JPH0870036A - Electrostatic chuck - Google Patents
Electrostatic chuckInfo
- Publication number
- JPH0870036A JPH0870036A JP24049294A JP24049294A JPH0870036A JP H0870036 A JPH0870036 A JP H0870036A JP 24049294 A JP24049294 A JP 24049294A JP 24049294 A JP24049294 A JP 24049294A JP H0870036 A JPH0870036 A JP H0870036A
- Authority
- JP
- Japan
- Prior art keywords
- pedestal
- electrostatic chuck
- ceramic
- electrode
- adsorption mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/707—Chucks, e.g. chucking or un-chucking operations or structural details
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/707—Chucks, e.g. chucking or un-chucking operations or structural details
- G03F7/70708—Chucks, e.g. chucking or un-chucking operations or structural details being electrostatic; Electrostatically deformable vacuum chucks
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Jigs For Machine Tools (AREA)
- Electron Sources, Ion Sources (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、静電チャックに関わ
り、さらに詳しくは、低温から高温まで広い温度範囲で
使用できる静電チャックの構造およびにプラズマ放電の
静電チャック周囲への回り込みを防止できる構造に関わ
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck, and more particularly, to a structure of an electrostatic chuck that can be used in a wide temperature range from low temperature to high temperature and to prevent plasma discharge from wrapping around the electrostatic chuck. It is related to the structure that can be made.
【0002】[0002]
【従来の技術】静電チャックは半導体基板をプラズマ処
理する際の吸着固定に多く利用されている。構造的には
熱伝導に優れた台座(代表的にはアルミニウム)の上に
誘電体セラミックの円盤が貼着され、特別な場合を除
き、台座の裏面は水冷あるいは加熱されて一定温度に調
節されている。必要とされる特性は、温度に影響されな
い吸着性と共に吸着力の応答性、消去性つまり、電圧の
印加に対して速やかに吸着力が発生し、電圧を切った時
速やかに消えることが必要とされる。これらの誘電特性
は温度に非常に敏感であるので、誘電体の部分の温度変
化は好ましくない。常に一定温度に保たれていることが
必要である。現状の静電チャックでは、台座金属と誘電
体セラミックは接着剤で貼着されているために、接着部
で熱伝達が阻害され、温度調節が困難である。また、使
用中に接着部が剥離するトラブルもある。また、プラズ
マ処理の中で特にプラズマCVD処理では、処理基板の
温度が相当高温になるために、この接着タイプの静電チ
ャックは使用できない問題もある。また一方、プラズマ
処理に際して、プラズマ放電が静電チャックの側面まで
回り込んで表面が損傷を受ける問題もある。2. Description of the Related Art Electrostatic chucks are often used for adsorption and fixation when plasma processing semiconductor substrates. A dielectric ceramic disk is attached on a pedestal (typically aluminum) that is structurally excellent in heat conduction, and the back surface of the pedestal is water-cooled or heated to a constant temperature unless otherwise specified. ing. The required characteristics are that the adsorbability is not affected by temperature and the responsiveness and erasability of the adsorbing force, that is, the adsorbing force is generated quickly in response to the application of a voltage and disappears promptly when the voltage is cut off. To be done. These dielectric properties are very sensitive to temperature, so temperature changes in the dielectric part are not desirable. It is necessary to maintain a constant temperature at all times. In the current electrostatic chuck, since the pedestal metal and the dielectric ceramic are adhered with an adhesive, heat transfer is hindered at the adhesion part, and it is difficult to control the temperature. In addition, there is a problem that the adhesive part peels off during use. In addition, there is also a problem that this adhesion type electrostatic chuck cannot be used because the temperature of the substrate to be processed becomes considerably high especially in the plasma CVD process among the plasma processes. On the other hand, there is also a problem in that during plasma processing, plasma discharge reaches the side surface of the electrostatic chuck and the surface is damaged.
【0003】[0003]
【発明が解決する課題】本発明は、かかる状況に鑑みて
なされたもので、その目的とするところは、熱伝達性と
耐久性に優れ、低温から高温まで使用できる静電チャッ
クの新しい構造と、あわせてプラズマの回り込みによる
損傷を防止できる静電チャックの新しい構造を提供せん
とするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a new structure of an electrostatic chuck which has excellent heat transfer properties and durability and can be used from low temperatures to high temperatures. At the same time, the present invention aims to provide a new structure of an electrostatic chuck capable of preventing damage due to plasma wraparound.
【0004】[0004]
【課題を解決するための手段】上記問題は次の手段によ
って解決される。すなわち、 1. 静電チャックの吸着機構部が、間に電極金属の層
を挟んで絶縁体セラミックの板の上に誘電体セラミック
の板が接合一体化された三層構造からなり、該絶縁体と
誘電体の板は電極形状に配された接合金属の層によって
冶金的に融着接合されてなることを特徴とする静電チャ
ック。 2. 静電チャックの吸着機構部が、炭素材料あるいは
炭素の複合材料からなる台座の上にロー付けされた構造
からなることを特徴とする静電チャック。 3. 吸着機構部が台座の上に貼着された構造の静電チ
ャックにおいて、該機構部の電極側面および台座の露出
面の導電体部分にセラミック質の絶縁被膜を被覆してな
ることを特徴とする静電チャック。 4. 吸着機構部が台座の上に貼着された構造の静電チ
ャックにおいて、該機構部の電極側面および台座の露出
面の導電体部分にセラミック材料からなる電気絶縁性の
シェル被嵌してなることを特徴とする静電チャック。 5. 静電チャックの吸着機構部が凹型の絶縁体の凹部
に嵌入されて該吸着部の電極側面部がシールされてなる
と共に、該絶縁体が台座の表面をシールする広さで貼着
されてなることを特徴とする静電チャック。The above problems can be solved by the following means. That is, 1. The adsorption mechanism of the electrostatic chuck has a three-layer structure in which a dielectric ceramic plate is joined and integrated onto an insulating ceramic plate with an electrode metal layer sandwiched between the insulating ceramic plate and the dielectric ceramic plate. An electrostatic chuck, characterized in that the plates are metallurgically fused and bonded by a layer of bonding metal arranged in the shape of an electrode. 2. An electrostatic chuck characterized in that an adsorption mechanism portion of the electrostatic chuck has a structure brazed onto a pedestal made of a carbon material or a carbon composite material. 3. An electrostatic chuck having a structure in which an adsorption mechanism section is attached on a pedestal, characterized in that the side surface of the electrode of the mechanism section and the conductor portion of the exposed surface of the pedestal are covered with a ceramic insulating coating. Electrostatic chuck. 4. In an electrostatic chuck having a structure in which an adsorption mechanism is attached on a pedestal, an electrically insulating shell made of a ceramic material is fitted on the conductor of the electrode side surface of the mechanism and the exposed surface of the pedestal. Electrostatic chuck. 5. The adsorption mechanism portion of the electrostatic chuck is fitted into the concave portion of the concave insulator to seal the side surface of the electrode of the adsorption portion, and the insulator is attached in such a size as to seal the surface of the pedestal. An electrostatic chuck characterized in that
【0005】[0005]
【作用】静電チャックでは、単極方式、双極方式を問わ
ず、誘電体セラミックの裏面には必ず電極が形成されて
いる。本発明で使用している「吸着機構部」という表現
は、誘電体セラミックの裏面に電極が形成された二層構
造の部分、あるいはさらに電極の下に絶縁体セラミック
をいれた三層構造の部分を総称するものである。静電チ
ャックは、通常この吸着機構部がAL等の材料からなる
台座の上に接着材で貼着されている。つまり本発明の
「吸着機構部」という表現は台座から上の部分を総称す
るものである。本発明では、単極方式、双極方式を問わ
ず、この吸着機構部が台座の上にロー付けされた構造で
ある。そして特にこの台座材料として炭素材料あるいは
炭素の複合材料を使用するものである。吸着機構部はセ
ラミック構造体であり、これと台座材料のロー付けで
は、熱膨張差が問題となる。台座材料にALを使用した
場合、吸着機構部のセラミック構造体とALとの間の熱
応力が問題になり、セラミックが破壊されることが多
い。また、ALは融点が低いために最高使用温度は45
0〜500℃程度が限界である。一方、炭素材料特に黒
鉛は熱伝導性に優れている上に応力吸収性に優れ、ま
た、熱膨張係数も3〜7×10−6程度の範囲で変化さ
せることもでき、接合するセラミック材料に熱膨張係数
を整合させることができる。また、使用できる耐熱限界
はプラズマ処理雰囲気では1000℃以上でも使用でき
る。本発明で台座材料に炭素材料、特に黒鉛を使用する
のは、上記した黒鉛の性質を利用して割れのない接合を
うるためである。窒化ケイ素、炭化ケイ素、窒化アルミ
からアルミナの範囲であれば中間層を用いずに黒鉛と直
接接合できるが、必要に応じて応力吸収のための軟質金
属の中間層、あるいは膨脹係数緩和のための中間層を挟
んでも良い。また、膨脹係数を完全に一致させるために
炭素に金属、セラミックを混ぜて複合材料として使用し
ても良い。吸着機構部と台座材料のろう付けではあらか
じめ接合部をメタライズした後、ろう付けしても良い
し、あるいはセラミック融着性のろう材で直接ろう付け
しても良い。通常の静電チャックの電極は、通常スパッ
タリング、ペースト焼き付け、テレフンケン法等の方法
で形成されており、この部分は接着剤で相手材料と貼着
されているが、本発明ではセラミックの通常のメタライ
ズ法で形成したメタライズ層(特にスパッタリング、テ
レフンケン法)を使用して相手材とろう付けしても良い
し、また、誘電体セラミックと相手材を直接ろう付けし
て、このときのろう付金属の部分を電極にしても良い。
すなわち,まず双極方式の場合、電極は台座とは絶縁さ
れていることが必要であるので、電極は台座に直接接合
できない。この場合、電極と台座の間に絶縁材を挟んで
接合される。つまり誘電体セラミック、電極、絶縁体、
この二層構造体が台座に接合されることとなる。誘電体
セラミック、電極、絶縁体、この三層構造体がセラミッ
クの焼結時、同時に形成される構造のものもあるが、こ
の場合は、この同時焼結体の非吸着面を台座とろう付け
すれば良い。ろう付けはあらかじめメタライズしてろう
付けでも良いし、直接ろう付けして良い。なお、上記し
た同時焼結体とはセラミックグリーンシートにメタライ
ズ金属(タングステン、モリブデン等の金属)粉末を印
刷し、この印刷面にさらにグリーンシートを被せて一体
焼結した構造のもので、焼結後メタライズ金属はセラミ
ックの中に包み込まれている。一方、ろう付け金属で電
極を形成されたものは、誘電体セラミックはこの絶縁体
セラミックと電極の模様状にろう付けされている。この
ろう付けは誘電体セラミックと絶縁体セラミックにあら
かじめ電極の模様状にメタライズした後、ろう付けして
も良いし、セラミック融着性のろう材で電極の模様状に
直接ろう付けしても良い。直接ろう付けのろう材成分は
使用する温度の上限で決められる。300〜600℃,
あるいはそれ以上の高温で使用する場合には、Cu,A
g,Ni,AL,Si等の金属あるいは合金に微量から
数%の活性金属の入った合金が好ましい。活性金属には
Ti,Zr,Nb,Ta,V等のTi族、V族元素か
ら、Cr,Mn、Y,AL等々、通常この種の目的で使
用されている成分はすべて使用できる。Cu,Ag,N
i,AL,Si等の元素の他、融点、硬さ、伸び、耐蝕
性等の目的でIn,Sn,Zn,Pb,Cdあるいはそ
の他の元素を適宜添加できる。300℃以下の用途に
は、Sn,In,Al等のいわゆる軟質金属あるいはこ
れらの合金に上記の活性金属の入ったものが好ましい。
なお、ここで絶縁体セラミックの材質は、誘電体セラミ
ックと線膨脹係数が近似した材料あるいは等しい材料が
好ましい。同時焼成タイプのものは同じセラミックが使
用されている。次に単極方式の場合、誘電体セラミッ
ク、電極の二層構造体が台座に接合されることとなる。
接合は従来のメタライズ法で電極形状にメタライズした
後、台座にろう付けしても良い。ろう付け金属で電極を
形成する場合、誘電体セラミックはセラミック融着性の
ろう材を使って、台座に電極の模様状にろう付けされて
いる。台座との接合では、双極方式と同じく、必要に応
じて電極金属と台座の間に中間層をインサートして接合
しても良い。中間層が金属であってもセラミックであっ
てもよい。このセラミックが電気絶縁性セラミックであ
ってもよい。台座に使用する炭素材料としては黒鉛質の
ものが好ましく特に等方性カーボン材料が好ましい。ま
た、台座は温度調節のために通常水冷あるいはヒーター
で加熱されているが、本発明の炭素質台座にあっては、
水冷の場合、台座の中に水冷用の溝を形成してこの中に
水を通すようにしても良い。この場合、台座の中に水が
浸透するのを防ぐために、溝の側面に金属を被覆(メタ
ライズ)するのも有効である。あるいは溝の側面に金属
の箔を張り付けるのも有効である。あるいは溝の中に水
冷用の金属パイプを埋め込んで台座とろう付けするのも
有効である。また別の循環冷却機構と台座を張り合わせ
て冷却するようにしても良い。あるいは台座の底面を冷
却機構と当接させて冷却するようにしても良い。加熱の
場合、台座の中にヒーターを埋め込んでもよい。この場
合、無機質の材料で隙間を充填するのが有効である。ま
た、別の加熱機構と台座を張り合わせても良い。また、
台座の底面を加熱機構と当接させて加熱するようにして
も良い。In the electrostatic chuck, the electrode is always formed on the back surface of the dielectric ceramic regardless of whether it is a monopolar system or a bipolar system. The expression "adsorption mechanism part" used in the present invention means a part having a two-layer structure in which an electrode is formed on the back surface of a dielectric ceramic, or a part having a three-layer structure in which an insulating ceramic is further placed under the electrode. Is a general term. In the electrostatic chuck, the adsorption mechanism is usually attached to a pedestal made of a material such as AL with an adhesive. That is, the expression "suction mechanism section" in the present invention is a generic term for the portion above the pedestal. The present invention has a structure in which the suction mechanism section is brazed onto the pedestal regardless of whether it is a monopolar system or a bipolar system. In particular, a carbon material or a carbon composite material is used as this pedestal material. The adsorption mechanism is a ceramic structure, and the difference in thermal expansion becomes a problem when brazing this with the pedestal material. When AL is used as the pedestal material, thermal stress between the ceramic structure of the adsorption mechanism and the AL becomes a problem, and the ceramic is often destroyed. Also, since AL has a low melting point, the maximum operating temperature is 45
The limit is about 0 to 500 ° C. On the other hand, carbon materials, especially graphite, have excellent thermal conductivity and also excellent stress absorption, and the coefficient of thermal expansion can be changed within the range of 3 to 7 × 10 −6. The coefficient of thermal expansion can be matched. The heat resistance limit that can be used is 1000 ° C. or higher in a plasma treatment atmosphere. The carbon material, particularly graphite, is used as the pedestal material in the present invention in order to obtain a crack-free joint by utilizing the above-mentioned properties of graphite. In the range of silicon nitride, silicon carbide, aluminum nitride to alumina, it is possible to directly bond with graphite without using an intermediate layer, but if necessary, a soft metal intermediate layer for stress absorption, or for expansion coefficient relaxation The intermediate layer may be sandwiched. Further, in order to completely match the expansion coefficients, carbon may be mixed with metal or ceramic and used as a composite material. In the brazing of the adsorption mechanism portion and the pedestal material, the joint portion may be metallized in advance and then brazed, or the ceramic fusion-bonding brazing material may be directly brazed. The electrode of a normal electrostatic chuck is usually formed by a method such as sputtering, paste baking, and telefunken method, and this portion is adhered to the mating material with an adhesive. The metallization layer formed by the method (particularly the sputtering and telefunken method) may be used for brazing with the mating material, or the dielectric ceramic and the mating material may be directly brazed to form the brazing metal at this time. The portions may be electrodes.
That is, first, in the case of the bipolar method, the electrode needs to be insulated from the pedestal, so the electrode cannot be directly joined to the pedestal. In this case, the electrode and the pedestal are joined by sandwiching an insulating material. In other words, dielectric ceramics, electrodes, insulators,
This two-layer structure will be joined to the pedestal. There is also a structure in which a dielectric ceramic, an electrode, an insulator, and this three-layer structure are formed at the same time when the ceramic is sintered. In this case, the non-suction surface of this simultaneous sintered body is brazed to the pedestal. Just do it. The brazing may be performed by metallizing in advance, or may be performed directly. Note that the above-mentioned co-sintered body has a structure in which metallized metal (metal such as tungsten and molybdenum) powder is printed on a ceramic green sheet, and the printed surface is further covered with a green sheet for integral sintering. The post metallized metal is encapsulated in ceramic. On the other hand, in the case where the electrode is formed of the brazing metal, the dielectric ceramic is brazed to the insulating ceramic in the pattern of the electrode. This brazing may be performed by previously metallizing the dielectric ceramic and the insulating ceramic in the pattern of the electrode, and then brazing, or by directly brazing the pattern of the electrode with a ceramic fusible brazing material. . The brazing filler metal component of direct brazing is determined by the upper limit of the temperature used. 300-600 ℃,
Or when using at higher temperature, Cu, A
It is preferable to use a metal or alloy such as g, Ni, AL, or Si containing a trace amount to several percent of active metal. As the active metal, Ti, Zr, Nb, Ta, V, and other Ti group and V group elements, Cr, Mn, Y, AL, and the like, all of which are commonly used for this purpose, can be used. Cu, Ag, N
In addition to elements such as i, AL, and Si, In, Sn, Zn, Pb, Cd or other elements can be appropriately added for the purpose of melting point, hardness, elongation, corrosion resistance and the like. For applications below 300 ° C., so-called soft metals such as Sn, In and Al, or alloys thereof containing the above-mentioned active metals are preferable.
Here, the material of the insulating ceramics is preferably a material having a linear expansion coefficient similar to or equal to that of the dielectric ceramics. The same ceramic is used for the co-firing type. Next, in the case of the monopolar method, the two-layer structure body of the dielectric ceramic and the electrode is joined to the pedestal.
The joining may be performed by brazing to the pedestal after metallizing into an electrode shape by a conventional metallizing method. When forming an electrode with a brazing metal, the dielectric ceramic is brazed to the pedestal in the pattern of the electrode using a ceramic fusion-bonding brazing material. In the case of joining to the pedestal, as in the bipolar method, an intermediate layer may be inserted between the electrode metal and the pedestal and joined as necessary. The intermediate layer may be metal or ceramic. This ceramic may be an electrically insulating ceramic. As the carbon material used for the pedestal, a graphite material is preferable, and an isotropic carbon material is particularly preferable. Further, the pedestal is usually heated by water cooling or a heater for temperature control, but in the carbonaceous pedestal of the present invention,
In the case of water cooling, a water cooling groove may be formed in the pedestal to allow water to pass therethrough. In this case, in order to prevent water from penetrating into the pedestal, it is effective to coat (metallize) the side surface of the groove with metal. Alternatively, it is also effective to attach a metal foil to the side surface of the groove. Alternatively, it is also effective to embed a metal pipe for water cooling in the groove and braze it to the pedestal. Alternatively, another circulation cooling mechanism may be attached to the pedestal for cooling. Alternatively, the bottom surface of the pedestal may be brought into contact with the cooling mechanism for cooling. For heating, a heater may be embedded in the pedestal. In this case, it is effective to fill the gap with an inorganic material. Further, the pedestal may be attached to another heating mechanism. Also,
The bottom surface of the pedestal may be brought into contact with the heating mechanism for heating.
【0006】本発明では、吸着機構部の電極金属の側面
(厚さ部分)は外気にむき出しになっているためにこの
部分はプラズマ処理中、プラズマ雰囲気に晒され、プラ
ズマの回り込みによる損傷を受けることがある。また、
従来構造の静電チャックでも、電極金属の側面(厚さ部
分)が外気にむき出しになる場合もあるし、また、台座
は外気に晒されている。このために、この露出部分で導
電体の部分はプラズマで損傷される。損傷防止のために
は、露出部分にセラミック質の絶縁被膜を被覆するのが
有効である。また、セラミック材料からなる電気絶縁性
のシェルを被嵌するのも有効である。また、静電チャッ
クの吸着機構部を凹型の絶縁体の凹部に嵌め込んで該吸
着機構部の電極側面部をシールすると共に、この絶縁体
が台座の表面をシールする広さで台座に貼着するのも有
効である。以上のプラズマ損傷防止のための機構は、上
記した本発明構造の静電チャックに限定されるものでは
なく、従来構造のものにも有効であることは勿論であ
る。 セラミック質の絶縁被膜としては窒化アルミ、アルミ
ナ等の電気絶縁性セラミックの粉末を無機質のバインダ
ーで塗布して硬化させるのが有効である。無機質のバイ
ンダーとしては通常の無機質バインダーは使用できる
が、この中で特に、加熱によってアルミナ、シリカ、窒
化アルミ、窒化ケイ素を生成するものが好ましい。たと
えばアルミナゾル、シリカゾル、コロイダルシリカ、エ
チルシリケート、アルミニウムアルコキシド、シリコン
アルコキシド、金属ポリマー等である。 セラミック材料からなる電気絶縁性のシェルとは、保
護する面に被せてこの部分を保護するもので、保護する
面の形状に合わせて成型、焼成したものである。材質は
アルミナ、シリカ、窒化アルミ等が最も好ましく、緻密
に焼結したものでも仮焼結体でも良い。また、仮焼結体
に上記した無機質バインダー、粉末を含浸させて加熱、
硬化させて被覆したものでも良い。 凹型の絶縁体とは、凹部を有するセラミック焼結体の
凹部に上記した静電チャックの吸着機構部を嵌め込んで
電極金属の露出部をシールし、なおかつ凹部底面を台座
面の広さに当接させて台座の露出面をシールするように
したものである。この場合、絶縁体はアルミナ、シリ
カ、窒化アルミ等のセラミック焼結体、仮焼結体等が最
も好ましく、仮焼体の場合、上記した無機質バインダ
ー、粉末を含浸させて加熱、硬化させたものでもよい。 以上〜を通じてセラミック絶縁体の材質としては特
別な制約はないがアルミナ、シリカ、窒化アルミ等のセ
ラミックが最も好ましい材料である。In the present invention, since the side surface (thickness portion) of the electrode metal of the adsorption mechanism is exposed to the outside air, this portion is exposed to the plasma atmosphere during the plasma processing and is damaged by the wraparound of the plasma. Sometimes. Also,
Even in the electrostatic chuck of the conventional structure, the side surface (thickness portion) of the electrode metal may be exposed to the outside air, and the pedestal is exposed to the outside air. Because of this, the exposed portions of the conductor are damaged by the plasma. To prevent damage, it is effective to coat the exposed portion with a ceramic insulating coating. It is also effective to fit an electrically insulating shell made of a ceramic material. In addition, the adsorption mechanism of the electrostatic chuck is fitted into the concave portion of the concave insulator to seal the side surface of the electrode of the adsorption mechanism, and the insulator is attached to the pedestal with a size that seals the surface of the pedestal. It is also effective to do. The above-described mechanism for preventing plasma damage is not limited to the electrostatic chuck having the structure of the present invention described above, and it is needless to say that it is effective for the conventional structure. As the ceramic insulating coating, it is effective to apply a powder of an electrically insulating ceramic such as aluminum nitride or alumina with an inorganic binder and cure it. As the inorganic binder, a usual inorganic binder can be used, but among them, those which generate alumina, silica, aluminum nitride and silicon nitride by heating are particularly preferable. Examples thereof include alumina sol, silica sol, colloidal silica, ethyl silicate, aluminum alkoxide, silicon alkoxide, metal polymer and the like. The electrically insulating shell made of a ceramic material covers the surface to be protected and protects this portion, and is formed and fired according to the shape of the surface to be protected. The material is most preferably alumina, silica, aluminum nitride, etc., and may be densely sintered or a pre-sintered body. In addition, the above-mentioned inorganic binder and powder are impregnated into the temporary sintered body and heated,
It may be cured and coated. The concave insulator is a ceramic sintered body having a concave portion, in which the adsorption mechanism of the electrostatic chuck is fitted to the concave portion to seal the exposed portion of the electrode metal, and the bottom surface of the concave portion corresponds to the width of the pedestal surface. The exposed surface of the pedestal is sealed by contact. In this case, the insulator is most preferably a ceramic sintered body such as alumina, silica, or aluminum nitride, a pre-sintered body, and the like. In the case of a calcined body, the above-mentioned inorganic binder and powder are impregnated and heated and cured. But it's okay. Through the above, there are no particular restrictions on the material of the ceramic insulator, but ceramics such as alumina, silica and aluminum nitride are the most preferable materials.
【0007】[0007]
実施例1 吸着機構部:SiC系の誘電体セラミック(φ150×
2t)を使用。電極は双極方式。誘電体セラミックの裏
面に76Ag−21Cu−3Tiの合金粉末を電極の模
様状に20ミクロン印刷し、更にこの面にφ150×2
tの電気絶縁性SiCセラミック板を重ね合わせて、真
空中(2×10−5Torr)、850℃で10分加熱
して接合した。電極はSiC板に開けた二つの孔にリー
ド線を差し込んで電気的に接続して取り出すこととし
た。 台座 : 熱膨張係数4.5×10−6の等方性黒鉛
材料を使用して図1に示す形状に加工した。図1で、1
は吸着機構部、2はセラミック誘電体、3は絶縁体セラ
ミック、4は電極(ロー材金属)、5は台座である。 <吸着機構部と台座の接合>吸着機構部の絶縁体セラミ
ックの接合面と黒鉛の台座の間に、74Ag−18Cu
−3Ti−5Inの組成の50ミクロンの箔を挟み真空
中(2×10−5トール)、830℃で10分加熱して
接合した。 <結果>接合部に割れ、剥離は認められなかった。 使用状況 台座の底面にアルミニウム製の水冷板を当接させて台座
を冷却した。プラズマCVD処理に延べ1000時間使
用した。処理中誘電体セラミックの表面温度は最高約4
00℃に上昇したが、接合部(SiCセラミック相互、
吸着機構部と台座の接合部)の剥離、割れは認められな
かった。 実施例2 吸着機構部:誘電体セラミック(φ150×1t)とし
てALNセラミックを使用。電極は単極方式。 台座 : 熱膨張係数4.5×106の等方性黒鉛材
料を使用して図2に示す形状に加工した。台座の底面に
水冷用の溝を加工し、溝の表面にNiを100ミクロン
めっきした。なお、溝加工の際、流れ方向に、図3に示
す構造のフィンを形成して伝熱面積を広くした。図2
で、1は吸着機構部、2はセラミック誘電体、4は電極
(ロー材金属)、5は台座、6は絶縁セラミック被膜で
ある。図3で7は溝、8はフィンである。 <吸着機構部と台座の接合>台座の接合面に金属Si−
10%Ti合金の粉末を300ミクロンの厚さ塗布し
て、これにALNセラミックを重ね合わせて真空中(5
×10−4トール)、1450℃で10分加熱した。接
合部に割れはなかった。 <ALNセラミックの研磨>いかなる絶縁体でも厚さが
薄くなると静電吸着能が発生する。本例ではこの目的の
ためにALNセラミックの表面を100ミクロンの厚さ
になるまで研磨した。 <絶縁被膜の形成>セラミックと台座のロー付け部分の
側面、台座表面に、アルミナゾル1.2重量部にALN
粉末2重量部混合したペースト約100ミクロン塗布
し、乾燥後、アルゴン雰囲気650℃で3時間焼成して
ALN−AL2O3膜を被覆した。 <台座の冷却>水冷溝にアルミ製の蓋をしてOリングで
シールした。 <結果>台座の水冷溝に水を流して冷却した。実施例1
と同じくプラズマCVD処理に延べ1000時間使用し
た。処理中誘電体セラミックの表面温度は最高約400
℃に上昇したが、接合部(ALNと台座カーボンの接合
部)に剥離、割れは認められなかった。また、セラミッ
ク部分にも割れは認められなかった。また、プラズマの
回り込みによる電極側面の損傷、台座表面の損傷もセラ
ミック絶縁被膜によって防止できた。 実施例3 吸着機構部:サファイヤ(φ150×0.2t)。電極
は単極方式。サファイヤの下に電極、電極の下にφ15
0×0.2tのアルミナ(高純度アルミナ)の三層構
造。 台座 : 熱膨張係数6.5×10−6の等方性黒鉛
材料を使用して図4に示す形状に加工した。図4で、1
は吸着機構部、2はサファイヤ、3はアルミナ、4は電
極(ロー材金属)、5は台座である。 <接合操作>吸着機構部、台座部の接合を一回の操作で
接合することとし、サファイヤとアルミナ、アルミナと
台座の接合部にSn−5Ag−5Tiの粉末を50ミク
ロン塗布し、真空中(2×10−5Torr)、800
℃で10分加熱して接合した。 <サファイヤの研磨>接合後0.2mm厚さのサファイ
ヤを0.1mmまで研磨した。 <結果>接合部に割れ、剥離は認められなかった。 使用状況 台座の底面にアルミニウム製の水冷板を当接させて台座
を冷却した。ドライエッチング処理に延べ1000時間
使用した。処理中誘電体セラミックの表面温度は最高約
100℃に上昇したが、接合部の剥離、割れは認められ
なかった。またサファイヤにも割れは認められなかっ
た。Example 1 Adsorption mechanism: SiC-based dielectric ceramic (φ150 ×
2t) is used. The electrodes are bipolar. Print the alloy powder of 76Ag-21Cu-3Ti on the back surface of the dielectric ceramic in a pattern of 20 μm on the electrode, and then φ150 × 2 on this surface.
The electrically insulating SiC ceramic plates of t were overlapped and heated in a vacuum (2 × 10 −5 Torr) at 850 ° C. for 10 minutes to be bonded. The electrodes were taken out by inserting lead wires into two holes formed in the SiC plate and electrically connecting them. Pedestal: An isotropic graphite material having a thermal expansion coefficient of 4.5 × 10 −6 was used and processed into a shape shown in FIG. In FIG. 1, 1
Is an adsorption mechanism part, 2 is a ceramic dielectric, 3 is an insulator ceramic, 4 is an electrode (a brazing metal), and 5 is a pedestal. <Joining of adsorption mechanism part and pedestal> 74Ag-18Cu is attached between the joint surface of the insulating ceramic of the adsorption mechanism part and the pedestal of graphite.
A 50 μm foil having a composition of −3Ti-5In was sandwiched and heated in a vacuum (2 × 10 −5 Torr) at 830 ° C. for 10 minutes for bonding. <Results> No cracking or peeling was observed at the joint. Usage status An aluminum water cooling plate was brought into contact with the bottom surface of the pedestal to cool the pedestal. The plasma CVD process was used for a total of 1000 hours. The surface temperature of the dielectric ceramic during processing is about 4 at maximum.
The temperature rose to 00 ° C, but the joint (SiC ceramic mutual,
No peeling or cracking was observed between the adsorption mechanism and the pedestal). Example 2 Adsorption mechanism part: ALN ceramic is used as a dielectric ceramic (φ150 × 1t). The electrode is a single pole type. Pedestal: An isotropic graphite material having a thermal expansion coefficient of 4.5 × 10 6 was used and processed into a shape shown in FIG. A groove for water cooling was formed on the bottom surface of the pedestal, and the surface of the groove was plated with Ni to 100 μm. During the groove processing, fins having the structure shown in FIG. 3 were formed in the flow direction to widen the heat transfer area. Figure 2
Here, 1 is an adsorption mechanism part, 2 is a ceramic dielectric, 4 is an electrode (metal of brazing material), 5 is a pedestal, and 6 is an insulating ceramic coating. In FIG. 3, 7 is a groove and 8 is a fin. <Joining the adsorption mechanism and the pedestal> Metal Si-on the joint surface of the pedestal
Powder of 10% Ti alloy is applied to a thickness of 300 μm, ALN ceramics are laid on top of this, and vacuum (5
X 10 -4 Torr), and heated at 1450 ° C for 10 minutes. There was no crack at the joint. <Polishing of ALN ceramic> When any insulator is thinned, electrostatic attraction is generated. In this example, the surface of the ALN ceramic was ground to a thickness of 100 microns for this purpose. <Formation of insulating coating> 1.2 parts by weight of alumina sol and ALN on the side surface of the brazing part of the ceramic and the pedestal and on the surface of the pedestal
About 100 μm of a paste prepared by mixing 2 parts by weight of the powder was applied, dried and then baked at 650 ° C. in an argon atmosphere for 3 hours to coat an ALN-AL 2 O 3 film. <Cooling of the pedestal> The water cooling groove was covered with an aluminum lid and sealed with an O-ring. <Results> Water was cooled by flowing water through the water-cooled groove of the pedestal. Example 1
As in the above, a total of 1000 hours was used for the plasma CVD process. The surface temperature of the dielectric ceramic during processing is about 400 at maximum.
Although the temperature rose to 0 ° C, no peeling or cracking was observed at the joint (the joint between ALN and the pedestal carbon). Moreover, no crack was observed in the ceramic portion. Moreover, the side surface of the electrode and the surface of the pedestal were prevented from being damaged by the plasma wraparound by the ceramic insulating film. Example 3 Adsorption mechanism part: Sapphire (φ150 × 0.2t). The electrode is a single pole type. Electrodes under sapphire, φ15 under electrodes
Three-layer structure of 0x0.2t alumina (high-purity alumina). Pedestal: An isotropic graphite material having a thermal expansion coefficient of 6.5 × 10 −6 was used and processed into a shape shown in FIG. In FIG. 4, 1
Is an adsorption mechanism part, 2 is sapphire, 3 is alumina, 4 is an electrode (metal of brazing material), and 5 is a pedestal. <Bonding operation> The adsorption mechanism and the pedestal are joined in a single operation, and 50 μm of Sn-5Ag-5Ti powder is applied to the sapphire / alumina and alumina / pedestal joints, and the mixture is placed in a vacuum ( 2 × 10 −5 Torr), 800
It joined by heating at 10 degreeC for 10 minutes. <Sapphire polishing> After bonding, a sapphire having a thickness of 0.2 mm was polished to 0.1 mm. <Results> No cracking or peeling was observed at the joint. Usage status An aluminum water cooling plate was brought into contact with the bottom surface of the pedestal to cool the pedestal. A total of 1000 hours was used for the dry etching treatment. During the treatment, the surface temperature of the dielectric ceramic rose to a maximum of about 100 ° C., but no peeling or cracking of the joint was observed. No cracks were observed on sapphire.
【0008】[0008]
【発明の効果】 1.高温まで使用できる。 2.セラミック接合部の熱応力が小さく、割れが発生し
ない。 3.接合部の熱伝達性に優れており、温度分布が均一で
ある。 4.吸着部分が過昇温しない。EFFECT OF THE INVENTION 1. Can be used up to high temperatures. 2. The thermal stress of the ceramic joint is small and cracks do not occur. 3. Excellent heat transfer at the joint and uniform temperature distribution. 4. The adsorption part does not overheat.
【図1】図1は実施例の構造を説明した図である。FIG. 1 is a diagram illustrating a structure of an embodiment.
【図2】図2は別の実施例の構造を説明した図である。FIG. 2 is a diagram illustrating the structure of another embodiment.
【図3】図3は図2の溝の部分の構造を説明した図であ
る。FIG. 3 is a diagram illustrating a structure of a groove portion of FIG.
【図4】図4は別の実施例の構造を説明した図である。FIG. 4 is a diagram for explaining the structure of another embodiment.
図1〜3で、 1…吸着機構部 2…セラミック誘電
体 3…絶縁体セラミック 4…電極(ロー材金
属) 5…台座 6…絶縁セラミック
被膜 7…溝 8…フィン 図4で、 1…吸着機構部 2…サファイヤ 3…アルミナ 4…電極(ロー材金
属) 5…台座In FIGS. 1 to 3, 1 ... Adsorption mechanism 2 ... Ceramic dielectric 3 ... Insulator ceramic 4 ... Electrode (raw material metal) 5 ... Pedestal 6 ... Insulation ceramic coating 7 ... Groove 8 ... Fin In FIG. Mechanical part 2 ... Sapphire 3 ... Alumina 4 ... Electrode (raw material metal) 5 ... Pedestal
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 37/317 B 9508−2G H01L 21/265 21/027 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01J 37/317 B 9508-2G H01L 21/265 21/027
Claims (5)
金属の層を挟んで絶縁体セラミックの板の上に誘電体セ
ラミックの板が接合一体化された三層構造からなり、該
絶縁体と誘電体の板は電極形状に配された接合金属の層
によって冶金的に融着接合されてなることを特徴とする
静電チャック。1. An electrostatic chuck chucking mechanism has a three-layer structure in which a dielectric ceramic plate is joined and integrated on an insulating ceramic plate with an electrode metal layer interposed therebetween. An electrostatic chuck characterized in that a body and a dielectric plate are metallurgically fused and bonded by a layer of a bonding metal arranged in an electrode shape.
あるいは炭素の複合材料からなる台座の上にロー付けさ
れた構造からなることを特徴とする静電チャック。2. An electrostatic chuck in which an adsorption mechanism portion of the electrostatic chuck has a structure brazed on a pedestal made of a carbon material or a carbon composite material.
の静電チャックにおいて、該機構部の電極側面および台
座の露出面の導電体部分にセラミック質の絶縁被膜を被
覆してなることを特徴とする静電チャック。3. An electrostatic chuck having a structure in which an adsorption mechanism section is attached to a pedestal, wherein an electrode side surface of the mechanism section and a conductor portion on an exposed surface of the pedestal are covered with a ceramic insulating film. An electrostatic chuck characterized in that
の静電チャックにおいて、該機構部の電極側面および台
座の露出面の導電体部分にセラミック材料からなる電気
絶縁性のシェルを被嵌してなることを特徴とする静電チ
ャック。4. An electrostatic chuck having a structure in which an adsorption mechanism is attached on a pedestal, wherein an electrically insulating shell made of a ceramic material is provided on an electrode side surface of the mechanism and an electrically conductive portion on an exposed surface of the pedestal. An electrostatic chuck characterized by being fitted.
体の凹部に嵌入されて該吸着機構部の電極側面部がシー
ルされてなると共に、該絶縁体が台座の表面をシールす
る広さで貼着されてなることを特徴とする静電チャッ
ク。5. An electrostatic chuck having an adsorption mechanism portion fitted in a concave portion of a concave insulator to seal a side surface of an electrode of the adsorption mechanism portion, and a width at which the insulator seals a surface of a pedestal. An electrostatic chuck characterized by being attached by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24049294A JPH0870036A (en) | 1994-08-29 | 1994-08-29 | Electrostatic chuck |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24049294A JPH0870036A (en) | 1994-08-29 | 1994-08-29 | Electrostatic chuck |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0870036A true JPH0870036A (en) | 1996-03-12 |
Family
ID=17060326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24049294A Pending JPH0870036A (en) | 1994-08-29 | 1994-08-29 | Electrostatic chuck |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0870036A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09260474A (en) * | 1996-03-22 | 1997-10-03 | Sony Corp | Electrostatic chuck and wafer stage |
WO1997042792A1 (en) * | 1996-05-05 | 1997-11-13 | Seiichiro Miyata | Electric heating element and electrostatic chuck using the same |
JPH1032239A (en) * | 1996-07-12 | 1998-02-03 | Toto Ltd | Electrostatic chuck stage and manufacture thereof |
JPH1064983A (en) * | 1996-08-16 | 1998-03-06 | Sony Corp | Wafer stage |
JPH1064985A (en) * | 1996-08-23 | 1998-03-06 | Sony Corp | Water stage, temperature adjustment method for wafer and dry etching device |
JPH1064984A (en) * | 1996-08-16 | 1998-03-06 | Sony Corp | Wafer stage |
JP2003037158A (en) * | 2001-07-24 | 2003-02-07 | Taiheiyo Cement Corp | Electrostatic chuck |
JP2017527115A (en) * | 2014-08-15 | 2017-09-14 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method and apparatus for processing wafers having compressive or tensile stress at high temperatures in a plasma enhanced chemical vapor deposition system |
JP2018537002A (en) * | 2015-11-02 | 2018-12-13 | コンポーネント リ−エンジニアリング カンパニー インコーポレイテッド | Electrostatic chuck for clamping in high temperature semiconductor processing and method of manufacturing the same |
US10483147B2 (en) | 2017-11-21 | 2019-11-19 | Wallow Electric Manufacturing Company | Dual-purpose vias for use in ceramic pedestals |
-
1994
- 1994-08-29 JP JP24049294A patent/JPH0870036A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09260474A (en) * | 1996-03-22 | 1997-10-03 | Sony Corp | Electrostatic chuck and wafer stage |
US6486447B2 (en) | 1996-05-05 | 2002-11-26 | Seiichiro Miyata | Method of manufacturing an electric heating element |
WO1997042792A1 (en) * | 1996-05-05 | 1997-11-13 | Seiichiro Miyata | Electric heating element and electrostatic chuck using the same |
JPH1032239A (en) * | 1996-07-12 | 1998-02-03 | Toto Ltd | Electrostatic chuck stage and manufacture thereof |
JPH1064983A (en) * | 1996-08-16 | 1998-03-06 | Sony Corp | Wafer stage |
JPH1064984A (en) * | 1996-08-16 | 1998-03-06 | Sony Corp | Wafer stage |
JPH1064985A (en) * | 1996-08-23 | 1998-03-06 | Sony Corp | Water stage, temperature adjustment method for wafer and dry etching device |
JP2003037158A (en) * | 2001-07-24 | 2003-02-07 | Taiheiyo Cement Corp | Electrostatic chuck |
JP2017527115A (en) * | 2014-08-15 | 2017-09-14 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method and apparatus for processing wafers having compressive or tensile stress at high temperatures in a plasma enhanced chemical vapor deposition system |
US10403535B2 (en) | 2014-08-15 | 2019-09-03 | Applied Materials, Inc. | Method and apparatus of processing wafers with compressive or tensile stress at elevated temperatures in a plasma enhanced chemical vapor deposition system |
JP2018537002A (en) * | 2015-11-02 | 2018-12-13 | コンポーネント リ−エンジニアリング カンパニー インコーポレイテッド | Electrostatic chuck for clamping in high temperature semiconductor processing and method of manufacturing the same |
US11222804B2 (en) | 2015-11-02 | 2022-01-11 | Watlow Electric Manufacturing Company | Electrostatic chuck for clamping in high temperature semiconductor processing and method of making same |
JP2022050408A (en) * | 2015-11-02 | 2022-03-30 | ワトロー エレクトリック マニュファクチャリング カンパニー | Electrostatic chuck for clamping in high temperature semiconductor processing and method of making the same |
US10483147B2 (en) | 2017-11-21 | 2019-11-19 | Wallow Electric Manufacturing Company | Dual-purpose vias for use in ceramic pedestals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6486447B2 (en) | Method of manufacturing an electric heating element | |
JP4034145B2 (en) | Susceptor device | |
KR100295145B1 (en) | Susceptors | |
JPH10501925A (en) | Electrostatic chuck | |
CA2330885C (en) | Ceramic heater | |
US7672111B2 (en) | Electrostatic chuck and method for manufacturing same | |
JP2638649B2 (en) | Electrostatic chuck | |
JP4005268B2 (en) | Bonding structure of ceramics and metal and intermediate insert used for this | |
JP4331427B2 (en) | Power supply electrode member used in semiconductor manufacturing equipment | |
JP3401120B2 (en) | Wafer holding device | |
JPH0870036A (en) | Electrostatic chuck | |
JP2004303818A (en) | Heat spreader module and method for manufacturing the same | |
JP4331983B2 (en) | Wafer support member and manufacturing method thereof | |
JP2006186351A (en) | Semiconductor manufacturing device | |
JPH09249465A (en) | Bonded material and its production | |
JP4258309B2 (en) | Susceptor for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same | |
JP2007251124A (en) | Electrostatic chuck | |
JPH06291175A (en) | Electrostatic chuck | |
JP2836986B2 (en) | Electrostatic chuck and method of manufacturing the same | |
JPH09172057A (en) | Electrostatic chuck | |
JPH08236599A (en) | Wafer holder | |
JPH08107140A (en) | Electrostatic chuck | |
JPH08279550A (en) | Electrostatic chuck | |
JP3964530B2 (en) | Ceramic heater | |
JPH08316298A (en) | Electrostatic chuck |