JP2015106667A - Substrate placement device - Google Patents

Substrate placement device Download PDF

Info

Publication number
JP2015106667A
JP2015106667A JP2013248628A JP2013248628A JP2015106667A JP 2015106667 A JP2015106667 A JP 2015106667A JP 2013248628 A JP2013248628 A JP 2013248628A JP 2013248628 A JP2013248628 A JP 2013248628A JP 2015106667 A JP2015106667 A JP 2015106667A
Authority
JP
Japan
Prior art keywords
substrate
groove
base
cooling pipe
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013248628A
Other languages
Japanese (ja)
Other versions
JP6296770B2 (en
Inventor
石田 弘徳
Hironori Ishida
弘徳 石田
青山 久範
Hisanori Aoyama
久範 青山
健一 深澤
Kenichi Fukazawa
健一 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2013248628A priority Critical patent/JP6296770B2/en
Publication of JP2015106667A publication Critical patent/JP2015106667A/en
Application granted granted Critical
Publication of JP6296770B2 publication Critical patent/JP6296770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate support device which improves the uniformity of temperature distribution on a substrate.SOLUTION: A substrate placement device 10 includes: a base substance 11 having a placement surface 11a on which a substrate A is placed; a pedestal base 12 which is fixed to the base substance 11 and has higher heat transfer rate than the base substance 11, the pedestal base 12 in which a groove 16 is formed; and a cooling pipe 17 disposed in the groove 16, the cooling pipe 17 to which a cooling medium is supplied. A thermal buffer layer 18 having a heat transfer rate lower than the pedestal base 12 is provided between the groove 16 and the cooling pipe 17.

Description

基板載置装置、特に、半導体製造装置等に使用され、シリコンウェハ等の基板を載置する基体を備えた基板載置装置に関する。   The present invention relates to a substrate mounting apparatus, and more particularly to a substrate mounting apparatus that is used in a semiconductor manufacturing apparatus or the like and includes a base on which a substrate such as a silicon wafer is mounted.

半導体製造工程において、シリコンウェハ等の基板は基板載置装置の基体の載置面に支持されて、エッチングやCVD等のプラズマ処理が行われる。   In a semiconductor manufacturing process, a substrate such as a silicon wafer is supported on a mounting surface of a base of a substrate mounting device, and plasma processing such as etching or CVD is performed.

プラズマ処理は温度管理が重要であり、基板を所定の温度に加熱する必要がある。そのため、基板を支持する基体の内部に抵抗発熱体を埋設して、この抵抗発熱体に電圧を印加して発熱させることで基体を介して基板を加熱している。   In plasma processing, temperature management is important, and it is necessary to heat the substrate to a predetermined temperature. Therefore, a resistance heating element is embedded in the base that supports the substrate, and a voltage is applied to the resistance heating element to generate heat, thereby heating the substrate through the base.

プラズマ処理時、プラズマからの入熱によって基板の温度は上昇する。しかし、プラズマ処理は所定の温度で行う必要がある。そこで、基体が固定された台座(冷却ジャケット、ベースプレート等とも呼称される)に溝を設け、この溝に冷却媒体を流してプラズマによる入熱の一部を抜熱することがある(例えば、特許文献1参照)。   During plasma processing, the temperature of the substrate rises due to heat input from the plasma. However, the plasma treatment needs to be performed at a predetermined temperature. Therefore, there is a case where a groove is provided in a base (also called a cooling jacket, a base plate, etc.) to which the base is fixed, and a part of heat input by the plasma is removed by flowing a cooling medium through the groove (for example, patents). Reference 1).

特開2000−299288号公報JP 2000-299288 A

しかしながら、台座はアルミニウム等の熱伝導率の高い金属からなるので、基板は溝の経路に沿って相対的に大きく抜熱され、基板の面内温度分布が不均一になることがあった。さらに、近年、台座の薄厚化が求められ、基板の面内温度分布の不均一化が拡大していいた。温度分布が不均一であると、基板に割れ、うねり等の変形が生じるおそれがある。   However, since the pedestal is made of a metal having a high thermal conductivity such as aluminum, the substrate is relatively greatly removed along the groove path, and the in-plane temperature distribution of the substrate may become uneven. Furthermore, in recent years, the pedestal has been required to be thin, and the in-plane temperature distribution of the substrate has become increasingly uneven. If the temperature distribution is not uniform, the substrate may be deformed such as cracking and swell.

なお、基板と基体との間にガスを供給すれば、温度分布の不均一は緩和されるが、十分に緩和されないこともあった。そして、そもそも、基体が静電チャックではない場合、このような方策を採用することができない。   If a gas is supplied between the substrate and the substrate, the uneven temperature distribution is alleviated, but it may not be sufficiently relaxed. In the first place, when the substrate is not an electrostatic chuck, such a measure cannot be adopted.

本発明は、基板の温度分布の均一化の向上を図ることが可能な基板載置装置を提供することを目的とする。   An object of this invention is to provide the board | substrate mounting apparatus which can aim at the improvement of the uniform temperature distribution of a board | substrate.

本発明の第1の基板載置装置は、基板を載置する載置面を有する基体と、前記基体に固定され、内部に溝が形成され、前記基体より熱伝達率が高い台座と、前記溝内に配置され、内部に冷却媒体が供給される冷却管とを備えたことを特徴とする。   A first substrate mounting apparatus of the present invention includes a base having a mounting surface for mounting a substrate, a base fixed to the base, a groove formed therein, and a heat transfer coefficient higher than that of the base; And a cooling pipe disposed in the groove and supplied with a cooling medium.

本発明の第1の基板載置装置によれば、台座内に溝が形成され、この溝内に配置された冷却管に冷却媒体が供給されることにより、基板が冷却される。そのため、冷却媒体は、冷却管、冷却管と溝との間の空間、台座及び基体の順に、基板の熱を抜熱する。   According to the first substrate mounting apparatus of the present invention, a groove is formed in the pedestal, and the substrate is cooled by supplying the cooling medium to the cooling pipe disposed in the groove. Therefore, the cooling medium removes heat from the substrate in the order of the cooling pipe, the space between the cooling pipe and the groove, the base, and the base.

よって、上記特許文献1に記載されたように台座内に形成した溝に冷却媒体が供給される従来の場合と比較して、冷却媒体による台座の抜熱は緩和される。そのため、基板が溝の経路に沿って相対的に大きく抜熱されることが緩和され、基板の温度分布の均一化の向上を図ることが可能となる。これにより、基板の面内の温度勾配が小さくなり、基板に割れ、うねり等の変形が生じるおそれが低減される。   Therefore, compared with the conventional case where the cooling medium is supplied to the groove formed in the pedestal as described in Patent Document 1, heat removal from the pedestal by the cooling medium is alleviated. For this reason, it is possible to alleviate the heat extraction from the substrate along the path of the groove, and it is possible to improve the uniform temperature distribution of the substrate. Thereby, the temperature gradient in the surface of a board | substrate becomes small, and a possibility that deformation | transformation, such as a crack and a wave | undulation, will arise in a board | substrate is reduced.

なお、台座全体の熱伝達率を低くすると、基板の温度分布の均一化を図ることが可能となるが、基板の冷却速度が遅くなる。そのため、プラズマ処理が開始され、プラズマからの入熱によって温度上昇した基板を所定の温度に冷却するまでにかかる時間が長くなる。   If the heat transfer coefficient of the entire pedestal is lowered, the temperature distribution of the substrate can be made uniform, but the cooling rate of the substrate becomes slow. For this reason, plasma processing is started, and it takes a long time to cool the substrate whose temperature has risen due to heat input from the plasma to a predetermined temperature.

一方、本発明の第1の基板載置装置では、台座の熱伝達率は基体より高いので、基板の冷却速度が速い。よって、温度上昇した基板を所定の温度に冷却するまでにかかる時間を短縮化することが可能となる。   On the other hand, in the first substrate mounting device of the present invention, the heat transfer rate of the pedestal is higher than that of the base, so that the substrate cooling rate is fast. Therefore, it is possible to shorten the time taken to cool the substrate whose temperature has increased to a predetermined temperature.

本発明の第1の基板載置装置において、前記溝と前記冷却管との間に、前記台座より熱伝達率が低い熱緩衝層を備えることが好ましい。   The 1st board | substrate mounting apparatus of this invention WHEREIN: It is preferable to provide the thermal buffer layer whose heat transfer coefficient is lower than the said base between the said groove | channel and the said cooling pipe.

この場合、熱緩衝層によって冷却管から台座への熱伝達を制御することができるので、冷却管が熱伝導の高いものからなるものであっても、冷却媒体による局所的な冷却をより緩和することが可能となる。よって、基板の温度分布の均一化の向上をさらに図ることが可能となる。   In this case, since heat transfer from the cooling pipe to the pedestal can be controlled by the thermal buffer layer, local cooling by the cooling medium is further eased even if the cooling pipe is made of a material having high heat conduction. It becomes possible. Therefore, it is possible to further improve the uniformity of the temperature distribution of the substrate.

本発明の第1の基板載置装置において、前記基体と前記台座とは接着剤が固化してなる接合層を介して固定されていることが好ましい。   In the first substrate mounting apparatus of the present invention, it is preferable that the base and the pedestal are fixed via a bonding layer formed by solidifying an adhesive.

この場合、基体と台座との間に隙間が存在しないようにすることが容易となる。そのため、隙間の存在によって、基体と台座との局所的又は部分的な熱伝達が妨げられ、基板の温度分布の均一化の向上をさらに図ることが可能となる。   In this case, it becomes easy to avoid a gap between the base and the pedestal. Therefore, the presence of the gap hinders local or partial heat transfer between the base and the pedestal, and it is possible to further improve the uniform temperature distribution of the substrate.

本発明の第1の基板載置装置において、前記基体と前記台座との間に、前記基体より熱伝達率が低い断熱板を有することが好ましい。   In the first substrate mounting device of the present invention, it is preferable that a heat insulating plate having a heat transfer coefficient lower than that of the base is provided between the base and the pedestal.

この場合、断熱板によって台座から基体への熱伝達を制御することができるので、冷却媒体による局所的な冷却をより緩和することが可能となる。よって、基板の温度分布の均一化の向上をさらに図ることが可能となる。   In this case, the heat transfer from the pedestal to the base body can be controlled by the heat insulating plate, so that local cooling by the cooling medium can be further relaxed. Therefore, it is possible to further improve the uniformity of the temperature distribution of the substrate.

本発明の第2の基板載置装置は、基板を載置する載置面側が溶射層で被覆され、内部に溝が形成された基体と、前記溝内に配置され、内部に冷却媒体が供給される冷却管とを備えたことを特徴とする。   The second substrate mounting apparatus according to the present invention has a substrate surface on which a substrate is mounted coated with a thermal spray layer, and a substrate having a groove formed therein, and is disposed in the groove, and a cooling medium is supplied to the inside. The cooling pipe is provided.

本発明の第2の基板載置装置によれば、基体内に溝が形成され、この溝内に配置された冷却管に冷却媒体が供給されることにより、基板が冷却される。そのため、冷却媒体は、冷却管、冷却管と溝との間の空間、基体及び溶射層の順に、基板の熱を抜熱する。   According to the second substrate mounting device of the present invention, the substrate is cooled by forming the groove in the base and supplying the cooling medium to the cooling pipe disposed in the groove. Therefore, the cooling medium removes heat from the substrate in the order of the cooling pipe, the space between the cooling pipe and the groove, the base body, and the sprayed layer.

よって、基体内に形成した溝に冷却媒体が供給される場合と比較して、冷却媒体による基体の抜熱は緩和される。そのため、基板が溝の経路に沿って相対的に大きく抜熱されることが緩和され、基板の温度分布の均一化の向上を図ることが可能となる。これにより、基板の面内の温度勾配が小さくなり、基板に割れ、うねり等の変形が生じるおそれが低減される。   Therefore, compared with the case where the cooling medium is supplied to the groove formed in the substrate, the heat removal of the substrate by the cooling medium is alleviated. For this reason, it is possible to alleviate the heat extraction from the substrate along the path of the groove, and it is possible to improve the uniform temperature distribution of the substrate. Thereby, the temperature gradient in the surface of a board | substrate becomes small, and a possibility that deformation | transformation, such as a crack and a wave | undulation, will arise in a board | substrate is reduced.

本発明の第2の基板載置装置において、前記溝と前記冷却管との間に、前記基体より熱伝達率が低い熱緩衝層を備えることを特徴とすることが好ましい。   In the second substrate mounting apparatus of the present invention, it is preferable that a thermal buffer layer having a lower heat transfer coefficient than the base is provided between the groove and the cooling pipe.

この場合、熱緩衝層によって冷却管から基体への熱伝達を制御することができるので、冷却管が熱伝導の高いものからなるものであっても、冷却媒体による局所的な冷却をより緩和することが可能となる。よって、基板の温度分布の均一化の向上をさらに図ることが可能となる。   In this case, since heat transfer from the cooling pipe to the substrate can be controlled by the thermal buffer layer, local cooling by the cooling medium is further eased even if the cooling pipe is made of a material having high heat conduction. It becomes possible. Therefore, it is possible to further improve the uniformity of the temperature distribution of the substrate.

本発明の第1又は第2の基板載置装置において、前記熱緩衝層は、金属粉体又はセラミックス粉体が充填されてなることが好ましい。   In the first or second substrate mounting apparatus of the present invention, the thermal buffer layer is preferably filled with metal powder or ceramic powder.

この場合、金属粉体及びセラミックス粉体は、その粒子径を制御することによって、粒子の接触点の数を調整することができるので、熱伝達の制御を容易に行うことができる。   In this case, since the number of contact points of the metal powder and ceramic powder can be adjusted by controlling the particle diameter, the heat transfer can be easily controlled.

本発明の第1の実施形態に係る基板載置装置の模式断面図。1 is a schematic cross-sectional view of a substrate mounting apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態の変形に係る基板載置装置の模式断面図。The schematic cross section of the board | substrate mounting apparatus which concerns on the deformation | transformation of the 1st Embodiment of this invention. 本発明の第2の実施形態に係る基板載置装置の模式断面図。The schematic cross section of the substrate mounting apparatus which concerns on the 2nd Embodiment of this invention. 本発明の実施例1〜5に係る基板載置装置の模式図を示し、(a)は断面図、(b)は上面図。The schematic diagram of the board | substrate mounting apparatus which concerns on Examples 1-5 of this invention is shown, (a) is sectional drawing, (b) is a top view. 本発明の比較例1に係る基板載置装置の模式図を示し、(a)は断面図、(b)は上面図。The schematic diagram of the board | substrate mounting apparatus which concerns on the comparative example 1 of this invention is shown, (a) is sectional drawing, (b) is a top view.

以下、本発明の第1の実施形態に係る基板載置装置10について説明する。   Hereinafter, the substrate mounting apparatus 10 according to the first embodiment of the present invention will be described.

図1に示すように、基板載置装置10は、基板Aを載置する載置面11aを有する基体11と、基体11に固定された台座12と、台座12に内蔵された冷却機構13を備えている。基板Aは、例えば、シリコンウェハ等の半導体基板、ガラス基板である。   As shown in FIG. 1, the substrate mounting apparatus 10 includes a base body 11 having a mounting surface 11 a on which the substrate A is mounted, a base 12 fixed to the base body 11, and a cooling mechanism 13 built in the base 12. I have. The substrate A is, for example, a semiconductor substrate such as a silicon wafer or a glass substrate.

基体11は、アルミナ(Al)、窒化アルミニウム(AlN)又はイットリア(Y)等のセラミックス焼結体からなることが好ましい。ただし、基体11は、静電チャック又はヒータの基体の材料として使用される素材からなるものであればよい。 The substrate 11 is preferably made of a ceramic sintered body such as alumina (Al 2 O 3 ), aluminum nitride (AlN), or yttria (Y 2 O 3 ). However, the base | substrate 11 should just consist of a raw material used as a base material of an electrostatic chuck or a heater.

基体11は、内部に抵抗発熱体が埋設されたヒータであってもよい。また、基体11は、内部に、基板をクーロン力により載置面に向けて吸引する電極が埋設された静電チャックであってもよい。さらに、基体11は、内部に抵抗発熱体及び電極が埋設されたヒータ機能付きの静電チャックであってもよい。   The base 11 may be a heater in which a resistance heating element is embedded. The base 11 may be an electrostatic chuck in which an electrode for sucking the substrate toward the mounting surface by Coulomb force is embedded. Further, the substrate 11 may be an electrostatic chuck with a heater function in which a resistance heating element and an electrode are embedded.

台座12は、熱伝導率が高い材質からなることが好ましく、少なくとも基体11より熱伝導率が高い材質からなる。このような材質として、アルミニウム、銅、タングステン、モリブデン等の金属、セラミックスとアルミニウムとの複合材料、セラミックスとシリコンとの複合材料等が挙げられる。台座12が金属からなる場合、ほぼ単一の材料からなる高純度な金属であっても、合金であってもよい。例えば機械的特性を向上させるために、適宜な元素を添加した合金であってもよい。   The pedestal 12 is preferably made of a material having a high thermal conductivity, and is made of a material having a thermal conductivity higher than that of the base 11 at least. Examples of such a material include metals such as aluminum, copper, tungsten, and molybdenum, composite materials of ceramics and aluminum, composite materials of ceramics and silicon, and the like. When the base 12 is made of metal, it may be a high-purity metal made of a substantially single material or an alloy. For example, an alloy to which an appropriate element is added in order to improve mechanical characteristics may be used.

基体11及び台座12の材質は、熱伝導率の他、プラズマ処理時に使用するガスに対する耐食性等の使用環境に応じて定めればよい。   The material of the base 11 and the pedestal 12 may be determined according to the usage environment such as the corrosion resistance against the gas used during the plasma processing, in addition to the thermal conductivity.

本実施形態では、基体11と台座12とは接合層14を介して固定されている。接合層14は、例えば、有機系接着剤、無機系接着剤等の接着剤が固化してなるものである。接合層14の熱伝導率は、基体11より低いことが好ましい。   In the present embodiment, the base body 11 and the pedestal 12 are fixed via the bonding layer 14. The bonding layer 14 is formed by solidifying an adhesive such as an organic adhesive or an inorganic adhesive. The thermal conductivity of the bonding layer 14 is preferably lower than that of the substrate 11.

接着剤の種別等は、基板Aの使用温度、プラズマ処理時に使用するガスに対する耐食性、基体11と台座12との気密性といった必要な性能に応じて選択すればよい。例えば、有機系接着剤であれば、エポキシ系、アクリル系、シリコーン系、ポリイミド系の接着剤を使用することができる。無機系接着剤であれば、シリカ、アルミナ、ジルコニア、カルシア、窒化アルミニウムのどれか1種以上を含む接着剤を使用することができる。   The type or the like of the adhesive may be selected according to the required performance such as the operating temperature of the substrate A, the corrosion resistance against the gas used during the plasma processing, and the airtightness between the base 11 and the base 12. For example, an epoxy adhesive, an acrylic adhesive, a silicone adhesive, or a polyimide adhesive can be used for an organic adhesive. In the case of an inorganic adhesive, an adhesive containing at least one of silica, alumina, zirconia, calcia, and aluminum nitride can be used.

基体11と台座12との界面の凹凸に接合層14を構成する接着剤が入り込むので、基体11と台座12との間には隙間が存在しない。そのため、隙間の存在によって、基体11と台座12との局所的又は部分的な熱伝達が妨げられることがない。   Since the adhesive constituting the bonding layer 14 enters the irregularities at the interface between the base 11 and the pedestal 12, there is no gap between the base 11 and the pedestal 12. Therefore, local or partial heat transfer between the base 11 and the pedestal 12 is not hindered by the presence of the gap.

なお、基体11と台座12との固定は、接着剤を使用した方法に限定されず、既知の方法で行ってもよい。例えば、基体11と台座12とは、ボルト、クランプリング等を使用した機械的方法で固定することもできる。   In addition, fixation with the base | substrate 11 and the base 12 is not limited to the method of using an adhesive agent, You may carry out by a known method. For example, the base 11 and the base 12 can be fixed by a mechanical method using a bolt, a clamp ring, or the like.

ただし、機械的な固定方法で、基体11と台座12の界面に隙間が存在しないようにすることは難しい。そこで、ある程度の変形能を有するシートを基体11と台座12との間に介在させることが望ましい。このようなシートとして、例えば、ポリイミド、ポリエチレン、エポキシ、アクリル、シリコーン等の樹脂からなるシート。カーボンからなるシートを使用すればよい。また、接着剤と機械的な固定方法とを組み合わせて固定してもよい。   However, it is difficult to avoid a gap at the interface between the base body 11 and the pedestal 12 by a mechanical fixing method. Therefore, it is desirable to interpose a sheet having a certain degree of deformability between the base 11 and the base 12. As such a sheet, for example, a sheet made of a resin such as polyimide, polyethylene, epoxy, acrylic, or silicone. A sheet made of carbon may be used. Moreover, you may fix combining an adhesive agent and the mechanical fixing method.

図2に示すように、基体11と台座12との間に断熱板15を介在させてもよい。この場合、例えば、基体11と断熱板15との間、及び台座12と断熱板15との間にそれぞれ、接着剤が固化してなる接合層14を設ければよい。   As shown in FIG. 2, a heat insulating plate 15 may be interposed between the base 11 and the pedestal 12. In this case, for example, the bonding layer 14 formed by solidifying the adhesive may be provided between the base 11 and the heat insulating plate 15 and between the base 12 and the heat insulating plate 15.

断熱板15は、上記に挙げたシートの他、石英ガラス、ジルコニア、アルミナ等のガラス、セラミックスからなる平板状のものを用いることもできる。断熱板15の熱伝導率は、接合層14と同様に、基体11の熱伝導率より低いことが好ましい。   As the heat insulating plate 15, in addition to the above-mentioned sheet, a flat plate made of glass such as quartz glass, zirconia, or alumina, or ceramics can be used. The thermal conductivity of the heat insulating plate 15 is preferably lower than the thermal conductivity of the base body 11, similarly to the bonding layer 14.

図1に示すように、冷却機構13は、台座12内に形成された溝16と、溝16内に配置された冷却管17とを備えている。冷却管17は、図示しない冷却媒体供給手段から水、フッ素系の冷却冷媒等の冷却媒体が供給され、その内部を冷却媒体が流れる。   As shown in FIG. 1, the cooling mechanism 13 includes a groove 16 formed in the pedestal 12 and a cooling pipe 17 disposed in the groove 16. The cooling pipe 17 is supplied with a cooling medium such as water or a fluorine-based cooling refrigerant from a cooling medium supply means (not shown), and the cooling medium flows through the cooling pipe 17.

溝16の断面形状は、特に限定されないが、例えば、正方形、矩形、円形、楕円形である。溝16の経路は、特に限定されないが、従来の冷却媒体が供給される溝と同様の経路であってもよい。   The cross-sectional shape of the groove 16 is not particularly limited, and is, for example, a square, a rectangle, a circle, or an ellipse. The path of the groove 16 is not particularly limited, but may be the same path as a conventional groove to which a cooling medium is supplied.

冷却管17は、その材料は特に限定されないが、例えば、金属、樹脂製の管を使用することができる。ただ、冷却管17は、熱伝導率の低いものからなることが好ましく、例えばSUS管を好適に使用することができる。冷却管17の断面形状は、特に限定されないが、例えば、正方形、矩形、円形、楕円形である。冷却管17の断面積は、従来の冷却媒体が供給される溝の断面積と同様であってもよい。   The material of the cooling pipe 17 is not particularly limited. For example, a metal or resin pipe can be used. However, the cooling pipe 17 is preferably made of a material having low thermal conductivity, and for example, a SUS pipe can be suitably used. The cross-sectional shape of the cooling pipe 17 is not particularly limited, and is, for example, a square, a rectangle, a circle, or an ellipse. The cross-sectional area of the cooling pipe 17 may be the same as the cross-sectional area of a groove to which a conventional cooling medium is supplied.

本実施形態では、溝16と冷却管17との間に、熱緩衝層18を設けている。熱緩衝層18によって冷却管17から台座12への熱伝達を制御することができるので、冷却管17が熱伝導率の高い素材からなるものであっても、冷却媒体による局所的な冷却を緩和することができる。ただし、溝16と冷却管17との間に熱緩衝層18を設けずに、空間としてもよい。   In the present embodiment, a thermal buffer layer 18 is provided between the groove 16 and the cooling pipe 17. Since heat transfer from the cooling pipe 17 to the pedestal 12 can be controlled by the thermal buffer layer 18, even if the cooling pipe 17 is made of a material having high thermal conductivity, local cooling by the cooling medium is alleviated. can do. However, a space may be provided without providing the heat buffer layer 18 between the groove 16 and the cooling pipe 17.

熱緩衝層18は、台座12より熱伝導率が低い材質からなる。熱緩衝層18の材質は、液体でも固体でもよい。例えば、液体として、水、アルコール又はオイルが挙げられる。固体として、樹脂系の接着剤、ガラス系の接着剤、セラミックス、ガラス、カーボン又は金属の粉体などが挙げられる。熱緩衝層18は、溝16の内壁面と冷却管17の外壁面との間を、これらの材料で満たしたものであることが好ましいが、部分的にのみ満たしたものであってもよい。   The thermal buffer layer 18 is made of a material having a lower thermal conductivity than the pedestal 12. The material of the heat buffer layer 18 may be liquid or solid. For example, the liquid may be water, alcohol or oil. Examples of the solid include resin-based adhesives, glass-based adhesives, ceramics, glass, carbon, and metal powders. The thermal buffer layer 18 is preferably filled with these materials between the inner wall surface of the groove 16 and the outer wall surface of the cooling pipe 17, but may be filled only partially.

熱緩衝層18は、低い熱伝導率に調整し易いという観点から、粉体を充填したものとすることが好ましい。金属及びセラミックスは、材質によって熱伝導率が大きく異なり、バルク体であれば、その熱伝導は数W/m・K〜数100W/m・Kである。   The thermal buffer layer 18 is preferably filled with powder from the viewpoint of easy adjustment to a low thermal conductivity. Metals and ceramics differ greatly in thermal conductivity depending on the material, and in the case of a bulk body, the thermal conductivity is several W / m · K to several hundred W / m · K.

金属及びセラミックスは、粉体であれば、その熱伝導率はバルク体に比較して大きく低下する。そして、粉体の粒子径を制御することによって、粒子の接触点の数を調整することができ、熱伝達の制御を容易に行うことができる。これは樹脂の粉体でも同様である。ただし、金属又はセラミックスの粉体は、温度による変質が生じ難いので、樹脂の紛体より好ましい。   If the metal and ceramics are powders, their thermal conductivities are greatly reduced compared to bulk bodies. By controlling the particle diameter of the powder, the number of contact points of the particles can be adjusted, and heat transfer can be easily controlled. The same applies to resin powder. However, metal or ceramic powders are preferable to resin powders because they are less likely to be altered by temperature.

なお、金属粉末又はセラミック粉末を練りこんだ、粉体ではない樹脂を、溝16と冷却管17との間に充填して、熱緩衝層18を形成してもよい。   The heat buffer layer 18 may be formed by filling a non-powder resin kneaded with metal powder or ceramic powder between the groove 16 and the cooling pipe 17.

台座12内に溝16を形成し、溝16内に冷却管17を配置し、溝16と冷却管17との間に熱緩衝層18を設ける方法は、以下のような方法で行うことができるが、これらに限定されない。   The method of forming the groove 16 in the pedestal 12, disposing the cooling pipe 17 in the groove 16, and providing the thermal buffer layer 18 between the groove 16 and the cooling pipe 17 can be performed by the following method. However, it is not limited to these.

第1の方法として、接合面に溝16が形成され、台座12を上下に分割した分割体を用意する。そして、溝16に冷却管17を配置した状態で、分割体を拡散接合やろう付けで接合した後、溝16と冷却管17との間に紛体を充填するなどして熱緩衝層18を設けてもよい。   As a first method, a split body is prepared in which grooves 16 are formed on the joint surface and the pedestal 12 is split up and down. Then, with the cooling pipe 17 disposed in the groove 16, the divided bodies are joined by diffusion bonding or brazing, and then the thermal buffer layer 18 is provided by filling the gap 16 and the cooling pipe 17 with powder. May be.

第2の方法として、一方の接合面に溝16が形成され、台座12を上下に分割した分割体を用意する。そして、溝16に冷却管17を配置し、溝16と冷却管17との間に紛体を充填するなどして熱緩衝層18を設けた状態で、分割体を拡散接合やろう付けで接合してもよい。   As a second method, a split body is prepared in which the groove 16 is formed on one joint surface and the pedestal 12 is split up and down. Then, the cooling pipe 17 is disposed in the groove 16, and the divided body is joined by diffusion bonding or brazing in a state where the thermal buffer layer 18 is provided by filling the powder between the groove 16 and the cooling pipe 17. May be.

第3の方法として、一方の接合面に溝16が形成され、台座12を上下に分割した分割体と、溝16の経路に合わせた薄厚の板材を用意する。そして、溝16に冷却管17を配置し、溝16と冷却管17との間に紛体を充填するなどして熱緩衝層18を設けた状態で板材を溶接し、その後、分割体を拡散接合で接合してもよい。また、溶接後に、溝16と冷却管17との間に紛体を充填するなどして熱緩衝層18を設けてもよい。   As a third method, a groove 16 is formed on one joint surface, and a divided body obtained by dividing the pedestal 12 in the vertical direction and a thin plate material that matches the path of the groove 16 are prepared. Then, the cooling pipe 17 is disposed in the groove 16, the plate material is welded in a state where the heat buffer layer 18 is provided, for example, by filling a powder between the groove 16 and the cooling pipe 17, and then the divided body is diffusion bonded. May be joined. Further, the heat buffer layer 18 may be provided after the welding by filling powder between the groove 16 and the cooling pipe 17.

第4の方法として、第1乃至第3の方法において、分割体を拡散接合やろう付けで接合する代わりに、ネジ等を用いて機械的に接合してもよい。   As a fourth method, in the first to third methods, the divided bodies may be mechanically joined using screws or the like instead of joining by diffusion bonding or brazing.

なお、分割体に溝16を形成する方法は、限定されない。例えば、エンドミルを用いて溝16を切削加工し、溝底部から反対側の面に挿通する挿通孔をドリル等で切削加工すればよい。   In addition, the method of forming the groove | channel 16 in a division body is not limited. For example, the groove 16 may be cut using an end mill, and an insertion hole inserted from the groove bottom to the opposite surface may be cut using a drill or the like.

以上説明したように、本発明の実施形態に係る基板載置装置10は、台座12内に溝16が形成され、この溝16内に配置された冷却管17に冷却媒体が供給されることにより、基板Aを冷却している。そのため、冷却媒体は、冷却管17、熱緩衝層18、台座12及び基体11の順に、基板Aから抜熱する。   As described above, in the substrate mounting apparatus 10 according to the embodiment of the present invention, the groove 16 is formed in the pedestal 12, and the cooling medium is supplied to the cooling pipe 17 disposed in the groove 16. The substrate A is cooled. Therefore, the cooling medium removes heat from the substrate A in the order of the cooling pipe 17, the thermal buffer layer 18, the pedestal 12, and the base body 11.

よって、上記特許文献1に記載されたように台座内に形成した溝に冷却媒体が供給される従来の場合と比較して、冷却媒体による台座12の抜熱は緩和される。そのため、基板Aが溝16の経路に沿って相対的に大きく抜熱されることが緩和され、基板Aの面内温度分布の均一化を図ることが可能となる。これにより、基板Aの面内の温度勾配が小さくなり、基板Aに割れ、うねり等の変形が生じるおそれが低減される。   Therefore, compared with the conventional case where the cooling medium is supplied to the groove formed in the pedestal as described in Patent Document 1, the heat removal of the pedestal 12 by the cooling medium is alleviated. Therefore, it is possible to relieve the substrate A from being extracted with relatively large heat along the path of the groove 16, and to make the in-plane temperature distribution of the substrate A uniform. As a result, the temperature gradient in the surface of the substrate A is reduced, and the possibility that the substrate A is deformed such as cracking and swell is reduced.

なお、台座12全体の熱伝達率を低くすると、基板Aの温度分布の均一化を図ることが可能となるが、基板Aの冷却速度が遅くなる。そのため、プラズマ処理が開始され、プラズマからの入熱によって温度上昇した基板Aを所定の温度に冷却するまでにかかる時間が長くなる。   If the heat transfer coefficient of the entire pedestal 12 is lowered, the temperature distribution of the substrate A can be made uniform, but the cooling rate of the substrate A becomes slow. For this reason, the plasma processing is started, and it takes a long time to cool the substrate A, whose temperature has risen due to heat input from the plasma, to a predetermined temperature.

一方、基板載置装置10では、台座12の熱伝達率は基体11より高いので、基板Aの冷却速度が速い。よって、温度上昇した基板Aを所定の温度に冷却するまでにかかる時間を短縮化することが可能となる。   On the other hand, in the substrate mounting apparatus 10, since the heat transfer coefficient of the base 12 is higher than that of the base body 11, the cooling rate of the substrate A is fast. Therefore, it is possible to shorten the time required to cool the substrate A whose temperature has increased to a predetermined temperature.

なお、基板載置装置10が熱緩衝層18を備えず、溝16と冷却管17との間が空間である場合も、同様に、基板Aの面内温度分布の均一化を図ることが可能となる。   Even when the substrate mounting apparatus 10 does not include the thermal buffer layer 18 and the space between the groove 16 and the cooling pipe 17 is a space, the in-plane temperature distribution of the substrate A can be made uniform. It becomes.

以下、本発明の第2の実施形態に係る基板載置装置20について説明する。ただし、上述した基板載置装置10と同様の点に関しては説明を省略する。   Hereinafter, the substrate mounting apparatus 20 according to the second embodiment of the present invention will be described. However, the description of the same points as those of the substrate mounting apparatus 10 described above will be omitted.

図3に示すように、基板載置装置20は、基板Aを載置する載置面21aを含む外面が溶射層22で被覆された基体21と、基体21に内蔵された冷却機構23を備えている。   As shown in FIG. 3, the substrate mounting apparatus 20 includes a base body 21 whose outer surface including a mounting surface 21 a on which the substrate A is mounted is coated with a sprayed layer 22, and a cooling mechanism 23 built in the base body 21. ing.

基体21は、熱伝導率が高い材質からなることが好ましい。このような材質として、アルミニウム、銅、タングステン、モリブデン等の金属、セラミックスとアルミニウムとの複合材料、セラミックスとシリコンとの複合材料等が挙げられる。   The base 21 is preferably made of a material having a high thermal conductivity. Examples of such a material include metals such as aluminum, copper, tungsten, and molybdenum, composite materials of ceramics and aluminum, composite materials of ceramics and silicon, and the like.

溶射層22は、プラズマに対する耐性に優れたアルミナ、イットリア等のセラミックスを溶射して形成したものである。   The thermal spray layer 22 is formed by thermal spraying ceramics such as alumina and yttria having excellent resistance to plasma.

なお、溶射層22に、電極を存在させてもよい。このような電極は、金属製であり、溶射、めっき、その他の方法で形成すればよい。また、溶射層22と基体21との間に、アンダーコート層が存在していていもよい。   An electrode may be present in the sprayed layer 22. Such an electrode is made of metal and may be formed by thermal spraying, plating, or other methods. Further, an undercoat layer may be present between the sprayed layer 22 and the base 21.

冷却機構23は、基体21内に形成された溝26と、溝26内に配置された冷却管27とを備えている。冷却管27は、図示しない冷却媒体供給手段から冷却媒体が供給され、その内部を冷却媒体が流れる。   The cooling mechanism 23 includes a groove 26 formed in the base body 21 and a cooling pipe 27 disposed in the groove 26. The cooling pipe 27 is supplied with a cooling medium from a cooling medium supply means (not shown), and the cooling medium flows through the cooling pipe 27.

本実施形態では、溝26と冷却管27との間に、熱緩衝層28を設けている。熱緩衝層28によって冷却管27から基体21への熱伝達を制御することができるので、冷却管27が熱伝導率の高い素材からなるものであっても、冷却媒体による局所的な冷却を緩和することができる。ただし、溝26と冷却管27との間に熱緩衝層28を設けずに、空間としてもよい。   In the present embodiment, a thermal buffer layer 28 is provided between the groove 26 and the cooling pipe 27. Since heat transfer from the cooling pipe 27 to the base 21 can be controlled by the thermal buffer layer 28, local cooling by the cooling medium is alleviated even if the cooling pipe 27 is made of a material having high thermal conductivity. can do. However, a space may be provided without providing the heat buffer layer 28 between the groove 26 and the cooling pipe 27.

熱緩衝層28は、基体21より熱伝導率が低い材質からなる。熱緩衝層28の材質は、液体でも固体でもよい。熱緩衝層28は、低い熱伝導率に調整し易いという観点から、粉体を充填したものとすることが好ましいが、これに限定されない。   The thermal buffer layer 28 is made of a material having a lower thermal conductivity than the base 21. The material of the thermal buffer layer 28 may be liquid or solid. The thermal buffer layer 28 is preferably filled with powder from the viewpoint of easy adjustment to a low thermal conductivity, but is not limited thereto.

基体21内に溝26を形成し、溝26内に冷却管27を配置し、溝26と冷却管27との間に熱緩衝層28を設ける方法は、上述した第1乃至第4の方法で行うことができるが、これらに限定されない。   The method of forming the groove 26 in the base 21, disposing the cooling pipe 27 in the groove 26, and providing the thermal buffer layer 28 between the groove 26 and the cooling pipe 27 is the first to fourth methods described above. Although it can be performed, it is not limited to these.

以上説明したように、本発明の第2の実施形態に係る基板載置装置20は、基体21内に溝26が形成され、この溝26内に配置された冷却管27に冷却媒体が供給されることにより、基板Aを冷却している。そのため、冷却媒体は、冷却管27、熱緩衝層28、基体21及び溶射層22の順に、基板Aから抜熱する。   As described above, in the substrate mounting apparatus 20 according to the second embodiment of the present invention, the groove 26 is formed in the base body 21, and the cooling medium is supplied to the cooling pipe 27 disposed in the groove 26. Thus, the substrate A is cooled. Therefore, the cooling medium removes heat from the substrate A in the order of the cooling pipe 27, the thermal buffer layer 28, the base 21, and the sprayed layer 22.

よって、基板載置装置20も、基板載置装置10と同様に、冷却媒体による基体21の抜熱は緩和される。そのため、基板Aが溝26の配置形状に沿って相対的に大きく抜熱されることが緩和され、基板Aの面内温度分布の均一化を図ることが可能となる。   Therefore, similarly to the substrate mounting apparatus 10, the substrate mounting apparatus 20 can reduce heat removal from the base 21 by the cooling medium. For this reason, it is possible to relieve the substrate A from relatively large heat extraction along the arrangement shape of the grooves 26, and to make the in-plane temperature distribution of the substrate A uniform.

そして、一般的に、溶射層22を備える場合、基体21の厚さは薄くなる。そのため、従来の場合、基板が溝の配置形状に沿って相対的により大きく抜熱され、基板の面内温度分布がより不均一になっていた。そのため、基板載置装置20による基板Aの面内温度分布の均一化はより効果的なものとなる。   In general, when the thermal spray layer 22 is provided, the thickness of the base 21 is reduced. For this reason, in the conventional case, the substrate is relatively largely removed along the groove arrangement shape, and the in-plane temperature distribution of the substrate becomes more uneven. Therefore, the uniformity of the in-plane temperature distribution of the substrate A by the substrate mounting apparatus 20 becomes more effective.

以下、本発明の実施例及び比較例を具体的に挙げ、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with specific examples and comparative examples of the present invention.

〔実施例1〕
図4(a)及び図4(b)に示すように、直径200mm、厚さ10mmの円板状の基体11を用意した。この基体11は、熱伝導率が90W/m・Kの窒化アルミニウム製であり、図示しないが、内部に発熱抵抗体を埋設した。
[Example 1]
As shown in FIGS. 4A and 4B, a disk-shaped substrate 11 having a diameter of 200 mm and a thickness of 10 mm was prepared. The substrate 11 is made of aluminum nitride having a thermal conductivity of 90 W / m · K, and a heating resistor is embedded therein, although not shown.

基体11を直径100mmの円周上を等間隔の3点で支持して、発熱抵抗体に電圧を印加して基体11の上面の中心点P1を200℃まで上昇させた。この状態で、点P1の温度を熱電対で測定した。また、点P1を中心とする直径160mmの円周上に位置する上面の点P2の温度を熱電対で測定した。そして、「点P2の温度」−「点P1の温度」を温度差として求めた。温度差は+1℃であった。以下、この温度差を「基準の温度差」という。   The substrate 11 was supported on a circumference of 100 mm in diameter at three equally spaced points, and a voltage was applied to the heating resistor to raise the center point P1 on the upper surface of the substrate 11 to 200 ° C. In this state, the temperature at the point P1 was measured with a thermocouple. Moreover, the temperature of the point P2 on the upper surface located on the circumference with a diameter of 160 mm centered on the point P1 was measured with a thermocouple. Then, “temperature at point P2” − “temperature at point P1” was obtained as a temperature difference. The temperature difference was + 1 ° C. Hereinafter, this temperature difference is referred to as “reference temperature difference”.

次に、外径200mm、厚さ30mmの円板状の台座12を用意した。台座12は、熱伝導率が140W/m・Kのアルミニウム合金(A5052)製であった。そして、台座12の内部に一辺25mmの断面正方形の溝16を、直径160mmの円周に沿って、345度に渡って形成した。溝16の両端部底面に台座12の裏面に挿通する挿通孔を形成した。   Next, a disk-shaped pedestal 12 having an outer diameter of 200 mm and a thickness of 30 mm was prepared. The pedestal 12 was made of an aluminum alloy (A5052) having a thermal conductivity of 140 W / m · K. And the groove | channel 16 of the cross-sectional square of 25 mm in one side was formed in the inside of the base 12 over 345 degree | times along the circumference with a diameter of 160 mm. Insertion holes that pass through the back surface of the pedestal 12 were formed on the bottom surfaces of both ends of the groove 16.

この溝16の内部及び前記挿通孔に、外径13mm、肉厚0.8mmのSUS304製の冷却管17を設置した。溝16と冷却管17の間にアルミナ粉末を充填して、熱緩衝層18を形成した。熱緩衝層18の熱伝導率は0.1W/m・K未満であった。台座12内に溝16を形成し、溝16内に冷却管17を配置し、溝16と冷却管17との間に熱緩衝層18を設ける方法は、上述した第3の方法で行った。   A cooling pipe 17 made of SUS304 having an outer diameter of 13 mm and a wall thickness of 0.8 mm was installed in the groove 16 and in the insertion hole. A heat buffer layer 18 was formed by filling alumina powder between the groove 16 and the cooling pipe 17. The thermal conductivity of the thermal buffer layer 18 was less than 0.1 W / m · K. The method of forming the groove 16 in the pedestal 12, arranging the cooling pipe 17 in the groove 16, and providing the thermal buffer layer 18 between the groove 16 and the cooling pipe 17 was performed by the third method described above.

そして、基体11と台座12とを接合した。接合にはシリコーン系の接着剤を用いた。接合層14の厚さは0.05mmとなるようにした。これにより、基板載置装置10を完成させた。   And the base | substrate 11 and the base 12 were joined. A silicone adhesive was used for bonding. The thickness of the bonding layer 14 was set to 0.05 mm. Thereby, the substrate mounting apparatus 10 was completed.

そして、冷却管17に20℃に制御された水を流量5リットル/分で流しながら、基体11を上面の中心点を200℃になるまで加熱した。基板載置装置10の周囲雰囲気は、室温、大気であった。そして、この状態で、上記基準の温度と同様に点P1,P2の温度を測定した。温度差は+1℃であり、基準の温度差と同じであった。   The base 11 was heated until the central point of the upper surface reached 200 ° C. while water controlled to 20 ° C. was supplied to the cooling pipe 17 at a flow rate of 5 liters / minute. The ambient atmosphere of the substrate mounting apparatus 10 was room temperature and air. In this state, the temperatures at points P1 and P2 were measured in the same manner as the reference temperature. The temperature difference was + 1 ° C., the same as the reference temperature difference.

点P2は冷却管17の直上に位置し、冷却管17を流れる冷却媒体によって抜熱される効果を大きく受ける場所である。一方、点P1は冷却管17の経路から離れて位置し、冷却管17を流れる冷却媒体によって抜熱される効果が少ない場所である。本実施例1では、これらの点P1、P2の温度差が基準の温度差と同じであったので、基体11の温度均一性は良好であったと言える。   Point P <b> 2 is located immediately above the cooling pipe 17 and is a place where the effect of removing heat by the cooling medium flowing through the cooling pipe 17 is greatly received. On the other hand, the point P <b> 1 is located away from the path of the cooling pipe 17, and is a place where there is little effect of removing heat by the cooling medium flowing through the cooling pipe 17. In Example 1, since the temperature difference between these points P1 and P2 was the same as the reference temperature difference, it can be said that the temperature uniformity of the substrate 11 was good.

台座12、熱緩衝層18及び温度差を、表1にまとめた。   Table 1 summarizes the pedestal 12, the thermal buffer layer 18, and the temperature difference.

〔実施例2〕
実施例2として、スピンドル油を充填して熱緩衝層18を充填剤としてこと以外は、実施例1と同様にした。熱緩衝層18の熱伝導率は0.2W/m・Kであった。基体11は、実施例1で使用した基体11を用いた。
[Example 2]
Example 2 was the same as Example 1 except that spindle oil was filled and the thermal buffer layer 18 was used as a filler. The thermal conductivity of the thermal buffer layer 18 was 0.2 W / m · K. As the substrate 11, the substrate 11 used in Example 1 was used.

温度差は0℃であり、基準の温度差とほぼ同じであった。よって、基体11の温度均一性は良好であった。   The temperature difference was 0 ° C., which was almost the same as the reference temperature difference. Therefore, the temperature uniformity of the substrate 11 was good.

〔実施例3〕
実施例3として、水を充填して熱緩衝層18を充填剤としてこと以外は、実施例1と同様にした。熱緩衝層18の熱伝導率は0.6W/m・Kであった。基体11は、実施例1で使用した基体11を用いた。
Example 3
Example 3 was the same as Example 1 except that water was filled and the thermal buffer layer 18 was used as a filler. The thermal conductivity of the thermal buffer layer 18 was 0.6 W / m · K. As the substrate 11, the substrate 11 used in Example 1 was used.

温度差は−2℃であり、基準の温度差とほぼ同じであった。よって、基体11の温度均一性は良好であった。   The temperature difference was −2 ° C., which was almost the same as the reference temperature difference. Therefore, the temperature uniformity of the substrate 11 was good.

〔実施例4〕
実施例4として、シリコーン系接着剤を充填して熱緩衝層18を充填剤としてこと以外は、実施例1と同様にした。熱緩衝層18の熱伝導率は3W/m・Kであった。基体11は、実施例1で使用した基体11を用いた。
Example 4
Example 4 was the same as Example 1 except that the silicone adhesive was filled and the thermal buffer layer 18 was used as the filler. The thermal conductivity of the thermal buffer layer 18 was 3 W / m · K. As the substrate 11, the substrate 11 used in Example 1 was used.

温度差は−4℃であり、基準の温度差とほぼ同じであった。よって、基体11の温度均一性は良好であった。   The temperature difference was −4 ° C., which was almost the same as the reference temperature difference. Therefore, the temperature uniformity of the substrate 11 was good.

〔実施例5〕
実施例5として、インジウムを充填して熱緩衝層18を充填剤としてこと以外は、実施例1と同様にした。熱緩衝層18の熱伝導率は82W/m・Kであった。基体11は、実施例1で使用した基体11を用いた。
Example 5
Example 5 was the same as Example 1 except that indium was filled and the thermal buffer layer 18 was used as a filler. The thermal conductivity of the thermal buffer layer 18 was 82 W / m · K. As the substrate 11, the substrate 11 used in Example 1 was used.

温度差は−7℃であり、基準の温度差とほぼ同じであった。よって、基体11の温度均一性は良好であった。   The temperature difference was −7 ° C., which was almost the same as the reference temperature difference. Therefore, the temperature uniformity of the substrate 11 was good.

〔実施例6〕
実施例6として、基体11と台座12との間に断熱板15(図2参照)を挿入したこと以外は、実施例5と同様にした。断熱板15は、直径200mm、厚さ1mmの円板状の石英板であった。基体11と断熱板15、断熱板15と台座12との接合には、実施例1〜5と同様にシリコーン系の接着剤を使用した。各接合層14の厚さは0.05mmとした。断熱板15の熱伝導率は1W/m・Kであった。
Example 6
Example 6 was the same as Example 5 except that a heat insulating plate 15 (see FIG. 2) was inserted between the base 11 and the base 12. The heat insulating plate 15 was a disc-shaped quartz plate having a diameter of 200 mm and a thickness of 1 mm. For bonding the base 11 and the heat insulating plate 15, and the heat insulating plate 15 and the base 12, a silicone-based adhesive was used as in Examples 1 to 5. The thickness of each bonding layer 14 was 0.05 mm. The heat conductivity of the heat insulating plate 15 was 1 W / m · K.

温度差は0℃であり、基準の温度差とほぼ同じであり、よって、基体11の温度均一性は、良好であり、実施例5より改善した。   The temperature difference is 0 ° C., which is almost the same as the reference temperature difference. Therefore, the temperature uniformity of the substrate 11 is good and improved over Example 5.

〔比較例1〕
図5(a)及び図5(b)に示すように、実施例1で使用した基体11を用意した。そして、外径200mm、厚さ30mmの円板状の台座32を用意した。台座32は、実施例1の台座12と同様に、熱伝導率が140W/m・Kのアルミニウム合金(A5052)製であった。そして、台座32の内部に一辺10mmの断面正方形の溝36を、直径160mmの円周に沿って、345度に渡って形成した。溝16の両端部底面に台座12の裏面に挿通する挿通孔を形成した。ここで、溝36の断面積は、実施例1の冷却管17の断面積とほぼ同じである。
[Comparative Example 1]
As shown in FIGS. 5A and 5B, the substrate 11 used in Example 1 was prepared. A disc-shaped pedestal 32 having an outer diameter of 200 mm and a thickness of 30 mm was prepared. The pedestal 32 was made of an aluminum alloy (A5052) having a thermal conductivity of 140 W / m · K, similarly to the pedestal 12 of Example 1. And the groove | channel 36 of the cross-sectional square of 10 mm in one side was formed in the inside of the base 32 over 345 degree | times along the periphery with a diameter of 160 mm. Insertion holes that pass through the back surface of the pedestal 12 were formed on the bottom surfaces of both ends of the groove 16. Here, the cross-sectional area of the groove 36 is substantially the same as the cross-sectional area of the cooling pipe 17 of the first embodiment.

そして、実施例1と同様に、基体11と台座32とを接合した。これにより、基板載置装置30を完成させた。   And the base | substrate 11 and the base 32 were joined similarly to Example 1. FIG. Thereby, the substrate mounting apparatus 30 was completed.

そして、溝36の内部に20℃に制御された水を流量5リットル/分で流しながら、基体11を上面の中心点P1を200℃になるまで加熱した。基板載置装置30の周囲雰囲気は、室温、大気であった。そして、この状態で、上記基準と同様に点P1,P2の温度を測定した。   Then, the base 11 was heated until the central point P1 of the upper surface reached 200 ° C. while water controlled to 20 ° C. was flowed into the groove 36 at a flow rate of 5 liters / minute. The ambient atmosphere of the substrate mounting apparatus 30 was room temperature and air. In this state, the temperatures of the points P1 and P2 were measured in the same manner as the above reference.

温度差は−21℃であり、基準の温度差と比較して差異が大きかった。よって、基体11の温度均一性は良好ではないといえる。このように温度差が20℃を超えると、基体11の内部に埋設した発熱抵抗体の配置形状を変更しても、基体11の温度を均一にすることは一般的に困難となる。   The temperature difference was −21 ° C., and the difference was large compared to the reference temperature difference. Therefore, it can be said that the temperature uniformity of the substrate 11 is not good. Thus, when the temperature difference exceeds 20 ° C., it is generally difficult to make the temperature of the base body 11 uniform even if the arrangement shape of the heating resistors embedded in the base body 11 is changed.

〔比較例2〕
比較例2として、台座12をチタン合金(JIS60種)製としてこと以外は、実施例5と同様にした。台座12の熱伝導率は8W/m・Kであった。基体11は、実施例1で使用した基体11を用いた。
[Comparative Example 2]
As Comparative Example 2, the same procedure as in Example 5 was performed except that the pedestal 12 was made of a titanium alloy (JIS 60 type). The thermal conductivity of the base 12 was 8 W / m · K. As the substrate 11, the substrate 11 used in Example 1 was used.

温度差は−18℃であり、基準の温度差と比較して差異が大きかった。よって、基体11の温度均一性は良好ではなかった。   The temperature difference was −18 ° C., and the difference was large compared to the reference temperature difference. Therefore, the temperature uniformity of the substrate 11 was not good.

〔実施例7〕
図3を参照して、外径200mm、厚さ30mmの円板状の基体21を用意した。基体21は、熱伝導率が140W/m・Kのアルミニウム合金(A5052)製であった。そして、基体21の表面にアルミナ溶射を施し、表面を加工して溶射層22の厚さが200μmとなるようにした。
Example 7
With reference to FIG. 3, a disk-shaped base body 21 having an outer diameter of 200 mm and a thickness of 30 mm was prepared. The substrate 21 was made of an aluminum alloy (A5052) having a thermal conductivity of 140 W / m · K. The surface of the substrate 21 was sprayed with alumina, and the surface was processed so that the thickness of the sprayed layer 22 was 200 μm.

基体21を直径100mmの円周上を等間隔の3点で支持して、発熱抵抗体に電圧を印加して基体21の上面の中心点P1を200℃まで上昇させた。この状態で、点P1の温度を熱電対で測定した。また、点P1を中心とする直径160mmの円周上に位置する上面の点P2の温度を熱電対で測定した。そして、「点P2の温度」−「点P1の温度」を温度差として求めた。温度差は+1℃であった。以下、この温度差を「基準の温度差」という。   The base body 21 was supported on a circumference having a diameter of 100 mm at three equally spaced points, and a voltage was applied to the heating resistor to raise the center point P1 of the upper surface of the base body 21 to 200 ° C. In this state, the temperature at the point P1 was measured with a thermocouple. Moreover, the temperature of the point P2 on the upper surface located on the circumference with a diameter of 160 mm centered on the point P1 was measured with a thermocouple. Then, “temperature at point P2” − “temperature at point P1” was obtained as a temperature difference. The temperature difference was + 1 ° C. Hereinafter, this temperature difference is referred to as “reference temperature difference”.

そして、基体21の内部に一辺25mmの断面正方形の溝26を、直径160mmの円周に沿って、345度に渡って形成した。溝26の両端部底面に基体21の裏面に挿通する挿通孔を形成した。   And the groove | channel 26 of the cross-sectional square of 25 mm in one side was formed in the inside of the base | substrate 21 over 345 degree | times along the periphery with a diameter of 160 mm. Insertion holes that pass through the back surface of the base 21 were formed on the bottom surfaces of both ends of the groove 26.

この溝26の内部及び前記挿通孔に、外径13mm、肉厚0.8mmのSUS304製の冷却管27を設置した。溝26と冷却管27の間にアルミナ粉末を充填して、熱緩衝層28を形成した。熱緩衝層28の熱伝導率は0.1W/m・K未満であった。基体21内に溝26を形成し、溝26内に冷却管27を配置し、溝26と冷却管27との間に熱緩衝層28を設ける方法は、上述した第3の方法で行った。これにより、基板載置装置20を完成させた。   A cooling pipe 27 made of SUS304 having an outer diameter of 13 mm and a wall thickness of 0.8 mm was installed in the groove 26 and in the insertion hole. Alumina powder was filled between the groove 26 and the cooling pipe 27 to form a thermal buffer layer 28. The thermal conductivity of the thermal buffer layer 28 was less than 0.1 W / m · K. The method of forming the groove 26 in the substrate 21, disposing the cooling pipe 27 in the groove 26, and providing the thermal buffer layer 28 between the groove 26 and the cooling pipe 27 was performed by the third method described above. Thereby, the substrate mounting apparatus 20 was completed.

そして、冷却管27に80℃に制御された水を流量5リットル/分で流しながら、基体11を上面の中心点を200℃になるまで加熱した。基板載置装置20の周囲雰囲気は、室温、大気であった。そして、この状態で、上記基準の温度と同様に点P1,P2の温度を測定した。温度差は+3℃であり、基準の温度差とほぼ同じであった。   Then, the base 11 was heated until the central point of the upper surface reached 200 ° C. while flowing water controlled to 80 ° C. through the cooling pipe 27 at a flow rate of 5 liters / minute. The ambient atmosphere of the substrate mounting apparatus 20 was room temperature and air. In this state, the temperatures at points P1 and P2 were measured in the same manner as the reference temperature. The temperature difference was + 3 ° C., which was almost the same as the standard temperature difference.

点P2は冷却管27の直上に位置し、冷却管27を流れる冷却媒体によって抜熱される効果を大きく受ける場所である。一方、点P1は冷却管27の経路から離れて位置し、冷却管27を流れる冷却媒体によって抜熱される効果が少ない場所である。本実施例7では、これらの点P1、P2の温度差が基準の温度差と同じであったので、基体21の温度均一性は良好であったと言える。   Point P <b> 2 is located immediately above the cooling pipe 27 and is a place where the effect of removing heat by the cooling medium flowing through the cooling pipe 27 is greatly received. On the other hand, the point P1 is located away from the path of the cooling pipe 27 and is a place where there is little effect of being removed by the cooling medium flowing through the cooling pipe 27. In Example 7, since the temperature difference between these points P1 and P2 was the same as the reference temperature difference, it can be said that the temperature uniformity of the substrate 21 was good.

基体21、熱緩衝層28及び温度差を、表2にまとめた。   The substrate 21, the thermal buffer layer 28 and the temperature difference are summarized in Table 2.

〔比較例3〕
外径200mm、厚さ30mmの円板状の基体を用意した。この基体は、実施例7の基体21と同様に、熱伝導率が140W/m・Kのアルミニウム合金(A5052)製であった。そして、基体の表面にアルミナ溶射を施し、表面を加工して溶射層の厚さが200μmとなるようにした。
[Comparative Example 3]
A disk-shaped substrate having an outer diameter of 200 mm and a thickness of 30 mm was prepared. This base was made of an aluminum alloy (A5052) having a thermal conductivity of 140 W / m · K, like the base 21 of Example 7. Then, alumina spraying was performed on the surface of the substrate, and the surface was processed so that the thickness of the sprayed layer became 200 μm.

基体を直径100mmの円周上を等間隔の3点で支持して、発熱抵抗体に電圧を印加して基体の上面の中心点P1を200℃まで上昇させた。この状態で、点P1の温度を熱電対で測定した。また、点P1を中心とする直径160mmの円周上に位置する上面の点P2の温度を熱電対で測定した。そして、「点P2の温度」−「点P1の温度」を温度差として求めた。温度差は+1℃であった。以下、この温度差を「基準の温度差」という。   The substrate was supported on a circumference of 100 mm in diameter at three equally spaced points, and a voltage was applied to the heating resistor to raise the center point P1 on the upper surface of the substrate to 200 ° C. In this state, the temperature at the point P1 was measured with a thermocouple. Moreover, the temperature of the point P2 on the upper surface located on the circumference with a diameter of 160 mm centered on the point P1 was measured with a thermocouple. Then, “temperature at point P2” − “temperature at point P1” was obtained as a temperature difference. The temperature difference was + 1 ° C. Hereinafter, this temperature difference is referred to as “reference temperature difference”.

そして、図5(a)及び図5(b)に示す溝36と同様に、基体の内部に一辺10mmの断面正方形の溝を、直径160mmの円周に沿って、345度に渡って形成した。溝の両端部底面に基体の裏面に挿通する挿通孔を形成した。ここで、溝の断面積は、実施例7の冷却管27の断面積とほぼ同じである。これにより、基板載置装置を完成させた。   Then, similarly to the groove 36 shown in FIGS. 5A and 5B, a groove having a square section of 10 mm on one side is formed in the inside of the base body over 345 degrees along a circumference having a diameter of 160 mm. . Insertion holes for insertion into the back surface of the substrate were formed on the bottom surfaces of both ends of the groove. Here, the sectional area of the groove is substantially the same as the sectional area of the cooling pipe 27 of the seventh embodiment. Thereby, the substrate mounting apparatus was completed.

そして、溝の内部に80℃に制御された水を流量5リットル/分で流しながら、基体を上面の中心点P1を200℃になるまで加熱した。基板載置装置の周囲雰囲気は、室温、大気であった。そして、この状態で、上記基準と同様に点P1,P2の温度を測定した。   Then, the base was heated until the central point P1 on the upper surface reached 200 ° C. while water controlled to 80 ° C. was flowed into the groove at a flow rate of 5 liters / minute. The ambient atmosphere of the substrate mounting apparatus was room temperature and air. In this state, the temperatures of the points P1 and P2 were measured in the same manner as the above reference.

温度差は+32℃であり、基準の温度差と比較して差異が大きかった。よって、基体の温度均一性は良好ではなかった。   The temperature difference was + 32 ° C., and the difference was large compared to the reference temperature difference. Therefore, the temperature uniformity of the substrate was not good.

10,20…基板載置装置、 11,21…基体、 11a,21a…載置面、12…台座、 13,23…冷却機構、 14…接合層、 15…断熱板、 16,26…溝、 17,27…冷却管、 18,28…熱緩衝層、 22…溶射層、 A…基板。   DESCRIPTION OF SYMBOLS 10,20 ... Board | substrate mounting apparatus, 11, 21 ... Base | substrate, 11a, 21a ... Mounting surface, 12 ... Base, 13, 23 ... Cooling mechanism, 14 ... Joining layer, 15 ... Heat insulation board, 16, 26 ... Groove, 17, 27 ... Cooling tube, 18, 28 ... Thermal buffer layer, 22 ... Thermal spray layer, A ... Substrate.

Claims (7)

基板を載置する載置面を有する基体と、
前記基体に固定され、内部に溝が形成され、前記基体より熱伝達率が高い台座と、
前記溝内に配置され、内部に冷却媒体が供給される冷却管とを備えたことを特徴とする基板載置装置。
A substrate having a mounting surface on which the substrate is mounted;
A pedestal fixed to the base, having a groove formed therein, and having a higher heat transfer coefficient than the base;
A substrate mounting apparatus comprising: a cooling pipe disposed in the groove and supplied with a cooling medium therein.
前記溝と前記冷却管との間に、前記台座より熱伝達率が低い熱緩衝層を備えることを特徴とする請求項1に記載の基板載置装置。   The substrate mounting apparatus according to claim 1, further comprising a thermal buffer layer having a heat transfer coefficient lower than that of the pedestal between the groove and the cooling pipe. 前記基体と前記台座とは接着剤が固化してなる接合層を介して固定されていることを特徴とする請求項1又は2に記載の基板載置装置。   The substrate mounting apparatus according to claim 1, wherein the base and the pedestal are fixed via a bonding layer formed by solidifying an adhesive. 前記基体と前記台座との間に、前記基体より熱伝達率が低い断熱板を有することを特徴とする請求項1から3の何れか1項に記載の基板載置装置。   4. The substrate mounting apparatus according to claim 1, further comprising a heat insulating plate having a heat transfer coefficient lower than that of the base body between the base body and the base. 5. 基板を載置する載置面側が溶射層で被覆され、内部に溝が形成された基体と、
前記溝内に配置され、内部に冷却媒体が供給される冷却管とを備えたことを特徴とする基板載置装置。
A substrate surface on which a substrate is placed is coated with a thermal spray layer, and a groove is formed inside;
A substrate mounting apparatus comprising: a cooling pipe disposed in the groove and supplied with a cooling medium therein.
前記溝と前記冷却管との間に、前記基体より熱伝達率が低い熱緩衝層を備えることを特徴とする請求項5に記載の基板載置装置。   The substrate mounting apparatus according to claim 5, further comprising a thermal buffer layer having a lower heat transfer coefficient than the base body between the groove and the cooling pipe. 前記熱緩衝層は、金属粉体又はセラミックス粉体が充填されてなることを特徴とする請求項2又は6に記載の基板載置装置。   The substrate mounting apparatus according to claim 2, wherein the thermal buffer layer is filled with metal powder or ceramic powder.
JP2013248628A 2013-11-29 2013-11-29 Substrate mounting device Active JP6296770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248628A JP6296770B2 (en) 2013-11-29 2013-11-29 Substrate mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248628A JP6296770B2 (en) 2013-11-29 2013-11-29 Substrate mounting device

Publications (2)

Publication Number Publication Date
JP2015106667A true JP2015106667A (en) 2015-06-08
JP6296770B2 JP6296770B2 (en) 2018-03-20

Family

ID=53436616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248628A Active JP6296770B2 (en) 2013-11-29 2013-11-29 Substrate mounting device

Country Status (1)

Country Link
JP (1) JP6296770B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092104A (en) * 2015-11-04 2017-05-25 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
CN107178602A (en) * 2017-05-25 2017-09-19 贵州大学 A kind of Hydrodynamic transmission firm banking
JP2018014491A (en) * 2016-07-01 2018-01-25 ラム リサーチ コーポレーションLam Research Corporation Esc ceramic sidewall modification for particle and metal performance enhancements
JP2022048445A (en) * 2020-09-15 2022-03-28 日本特殊陶業株式会社 Holding device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540559Y2 (en) * 1972-12-07 1980-09-22
JPH0242721A (en) * 1988-08-02 1990-02-13 Nec Corp Dry etching apparatus
JPH07187851A (en) * 1993-12-28 1995-07-25 Toyota Motor Corp Heat insulating member and its production
JPH1050811A (en) * 1996-03-16 1998-02-20 Miyata R Andei:Kk Temperature adjustment mechanism for semiconductor substrate
JPH11233520A (en) * 1998-02-09 1999-08-27 Kokusai Electric Co Ltd Cooling structure
JPH11329926A (en) * 1998-05-11 1999-11-30 Dainippon Screen Mfg Co Ltd Device and method for cooling substrate
JP2003188157A (en) * 1999-03-05 2003-07-04 Tadahiro Omi Plasma processing apparatus
JP2005026422A (en) * 2003-07-01 2005-01-27 Dainippon Screen Mfg Co Ltd Device and method for heat treatment
JP3847920B2 (en) * 1997-10-06 2006-11-22 株式会社アルバック Electrostatic adsorption hot plate, vacuum processing apparatus, and vacuum processing method
JP2007043042A (en) * 2005-07-07 2007-02-15 Sumitomo Electric Ind Ltd Wafer holder and manufacturing method thereof, wafer prober mounting same, and semiconductor heating device
JP2007080546A (en) * 2005-09-12 2007-03-29 Sumitomo Electric Ind Ltd Ceramic heater and semiconductor fabrication device equipped with it
JP2008066707A (en) * 2006-08-10 2008-03-21 Tokyo Electron Ltd Electrostatic attraction electrode, substrate processor, and manufacturing method for electrostatic attraction electrode
JP2008243950A (en) * 2007-03-26 2008-10-09 Mitsui Eng & Shipbuild Co Ltd Thermal treatment equipment
JP2009535801A (en) * 2006-04-28 2009-10-01 ダンスン エレクトロン カンパニー リミテッド Manufacturing method of susceptor and susceptor manufactured by this method
JP4893543B2 (en) * 2007-09-07 2012-03-07 住友電気工業株式会社 Wafer holder and semiconductor manufacturing apparatus equipped with the same
JP2013120835A (en) * 2011-12-07 2013-06-17 Shinko Electric Ind Co Ltd Substrate temperature control fixing apparatus and method of manufacturing the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540559Y2 (en) * 1972-12-07 1980-09-22
JPH0242721A (en) * 1988-08-02 1990-02-13 Nec Corp Dry etching apparatus
JPH07187851A (en) * 1993-12-28 1995-07-25 Toyota Motor Corp Heat insulating member and its production
JPH1050811A (en) * 1996-03-16 1998-02-20 Miyata R Andei:Kk Temperature adjustment mechanism for semiconductor substrate
JP3847920B2 (en) * 1997-10-06 2006-11-22 株式会社アルバック Electrostatic adsorption hot plate, vacuum processing apparatus, and vacuum processing method
JPH11233520A (en) * 1998-02-09 1999-08-27 Kokusai Electric Co Ltd Cooling structure
JPH11329926A (en) * 1998-05-11 1999-11-30 Dainippon Screen Mfg Co Ltd Device and method for cooling substrate
JP2003188157A (en) * 1999-03-05 2003-07-04 Tadahiro Omi Plasma processing apparatus
JP2005026422A (en) * 2003-07-01 2005-01-27 Dainippon Screen Mfg Co Ltd Device and method for heat treatment
JP2007043042A (en) * 2005-07-07 2007-02-15 Sumitomo Electric Ind Ltd Wafer holder and manufacturing method thereof, wafer prober mounting same, and semiconductor heating device
JP2007080546A (en) * 2005-09-12 2007-03-29 Sumitomo Electric Ind Ltd Ceramic heater and semiconductor fabrication device equipped with it
JP2009535801A (en) * 2006-04-28 2009-10-01 ダンスン エレクトロン カンパニー リミテッド Manufacturing method of susceptor and susceptor manufactured by this method
JP2008066707A (en) * 2006-08-10 2008-03-21 Tokyo Electron Ltd Electrostatic attraction electrode, substrate processor, and manufacturing method for electrostatic attraction electrode
JP2008243950A (en) * 2007-03-26 2008-10-09 Mitsui Eng & Shipbuild Co Ltd Thermal treatment equipment
JP4893543B2 (en) * 2007-09-07 2012-03-07 住友電気工業株式会社 Wafer holder and semiconductor manufacturing apparatus equipped with the same
JP2013120835A (en) * 2011-12-07 2013-06-17 Shinko Electric Ind Co Ltd Substrate temperature control fixing apparatus and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092104A (en) * 2015-11-04 2017-05-25 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
CN107026102A (en) * 2015-11-04 2017-08-08 东京毅力科创株式会社 Substrate-placing platform and substrate board treatment
CN107026102B (en) * 2015-11-04 2020-03-31 东京毅力科创株式会社 Substrate mounting table and substrate processing apparatus
TWI705495B (en) * 2015-11-04 2020-09-21 日商東京威力科創股份有限公司 Substrate mounting table and substrate processing device
JP2018014491A (en) * 2016-07-01 2018-01-25 ラム リサーチ コーポレーションLam Research Corporation Esc ceramic sidewall modification for particle and metal performance enhancements
JP7186494B2 (en) 2016-07-01 2022-12-09 ラム リサーチ コーポレーション Machining ESC ceramic sidewalls for improved grain and metal performance
CN107178602A (en) * 2017-05-25 2017-09-19 贵州大学 A kind of Hydrodynamic transmission firm banking
JP2022048445A (en) * 2020-09-15 2022-03-28 日本特殊陶業株式会社 Holding device
JP7388998B2 (en) 2020-09-15 2023-11-29 日本特殊陶業株式会社 holding device

Also Published As

Publication number Publication date
JP6296770B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6380177B2 (en) Electrostatic chuck device
KR102174964B1 (en) Electrostatic chuck device
JP6064908B2 (en) Electrostatic chuck device
US10079167B2 (en) Electrostatic chucking device
TWI718133B (en) Electrostatic chuck device
TWI406355B (en) The substrate support table of the plasma processing device
TWI788497B (en) Electrostatic chuck device
JP6296770B2 (en) Substrate mounting device
JP2007227441A (en) Wafer holding body, heater unit mounted with the same, and wafer prober
JP2009087932A (en) Heating apparatus
JP2008078106A (en) Assembly with improved heat conductivity
JP5522220B2 (en) Electrostatic chuck device
JP2007035878A (en) Wafer retainer and its manufacturing method
JP2009094138A (en) Wafer holder, and semiconductor manufacturing device
JP5504924B2 (en) Electrostatic chuck device
JP5381878B2 (en) Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same
JP6060889B2 (en) Heater unit for wafer heating
JP2016143760A (en) Electrostatic chuck device
JP7047694B2 (en) Electrostatic chuck device
JPWO2017056835A1 (en) Sample holder
JP2009094137A (en) Wafer holder, and semiconductor manufacturing device
JP2007235171A (en) Wafer holder for wafer prober and wafer prober mounting the same
JP2007227442A (en) Wafer holding body and wafer prober mounted with the same
JP6597437B2 (en) Electrostatic chuck device
JP6642170B2 (en) Electrostatic chuck device and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6296770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250