JPH1050811A - Temperature adjustment mechanism for semiconductor substrate - Google Patents

Temperature adjustment mechanism for semiconductor substrate

Info

Publication number
JPH1050811A
JPH1050811A JP9429697A JP9429697A JPH1050811A JP H1050811 A JPH1050811 A JP H1050811A JP 9429697 A JP9429697 A JP 9429697A JP 9429697 A JP9429697 A JP 9429697A JP H1050811 A JPH1050811 A JP H1050811A
Authority
JP
Japan
Prior art keywords
heating
cooling
temperature
electrostatic
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9429697A
Other languages
Japanese (ja)
Inventor
Seiichiro Miyata
征一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYATA R ANDEI KK
Original Assignee
MIYATA R ANDEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYATA R ANDEI KK filed Critical MIYATA R ANDEI KK
Priority to JP9429697A priority Critical patent/JPH1050811A/en
Publication of JPH1050811A publication Critical patent/JPH1050811A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To raise and lower a temperature of a semiconductor substrate rapidly and adjust it at a set temperature rapidly by heating and cooling a sucked semiconductor substrate indirectly by a heating mechanism and a cooling mechanism for adjusting a substrate temperature. SOLUTION: A semiconductor substrate is subjected to electrostatic suction and fixed to an electrostatic sucking mechanism. A suction surface of the electrostatic sucking mechanism is heated and cooled. Then, the substrate is heated and cooled by heat conduction from a suction surface or heat conduction to a suction surface and is adjusted at a specified temperature. In the process, heat is conducted rapidly by integrally combining an electrostatic suction mechanism, a heating mechanism and a cooling mechanism. As for arrangement of a heating mechanism and a cooling mechanism, an order of a cooling mechanism - a heating mechanism - an electrostatic sucking mechanism and an order of combination of each mechanism to be combined to an electrostatic sucking mechanism with a cooling mechanism and a heating mechanism provided parallel are essential conditions. As for a heating means of a heating mechanism, either of heating by an electric heater and heating by heating medium circulation can be adopted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の温度調節
機構に係わり、さらに詳しくは、半導体基板を急速制
御、精密制御できる温度調節機構に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control mechanism for a semiconductor substrate, and more particularly, to a temperature control mechanism capable of rapidly and precisely controlling a semiconductor substrate.

【0002】[0002]

【従来の技術】半導体のプラズマ加工は集積度が高くな
るほど、より極細化し、より厳しい精度が要求される。
プラズマ加工の極細化、高精度化を達成する上でプラズ
マ処理温度は極めて重要なファクターになるが、現状設
備では、処理するシリコンウエハーの過昇温防止のため
に冷却(エッチング処理の場合)するだけで精密な温度
管理はなされていない。成膜処理(CVD)では、設定
温度に加熱するためにただ加熱(CVD)するだけで、
処理中の自然昇温は放任されているのが実情である。現
実は以上のような状況であるが、これは温度管理の重要
さが認識されていないためではなくて、現実、経済的な
スピードで温度管理できる機構が存在しないためであ
る。実験室的に生産性を無視すれば、精密な温度管理は
可能であるが、現状の生産ラインの中で、例えば処理す
る薄膜の材質に応じて、膜ごとに、生産性を落とすこと
なく素早くその膜質に最適な温度に変えて処理するクイ
ック制御、精密制御できる機構が存在しないためであ
る。この問題を解決するには現実の処理スピードに対応
して迅速に温度を調節できる機構が必要となる。つまり
処理スピードを落とすことなく迅速かつ連続的に温度調
節できる機構が必要となる。一方プラズマ処理以外で
も、装置の稼働率を上げるために、設定した温度に素早
く加熱したり、あるいは加熱後、素早く冷やしたりする
要求も多い。ここでも迅速かつ連続的に温度調節できる
機構が求められている。
2. Description of the Related Art The higher the degree of integration in plasma processing of semiconductors, the finer and more strict accuracy is required.
Plasma processing temperature is a very important factor in achieving ultra-fine and high-precision plasma processing. However, in the current equipment, cooling (in the case of etching processing) is performed to prevent excessive heating of the silicon wafer to be processed. There is no precise temperature control alone. In the film forming process (CVD), only heating (CVD) is performed to heat to a set temperature.
It is a fact that the natural heating during the treatment is left unchecked. The reality is the situation described above, but not because the importance of temperature management is not recognized, but because there is no mechanism that can actually manage the temperature at an economical speed. If the productivity is ignored in the laboratory, precise temperature control is possible, but in the current production line, for example, depending on the material of the thin film to be processed, it can be done quickly without reducing productivity for each film This is because there is no mechanism capable of performing quick control and precise control by changing the temperature to an optimum temperature for the film quality. In order to solve this problem, a mechanism that can quickly adjust the temperature according to the actual processing speed is required. In other words, a mechanism that can quickly and continuously adjust the temperature without reducing the processing speed is required. On the other hand, besides the plasma processing, there are many demands for quickly heating to a set temperature, or for quickly cooling after heating, in order to increase the operation rate of the apparatus. Here, too, there is a need for a mechanism that can quickly and continuously adjust the temperature.

【0003】[0003]

【発明が解決する課題】本発明は、かかる状況に鑑みて
なされたもので、その目的とするところは、半導体基板
の温度を速やかに昇降温させて速やかに設定温度に調節
できる新しい温度調節機構を提供せんとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a new temperature control mechanism capable of quickly raising and lowering the temperature of a semiconductor substrate to quickly adjust to a set temperature. Is to be provided.

【0004】[0004]

【課題を解決するための手段】上記問題は次の手段によ
って解決される。すなわち、 1.半導体基板を静電吸着して固定する静電吸着機構の
底面に加熱機構を結合し、該加熱機構の底面に冷却機構
を結合した構造からなり、該吸着した半導体基板を該加
熱機構と該冷却機構によって間接的に加熱、冷却して該
基板温度を調節することを特徴とする半導体基板の温度
調節機構。 2.半導体基板を静電吸着して固定する静電吸着機構の
底面に加熱機構と冷却機構を内蔵した良熱伝導体が一体
的に結合された構造からなり、該吸着した半導体基板を
該加熱機構と該冷却機構によって間接的に加熱、冷却し
て該基板温度を調節することを特徴とする半導体基板の
温度調節機構。
The above-mentioned problem is solved by the following means. That is, 1. A heating mechanism is coupled to a bottom surface of an electrostatic attraction mechanism that electrostatically attracts and fixes a semiconductor substrate, and a cooling mechanism is coupled to a bottom surface of the heating mechanism. A temperature control mechanism for a semiconductor substrate, wherein the temperature of the substrate is controlled by heating and cooling indirectly by a mechanism. 2. A good heat conductor having a built-in heating mechanism and a cooling mechanism is integrally connected to a bottom surface of an electrostatic suction mechanism for electrostatically holding and fixing the semiconductor substrate. A temperature control mechanism for a semiconductor substrate, wherein the substrate temperature is controlled by indirectly heating and cooling by the cooling mechanism.

【0005】[0005]

【発明の実施の形態】本発明の温度調節機構は、まず、
静電吸着機構に半導体基板を静電吸着、固定、この
静電吸着機構の吸着面を加熱、冷却、吸着面からの熱
伝達、あるいは吸着面への熱伝達によって基板を加熱、
冷却して所定温度に調節することを特徴とする。そして
この際、 静電吸着機構、加熱機構、冷却機構は一体的に結合さ
せて速やかな熱の伝達を計り、 加熱機構、冷却機構の配置は、冷却機構−加熱機構−
静電吸着機構の順、および冷却機構と加熱機構を並設し
た状態で静電吸着機構と結合させる各機構の組合せの順
序が必須条件となる。順序が逆、つまり加熱機構−冷却
機構−静電吸着機構の場合、加熱機構と静電吸着機構の
間に冷却機構が入り、冷却機構の冷媒循環路の空隙部分
が断熱層になり、加熱機構から静電吸着機構への熱移動
を阻害するために、基板加熱時、昇温速度が遅くなる問
題がある。つまり、現実の処理に際しては、低温→高
温、高温→低温に温度変化している時間は完全にロスタ
イムであるので、このロスタイムがおおきくなることは
生産性の低下を招く。順序が逆になることによって加熱
時のロスタイムが大きくなり、生産性の著しい低下を招
く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The temperature control mechanism of the present invention
The semiconductor substrate is electrostatically attracted and fixed to the electrostatic attraction mechanism, and the suction surface of the electrostatic attraction mechanism is heated and cooled, and the substrate is heated by heat transfer from the attraction surface or heat transfer to the attraction surface.
It is characterized by cooling and adjusting to a predetermined temperature. At this time, the electrostatic attraction mechanism, the heating mechanism, and the cooling mechanism are integrally connected to measure quick heat transmission, and the arrangement of the heating mechanism and the cooling mechanism is determined by a cooling mechanism—a heating mechanism—
The essential conditions are the order of the electrostatic attraction mechanism, and the order of the combination of each mechanism to be combined with the electrostatic attraction mechanism in a state where the cooling mechanism and the heating mechanism are arranged in parallel. In the case of the reverse order, that is, in the case of the heating mechanism-cooling mechanism-electrostatic attraction mechanism, a cooling mechanism is inserted between the heating mechanism and the electrostatic attraction mechanism, and a gap portion of the refrigerant circulation path of the cooling mechanism becomes a heat insulating layer, and There is a problem that the rate of temperature rise is slowed down during substrate heating in order to hinder heat transfer from the substrate to the electrostatic attraction mechanism. That is, in the actual processing, the time during which the temperature changes from low temperature to high temperature and high temperature to low temperature is completely a loss time, so that an increase in the loss time causes a decrease in productivity. By reversing the order, the loss time during heating increases, leading to a significant decrease in productivity.

【0006】ここで、静電吸着機構、加熱機構、冷却機
構の「一体的結合」なる表現は以下のようなことを意味
するものである。 冶金的な接合による結合 膜の積層による結合 静電吸着機構の誘電体セラミックを、溶射、PVD,C
VD,スパッタリング等の成膜処理によって基材(加熱
機構の基材)の上に膜形成させることによって基材(加
熱機構の基材)と密に結合させる場合。 焼結、あるいは焼成による結合 金属−金属は冶金的な接合の範疇にいるが、金属−セラ
ミック、セラミック−セラミックの組合わせで冶金的接
合の範疇に入らないものの焼結、あるいは焼成による結
合。
Here, the expression "integral connection" of the electrostatic attraction mechanism, the heating mechanism, and the cooling mechanism means the following. Bonding by metallurgical bonding Bonding by stacking films Dielectric ceramic of electrostatic adsorption mechanism is sprayed, PVD, C
A case in which a film is formed on a base material (base material of the heating mechanism) by a film forming process such as VD or sputtering to be tightly bonded to the base material (base material of the heating mechanism). Bonding by sintering or sintering Metal-metal is in the category of metallurgical joining, but sintering or sintering of combinations of metal-ceramic and ceramic-ceramic that fall outside the category of metallurgical joining.

【0007】[静電吸着機構部]本発明の静電吸着機構
部とは、いわゆる静電チャックの静電吸着機構部を意味
する。静電吸着機構部は誘電体セラミックと、このセラ
ミック背面に形成された静電誘導電極を含んだ構造を主
要部とする構造体の総称である。すなわち、単極方式の
静電チャックにあっては、誘電体セラミックと、このセ
ラミック背面に形成された静電誘導電極を併せた構造体
を主要部とし、双極方式にあっては誘電体セラミック
と、このセラミック背面に形成された静電誘導電極電
極、およびこの電極の背面を裏打ちするセラミック絶縁
板からなる構造体を主要部とする構造体が吸着機構部と
なる。
[Electrostatic chucking mechanism] The electrostatic chucking mechanism of the present invention means a so-called electrostatic chucking mechanism of an electrostatic chuck. The electrostatic attraction mechanism is a general term for a structure mainly composed of a dielectric ceramic and a structure including an electrostatic induction electrode formed on the back surface of the ceramic. In other words, in a monopolar electrostatic chuck, a dielectric ceramic and a structure combining an electrostatic induction electrode formed on the back surface of the ceramic are mainly used. The structure mainly including a structure including an electrostatic induction electrode formed on the back surface of the ceramic and a ceramic insulating plate lining the back surface of the electrode serves as a suction mechanism.

【0008】誘電体セラミックは,誘電体セラミックの
焼結体を、あるいは誘電体セラミックの膜、つまり溶射
によって誘電体セラミックの被膜を形成したもの、ある
いはスパッタリング、CVD等の薄膜処理によって形成
したもの、あるいはその他の成膜処理によって形成され
たもの、いずれでも選択できる。ここで誘電体セラミッ
クとは誘電率が特に高いセラミックのみに限定されるも
のではない。通常の電気絶縁セラミックでも厚さを薄く
すると吸着力は大きくなる現象に鑑み、本発明では誘電
率の高くない通常の電気絶縁体セラミック全般もこの
「誘電体セラミック」の範疇に含まれる。チタン酸アル
ミナ、チタン酸バリウム等の高誘電率セラミックから、
窒化ケイ素、窒化アルミ、アルミナ、サファイア、炭化
ケイ素、成膜形成されたダイヤモンド、CBN等、絶縁
体セラミックがこの範疇にいる。
[0008] The dielectric ceramic is a dielectric ceramic sintered body, or a dielectric ceramic film, that is, a dielectric ceramic film formed by thermal spraying, or formed by a thin film treatment such as sputtering or CVD. Alternatively, any one formed by another film forming process can be selected. Here, the dielectric ceramic is not limited to only a ceramic having a particularly high dielectric constant. In view of the phenomenon that even if the thickness of ordinary electric insulating ceramic is reduced, the attraction force increases, the general dielectric ceramic having a low dielectric constant is also included in the category of "dielectric ceramic" in the present invention. From high dielectric constant ceramics such as alumina titanate and barium titanate,
Insulating ceramics such as silicon nitride, aluminum nitride, alumina, sapphire, silicon carbide, formed diamond, and CBN fall into this category.

【0009】静電吸着機構部背面には加熱機構(第1項
発明)、良熱伝導体(第2項発明)が結合されるが、こ
の加熱機構の面、良熱伝導体の面を金属にして、この金
属面を電極として使用してもよい。つまり静電吸着機構
部背面に結合される加熱機構、良熱伝導体の面を電極と
して代用してもよいということである。また、逆に電極
金属を加熱機構の片面、良熱伝導体の片面、冷却機構の
片面として代用してもよい。また、加熱機構の片面、良
熱伝導体の片面を絶縁体にして、静電吸着機構部背面の
絶縁体(双極の場合)として代用してもよい。
A heating mechanism (the first invention) and a good heat conductor (the second invention) are connected to the back of the electrostatic attraction mechanism. Then, this metal surface may be used as an electrode. In other words, the heating mechanism and the surface of the good heat conductor coupled to the back of the electrostatic attraction mechanism may be used as electrodes. Conversely, the electrode metal may be used as one side of the heating mechanism, one side of the good heat conductor, or one side of the cooling mechanism. Further, one side of the heating mechanism and one side of the good heat conductor may be made into insulators, and may be used as insulators (in the case of bipolar) on the back of the electrostatic attraction mechanism.

【0010】また、吸着機構部背面に加熱機構(第1項
発明)、良熱伝導体(第2項発明)を結合するに当た
り、結合面に応力緩衝の目的、あるいは電気絶縁等の目
的で異種材料の層をインサートする場合もある。本発明
の「静電吸着機構部」はこれらインサートされる層の部
分まで含めて総称するものである。
In addition, when the heating mechanism (the first invention) and the good heat conductor (the second invention) are connected to the back surface of the suction mechanism, different kinds of materials are used on the connection surface for the purpose of stress buffering or electrical insulation. In some cases, a layer of material is inserted. The “electrostatic chucking mechanism” of the present invention is a generic term including these layers to be inserted.

【0011】[加熱機構]加熱手段は、電熱ヒーターに
よる加熱、熱媒循環による加熱、いずれの手段を採用し
てもよい。熱媒には液体、気体いずれの熱媒でも採用で
きる。電熱ヒーターの材料、構造には特別な制限はな
く、通電発熱するものであれば、金属、無機、材質を問
わず、いかなる材料、構造のものでも使用できる。電熱
回路の形成は、ヒーター線を使って形成、電熱材料
の粉末を電熱回路模様に焼付、あるいは固着させて形
成、電熱材料の膜を電熱回路模様状に被覆して形成、
あるいは電熱金属の箔で回路模様を形成し、これを基
材に固着して使用、あるいはその他の通常使用される回
路形成手段を目的に応じて適宜選択すればよい。
[Heating Mechanism] As the heating means, any means of heating by an electric heater or heating by circulation of a heating medium may be adopted. As the heat medium, either a liquid or gas heat medium can be adopted. There are no particular restrictions on the material and structure of the electric heater, and any material or structure can be used, regardless of metal, inorganic, or material, as long as it generates electricity. The formation of the electric heating circuit is formed by using a heater wire, baking or fixing the powder of the electric heating material to the electric heating circuit pattern, forming the film of the electric heating material in the electric heating circuit pattern shape,
Alternatively, a circuit pattern may be formed from an electrothermal metal foil and used by fixing the circuit pattern to a base material, or other commonly used circuit forming means may be appropriately selected depending on the purpose.

【0012】ヒーター線は、裸素線のまま、あるいは必
要に応じて素線表面を絶縁して使用する。裸素線の場合
は、良熱伝導体の基材に電熱回路模様の溝を形成し、こ
の中に素線を埋入して固定するようにすればよい。この
とき基材材質は少なくとも溝表面が絶縁体であればよ
い。基材全体を金属で形成し、溝表面だけを絶縁体にし
てもよい。また必要に応じて溝の中に耐火物を充填して
素線を固定してもよい。素線表面を絶縁した場合、絶縁
層を介して良熱伝導体の基材にロー付してもよい。ある
いは絶縁層の表面にさらに金属の皮を嵌し、この皮を基
材にロー付してもよい。また、もちろん、裸素線の場合
と同じように基材に電熱回路模様の溝を形成し、この中
に埋入してもよい。あるいは表面を絶縁したヒーター線
を金属で鋳包んだ構造でもよい。この場合、鋳包み金属
が基材となる。
The heater wire is used as a bare wire or as required, with the wire surface insulated. In the case of a bare strand, a groove having an electrothermal circuit pattern may be formed in a base made of a good heat conductor, and the strand may be embedded and fixed therein. At this time, the material of the base material may be any as long as at least the surface of the groove is an insulator. The entire substrate may be formed of metal, and only the surface of the groove may be an insulator. If necessary, the wire may be fixed by filling the groove with a refractory. When the surface of the wire is insulated, it may be brazed to a base material of a good heat conductor via an insulating layer. Alternatively, a metal skin may be further fitted on the surface of the insulating layer, and the skin may be brazed to the base material. Further, as a matter of course, similarly to the case of the bare strand, a groove having an electrothermal circuit pattern may be formed in the base material and embedded therein. Alternatively, a structure in which a heater wire whose surface is insulated is cast in metal may be used. In this case, the cast-in metal becomes the base material.

【0013】電熱材料の粉末焼付、あるいは固着は、良
熱伝導性、絶縁性基材に電熱材料の粉末ペーストを焼付
けて、あるいは固着させて形成する。
The baking or fixing of the electric heating material is performed by baking or fixing the powder paste of the electric heating material to the insulating substrate having good thermal conductivity.

【0014】電熱材料の膜形成は、高融点金属、貴金
属、あるいはその他の電熱金属を溶射、スパッタリン
グ、CVD,PVD等の手段で良熱伝導性、絶縁性基材
の上に形成する。また、焼成前のいわゆる生の状態のセ
ラミック基板(グリーン・シート)にW,Mo等の高融
点金属を印刷しておき、セラミックと同時に焼成したい
わゆる一体焼結型の膜も有効である。いずれにしても本
加熱機構において、電熱回路は上下面を絶縁される必要
があり、しかも温度を急速制御するためには、絶縁体の
熱容量と電熱回路の熱容量は共に限りなくを小さくす
る、つまり薄くする必要がある。上記したセラミックの
グリーン・シートにW,Mo等の高融点金属を印刷して
一体焼結したセラミックヒーターは極めて薄くできる利
点があるので本発明の目的には最も適している。
The film of the electric heating material is formed by forming a high melting point metal, a noble metal, or another electric heating metal on a substrate having good thermal conductivity and insulation by means of thermal spraying, sputtering, CVD, PVD or the like. It is also effective to use a so-called integral sintering type film in which a high melting point metal such as W or Mo is printed on a so-called green ceramic substrate (green sheet) before firing and fired simultaneously with the ceramic. In any case, in this heating mechanism, the electric heating circuit needs to be insulated on the upper and lower surfaces, and in order to rapidly control the temperature, both the heat capacity of the insulator and the heat capacity of the electric heating circuit are infinitely small, that is, Need to be thin. The ceramic heater formed by printing a high melting point metal such as W and Mo on the above ceramic green sheet and integrally sintering it has the advantage of being extremely thin, and is therefore most suitable for the purpose of the present invention.

【0015】良熱伝導性の基材とは、熱伝導性のよいセ
ラミックあるいは金属を意味する。セラミックは窒化ア
ルミニウム系、炭化ケイ素系、アルミナ系セラミック等
が、金属には鉄系、ニッケル系、コバルト系、銅系、ア
ルミニウム系、銀系、モリブデン、タングステン、ある
いはこれらの合金、複合材料(金属−金属、金属−セラ
ミック),あるいはその他の良熱伝導材料が使用でき
る。また、良熱伝導性基材の、吸着機構部の背面に対向
する部分は、吸着機構部の背面材料をそのまま代用させ
てもよい。
The base material having good heat conductivity means ceramic or metal having good heat conductivity. Ceramics include aluminum nitride, silicon carbide, and alumina ceramics. Metals include iron, nickel, cobalt, copper, aluminum, silver, molybdenum, tungsten, and alloys and composite materials (metals) of these metals. Metal, metal-ceramic) or other good heat conducting materials. In addition, in the portion of the good heat conductive substrate facing the back surface of the suction mechanism, the back material of the suction mechanism may be used as it is.

【0016】[冷却機構]液体、気体冷媒による冷却を
使用してもよい。冷媒による冷却では、基材に冷媒循環
路を設け、この中に液体、気体冷媒を循環させて冷却す
る。循環路は、基材に溝加工して、あるいは基材に管路
の埋め込み、接合、あるいは管路を内蔵する構造を鋳造
金属、あるいは溶接で形成、あるいは管路を内蔵する構
造をセラミック焼結体で形成等々種々の方法で形成す
る。循環路を形成する基材の材料は、良熱伝導性の金
属、セラミックあるいは金属セラミックの複合材料等、
いずれを採用してもよい。とくに金属/セラミック複合
材料はその割合を変えることによって線膨脹係数を自在
に調節できるので、接合部の残留応力軽減の点で有利で
ある。
[Cooling mechanism] Cooling using a liquid or gaseous refrigerant may be used. In cooling with a refrigerant, a refrigerant circulation path is provided in a base material, and a liquid or gas refrigerant is circulated in the refrigerant circulation path for cooling. For the circulation path, grooves are formed in the base material, or the structure to embed, join, or incorporate the conduit in the base material is formed by casting metal or welding, or the structure to incorporate the conduit is ceramic sintered. It is formed in various ways, such as in a body. The material of the base material forming the circulation path is a metal having good thermal conductivity, ceramic or a composite material of metal ceramic, and the like.
Either may be adopted. In particular, since the coefficient of linear expansion can be freely adjusted by changing the ratio of the metal / ceramic composite material, it is advantageous in reducing the residual stress at the joint.

【0017】[加熱機構、冷却機構の並設]加熱機構と
冷却機構は、上記した上下に重ねる構造のほかに、並設
して配置する構造でもよい。つまり電熱回路と冷媒の循
環路を並べて配置する構造でもよい。
[Parallel Arrangement of Heating Mechanism and Cooling Mechanism] The heating mechanism and the cooling mechanism may be arranged side by side in addition to the above-described structure in which the heating mechanism and the cooling mechanism are overlapped. That is, a structure in which the electric heating circuit and the circulation path of the refrigerant are arranged side by side may be used.

【0018】図面によって実施の形態を説明する。本発
明の温度調節機構は基本的には2つの構造に大別でき
る。一つは、冷却機構−加熱機構−静電吸着機構の順に
結合一体化された構造(図1,3)、もう一つは、冷却
機構部と加熱機構部が、並設されて静電吸着機構に結合
一体化された構造(図2,4)である。さらにこれらは
静電吸着機構部の構造でさらに二つに分類される。一つ
は静電吸着機構部の誘電体がセラミック焼結体で形成さ
れた構造、さらに一つは誘電体が成膜手法、例えば溶
射、CVD,PVD,スパッタリング、その他の成膜手
法で形成された場合である。図1〜4はこれらの状況を
説明した図である。図1の構造は,冷却機構−加熱機構
−静電吸着機構の順に結合一体化された構造で、誘電体
がセラミック焼結体で形成された構造。図2は冷却機構
部と加熱機構部が、並設されて静電吸着機構に結合一体
化された構造で、誘電体がセラミック焼結体で形成され
た構造。図3は、冷却機構−加熱機構−静電吸着機構の
順に結合一体化された構造で誘電体が成膜手法で形成さ
れた構造。図4は、冷却機構部と加熱機構部が、並設さ
れて静電吸着機構に結合一体化された構造で、誘電体が
成膜手法で形成された構造である。図1,3にあっては
冷却機構、加熱機構、静電吸着機構は共に結合一体化さ
れている。図2にあっては冷却機構と加熱機構が良熱伝
導体に一体的に内蔵されて静電吸着機構に結合一体化さ
れている。図4にあっては、冷却機構と加熱機構が良熱
伝導体に一体的に内蔵された構造体に誘電体セラミック
の膜が成膜された構造である。
An embodiment will be described with reference to the drawings. The temperature control mechanism of the present invention can be basically divided into two structures. One is a structure in which a cooling mechanism, a heating mechanism, and an electrostatic attraction mechanism are combined and integrated in this order (FIGS. 1 and 3). The other is a cooling mechanism and a heating mechanism that are arranged side by side and electrostatically attracted. This is a structure (FIGS. 2 and 4) integrated and integrated with the mechanism. These are further classified into two types according to the structure of the electrostatic attraction mechanism. One is a structure in which the dielectric of the electrostatic attraction mechanism is formed of a ceramic sintered body, and the other is a dielectric formed by a film forming method such as thermal spraying, CVD, PVD, sputtering, or other film forming methods. Is the case. 1 to 4 illustrate these situations. The structure shown in FIG. 1 is a structure in which a cooling mechanism, a heating mechanism, and an electrostatic suction mechanism are combined and integrated in this order, in which a dielectric is formed of a ceramic sintered body. FIG. 2 shows a structure in which a cooling mechanism and a heating mechanism are juxtaposed and integrated with an electrostatic attraction mechanism, in which the dielectric is formed of a ceramic sintered body. FIG. 3 shows a structure in which a cooling mechanism, a heating mechanism, and an electrostatic suction mechanism are combined and integrated in this order, and a dielectric is formed by a film forming method. FIG. 4 shows a structure in which a cooling mechanism and a heating mechanism are juxtaposed and integrated with an electrostatic attraction mechanism, in which a dielectric is formed by a film forming method. In FIGS. 1 and 3, the cooling mechanism, the heating mechanism, and the electrostatic attraction mechanism are all integrally connected. In FIG. 2, a cooling mechanism and a heating mechanism are integrally incorporated in a good heat conductor, and are combined and integrated with an electrostatic attraction mechanism. FIG. 4 shows a structure in which a dielectric ceramic film is formed on a structure in which a cooling mechanism and a heating mechanism are integrally built in a good heat conductor.

【0019】加熱機構部の電熱体は主に次の様なものを
使用できる。ヒーター素線、電熱材料の粉末を焼
付、あるいは固着させたもの、電熱材料の膜を被覆し
たもの、電熱金属の箔、セラミックと一体焼結型ヒ
ーター。これらの電熱体を使用した加熱機構部の代表的
な構造は、図5〜14に示す構造である。図5〜8はヒ
ーター線を使用した構造の例。図5は表面が絶縁された
ヒーター線が鋳造金属に鋳包た構造のもので、A面が静
電吸着機構部に接合、B面が冷却機構部に接合されるこ
とになる。図6は、基材Bに形成した溝の中にヒーター
線が埋め込まれて基材Aの蓋をされた構造である。ヒー
ター線の表面が絶縁されておれば、基材A,Bは金属で
もセラミックでも材質は問わない。ヒーター線が裸の場
合、基材A,Bの少なくともヒーター線と接触する部分
は絶縁材にする必要がある。図7は基材A,Bの間にヒ
ーター線を挟んでロー付けした構造である。基材A,B
とヒーター線の隙間はろう材で埋められている。図8は
セラミック基材Aに形成した溝の中に表面絶縁されたヒ
ーター素線を埋め込み隙間をろう材で充填したものであ
る。図9は電熱金属の箔をセラミック基材A,Bの間に
挟み、無機接着剤で接着固定したものである。図10は
セラミックの中にヒーター回路を一体的に焼結した構造
である。(イ)はセラミックとヒーター回路(タングス
テン系電熱回路)を一体的に焼結した構造。A面に吸着
機構が、B面に冷却機構が接合されることとなる。
(ロ)はヒーター回路と静電チャックの電極を一緒に同
時焼結した構造である。図11は表面が絶縁されたヒー
ター線と冷媒循環用管路が鋳造金属に一緒に鋳包れた構
造のものである。ヒーター線と冷媒循環用管路が横にな
らんで並設された構造。図12は表面が絶縁されたヒー
ター線と冷媒循環用管路が鋳造金属に一緒に鋳包れた構
造のものである。ヒーター線(上)と冷媒循環用管路
(下)が上下にならんだ構造。
The following can be mainly used as the electric heating element of the heating mechanism. Heater element wire, powdered or fixed electric heating material powder, coated with electric heating material film, electric heating metal foil, ceramic and sintered integral heater. A typical structure of a heating mechanism using these electric heaters is a structure shown in FIGS. 5 to 8 show examples of a structure using a heater wire. FIG. 5 shows a structure in which a heater wire whose surface is insulated is cast in a cast metal. The surface A is joined to the electrostatic attraction mechanism, and the surface B is joined to the cooling mechanism. FIG. 6 shows a structure in which a heater wire is embedded in a groove formed in the base material B and the base material A is covered. As long as the surfaces of the heater wires are insulated, the materials of the substrates A and B may be metal or ceramic. When the heater wire is bare, at least a portion of the base materials A and B that comes into contact with the heater wire needs to be made of an insulating material. FIG. 7 shows a structure in which a heater wire is sandwiched between base materials A and B and brazed. Substrates A and B
The gap between the heater wires is filled with brazing filler metal. FIG. 8 shows a case where a heater element wire having a surface insulated is buried in a groove formed in the ceramic base material A, and a gap is filled with a brazing material. FIG. 9 shows an electrothermal metal foil sandwiched between ceramic substrates A and B and bonded and fixed with an inorganic adhesive. FIG. 10 shows a structure in which a heater circuit is integrally sintered in ceramic. (A) is a structure in which ceramic and a heater circuit (tungsten-based electric heating circuit) are integrally sintered. The suction mechanism is joined to the surface A, and the cooling mechanism is joined to the surface B.
(B) shows a structure in which the heater circuit and the electrode of the electrostatic chuck are simultaneously sintered together. FIG. 11 shows a structure in which a heater wire and a refrigerant circulation pipe whose surfaces are insulated are cast together with a cast metal. A structure in which a heater wire and a refrigerant circulation line are arranged side by side. FIG. 12 shows a structure in which a heater wire and a refrigerant circulation pipe whose surfaces are insulated are cast together with a cast metal. A structure in which the heater wire (top) and the refrigerant circulation pipeline (bottom) are arranged vertically.

【0020】図13〜14は、加熱機構と冷却機構が並
設されたものではないが、おなじ基材の中に内蔵された
例である。図13は電熱ヒーターが溝の中に埋入され、
基材底部に冷媒の循環路を形成した例。図14はヒータ
ーを鋳造金属で鋳包み、鋳造金属の底部に冷媒の循環路
を形成した例。
FIGS. 13 and 14 show an example in which the heating mechanism and the cooling mechanism are not provided side by side, but are built in the same base material. FIG. 13 shows that the electric heater is embedded in the groove,
An example in which a refrigerant circulation path is formed at the bottom of a base material. FIG. 14 shows an example in which a heater is cast in a casting metal and a refrigerant circulation path is formed in the bottom of the casting metal.

【0021】次に実施例を示す。 実施例1 構造:図15の構造 誘電吸着機構部:双極の電極がセラミックの内部に一体
的に焼結されたアルミナ系の誘電体セラミック(φ50
×2t)を使用 加熱機構 :タングステン発熱回路がセラミックと
同時焼成された構造のアルミナセラミックヒーター(図
10の(イ)の構造) φ50×2t、出力:200W 冷却機構 :ニッケル製の冷却箱を使用。冷媒ガス
はフロンガスを使用。 冷却機構の構造 幅10mm、厚さ0.5mmのニッケルの帯を渦巻き状
に巻回し、これを二枚のφ50×1tのニッケルの円板
の間に挟み端面を二枚のニッケル円板と銀ロー付した。 [各機構の接合]誘電吸着機構部、加熱機構、冷却機構
はインジウムによってロー付した。誘電吸着機構部、加
熱機構の接合面は無電解ニッケルメッキによってメタラ
イズして接合した。 [テスト]静電吸着:双極電極に800Vの電圧を印加
して誘電体セラミックの表面に2インチシリコンウエハ
ーを吸着させた。 加熱 常温(20℃)から加熱開始。ヒーターに通電、ウエハ
ー表面は、40秒で100℃に加熱できた。 冷却 ヒーターを切った後、冷媒ガスを流した。ウエハー表面
は60秒で20℃に冷却できた。 保持 ヒーター加熱と冷媒ガス冷却併用してシリコンウエハー
表面温度を100℃±1℃の範囲に保持できた。本発明
はシリコンウエハーを急速昇降温でき、かつ均一に保持
できることが確認できた。
Next, an embodiment will be described. Example 1 Structure: Structure of FIG. 15 Dielectric adsorption mechanism: Alumina-based dielectric ceramic (φ50) in which bipolar electrodes are integrally sintered inside ceramic
X2t) Heating mechanism: Alumina ceramic heater with a structure in which a tungsten heating circuit is co-fired with ceramic (structure of (a) in Fig. 10) 50 x 2t, output: 200W Cooling mechanism: Uses a nickel cooling box . The refrigerant gas uses Freon gas. Structure of cooling mechanism A 10 mm wide, 0.5 mm thick strip of nickel is spirally wound, sandwiched between two φ50 × 1t nickel discs, and the end face is attached to two nickel discs and a silver braze. did. [Joining of each mechanism] The dielectric adsorption mechanism, heating mechanism and cooling mechanism were brazed with indium. The joining surfaces of the dielectric adsorption mechanism and the heating mechanism were metallized by electroless nickel plating and joined. [Test] Electrostatic adsorption: A voltage of 800 V was applied to the bipolar electrode to adsorb a 2-inch silicon wafer on the surface of the dielectric ceramic. Heating Start heating from room temperature (20 ° C). The heater was energized, and the wafer surface could be heated to 100 ° C. in 40 seconds. After turning off the cooling heater, a refrigerant gas was flown. The wafer surface was cooled to 20 ° C. in 60 seconds. Holding The surface temperature of the silicon wafer could be kept in the range of 100 ° C. ± 1 ° C. by using both the heating of the heater and the cooling of the refrigerant gas. According to the present invention, it was confirmed that the temperature of the silicon wafer can be rapidly raised and lowered and the silicon wafer can be uniformly maintained.

【0022】実施例2 図16の構造 渦巻状に巻回した500Wの電熱ヒーター(シースヒー
ター)線と、同じく渦巻状に巻回した外系8mm,内径
7mmのステンレスの冷却パイプを上下に重ね、溶融ア
ルミで鋳包んだ構造。誘電体セラミック(φ50)はア
ルミ製の加熱、冷却機構(台座)の表面に、アルミナ・
チタニア系の誘電体セラミック粉末を0.3mm溶射し
て形成した。電極は単極でアルミの台座が兼ねる。 冷却機構 : 冷媒にはフロンガス使用。 [テスト]静電吸着:台座とシリコンウエハーの間に8
00Vの電圧を印加して誘電体セラミックの表面に2イ
ンチシリコンウエハーを吸着させた。 加熱 0℃からスタートしてヒーターに通電。ウエハー表面は
12秒で50℃に到達させることができた。 保持 ヒーター加熱と冷媒ガス冷却併用してシリコンウエハー
表面温度を50℃±1℃の範囲に保持できた。 冷却 ヒーターを切った後、冷媒ガスを流してウエハー表面を
30秒で常温(20℃)まで冷却できた。本発明はシリ
コンウエハーを急速昇降温でき、かつ均一温度に保持で
きることが確認できた。
Example 2 Structure of FIG. 16 A spirally wound 500 W electric heater (sheath heater) wire and a spirally wound stainless steel cooling pipe of 8 mm in outer diameter and 7 mm in inner diameter are vertically stacked. Structure cast in molten aluminum. Dielectric ceramic (φ50) is made of aluminum and aluminum on the surface of the heating and cooling mechanism (pedestal).
A titania-based dielectric ceramic powder was formed by spraying 0.3 mm. The electrode is monopolar and also serves as an aluminum pedestal. Cooling mechanism: Uses chlorofluorocarbon as refrigerant. [Test] Electrostatic adsorption: 8 between pedestal and silicon wafer
A 2-inch silicon wafer was adsorbed on the surface of the dielectric ceramic by applying a voltage of 00V. Heating Start from 0 ° C and energize the heater. The wafer surface could reach 50 ° C. in 12 seconds. Holding The surface temperature of the silicon wafer could be maintained in the range of 50 ° C. ± 1 ° C. by using both the heating with the heater and the cooling with the refrigerant gas. After turning off the cooling heater, the wafer surface was cooled to room temperature (20 ° C.) in 30 seconds by flowing a coolant gas. It has been confirmed that the present invention can rapidly raise and lower the temperature of a silicon wafer and maintain the temperature at a uniform temperature.

【0023】実施例3 構造: 図17の構造 加熱機構 :タングステン系金属発熱回路がセラミ
ックと同時焼成された構造の窒化アルミヒーター(図1
0の(イ)の構造) φ50×2t,200W 誘電吸着機構部:誘電体セラミックにはφ50×0.2
mmの窒化アルミニウム円板用い、これを窒化アルミヒ
ーターに銀ろう付(ベタ付)した。 銀ロー付面が電極を兼ねる単極方式。 冷却機構の構造:幅10mm、厚さ0.5mmのタング
ステンの帯を渦巻き状に巻回し、これを二枚のφ50×
1tのタングステンの円板の間に挟み端面を二枚のタン
グステン円板と銀ロー付した構造。冷却は空冷 [各機構の接合]窒化アルミヒーターと冷却機構は銀ロ
ー付した。ロー付の際、窒化アルミヒーターとタングス
テンの冷却機構の間に応力緩衝を目的として50%W−
50%窒化アルミ(体積%)の複合焼結体の円板(φ5
0×1mm)を間に挟んで接合した。 [テスト]静電吸着:電極とシリコンウエハーの間に7
00Vの電圧を印加して誘電体セラミックの表面に2イ
ンチシリコンウエハーを吸着させた。 加熱 常温(20℃)から加熱開始。ヒーターに通電、ウエハ
ー表面は、25秒で100℃、2分で300℃に到達さ
せることができた。 冷却 ヒーターを切った後、空気を流した。ウエハー表面は2
分で100℃まで冷却できた。 保持 ヒーター加熱と空冷併用してシリコンウエハー表面温度
を300℃±1℃の範囲に保持できた。本発明はシリコ
ンウエハーを急速昇降温でき、かつ均一温度に保持でき
ることが確認できた。
Example 3 Structure: Structure of FIG. 17 Heating mechanism: Aluminum nitride heater having a structure in which a tungsten-based metal heating circuit is co-fired with ceramic (FIG. 1)
0 (a) structure) φ50 × 2t, 200W Dielectric adsorption mechanism: φ50 × 0.2 for dielectric ceramic
mm aluminum nitride disk, which was brazed (solid) to an aluminum nitride heater. Single pole type with silver soldering surface also serving as electrode. Structure of the cooling mechanism: A tungsten band of 10 mm in width and 0.5 mm in thickness is spirally wound, and two pieces of φ50 ×
A structure in which two tungsten disks and a silver braze are attached to the end face of a 1t tungsten disk. Air cooling [Joining of each mechanism] The aluminum nitride heater and the cooling mechanism were equipped with silver brazing. When brazing, 50% W- between the aluminum nitride heater and the cooling mechanism of tungsten for the purpose of buffering stress
Disk of composite sintered body of 50% aluminum nitride (vol.%) (Φ5
(0 × 1 mm). [Test] Electrostatic adsorption: 7 between electrode and silicon wafer
A 2-inch silicon wafer was adsorbed on the surface of the dielectric ceramic by applying a voltage of 00V. Heating Start heating from room temperature (20 ° C). The heater was energized, and the wafer surface could reach 100 ° C. in 25 seconds and 300 ° C. in 2 minutes. After turning off the cooling heater, air was flown. 2 for wafer surface
Cooled down to 100 ° C in minutes. Holding The surface temperature of the silicon wafer could be maintained in the range of 300 ° C. ± 1 ° C. by using both the heater heating and the air cooling. It has been confirmed that the present invention can rapidly raise and lower the temperature of a silicon wafer and maintain the temperature at a uniform temperature.

【0024】[0024]

【発明の効果】以上詳記したように、本発明は半導体基
板表面を極めて短い温度サイクルで昇降温できる機構で
あり、生産効率を落とすことなくプラズマ処理や成膜処
理品質の向上に多大の貢献を成すものである。
As described in detail above, the present invention is a mechanism capable of raising and lowering the temperature of a semiconductor substrate surface in an extremely short temperature cycle, and greatly contributes to improvement of plasma processing and film forming processing quality without reducing production efficiency. It is what constitutes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は温度調節機構の説明図である。FIG. 1 is an explanatory diagram of a temperature control mechanism.

【図2】図2は温度調節機構の説明図である。FIG. 2 is an explanatory diagram of a temperature adjusting mechanism.

【図3】図3は温度調節機構の説明図である。FIG. 3 is an explanatory diagram of a temperature adjusting mechanism.

【図4】図4は温度調節機構の説明図である。FIG. 4 is an explanatory diagram of a temperature adjusting mechanism.

【図5】図5は加熱機構部の説明図。(ヒーター線使
用)
FIG. 5 is an explanatory diagram of a heating mechanism. (Using heater wire)

【図6】図6は加熱機構部の説明図。(ヒーター線使
用)
FIG. 6 is an explanatory view of a heating mechanism. (Using heater wire)

【図7】図7は加熱機構部の説明図。(ヒーター線使
用)
FIG. 7 is an explanatory diagram of a heating mechanism. (Using heater wire)

【図8】図8は加熱機構部の説明図。(ヒーター線使
用)
FIG. 8 is an explanatory view of a heating mechanism. (Using heater wire)

【図9】図9は加熱機構部の説明図。(電熱金属箔使
用)
FIG. 9 is an explanatory diagram of a heating mechanism. (Using electric heating metal foil)

【図10】図10は加熱機構部の説明図。(同時焼結ヒ
ーター)
FIG. 10 is an explanatory diagram of a heating mechanism. (Simultaneous sintering heater)

【図11】図11は加熱機構部の説明図。(鋳包ヒータ
ー)
FIG. 11 is an explanatory view of a heating mechanism. (Cast heater)

【図12】図12は加熱機構部の説明図。(鋳包ヒータ
ー)
FIG. 12 is an explanatory diagram of a heating mechanism. (Cast heater)

【図13】図13は加熱、冷却機構の組合せ構造の説明
図。
FIG. 13 is an explanatory diagram of a combined structure of a heating and cooling mechanism.

【図14】図14は加熱、冷却機構の組合せ構造の説明
図。
FIG. 14 is an explanatory diagram of a combined structure of a heating and cooling mechanism.

【図15】図15は実施例の構造の説明図。FIG. 15 is an explanatory diagram of the structure of the embodiment.

【図16】図16は実施例の構造の説明図。FIG. 16 is an explanatory diagram of the structure of the embodiment.

【図17】図17は実施例の構造の説明図。FIG. 17 is an explanatory diagram of the structure of the embodiment.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 21/31 H01L 21/302 B Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication // H01L 21/31 H01L 21/302 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板を静電吸着して固定する静電吸
着機構の底面に加熱機構を結合し、該加熱機構の底面に
冷却機構を結合した構造からなり、該吸着した半導体基
板を該加熱機構と該冷却機構によって間接的に加熱、冷
却して該基板温度を調節することを特徴とする半導体基
板の温度調節機構。
A heating mechanism is coupled to a bottom surface of an electrostatic attraction mechanism for electrostatically attracting and fixing a semiconductor substrate, and a cooling mechanism is coupled to a bottom surface of the heating mechanism. A temperature control mechanism for a semiconductor substrate, wherein the temperature of the substrate is controlled by heating and cooling indirectly by a heating mechanism and a cooling mechanism.
【請求項2】半導体基板を静電吸着して固定する静電吸
着機構の底面に加熱機構と冷却機構を内蔵した良熱伝導
体が一体的に結合された構造からなり、該吸着した半導
体基板を該加熱機構と該冷却機構によって間接的に加
熱、冷却して該基板温度を調節することを特徴とする半
導体基板の温度調節機構。
2. A structure in which a good heat conductor having a built-in heating mechanism and a cooling mechanism is integrally connected to a bottom surface of an electrostatic attraction mechanism for electrostatically attracting and fixing a semiconductor substrate. A semiconductor substrate temperature adjusting mechanism wherein the substrate temperature is adjusted by indirectly heating and cooling the substrate by the heating mechanism and the cooling mechanism.
JP9429697A 1996-03-16 1997-03-07 Temperature adjustment mechanism for semiconductor substrate Pending JPH1050811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9429697A JPH1050811A (en) 1996-03-16 1997-03-07 Temperature adjustment mechanism for semiconductor substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-100687 1996-03-16
JP10068796 1996-03-16
JP9429697A JPH1050811A (en) 1996-03-16 1997-03-07 Temperature adjustment mechanism for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH1050811A true JPH1050811A (en) 1998-02-20

Family

ID=26435561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9429697A Pending JPH1050811A (en) 1996-03-16 1997-03-07 Temperature adjustment mechanism for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH1050811A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009155A3 (en) * 2000-07-10 2003-08-14 Temptronic Corp Wafer chuck having with interleaved heating and cooling elements
JP2007227789A (en) * 2006-02-24 2007-09-06 Tokyo Electron Ltd Cooling block and plasma treatment device
JP2008300491A (en) * 2007-05-30 2008-12-11 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JP2010500760A (en) * 2006-08-08 2010-01-07 アプライド マテリアルズ インコーポレイテッド Heating and cooling the substrate support
JP2015106667A (en) * 2013-11-29 2015-06-08 太平洋セメント株式会社 Substrate placement device
WO2015198942A1 (en) * 2014-06-23 2015-12-30 日本特殊陶業株式会社 Electrostatic chuck
JP2020109848A (en) * 2014-08-01 2020-07-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Wafer carrier with independent isolated heater zones
WO2021111760A1 (en) * 2019-12-06 2021-06-10 株式会社アドバンテック Stage for heating and cooling object

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009155A3 (en) * 2000-07-10 2003-08-14 Temptronic Corp Wafer chuck having with interleaved heating and cooling elements
JP2004505443A (en) * 2000-07-10 2004-02-19 テンプトロニック コーポレイション Wafer chuck having a hot plate with a top assembly and a dura layer surface interchangeable with alternating heating and cooling elements
US6700099B2 (en) 2000-07-10 2004-03-02 Temptronic Corporation Wafer chuck having thermal plate with interleaved heating and cooling elements, interchangeable top surface assemblies and hard coated layer surfaces
US6969830B2 (en) 2000-07-10 2005-11-29 Temptronic Corporation Wafer chuck having thermal plate with interleaved heating and cooling elements
JP2007227789A (en) * 2006-02-24 2007-09-06 Tokyo Electron Ltd Cooling block and plasma treatment device
JP2010500760A (en) * 2006-08-08 2010-01-07 アプライド マテリアルズ インコーポレイテッド Heating and cooling the substrate support
JP2008300491A (en) * 2007-05-30 2008-12-11 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JP2015106667A (en) * 2013-11-29 2015-06-08 太平洋セメント株式会社 Substrate placement device
WO2015198942A1 (en) * 2014-06-23 2015-12-30 日本特殊陶業株式会社 Electrostatic chuck
KR20170023965A (en) * 2014-06-23 2017-03-06 니혼도꾸슈도교 가부시키가이샤 Electrostatic chuck
JPWO2015198942A1 (en) * 2014-06-23 2017-04-20 日本特殊陶業株式会社 Electrostatic chuck
US10410897B2 (en) 2014-06-23 2019-09-10 Ngk Spark Plug Co., Ltd. Electrostatic chuck
JP2020109848A (en) * 2014-08-01 2020-07-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Wafer carrier with independent isolated heater zones
US11322337B2 (en) 2014-08-01 2022-05-03 Applied Materials, Inc. Plasma processing system workpiece carrier with thermally isolated heater plate blocks
WO2021111760A1 (en) * 2019-12-06 2021-06-10 株式会社アドバンテック Stage for heating and cooling object

Similar Documents

Publication Publication Date Title
KR100280634B1 (en) Electric heating element and electrostatic chuck using the same
JP3381909B2 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
WO2002047129A1 (en) Ceramic substrate for semiconductor manufacturing and inspecting devices, and method of manufacturing the ceramic substrate
JP2001274230A (en) Wafer holder for semiconductor manufacturing device
JPWO2002084717A1 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
JP2006128203A (en) Wafer support member and semiconductor device using the same
JPH1050811A (en) Temperature adjustment mechanism for semiconductor substrate
JP2000243821A (en) Wafer support member
JP4331983B2 (en) Wafer support member and manufacturing method thereof
JP2006186351A (en) Semiconductor manufacturing device
JP2003077783A (en) Ceramic heater for semiconductor manufacturing/ inspecting device and manufacturing method therefor
JP2006127900A (en) Annular heater
JPH09172056A (en) Plasma processing apparatus for semiconductor substrate
JP3602908B2 (en) Wafer holding member
JPH0870036A (en) Electrostatic chuck
JPH09172057A (en) Electrostatic chuck
JPH10256359A (en) Electrostatic chuck
JP3854145B2 (en) Wafer support member
JP4069875B2 (en) Wafer holding member
JP2008153701A (en) Electrostatic chuck
JP2005026585A (en) Ceramic joined body
JP2002334820A (en) Ceramic heater for heating semiconductor wafer or liquid crystal substrate
JP2005026082A (en) Ceramic heater
JP2004071182A (en) Composite heater
JP7202852B2 (en) electrostatic chuck