑えることができ、その結果、静電チャック10の基板載置面10aでの平面度の変化を抑えることができる。 As for the temperature difference of each member, the front surface side (that is, the substrate placement surface 10a side) is higher than the back surface side, and as a result, each member is deformed in a convex shape toward the substrate placement surface 10a side. However, if ΔT 1 , ΔT 2 and ΔT 3 , which are the temperature differences between the front and back surfaces of each member of the substrate holder, are sufficiently smaller than the temperature difference ΔT 4 between the front and back surfaces of the entire substrate holder, Deformation can be kept small. Specifically, when the temperature difference has a relationship of ΔT 1 / ΔT 4 <0.1 and ΔT 2 / ΔT 4 <0.1 and ΔT 3 / ΔT 4 <0.1, The deformation of the member can be suppressed to a small level, and as a result, the change in flatness on the substrate placement surface 10a of the electrostatic chuck 10 can be suppressed.

ところで、本発明の一実施形態における基板保持体では、静電チャック10と変形防止板21との接触面での温度差であるΔT、および変形防止板21と冷却機構22との接触面での温度差であるΔTは、共に上記した各部材の表裏面の温度差であるΔT、ΔTおよびΔTに比べて大きく、これら隣接する部材間では大きな温度差が生じていることが認められる。 By the way, in the substrate holder in one embodiment of the present invention, ΔT 5 which is a temperature difference at the contact surface between the electrostatic chuck 10 and the deformation prevention plate 21, and the contact surface between the deformation prevention plate 21 and the cooling mechanism 22. ΔT 6 is larger than ΔT 1 , ΔT 2, and ΔT 3 , which are the temperature differences between the front and back surfaces of each member described above, and there is a large temperature difference between these adjacent members. Is recognized.

しかしながら、前述したように、変形防止板21はその両面において摺動可能に挟持されているので、静電チャック10、変形防止板21、および冷却機構22がそれぞれ熱の影響を受けて変形する際、図2に示すように、隣接する部材同士の接触面において摺動しながら変形することができる。よって、上記したように比較的大きな温度差が隣接する部材間に生じても、これに起因する無理な応力がこれら部材にかかることはない。   However, as described above, since the deformation prevention plate 21 is slidably sandwiched on both surfaces thereof, the electrostatic chuck 10, the deformation prevention plate 21, and the cooling mechanism 22 are each deformed by the influence of heat. As shown in FIG. 2, it can be deformed while sliding on the contact surface between adjacent members. Therefore, even if a relatively large temperature difference occurs between adjacent members as described above, unreasonable stress due to this will not be applied to these members.

これに対して、従来の基板保持体は、図3の右側の縦断面図に示すように、静電チャック1と冷媒通路3aを備えた冷却機構3とは、接合層2によって接合されている。この接合層2による接合は、溶融した金属によるロウ付け、シリコーン樹脂による接着などにより行われるため、静電チャック1と冷却機構3は隙間なく接触しているだけでなく、互いに摺動することができない。   On the other hand, in the conventional substrate holder, the electrostatic chuck 1 and the cooling mechanism 3 including the coolant passage 3a are joined by the joining layer 2, as shown in the vertical cross-sectional view on the right side of FIG. . Since the bonding by the bonding layer 2 is performed by brazing with a molten metal, adhesion with a silicone resin, or the like, the electrostatic chuck 1 and the cooling mechanism 3 are not only in contact with each other but also slidable with each other. Can not.

このような構成の従来の基板保持体に、上記と同様の処理条件で基板Wの処理を行った場合、図3の左側に示すような温度勾配が生じる。すなわち、静電チャック1には表裏面の温度差ΔTの温度勾配が生じ、接合層2には表裏面の温度差ΔTの温度勾配が生じ、冷却機構3には表裏面の温度差ΔTの温度勾配が生じる。また、静電チャック1の基板載置面1aの温度と冷却機構3に対して接合層2に対向する面とは反対側の面の温度との温度差はΔTとなる。 When the conventional substrate holder having such a configuration is processed on the substrate W under the same processing conditions as described above, a temperature gradient as shown on the left side of FIG. 3 is generated. That is, a temperature gradient of front and back temperature difference ΔT 1 is generated in the electrostatic chuck 1, a temperature gradient of front and back temperature difference ΔT 2 is generated in the bonding layer 2, and a temperature difference ΔT of the front and back surfaces is generated in the cooling mechanism 3. A temperature gradient of 3 results. The temperature difference between the temperature of the substrate mounting surface 1 a of the electrostatic chuck 1 and the temperature of the surface opposite to the surface facing the bonding layer 2 with respect to the cooling mechanism 3 is ΔT 4 .

さらに図3の左側に示す温度勾配には、図1の左側の温度勾配に示されるような、ΔTおよびΔTに相当する部材間の温度差が存在していない。そのため、図3の右側に示す従来の基板保持体は、図1の右側の構造に比べて原理上冷却速度は若干向上する。 Further, in the temperature gradient shown on the left side of FIG. 3, there is no temperature difference between the members corresponding to ΔT 5 and ΔT 6 as shown in the temperature gradient on the left side of FIG. Therefore, the conventional substrate holder shown on the right side of FIG. 3 has a slightly improved cooling rate in principle compared to the structure on the right side of FIG.

しかし図3の右側の構造は、各部材が熱により変形する際、隣接する部材間で摺動を行わせる図1の右側の構造とは異なり、隣接する他の部材の変形によってもたらされる応力が解消されることがない。さらに各部材における温度差ΔT、ΔT、ΔTは、それぞれ図1の左側の対応する温度差に比べて大きくなる。その結果、図4に示すように、図2に比べて大きな変形が生じる上、各部材には無理な応力がかかった状態となる。 However, the structure on the right side of FIG. 3 is different from the structure on the right side of FIG. 1 in which each member slides between adjacent members when the members are deformed by heat. It will not be resolved. Furthermore, the temperature differences ΔT 1 , ΔT 2 , ΔT 3 in each member are larger than the corresponding temperature differences on the left side of FIG. As a result, as shown in FIG. 4, a large deformation occurs as compared with FIG. 2, and an excessive stress is applied to each member.

上述のように、図1の右側に示す構造は、図3の右側に示す構造に比べて冷却速度が若干低下する。しかし図1の右側に示す構造は、基板処理の際、前述したように各部材の変形量が小さいため、隣接する部材間に生じる隙間を小さく抑えることができる。そのため、冷却速度の低下は小さい。つまり、従来の構造は、部材間の温度差をなくして冷却速度を優先することとの引き換えに、変形の抑制を犠牲にしてきたのに対し、本発明の構造は、あえて部材間に温度差を設けて各部材の表裏面の温度差を小さくすると共に、隣接する部材間を摺動可能とすることにより、冷却速度をほとんど犠牲にすることなく部材が大きくいびつに変形することを抑制するものであり、従来の構造とは大きく異なっている。   As described above, the cooling rate of the structure shown on the right side of FIG. 1 is slightly lower than that of the structure shown on the right side of FIG. However, in the structure shown on the right side of FIG. 1, the amount of deformation of each member is small as described above during substrate processing, so that a gap generated between adjacent members can be kept small. Therefore, the decrease in cooling rate is small. In other words, the conventional structure sacrifices suppression of deformation in exchange for eliminating the temperature difference between the members and prioritizing the cooling rate, whereas the structure of the present invention dares to prevent the temperature difference between the members. In order to reduce the temperature difference between the front and back surfaces of each member and to allow sliding between adjacent members, it is possible to prevent the member from being greatly deformed without substantially sacrificing the cooling rate. It is very different from the conventional structure.

静電チャック10、変形防止板21、および冷却機構22の材質は、上記ΔT/ΔT<0.1、ΔT/ΔT<0.1、およびΔT/ΔT<0.1をそれぞれ満たすように、適宜選択することができる。ここで、各部材の材質は、熱伝導率が高ければ高いほど表裏面の温度差が生じにくくなるため、上記各式を容易に満たすことができ、設計の自由度が向上するので好ましい。しかしながら、熱伝導率が低くても部材の厚みを薄くすれば表裏面の温度差を小さくすることができるため、高い熱伝導率を有する材質に限定されるわけではない。 The materials of the electrostatic chuck 10, the deformation prevention plate 21, and the cooling mechanism 22 are ΔT 1 / ΔT 4 <0.1, ΔT 2 / ΔT 4 <0.1, and ΔT 3 / ΔT 4 <0.1. It can be selected as appropriate so as to satisfy each. Here, as the material of each member is higher, the temperature difference between the front and back surfaces is less likely to occur as the thermal conductivity is higher. Therefore, the above equations can be easily satisfied, and the degree of freedom in design is improved. However, even if the thermal conductivity is low, if the thickness of the member is reduced, the temperature difference between the front and back surfaces can be reduced. Therefore, the material is not limited to a material having a high thermal conductivity.

具体的には、静電チャック10の材質は、前述したように、その機能の点から誘電体である必要があるため、樹脂やセラミックス等が考えられる。しかしながら、静電チャック10の材質には、基板の処理中は300℃程度までの耐熱性が要求されることが多いことから、窒化アルミニウム、アルミナなどのセラミックスが好ましい。この中でも、表裏面の温度差を小さくすることを考慮すると、160W/mK程度の高い熱伝導率を持つ窒化アルミニウムがより好ましい。   Specifically, as described above, since the material of the electrostatic chuck 10 needs to be a dielectric in terms of its function, resin, ceramics, and the like are conceivable. However, since the material of the electrostatic chuck 10 is often required to have heat resistance up to about 300 ° C. during substrate processing, ceramics such as aluminum nitride and alumina are preferable. Among these, aluminum nitride having a high thermal conductivity of about 160 W / mK is more preferable in consideration of reducing the temperature difference between the front and back surfaces.

変形防止板21は、静電チャック10と冷却機構22との間に介在して静電チャック10の変形を抑制する役割を担う部材であり、その材質は誘電体である必要はないが、表裏面の温度差を小さくするという本発明の主旨から、静電チャック10と同様に熱伝導率が高いものであることが好ましい。但し、この条件だけで金属材料を選ぶと、多くの金属材料は窒化アルミニウムより大幅に熱膨張係数が高いため、下記に示す不都合が生じることがある。   The deformation prevention plate 21 is a member that is interposed between the electrostatic chuck 10 and the cooling mechanism 22 and plays a role of suppressing deformation of the electrostatic chuck 10, and the material thereof does not need to be a dielectric, In view of the gist of the present invention to reduce the temperature difference on the back surface, it is preferable that the thermal conductivity is as high as that of the electrostatic chuck 10. However, if a metal material is selected only under these conditions, many metal materials have a significantly higher coefficient of thermal expansion than aluminum nitride, and the following disadvantages may occur.

すなわち、変形防止板21の熱膨張係数が静電チャック10のものに比べて大きすぎると、図5に示すように、基板Wの処理中に変形防止板21が静電チャック10を持ち上げるような形になり、静電チャック10の変形を若干助長する傾向になる。その結果、静電チャック10に高熱伝導率の窒化アルミニウムを使用しても、その効果を十分に発揮できなくなる。   That is, if the thermal expansion coefficient of the deformation preventing plate 21 is too large compared to that of the electrostatic chuck 10, the deformation preventing plate 21 lifts the electrostatic chuck 10 during the processing of the substrate W as shown in FIG. The shape tends to facilitate the deformation of the electrostatic chuck 10 slightly. As a result, even if aluminum nitride having high thermal conductivity is used for the electrostatic chuck 10, the effect cannot be sufficiently exhibited.

なお、図5は極端化したものであり、ΔT/ΔT<0.1を満たしていれば変形防止板21は、図5に示す程度まで大きく変形することはない。静電チャック10の材質に窒化アルミニウムを使用する場合は、窒化アルミニウムの熱膨張係数が3.5〜5.5×10−6/K程度であることを考慮すると、変形防止板21には熱膨張係数が7.0×10−6/K以下となる材質を使用することが好ましい。これにより、変形防止板21の変形を極めて小さな程度に抑制することができる。 Note that FIG. 5 is an extreme one, and if ΔT 2 / ΔT 4 <0.1 is satisfied, the deformation preventing plate 21 will not be greatly deformed to the extent shown in FIG. When aluminum nitride is used as the material of the electrostatic chuck 10, considering that the thermal expansion coefficient of aluminum nitride is about 3.5 to 5.5 × 10 −6 / K, the deformation preventing plate 21 has a heat It is preferable to use a material having an expansion coefficient of 7.0 × 10 −6 / K or less. Thereby, the deformation of the deformation preventing plate 21 can be suppressed to an extremely small extent.

冷却機構22は、それ自身が温度調整機能を持っているため、内部に大きな温度差が生じることはなく、熱膨張係数に注意する必要は特にない。冷却機構22ではできるだけ効率よく熱を移動して取り除くことが望まれていることを考慮すると、その材質には、比較的高い熱伝導率である、例えば、銅、アルミニウム、あるいはこれらの合金等の高熱伝導材料を用いるのが好ましい。   Since the cooling mechanism 22 itself has a temperature adjustment function, a large temperature difference does not occur inside, and it is not particularly necessary to pay attention to the thermal expansion coefficient. Considering that the cooling mechanism 22 is desired to move and remove heat as efficiently as possible, the material thereof has a relatively high thermal conductivity, such as copper, aluminum, or alloys thereof. It is preferable to use a high thermal conductivity material.

なお、隣接する部材の変形によってもたらされる応力を吸収する方法としては、隣接する部材同士の接触面を摺動可能とする以外に、例えば静電チャックと冷却機構をシリコーン樹脂などの硬化後に可撓性を有する材料を用いて接着し、このシリコーン樹脂の厚みを、上記変形に伴う応力を吸収できる程度に厚くすることも考えられる。しかしこの方法では、分厚いシリコーン樹脂が熱抵抗となり、冷却速度が大幅に低下してしまう。   As a method for absorbing the stress caused by the deformation of the adjacent members, for example, the electrostatic chuck and the cooling mechanism can be flexed after the silicone resin or the like is cured, in addition to making the contact surfaces of the adjacent members slidable. It is also conceivable that the thickness of the silicone resin is increased to such an extent that the stress accompanying the deformation can be absorbed. However, in this method, the thick silicone resin becomes a thermal resistance, and the cooling rate is greatly reduced.

また、変形防止板を介在させずに、静電チャックと冷却機構とを直接摺動可能に結合する構造も考えられる。しかし、この構造では、温度差が生じる部材間の界面が1つしかないため、各部材において表裏面の温度差が本発明のものに比べて大きくなり、各部材が大きく変形することを避けることができない。さらに、摺動面も1つしかないため、上記変形に伴う応力を十分に吸収することができない。逆に2つ以上の変形防止板を挟む構造も考えられるが、この場合は、部材間の温度差が生じる界面が3つ以上になるため、これらが大きな熱抵抗となって冷却速度が大幅に低下してしまう。   Further, a structure in which the electrostatic chuck and the cooling mechanism are slidably coupled without using a deformation preventing plate is also conceivable. However, in this structure, since there is only one interface between the members where the temperature difference occurs, the temperature difference between the front and back surfaces of each member is larger than that of the present invention, and it is avoided that each member is greatly deformed. I can't. Furthermore, since there is only one sliding surface, the stress accompanying the deformation cannot be sufficiently absorbed. Conversely, a structure in which two or more deformation prevention plates are sandwiched is also conceivable. However, in this case, since there are three or more interfaces that cause a temperature difference between the members, these become large thermal resistances and the cooling rate is greatly increased. It will decline.

以上説明したように、本発明の基板保持体は、各部材の表裏面の温度差が小さくなるのに反して、隣接する部材間の温度差は大きくなる。この場合、従来技術のように、部材同士が樹脂の接着剤や金属のロウ付け等で接合されていると、隣接する部材間の温度差に起因して大きな応力が発生し、静電チャックおよび静電チャック支持体の破損を招く恐れがあった。これに対して、本発明の基板保持体は、隣接する部材同士を接合せずに変形防止板を摺動可能に挟持する構造を有しているので、このような大きな温度差が隣接する部材間に生じても破損することがない。   As described above, in the substrate holder of the present invention, the temperature difference between the adjacent members is increased while the temperature difference between the front and back surfaces of each member is reduced. In this case, when the members are joined together by resin adhesive or metal brazing as in the prior art, a large stress is generated due to the temperature difference between adjacent members, and the electrostatic chuck and There was a risk of damage to the electrostatic chuck support. On the other hand, the substrate holding body of the present invention has a structure in which the deformation preventing plate is slidably held without joining adjacent members, so that such a large temperature difference is adjacent to the member. Even if it occurs in between, it will not be damaged.

以上、本発明の基板保持体について実施形態を挙げて説明したが、本発明は係る実施形態に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施可能である。すなわち、本発明の技術的範囲は、特許請求の範囲およびその均等物に及ぶものである。   As mentioned above, although the board | substrate holding body of this invention was mentioned and mentioned about embodiment, this invention is not limited to this embodiment, It can implement in the various aspect of the range which does not deviate from the summary of this invention. That is, the technical scope of the present invention extends to the claims and their equivalents.

図1または図2の右側に示すような、静電チャックおよび静電チャック支持体からなる試料1〜8の基板保持体を作製し、それぞれ加熱時の静電チャックの反り、および冷却に要する時間について評価した。なお、これらの評価は、静電チャックの基板載置面に基板を載置せずに行った。   As shown on the right side of FIG. 1 or FIG. 2, substrate holders of samples 1 to 8 made of an electrostatic chuck and an electrostatic chuck support are produced, and the time required for warping and cooling of the electrostatic chuck during heating, respectively. Was evaluated. These evaluations were performed without placing a substrate on the substrate placement surface of the electrostatic chuck.

具体的に説明すると、先ず、直径350mm、厚さ2mmのアルミナ焼結体の板を用意し、これにスクリーン印刷によりタングステンペーストを印刷することにより、一方の面にチャック電極を設け、その反対側の面に抵抗発熱体を設けた。チャック電極を設けた面側に、直径350mm、厚さ1mmのアルミナ焼結体の板をガラス接合にて接合した。さらに、抵抗発熱体を設けた面側に、直径350mm、厚さ2mmのアルミナ焼結体の板を同様にガラス接合にて接合した。これにより、全体の厚み5mmの板状体が得られる。   Specifically, first, an alumina sintered body plate having a diameter of 350 mm and a thickness of 2 mm is prepared, and a tungsten paste is printed thereon by screen printing, so that a chuck electrode is provided on one surface and the opposite side thereof. A resistance heating element was provided on the surface. A plate of an alumina sintered body having a diameter of 350 mm and a thickness of 1 mm was bonded to the surface provided with the chuck electrode by glass bonding. Furthermore, a plate of an alumina sintered body having a diameter of 350 mm and a thickness of 2 mm was similarly bonded to the surface side provided with the resistance heating element by glass bonding. Thereby, a plate-like body having a total thickness of 5 mm is obtained.

この板状体に、ネジ止め用の内径7mmの貫通孔と、内径12mm、深さ3mmのザグリ孔とを設けた。さらに、温度調節用の測温素子を設置するための内径1.7mm、深さ3mmの孔を、抵抗発熱体を設けた面側の中央に設けた。このようにして、静電チャックを完成させた。   This plate-like body was provided with a through hole having an inner diameter of 7 mm for screwing and a counterbore hole having an inner diameter of 12 mm and a depth of 3 mm. Furthermore, a hole having an inner diameter of 1.7 mm and a depth of 3 mm for installing a temperature measuring element for temperature adjustment was provided in the center on the surface side where the resistance heating element was provided. Thus, the electrostatic chuck was completed.

上記静電チャックとは別に、直径350mm、厚さ15mmの銅板を用意し、ネジ止め用の内径7mmの貫通孔、および測温素子を通すための内径1.7mmの貫通孔を上記静電チャックの貫通孔にそれぞれ対応する位置に設けた。このようにして、変形防止板を完成させた。   Separately from the electrostatic chuck, a copper plate having a diameter of 350 mm and a thickness of 15 mm is prepared, and a through hole having an inner diameter of 7 mm for screwing and a through hole having an inner diameter of 1.7 mm for passing a temperature measuring element are provided in the electrostatic chuck. It provided in the position corresponding to each through-hole. In this way, a deformation preventing plate was completed.

また、直径350mm、厚さ10mmの銅板を用意し、これに冷媒通路となるパイプを設置するための溝を設け、この溝に銅製のパイプを設置した後、直径350mm、厚さ5mmの銅板をネジ止めした。さらに、ネジ止め用の内径7mmの貫通孔、および測温素子を通すための内径1.7mmの貫通孔を上記静電チャックの貫通孔にそれぞれ対応する位置に設けた。このようにして、冷却機構を完成させた。なお、冷却機構全体の厚みは15mmとなる。   In addition, a copper plate having a diameter of 350 mm and a thickness of 10 mm is prepared, and a groove for installing a pipe serving as a refrigerant passage is provided in the copper plate. After installing a copper pipe in the groove, a copper plate having a diameter of 350 mm and a thickness of 5 mm is provided. Screwed. Further, a through hole with an inner diameter of 7 mm for screwing and a through hole with an inner diameter of 1.7 mm for passing the temperature measuring element were provided at positions corresponding to the through holes of the electrostatic chuck. In this way, the cooling mechanism was completed. In addition, the thickness of the whole cooling mechanism will be 15 mm.

これら静電チャック、変形防止板および冷却機構のそれぞれにおいて、表面および裏面の温度を測定するために、図6に示すように、各部材Pの表裏面に、各々、幅2mm、長さ20mm、深さ0.5mmの溝Paを設け、この溝に接着剤により熱電対を埋め込んだ。   In each of the electrostatic chuck, the deformation prevention plate, and the cooling mechanism, in order to measure the temperature of the front surface and the back surface, as shown in FIG. 6, the front and back surfaces of each member P are each 2 mm wide, 20 mm long, A groove Pa having a depth of 0.5 mm was provided, and a thermocouple was embedded in the groove with an adhesive.

さらに、これら静電チャック、変形防止板および冷却機構をネジ止めによる挟み込みで固定することによって一体化し、さらに温度調節用の測温素子を設置して、静電チャックと静電チャック支持体とからなる試料1の基板保持体を完成させた。なお、この固定はネジ止めによる挟み込みのみであり、接着剤等による固定はしていない。よって、隣接する部材同士は互いに摺動可能となっている。   Furthermore, these electrostatic chuck, deformation prevention plate, and cooling mechanism are integrated by fixing by screwing, and a temperature measuring element for temperature adjustment is further installed, and the electrostatic chuck and electrostatic chuck support are A substrate holder for Sample 1 was completed. In addition, this fixing is only clamping by screwing, and fixing by an adhesive or the like is not performed. Therefore, adjacent members can slide with each other.

スクリーン印刷によるチャック電極および抵抗発熱体の形成を行ったアルミナ焼結体の厚みを2mmの代わりに7mmとし、よって、静電チャック全体の厚みを10mmとしたこと以外は上記試料1の基板保持体と同様にして、試料2の基板保持体を作製した。   The substrate holder of the above sample 1 except that the thickness of the alumina sintered body on which the chuck electrode and the resistance heating element are formed by screen printing is 7 mm instead of 2 mm, and the thickness of the entire electrostatic chuck is 10 mm. In the same manner as described above, a substrate holder for Sample 2 was produced.

変形防止板の材質を銅に代えてアルミニウム合金(JIS呼称6061、以下6061と称する)としたこと以外は上記試料1の基板保持体と同様にして、試料3の基板保持体を作製した。   A substrate holder of sample 3 was produced in the same manner as the substrate holder of sample 1 except that the material of the deformation preventing plate was replaced with copper and an aluminum alloy (JIS name 6061, hereinafter referred to as 6061).

冷却機構の材質を銅に代えて6061(ただし冷媒通路のパイプには銅製のものを採用した)としたこと以外は上記試料1の基板保持体と同様にして、試料4の基板保持体を作製した。   A substrate holder for sample 4 was prepared in the same manner as the substrate holder for sample 1 except that the cooling mechanism was replaced with copper instead of 6061 (but a copper pipe was used for the refrigerant passage). did.

図3の右側に示す構造の静電チャックと静電チャック支持体とからなる試料5の基板保持体を作製した。具体的には、ネジ止め用の貫通孔やザグリ孔を設けなかった以外は上記試料1と同様にして、静電チャックと冷却機構とを作製した。これら静電チャックと冷却機構とを、シリコーン樹脂からなる接着剤により固定し、温度調節用の測温素子を設置し、試料5の基板保持体を作製した。   A substrate holder for sample 5 made of an electrostatic chuck having the structure shown on the right side of FIG. 3 and an electrostatic chuck support was produced. Specifically, an electrostatic chuck and a cooling mechanism were produced in the same manner as Sample 1 except that no through hole or counterbore hole for screwing was provided. The electrostatic chuck and the cooling mechanism were fixed with an adhesive made of silicone resin, a temperature measuring element for temperature adjustment was installed, and a substrate holder for sample 5 was produced.

静電チャックを構成するセラミックスをアルミナ焼結体に代えて窒化アルミニウム焼結体(以下、AlNと称する)にしたこと以外は試料2の基板保持体と同様にして、試料6の基板保持体を作製した。   The substrate holder of sample 6 is the same as the substrate holder of sample 2 except that the ceramic constituting the electrostatic chuck is replaced by an aluminum nitride sintered body (hereinafter referred to as AlN) instead of the alumina sintered body. Produced.

変形防止板を、厚さ15mmの銅板に代えて、厚み10mmの、セラミックス(SiC)と金属(Al)との複合材料(以下Al−SiCと称する)としたこと以外は試料6の基板保持体と同様にして、試料7の基板保持体を作製した。   Substrate holder for sample 6 except that the deformation prevention plate is a composite material of ceramics (SiC) and metal (Al) (hereinafter referred to as Al-SiC) having a thickness of 10 mm instead of a copper plate having a thickness of 15 mm. In the same manner as described above, a substrate holder of Sample 7 was produced.

変形防止板の厚みを10mmに代えて15mmとしたこと以外は試料7の基板保持体と同様にして、試料8の基板保持体を作製した。   A substrate holder of sample 8 was produced in the same manner as the substrate holder of sample 7 except that the thickness of the deformation prevention plate was changed to 15 mm instead of 10 mm.

変形防止板を、Al−SiCに代えて、AlNとしたこと以外は試料7の基板保持体と同様にして、試料9の基板保持体を作製した。   A substrate holder of sample 9 was fabricated in the same manner as the substrate holder of sample 7 except that the deformation preventing plate was replaced with AlN instead of Al—SiC.

これら試料1〜9の基板保持体に対して、それぞれ冷却機構に一定流量の冷媒を流した状態にして、抵抗発熱体に通電することによって静電チャックを加熱し、温度調節用の測温素子の測定値にて100℃の温度に保持した。この状態で、各部材に埋め込んだ熱電対により、各部材の表裏面の温度差および基板保持体全体としての表裏面の温度差を測定し、さらに光学式変位計で静電チャックの基板載置面の反りを測定した。次に、冷却機構に一定流量の冷媒を流したままの状態で、抵抗発熱体を切電し、100℃から50℃に冷却されるまでの時間を測定した。   With respect to the substrate holders of these samples 1 to 9, the electrostatic chuck is heated by energizing the resistance heating element in a state where a constant flow rate of refrigerant is passed through the cooling mechanism, and a temperature measuring element for temperature adjustment. The measured value was maintained at a temperature of 100 ° C. In this state, the temperature difference between the front and back surfaces of each member and the temperature difference between the front and back surfaces of the entire substrate holder are measured by the thermocouple embedded in each member, and the substrate mounted on the electrostatic chuck is further measured with an optical displacement meter. The warpage of the surface was measured. Next, the resistance heating element was turned off in a state where a constant flow rate of refrigerant was flowing through the cooling mechanism, and the time until cooling from 100 ° C. to 50 ° C. was measured.

上記測定で得られた表裏面の温度差からΔT/ΔT、ΔT/ΔTおよびΔT/ΔTの各値を求めた。これらの値を、各基板保持体の構造の概要と共に下記表1に示す。また、各基板保持体の静電チャックの基板載置面での反り、および100℃から50℃に冷却されるまでの時間の測定結果を下記表2に示す。 Each value of ΔT 1 / ΔT 4 , ΔT 2 / ΔT 4 and ΔT 3 / ΔT 4 was determined from the temperature difference between the front and back surfaces obtained by the above measurement. These values are shown in Table 1 below together with an outline of the structure of each substrate holder. Table 2 below shows the measurement results of the warpage of each substrate holder on the substrate mounting surface of the electrostatic chuck and the time until cooling from 100 ° C. to 50 ° C.

Figure 2011159678
Figure 2011159678

Figure 2011159678
Figure 2011159678

これらの表から、試料1では、ΔT/ΔT、ΔT/ΔTおよびΔT/ΔTの値が全て0.1より小さいため、各部材の表裏面の温度差が小さく抑えられており、また変形防止板が摺動可能に挟持されていることもあって、静電チャックの基板載置面での反りが小さく、かつ100℃から50℃に冷却されるまでの時間も短かった。 From these tables, in Sample 1, since the values of ΔT 1 / ΔT 4 , ΔT 2 / ΔT 4 and ΔT 3 / ΔT 4 are all smaller than 0.1, the temperature difference between the front and back surfaces of each member can be kept small. In addition, since the deformation prevention plate is slidably held, the warp on the substrate mounting surface of the electrostatic chuck is small, and the time until cooling from 100 ° C. to 50 ° C. is also short. .

これに対し、試料2〜4では、ΔT/ΔT、ΔT/ΔTおよびΔT/ΔTのうちのいずれかが0.1より大きかった。つまり、静電チャック、変形防止板、冷却機構のいずれかで表裏面の温度差が所定の限度を超え、その部材は大きく反った。また、この反りの影響を受けて静電チャックの基板載置面での反りが大幅に増加した。さらに、反りが大きな部材では、これと隣接する部材との隙間が大きくなり、冷却効率が低下して冷却時間が増加した。 On the other hand, in samples 2 to 4, any of ΔT 1 / ΔT 4 , ΔT 2 / ΔT 4 and ΔT 3 / ΔT 4 was greater than 0.1. In other words, the temperature difference between the front and back surfaces exceeded a predetermined limit in any of the electrostatic chuck, the deformation prevention plate, and the cooling mechanism, and the member was greatly warped. Further, the warpage on the substrate mounting surface of the electrostatic chuck is greatly increased under the influence of the warpage. Further, in a member having a large warp, a gap between the adjacent member and the adjacent member becomes large, cooling efficiency is lowered, and cooling time is increased.

試料5では、部材間の隙間が存在しないため、冷却効率が向上し冷却時間は短縮しているものの、静電チャックと冷却機構とは接着されているため、互いに摺動することができない。また、ΔT/ΔTおよびΔT/ΔTが0.1から大幅に増加し、つまり各部材の表裏面の温度差が大幅に増加しているため、静電チャックの基板載置面での反りが極めて大きくなっている。 In the sample 5, there is no gap between the members, so that the cooling efficiency is improved and the cooling time is shortened. However, since the electrostatic chuck and the cooling mechanism are bonded, they cannot slide with each other. In addition, ΔT 1 / ΔT 4 and ΔT 3 / ΔT 4 are greatly increased from 0.1, that is, the temperature difference between the front and back surfaces of each member is greatly increased. The warpage of has become extremely large.

試料6では、試料1よりもΔT/ΔTが小さく、よって、試料1よりさらに静電チャックの基板載置面での反りが小さくなるはずであったが、静電チャックの熱膨張係数に対する変形防止板の熱膨張係数の乖離の度合いが試料1よりも大きいため、静電チャックを持ち上げるような形になり、結果的に静電チャックの基板載置面での反りは試料1に比べてほとんど変わっていない。 In the sample 6, ΔT 1 / ΔT 4 is smaller than that in the sample 1, and accordingly, the warpage on the substrate mounting surface of the electrostatic chuck should be smaller than that in the sample 1. Since the degree of deviation of the thermal expansion coefficient of the deformation preventing plate is larger than that of the sample 1, the electrostatic chuck is lifted up. As a result, the warpage of the electrostatic chuck on the substrate mounting surface is more than that of the sample 1. Almost unchanged.

これに対し試料7および試料9では、静電チャックの熱膨張係数に対する変形防止板の熱膨張係数の乖離の度合いが試料1や試料6に比べて小さく、静電チャックを持ち上げることがないため、ΔT/ΔTが小さい効果が表れて、静電チャックの基板載置面での反りは極めて小さくなっている。 On the other hand, in Sample 7 and Sample 9, the degree of deviation of the thermal expansion coefficient of the deformation preventing plate from that of the electrostatic chuck is smaller than that of Sample 1 or Sample 6, and the electrostatic chuck is not lifted. The effect of small ΔT 1 / ΔT 4 appears, and the warpage of the electrostatic chuck on the substrate mounting surface is extremely small.

一方、試料8では、静電チャックの熱膨張係数に対する変形防止板の熱膨張係数の乖離の度合いは試料7と同様に小さいものの、ΔT/ΔTが0.1より大きいため、変形防止板自身の変形が大きく、静電チャックの基板載置面での反りが大きい。このように、試料7に見られる効果は、ΔT/ΔTが小さいことと、静電チャックの熱膨張係数に対する変形防止板の熱膨張係数の乖離の度合いが小さいことが両立してはじめて発現することが分かる。 On the other hand, in Sample 8, although the degree of deviation of the thermal expansion coefficient of the deformation preventing plate from that of the electrostatic chuck is small as in Sample 7, ΔT 2 / ΔT 4 is larger than 0.1. The deformation of itself is large, and the warp on the substrate mounting surface of the electrostatic chuck is large. Thus, the effect seen in the sample 7 is manifested only when both ΔT 2 / ΔT 4 is small and the degree of deviation of the thermal expansion coefficient of the deformation preventing plate from the thermal expansion coefficient of the electrostatic chuck is small. I understand that

10、1 静電チャック
10a、1a 基板載置面
20 静電チャック支持体
21 変形防止板
22、3 冷却機構
22a、3a 冷媒通路
2 接合層
W 基板
DESCRIPTION OF SYMBOLS 10, 1 Electrostatic chuck 10a, 1a Substrate mounting surface 20 Electrostatic chuck support body 21 Deformation prevention plate 22, 3 Cooling mechanism 22a, 3a Refrigerant passage 2 Bonding layer W Substrate

Claims (2)

被処理対象である基板を載置する基板載置面を有する静電チャックと、該静電チャックを基板載置面の反対側の面から支持し、変形防止板および冷却機構を少なくとも含む静電チャック支持体とを備えた基板保持体であって、
これら変形防止板および冷却機構はこの順序で前記静電チャックに近い側から配置されており、前記変形防止板はその両面において摺動可能となるように挟持されており、基板処理の際の前記静電チャックの表裏面の温度差をΔT、前記変形防止板の表裏面の温度差をΔT、前記冷却機構の表裏面の温度差をΔT、前記静電チャックの基板載置面の温度と前記冷却機構において変形防止板に対向する面とは反対側の面の温度との温度差をΔTとした時、これらがΔT/ΔT<0.1かつΔT/ΔT<0.1かつΔT/ΔT<0.1の関係を有していることを特徴とする基板保持体。
An electrostatic chuck having a substrate placement surface on which a substrate to be processed is placed, an electrostatic chuck that supports the electrostatic chuck from a surface opposite to the substrate placement surface, and includes at least a deformation prevention plate and a cooling mechanism. A substrate holder comprising a chuck support,
The deformation prevention plate and the cooling mechanism are arranged in this order from the side close to the electrostatic chuck, and the deformation prevention plate is sandwiched so as to be slidable on both surfaces thereof, and the substrate is processed during substrate processing. The temperature difference between the front and back surfaces of the electrostatic chuck is ΔT 1 , the temperature difference between the front and back surfaces of the deformation prevention plate is ΔT 2 , the temperature difference between the front and back surfaces of the cooling mechanism is ΔT 3 , and the substrate mounting surface of the electrostatic chuck is When the temperature difference between the temperature and the temperature of the surface opposite to the surface facing the deformation preventing plate in the cooling mechanism is ΔT 4 , these are ΔT 1 / ΔT 4 <0.1 and ΔT 2 / ΔT 4 < A substrate holder having a relationship of 0.1 and ΔT 3 / ΔT 4 <0.1.
前記静電チャックは窒化アルミニウムから成り、前記変形防止板は熱膨張係数が7.0×10−6/K以下であることを特徴とする、請求項1に記載の基板保持体。 The substrate holder according to claim 1, wherein the electrostatic chuck is made of aluminum nitride, and the deformation preventing plate has a thermal expansion coefficient of 7.0 × 10 −6 / K or less.
JP2010018079A 2010-01-29 2010-01-29 Substrate holder with electrostatic chuck Expired - Fee Related JP5434636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018079A JP5434636B2 (en) 2010-01-29 2010-01-29 Substrate holder with electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018079A JP5434636B2 (en) 2010-01-29 2010-01-29 Substrate holder with electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2011159678A true JP2011159678A (en) 2011-08-18
JP5434636B2 JP5434636B2 (en) 2014-03-05

Family

ID=44591408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018079A Expired - Fee Related JP5434636B2 (en) 2010-01-29 2010-01-29 Substrate holder with electrostatic chuck

Country Status (1)

Country Link
JP (1) JP5434636B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027118A (en) * 2012-07-27 2014-02-06 Tokyo Electron Ltd Joining apparatus, joining system, joining method, program, and computer storage medium
JP2014063972A (en) * 2012-08-29 2014-04-10 Tokyo Electron Ltd Plasma etching device and control method
CN109478531A (en) * 2017-05-25 2019-03-15 日本碍子株式会社 Chip pedestal
CN109643685A (en) * 2016-08-26 2019-04-16 日本碍子株式会社 Wafer stage
JP2021176172A (en) * 2020-05-01 2021-11-04 東京エレクトロン株式会社 Substrate processing device, placing table, and temperature control method
JP2022092824A (en) * 2020-12-11 2022-06-23 日本碍子株式会社 Semiconductor manufacturing device member and manufacturing method thereof
WO2023189979A1 (en) * 2022-03-29 2023-10-05 京セラ株式会社 Sample holder
WO2024100752A1 (en) * 2022-11-08 2024-05-16 日本碍子株式会社 Semiconductor manufacturing device member
JP7515310B2 (en) 2020-06-10 2024-07-12 東京エレクトロン株式会社 Mounting table, substrate processing apparatus, and substrate processing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144167A (en) * 1999-11-12 2001-05-25 Ngk Insulators Ltd Semiconductor holder
JP2003224180A (en) * 2002-01-28 2003-08-08 Kyocera Corp Wafer support member
JP2007035878A (en) * 2005-07-26 2007-02-08 Kyocera Corp Wafer retainer and its manufacturing method
JP2007251124A (en) * 2006-02-20 2007-09-27 Toto Ltd Electrostatic chuck
JP2009141204A (en) * 2007-12-07 2009-06-25 Ngk Insulators Ltd Substrate holding body and its manufacturing method
JP2009267256A (en) * 2008-04-28 2009-11-12 Ngk Insulators Ltd Substrate retainer and method for manufacturing the same
JP2009302508A (en) * 2008-05-16 2009-12-24 Canon Anelva Corp Substrate holding apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144167A (en) * 1999-11-12 2001-05-25 Ngk Insulators Ltd Semiconductor holder
JP2003224180A (en) * 2002-01-28 2003-08-08 Kyocera Corp Wafer support member
JP2007035878A (en) * 2005-07-26 2007-02-08 Kyocera Corp Wafer retainer and its manufacturing method
JP2007251124A (en) * 2006-02-20 2007-09-27 Toto Ltd Electrostatic chuck
JP2009141204A (en) * 2007-12-07 2009-06-25 Ngk Insulators Ltd Substrate holding body and its manufacturing method
JP2009267256A (en) * 2008-04-28 2009-11-12 Ngk Insulators Ltd Substrate retainer and method for manufacturing the same
JP2009302508A (en) * 2008-05-16 2009-12-24 Canon Anelva Corp Substrate holding apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027118A (en) * 2012-07-27 2014-02-06 Tokyo Electron Ltd Joining apparatus, joining system, joining method, program, and computer storage medium
JP2014063972A (en) * 2012-08-29 2014-04-10 Tokyo Electron Ltd Plasma etching device and control method
CN109643685B (en) * 2016-08-26 2023-04-07 日本碍子株式会社 Wafer mounting table
CN109643685A (en) * 2016-08-26 2019-04-16 日本碍子株式会社 Wafer stage
CN109478531A (en) * 2017-05-25 2019-03-15 日本碍子株式会社 Chip pedestal
JP2021176172A (en) * 2020-05-01 2021-11-04 東京エレクトロン株式会社 Substrate processing device, placing table, and temperature control method
JP7301021B2 (en) 2020-05-01 2023-06-30 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS, PLACEMENT STAND, AND TEMPERATURE CONTROL METHOD
JP7515310B2 (en) 2020-06-10 2024-07-12 東京エレクトロン株式会社 Mounting table, substrate processing apparatus, and substrate processing method
JP2022092824A (en) * 2020-12-11 2022-06-23 日本碍子株式会社 Semiconductor manufacturing device member and manufacturing method thereof
JP7368343B2 (en) 2020-12-11 2023-10-24 日本碍子株式会社 Components for semiconductor manufacturing equipment and their manufacturing method
WO2023189979A1 (en) * 2022-03-29 2023-10-05 京セラ株式会社 Sample holder
WO2024100752A1 (en) * 2022-11-08 2024-05-16 日本碍子株式会社 Semiconductor manufacturing device member
KR20240070453A (en) * 2022-11-08 2024-05-21 엔지케이 인슐레이터 엘티디 Materials for semiconductor manufacturing equipment
JP7515018B1 (en) 2022-11-08 2024-07-11 日本碍子株式会社 Semiconductor manufacturing equipment parts
KR102702197B1 (en) 2022-11-08 2024-09-02 엔지케이 인슐레이터 엘티디 Components for semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JP5434636B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5434636B2 (en) Substrate holder with electrostatic chuck
JP4497103B2 (en) Wafer holder, heater unit on which it is mounted, and wafer prober
JP5447123B2 (en) Heater unit and apparatus provided with the same
JP4986830B2 (en) Substrate holder and method for manufacturing the same
JP5416570B2 (en) Heating / cooling device and apparatus equipped with the same
JP6137267B2 (en) Power module substrate with heat sink and power module
JP2015216370A (en) Heat-sink-attached substrate for power modules, and power module
JP2010182831A (en) Semiconductor device
JP2007035747A (en) Wafer holder, and wafer prober equipped with the same
JP2007035878A (en) Wafer retainer and its manufacturing method
JP7151583B2 (en) Insulated circuit board with heat sink
JP2007042911A (en) Wafer holder and wafer prober mounted with the same
JP4893543B2 (en) Wafer holder and semiconductor manufacturing apparatus equipped with the same
JP5381878B2 (en) Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same
JP4525571B2 (en) Wafer holder, heater unit on which it is mounted, and wafer prober
JP2013123053A (en) Device for heating and cooling, and apparatus with the same
JP2008118080A (en) Heating body and semiconductor manufacturing apparatus mounted with the same
JP2007115736A (en) Wafer heating hot plate
JP2010186765A (en) Wafer supporter for wafer prober and wafer prober carrying the same
JP2013004810A (en) Heater for heating wafer
JP2007042909A (en) Wafer holder and wafer prober mounted with the same
JP4124589B2 (en) Wafer holding device
JP2007227442A (en) Wafer holding body and wafer prober mounted with the same
JP2007208186A (en) Wafer holder, semiconductor manufacturing device mounted with the same and wafer prober
JP4356661B2 (en) Wafer holder and wafer prober equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees