JP3854145B2 - Wafer support member - Google Patents

Wafer support member Download PDF

Info

Publication number
JP3854145B2
JP3854145B2 JP2001386228A JP2001386228A JP3854145B2 JP 3854145 B2 JP3854145 B2 JP 3854145B2 JP 2001386228 A JP2001386228 A JP 2001386228A JP 2001386228 A JP2001386228 A JP 2001386228A JP 3854145 B2 JP3854145 B2 JP 3854145B2
Authority
JP
Japan
Prior art keywords
power supply
wafer
supply terminal
support member
wafer support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001386228A
Other languages
Japanese (ja)
Other versions
JP2003188248A (en
Inventor
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001386228A priority Critical patent/JP3854145B2/en
Publication of JP2003188248A publication Critical patent/JP2003188248A/en
Application granted granted Critical
Publication of JP3854145B2 publication Critical patent/JP3854145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体や液晶基板などの製造工程において、半導体ウエハや液晶用ガラス基板などのウエハを保持し、かつ高周波を印加してプラズマを発生させる機能を有するセラミック製サセプタ、セラミック製静電チャック、セラミック製ヒーター等の如きウエハ支持部材に関するものである。
【0002】
【従来の技術】
従来、半導体や液晶基板などの製造工程のうち、半導体ウエハや液晶用ガラス基板などのウエハ上へ薄膜を形成するCVD等の成膜工程や、上記ウエハに微細加工を施すドライエッチング工程ではプラズマ発生機構を備えた装置が用いられており、プラズマを発生させる一対の電極のうち、一方の電極を板状セラミック体中に埋設し、板状セラミック体の表面をウエハを載せる載置面としたウエハ支持部材が用いられている。
【0003】
図3にプラズマを発生させる一方の電極としてウエハ支持部材を用いたプラズマ発生機構を備える装置の概略断面図を示すように、真空処理室39内に、筒状支持体37を介して設置されたウエハ支持部材31と、このウエハ支持部材31に対向配置されたプラズマ発生用電極38とを備えている。
【0004】
ウエハ支持部材31は、一対の内部電極33を有する板状セラミック体32の一方の主面をウエハWを載せる載置面34とするとともに、他方の主面側に上記内部電極33と電気的に接続される給電端子35を備えたもので、給電端子35に接続されたリード線36を筒状支持体37内より真空処理室39外へ取り出すようになっている。
【0005】
そして、ウエハ支持部材31の載置面34上にウエハWを載せた状態で、ウエハ支持部材31中の一対の内部電極33とプラズマ発生用電極38との間に高周波電力を供給して両者間にプラズマを発生させるとともに、真空処理室39内に成膜ガスやエッチングガスを供給することにより、ウエハWに対して成膜加工やエッチング加工を施すようになっていた。
【0006】
また、ウエハ支持部材31の板状セラミック体32中に静電吸着用電極やヒータ電極を埋設することにより、静電吸着機能や加熱機能を持たせたものもあった。
【0007】
ところで、ウエハ支持部材31中の内部電極33は、板状セラミック体32中に埋設してあることから、内部電極33へ通電するための給電端子35は、図4(a)に示すように、板状セラミック体32の他方の主面に内部電極33を貫通する凹部41を形成して凹部内壁面41aに内部電極33を露出させ、給電端子35の一部を凹部41中に挿入し、ロウ材層42を介して接合するか、あるいは図4(b)に示すように、板状セラミック体32の他方の主面側の凹部41中に給電端子35の一部を埋設することにより接合するようにしたものが提案されている。
【0008】
また、図4(a)(b)に示す手段にて給電端子35を板状セラミック体32に接合する場合、ロウ付け時の熱や使用時の熱サイクルによる板状セラミック体32の破損を防止するため、給電端子35には板状セラミック体32の熱膨張係数に近似したタングステンやモリブデンあるいはFe−Ni−Co合金により形成したものが用いられていた。
【0009】
【発明が解決しようとする課題】
ところが、プラズマを発生させるためにウエハ支持部材31の給電端子35に高周波電力を印加すると、給電端子35が発熱するといった課題があった。
【0010】
即ち、高周波は給電端子35の表面を流れ易いのであるが、板状セラミック体32との熱膨張差を近似させるために使用したタングステンやモリブデンあるいはFe−Ni−Co合金等の給電端子35は高周波に対する抵抗が大きいために発熱し易いものであった。
【0011】
そして、給電端子35の発熱が発生すると、給電端子35の上方に位置する載置面34の温度が部分的に高くなるホットスポットが発生するため、載置面34上に載せたウエハWの温度も載置面34の温度分布に倣って部分的に高くなり、ウエハWの温度分布を均一にすることができず、その結果、成膜精度やエッチング精度に悪影響を与えるといった課題があった。
【0012】
また、給電端子35は筒状支持体37を介して大気に曝されているため、発熱すると酸化して抵抗値が大きくなり、所望のプラズマを発生させることができなくなることにより、均一でかつ均質な成膜加工やエッチング加工を施すことができなくなるといった恐れもあった。
【0013】
【課題を解決するための手段】
そこで、本発明は上記課題に鑑み、内部電極を埋設したアルミナ質焼結体又は窒化アルミニウム質焼結体からなる板状セラミック体の一方の主面をウエハを載せる載置面とし、他方の主面側に備える凹部に、タングステン、モリブデン、タンタルのうちいずれか一種の金属又はFe−Ni−Co合金を主成分とする給電端子の一部を銀銅ロウ材層を介してロウ付け固定するとともに、上記内部電極と上記給電端子とを電気的に接続してなるウエハ支持部材において、上記給電端子の少なくとも突出部に、銀銅ロウ材からなる導体層を被着してなり、該導体層と上記銀銅ロウ材層と上記内部電極とを接続したことを特徴とする。
【0014】
特に、上記導体層の層厚みは1〜200μmとすることが好ましい。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0016】
図1は本発明のウエハ支持部材の一例を示す図で、(a)はその斜視図、(b)は(a)のX−X線断面図である。また図2(a)は図1に示すウエハ支持部材の給電構造の一例を示す部分拡大断面図である。
【0017】
このウエハ支持部材1は、円盤状をした板状セラミック体2の一方の主面を、ウエハWを載せる載置面4とし、板状セラミック体2中に高周波電力が印加される一対の内部電極3を埋設するとともに、板状セラミック体2の他方の主面側に上記各内部電極3と電気的に接続される給電端子5を備えたものである。
【0018】
板状セラミック体2を形成する材質としては、アルミナ質焼結体、窒化珪素質焼結体、窒化アルミニウム質焼結体、窒化硼素質焼結体、チタン酸バリウム質焼結体、チタン酸カルシウム質焼結体、イットリウム−アルミニウム−ガーネット質焼結体、イットリア質焼結体等のセラミック焼結体を用いることができ、これらの中でもハロゲン系の腐食性ガスに対する耐食性の点でアルミナ質焼結体又は窒化アルミニウム質焼結体を用いることが好ましく、さらに載置面4に保持したウエハWがプラズマガスから受ける熱を速やかに外部に逃がし、ウエハWの温度分布を均一にする観点から高熱伝導率を有する窒化アルミニウム質焼結体を用いることが望ましい。
【0019】
また、板状セラミック体2中に埋設する内部電極3としては、熱膨張差により発生する応力によって板状セラミック体2にクラックが発生したり、破損することを防止するため、板状セラミック体2との熱膨張差ができるだけ近似した材料を用いることが良く、例えば、タングステン、モリブデン、タンタルのうちいずれか一種の金属又はこれらの合金を用いることが好ましい。
【0020】
また、給電端子5は、図2(a)に示すように、板状セラミック体2の他方の主面に、各内部電極3を貫通するように穿孔した凹部14内にロウ材層15を介してロウ付けすることにより接合してあり、凹部内壁面14aに露出する内部電極3と給電端子5とをロウ材層15を介して電気的に接続してある。
【0021】
具体的には、板状セラミック体2の他方の主面に内部電極3を貫通して凹部14を穿設し、凹部内壁面14aに内部電極3を露出させるとともに、この内部電極3を含む凹部内壁面14aにメタライズ層16を形成する。メタライズ層16の厚みは数十μm程度あれば良い。
【0022】
そして、上記凹部内壁面14aにロウ材を塗布しつつ給電端子5を挿入し、所定の高温雰囲気で加熱することでロウ付け固定してある。
【0023】
ただし、ロウ付け固定等のように給電端子5に熱が作用する場合、板状セラミック体2との間に大きな熱膨張差があると、その間に発生する熱応力によって板状セラミック体2にクラックが発生したり、破損する。また、大気中で加熱されると、酸化し易い材料であると抵抗値が大きくなり、高周波電力が流れ難くなる。
その為、給電端子5は、前述した板状セラミック体2との熱膨張差が近似し、かつ高い耐熱性を有する材質、特に500℃程度の高温下でも耐熱性に優れる材質により形成することが好ましく、例えば、タングステン、モリブデン、タンタルのうちいずれか一種の金属又はFe−Ni−Co合金を用いることができる。
【0024】
これらの金属又は合金は熱膨張係数が3〜7×10-6/℃と、前述した板状セラミック体2を形成するセラミック焼結体の熱膨張係数(3〜7.8×10-6/℃)と近似させることができるため、板状セラミック体2の破損を効果的に防止することができる。
【0025】
さらに、給電端子5を形成する材質として、タングステン、モリブデン、タンタルのうちいずれか一種の金属又はFe−Ni−Co合金を主成分とし、板状セラミック体2との熱膨張差が2×10-7/℃以下である焼結合金を用いることもでき、このような焼結合金を用いる場合、副成分として耐酸化性を増強させる作用を有するCrやCoを含有したものを用いることが好ましい。
【0026】
さらに、本発明のウエハ支持部材1は、給電端子5の少なくとも突出部5aに、銀銅ロウ材からなる導体層6を被着してある。
【0027】
その為、本発明のウエハ支持部材1を図3に示すプラズマ発生機構を有する装置の一方の電極として組み込み、プラズマ発生用電極38との間に例えば13.56MHz、1kWの高周波電力を印加すれば、給電端子5の発熱を抑えることができるため、給電端子5の酸化を防いで抵抗値が大きくなることを防止し、均一なプラズマを長期間にわたって発生させることができる。
【0028】
また、給電端子5の発熱を抑えることができるため、給電端子5の上方に位置する載置面4の温度が部分的に高くなるホットスポットの発生を防ぐことができるため、載置面4の温度分布を±5℃以下に抑えることができ、ウエハWの温度分布を載置面4の温度分布に倣って均一にすることができる。
【0029】
その結果、本発明のウエハ支持部材1を用いれば、ウエハWへ均質でかつ均一な薄膜を被着したり、微細加工を施すことができ、成膜精度やエッチング精度を向上させることができる。
【0030】
即ち、均質な導体に高周波電流を流すと、導体表面の電流密度(δ)が大きくなり、その大きさ(δ)は数1で示される。
(数1) 導体表面の電流密度δ=(2/ωσμ)1/2但し、ω=2πf(f:周波数)、σ:導電率、μ:透磁率
そして、高周波をスムーズに流すためには導体の導電率ができるだけ小さい方が良いのであるが、例えば、給電端子5を形成するタングステン、モリブデン、タンタル、Fe−Ni−Co合金(コバール)、Fe−Ni−Co−Cr合金(Fe:55重量%、Ni:28重量%、Co:16重量%、Cr:1重量%)は、その体積固有抵抗値が銀の体積固有抵抗値のそれぞれ3.4倍、3.6倍、8.5倍、30倍、31倍と大きく、給電端子5の抵抗が大きくなるため、高周波電流を流すと給電端子5が発熱するのであるが、本発明のウエハ支持部材1は、給電端子5の突出部5aの表面に、給電端子5を形成する材質よりも抵抗値が小さく、かつ高周波に対する抵抗の小さな、銀、銅のいずれか一種の金属又はこれらの合金あるいはこれらの金属を主体とするロウ材からなる導体層6を被着してあることから、給電端子5に高周波電力を印加すれば、給電端子5表面に被着した導体層6に高周波電流が流れ易くなり、また導体層6は上述したように抵抗値が小さく電流密度(δ)を大きくすることができるため、高周波電流をスムーズに流すことができる。
【0031】
ただし、銀ロウ材を用いる場合、上述した効果を奏するためには、電気抵抗が0.5mΩ・m以下であるものを用いることが好ましい。なお、主成分以外の副成分としてはZn、Cd、Siを用いることができる。
【0032】
そして、図2(a)に示す給電構造によれば、板状セラミック体2の凹部14に挿入する給電端子5の挿入部5b周囲には、板状セラミック体2と接合するための電気抵抗の小さなロウ材層15を設けてあることから、導体層6を流れた高周波はロウ材層15を流れ、内部電極3に供給することができる。
【0033】
その結果、給電端子5に供給された高周波電流は内部電極へ大きな抵抗を受けることなくスムーズに流すことができるため、給電端子5の発熱を大幅に低減することができる。
【0034】
ただし、給電端子5の発熱をできるだけ抑えるためには高周波電流が導体層6中を流れ易くすることが重要であり、そのためには導体層6の層厚みTを1μm以上、好ましくは3μm以上、望ましくは10μm以上とすることが良く、実用的な範囲である200μm以下の範囲で形成すれば良い。
【0035】
なお、導体層6の形成手段としては、銀銅ロウ材を塗布し焼き付けしたものを用いることができ、できるだけ緻密なものを用いることが好ましい。
【0036】
次に、本発明の他の実施形態を図2(b)を基に説明する。
【0037】
図2(b)に示す給電構造は、ホットプレス等によって板状セラミック体2を製作する際に、板状セラミック体2の他方の主面側の凹部14内に給電端子5の一部を埋設したもので、給電端子5の埋設部5cの表面積を、給電端子5の突出部5aの表面積より大きくしてある。なお、内部電極3と給電端子5とは導線を介して電気的に接続してある。
【0038】
さらに、給電端子5の突出部5aの表面に、銀ロウ材からなる導体層6を1μm以上の層厚みTで被着したものである。
【0039】
この給電構造においても、給電端子5に高周波電力を印加すれば、給電端子5表面に被着した導体層6に高周波電流が流れ易くなり、また導体層6は上述したように抵抗値が小さく電流密度(δ)を大きくすることができるため、高周波電流をスムーズに流すことができる。
【0040】
さらに、給電端子5の埋設部5cは、その表面積を突出部5aの表面積より大きくして突出部5aより抵抗値を小さくして高周波が流れ易くしてあることから、導体層6を流れた高周波は給電端子5の埋設部5cをスムーズに流れて内部電極3へ供給することができる。
【0041】
即ち、図2(b)に示す給電構造においても給電端子5に供給された高周波電流を内部電極3へ大きな抵抗を受けることなくスムーズに流すことができるため、給電端子5の発熱を大幅に低減することができる。
【0042】
以上、本発明の実施形態について示したが、本発明はこれらの実施形態だけに限定されるものではなく、例えば、図2(a)(b)では、給電端子5の突出部5aの表面にのみ導体層6を設けた例を示したが、給電端子5の全体を導体層6で被覆したものでも構わない。
【0043】
また、図1では高周波電力を印加する内部電極3のみを備えたウエハ支持部材1を示したが、板状セラミック体2中に静電吸着用電極を埋設し、この静電吸着用電極とウエハWとの間に通電して静電吸着力を発生させることによりウエハWを載置面3に強制的に吸着させるようにしたり、あるいは板状セラミック体2中に加熱用電極を埋設し、この加熱用電極を発熱させてウエハ支持部材1を加熱することにより、載置面4上のウエハWを各種加工温度に加熱するようにしても構わない。
【0044】
さらには、板状セラミック体2中の内部電極3に高周波電力とともに、直流電圧を印加し、プラズマ発生用としての内部電極3に静電吸着用電極として機能を持たせるようにしたものでも構わない。
【0045】
このように、本発明は、その要旨を逸脱しない範囲で改良や変更したものにも適用できることは言う迄もない。
【0046】
【実施例】
(実施例1)
ここで、図2(a)に示す給電構造を有する本発明のウエハ支持部材1と、図4(a)に示す給電構造を有する従来のウエハ支持部材31をそれぞれ試作し、各ウエハ支持部材1,31の内部電極3,33に高周波電力を印加した時の給電端子5,35の発熱具合について調べる実験を行った。
【0047】
本実験で使用するウエハ支持部材1,31は、まず、平均粒子径が1.2μm程度である純度99.0%のAlN粉末にバインダーと溶媒のみを添加混合して泥漿を製作し、ドクターブレード法により厚さ0.4mm程度のグリーンシートを複数枚成形した。このうち2枚のグリーンシートにAlN粉末を混ぜたタングステン(W)のペーストをスクリーン印刷機でもって敷設して電極をなす金属ペースト膜を印刷した。そして、各金属ペースト膜を敷設したグリーンシートと残りのグリーンシートを積層して80℃、4.9MPaの圧力で熱圧着してグリーンシート積層体を形成した後、切削加工を施して円板状とし、円板状のグリーンシート積層体を真空脱脂し、しかる後、真空雰囲気にて2000℃程度の温度で5時間焼成して、外径200mm、板厚10mmで、かつ内部に膜厚15μm程度の内部電極3,33を埋設したセラミック体2,32を製作し、内部電極3,33が埋設されている側の板状セラミック体2,32の表面に研磨加工を施してウエハWを載せる載置面4,34を形成した。
【0048】
また、板状セラミック体2,32の載置面4,34と反対側の表面に、内部電極3,33を貫通する凹部14,41を穿設し、凹部内壁面14a,41aにメタライズ層16を形成した後、モリブデンからなる給電端子5,35をロウ付け固定することによりウエハ支持部材1,31を製作した。
【0049】
また、本発明のウエハ支持部材1においては、給電端子5の突出部5aの表面に別途銀銅ロウ材を塗布した後、焼き付けることにより層厚みTが20μmの導体層6を被着した。
【0050】
なお、給電端子5,35の寸法はいずれも外径8mmの円柱状をしたものを使用した。また、メタライズ層16を構成する金属には、銀、銅、チタンの合金を、ロウ材には銅と銀を重量比で8:2の割合で含有してなる銀銅ロウを使用し、それぞれ900℃の温度でロウ付け固定した。
【0051】
そして、これらのウハ支持部材1,31を図3に示すプラズマ発生機構を有する装置の真空処理室39内に設置し、載置面4,34にウハWを載せて給電端子5,35間に500Vの直流電圧を加えることにより静電吸着力を発生させてウハWを載置面4,34に吸着させるとともに、真空処理室39に備えるプラズマ発生用電極38とウエハ支持部材1,31の給電端子5,35との間に、13.56MHz、2kWの高周波電力を3分間印加した後のウエハWの温度分布を測定し、ウハの温度分布が±5℃未満であるものについては大きなホットスポットはないとし良好と判断した。
【0052】
この結果、従来のウエハ支持部材31は給電端子35が発熱し、また、この発熱によって給電端子35の上方に位置するウエハWの温度が部分的に高くなり、ウハWの温度分布が±8℃と、±5℃を越え悪かったのに対し、本発明のウハ支持部材1は、給電端子5の発熱が殆どないため、載置面4上にウエハWの温度に悪影響を与えるようなことがなく、その結果、ウハWの温度分布を±5℃以内とほぼ均一に保つことができ優れていた。
【0053】
(実施例2)
次に、本発明のウエハ支持部材1における導体層6の層厚みTを異ならせ、実施例1と同様にウエハWの温度分布を測定する実験を行った。
【0054】
結果は表1に示す通りである。なお、ウハWの面内の温度分布が±5℃以上のものをウハの温度分布が悪いとし、「×」として示し、±5℃未満であるものを良好とし、そのうち±5℃未満、±3℃以上であるものを△、±3℃未満、±1℃以上であるものを○、±1℃未満であるものを◎で表示した。
【0055】
それぞれの結果は表1に示す通りである。
【0056】
【表1】

Figure 0003854145
【0057】
この結果、導体層6の層厚みTを1μm以上とすることにより給電端子5の発熱を抑え、ウハWの温度バラツキを±5℃未満とすることができた。
【0058】
この結果、給電端子5の発熱を抑えるためには、導体層6の層厚みTを1μm以上とすれば良いことが判る。特に、導体層6の層厚みTをμm以上とすれば、給電端子5の発熱をさらに抑え、ウエハWの温度バラツキを±3℃未満とすることができ、さらに導体層6の層厚みTを10μm以上とすることにより、給電端子5の発熱をさらに抑え、ウエハWの温度バラツキを±1℃未満とすることができ、優れていた。
【0059】
(実施例3)
次に、給電端子5の導体層6の層厚みTを2μmに固定し、導体層6の材質を異ならせてウエハ支持部材1を製作し、このウエハ支持部材1の給電端子5と高周波印加用電極38との間に、13.56MHz、2kWの高周波電力を印加し、この高周波電力の供給と停止をそれぞれ5分単位で行う通電サイクル試験を実施した。そして、この通電サイクル試験を1万回繰り返した後のウェハWの温度分布を測定し、ウェハWの面内の温度分布が±5℃以上であるものはウェハWの温度分布が悪いため不良とし、±5℃未満のものを良好として評価した。
【0060】
それぞれの結果は表2に示す通りである。
【0061】
【表2】
Figure 0003854145
【0062】
この結果、導体層6に、銀、銅の金属又はこれらの金属を主成分とするロウ材を用いれば、1万回の通電後でも給電端子5の発熱を生じることがなく、ウハWの温度分布も均一であり、長期間にわたってウハ支持部材1を安定して使用できた。
【0063】
【発明の効果】
以上のように、本発明によれば、内部電極を埋設したアルミナ質焼結体又は窒化アルミニウム質焼結体からなる板状セラミック体の一方の主面をウエハを載せる載置面とし、他方の主面側に備える凹部に、タングステン、モリブデン、タンタルのうちいずれか一種の金属又はFe−Ni−Co合金を主成分とする給電端子の一部を銀銅ロウ材層を介してロウ付け固定するとともに、上記内部電極と上記給電端子とを電気的に接続してなるウエハ支持部材において、上記給電端子の少なくとも突出部に、銀銅ロウ材からなる導体層を被着して、該導体層と上記銀銅ロウ材層と上記内部電極とを接続したことによって、給電端子に高周波電力を印加しても給電端子の発熱を抑えることができ、酸化を防止して抵抗値の増大を防止することができるとともに、給電端子の上方に位置する載置面にホットスポットを発生させることがないため、載置面の温度分布を±5℃以下に均熱化することができる。
【0064】
特に、上記導体層の層厚みを1μmとすることで給電端子の発熱をより効果的に防止することができる。
【0065】
その為、本発明のウエハ支持部材を用いれば、他方のプラズマ発生用電極との間で均一なプラズマを発生させることができるとともに、ウエハの温度分布を均一に保つことができるため、成膜ガスやエッチングガスを供給すればウエハに対して精度の高い成膜加工やエッチング加工を施すことができる。
【図面の簡単な説明】
【図1】本発明のウエハ支持部材の一例を示す図で、(a)はその斜視図、(b)は(a)のX−X線断面図である。
【図2】(a)は図1に示すウエハ支持部材の給電構造の一例を示す部分拡大断面図であり、(b)は図1に示すウエハ支持部材の給電構造の他の例を示す部分拡大断面図である。
【図3】一般的なプラズマ発生機構を有する装置を示す概略断面図である。
【図4】(a)は従来のウエハ支持部材の給電構造の一例を示す部分拡大断面図であり、
(b)は従来のウエハ支持部材の給電構造の他の例を示す部分拡大断面図である。
【符号の説明】
1,31…ウエハ支持部材
2,32…板状セラミック体
3,33…内部電極
4,34…載置面
5,35…給電端子
5a…給電端子の突出部
5b…給電端子の挿入部
5c…給電端子の埋設部
6…導体層
14,41…凹部
14a,42…凹部内壁面
15,43…ロウ材層
16…メタライズ層
36…リード線
37…筒状支持体
38…プラズマ発生用電極
39…真空処理室
W…半導体ウエハ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic susceptor and a ceramic electrostatic chuck having functions of holding a wafer such as a semiconductor wafer or a glass substrate for liquid crystal and generating a plasma by applying a high frequency in a manufacturing process of a semiconductor or a liquid crystal substrate. Further, the present invention relates to a wafer support member such as a ceramic heater.
[0002]
[Prior art]
Conventionally, of the manufacturing processes for semiconductors and liquid crystal substrates, plasma is generated in film forming processes such as CVD for forming thin films on wafers such as semiconductor wafers and glass substrates for liquid crystals, and in dry etching processes for microfabrication of the wafers. An apparatus having a mechanism is used, and one of a pair of electrodes for generating plasma is embedded in a plate-like ceramic body, and the surface of the plate-like ceramic body is used as a mounting surface on which the wafer is placed A support member is used.
[0003]
As shown in FIG. 3 which is a schematic cross-sectional view of an apparatus having a plasma generation mechanism using a wafer support member as one electrode for generating plasma, it is installed in a vacuum processing chamber 39 via a cylindrical support 37. A wafer support member 31 and a plasma generating electrode 38 disposed opposite to the wafer support member 31 are provided.
[0004]
The wafer support member 31 has a main surface of a plate-like ceramic body 32 having a pair of internal electrodes 33 as a mounting surface 34 on which the wafer W is placed, and is electrically connected to the internal electrode 33 on the other main surface side. A power supply terminal 35 to be connected is provided, and a lead wire 36 connected to the power supply terminal 35 is taken out from the inside of the cylindrical support 37 to the outside of the vacuum processing chamber 39.
[0005]
Then, in a state where the wafer W is placed on the mounting surface 34 of the wafer support member 31, high-frequency power is supplied between the pair of internal electrodes 33 and the plasma generation electrode 38 in the wafer support member 31. In addition, plasma is generated and a film forming gas or an etching gas is supplied into the vacuum processing chamber 39 to perform film forming or etching on the wafer W.
[0006]
In some cases, an electrostatic chucking electrode or a heater electrode is embedded in the plate-like ceramic body 32 of the wafer support member 31 to provide an electrostatic chucking function or a heating function.
[0007]
Incidentally, since the internal electrode 33 in the wafer support member 31 is embedded in the plate-like ceramic body 32, the power supply terminal 35 for energizing the internal electrode 33 is as shown in FIG. A concave portion 41 penetrating the internal electrode 33 is formed on the other main surface of the plate-like ceramic body 32 so that the internal electrode 33 is exposed on the concave inner wall surface 41a, and a part of the power supply terminal 35 is inserted into the concave portion 41. Joining via the material layer 42 or joining by embedding a part of the power supply terminal 35 in the concave portion 41 on the other main surface side of the plate-like ceramic body 32 as shown in FIG. Something like this has been proposed.
[0008]
4A and 4B, when the power supply terminal 35 is joined to the plate-like ceramic body 32, damage to the plate-like ceramic body 32 due to heat during brazing or a heat cycle during use is prevented. Therefore, the power supply terminal 35 is made of tungsten, molybdenum, or Fe—Ni—Co alloy that approximates the thermal expansion coefficient of the plate-like ceramic body 32.
[0009]
[Problems to be solved by the invention]
However, when high frequency power is applied to the power supply terminal 35 of the wafer support member 31 in order to generate plasma, the power supply terminal 35 generates heat.
[0010]
That is, the high frequency tends to flow on the surface of the power supply terminal 35, but the power supply terminal 35 such as tungsten, molybdenum, or Fe—Ni—Co alloy used to approximate the thermal expansion difference with the plate-like ceramic body 32 is high frequency. Because of its large resistance to heat, it was easy to generate heat.
[0011]
When the heat generation of the power supply terminal 35 is generated, a hot spot is generated in which the temperature of the mounting surface 34 located above the power supply terminal 35 is partially increased. Therefore, the temperature of the wafer W placed on the mounting surface 34 is increased. However, there is a problem that the temperature distribution of the mounting surface 34 is partially increased and the temperature distribution of the wafer W cannot be made uniform, and as a result, film forming accuracy and etching accuracy are adversely affected.
[0012]
In addition, since the power supply terminal 35 is exposed to the atmosphere via the cylindrical support 37, it is oxidized and increases in resistance value when it generates heat, and it becomes impossible to generate a desired plasma. There was also a risk that it would be impossible to perform proper film formation or etching.
[0013]
[Means for Solving the Problems]
Therefore, in view of the above problems, the present invention has one main surface of a plate-like ceramic body made of an alumina sintered body or an aluminum nitride sintered body with embedded internal electrodes as a mounting surface on which a wafer is placed, and the other main surface. In addition to brazing and fixing a part of the power supply terminal mainly composed of any one metal of tungsten, molybdenum, and tantalum or Fe-Ni-Co alloy to the concave portion provided on the surface side through a silver-copper brazing material layer in the wafer support member formed by electrically connecting the internal electrode and the feeding terminal, at least the projecting portion of the feeding terminal, a conductor layer made of silver copper brazing material becomes by adhering a conductor layer The silver-copper brazing material layer and the internal electrode are connected .
[0014]
In particular, the thickness of the conductor layer is preferably 10 to 200 μm.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0016]
1A and 1B are views showing an example of a wafer support member of the present invention. FIG. 1A is a perspective view thereof, and FIG. 1B is a sectional view taken along line XX of FIG. FIG. 2A is a partially enlarged sectional view showing an example of the power supply structure of the wafer support member shown in FIG.
[0017]
In this wafer support member 1, one main surface of a disk-shaped plate-shaped ceramic body 2 is used as a mounting surface 4 on which a wafer W is placed, and a pair of internal electrodes to which high-frequency power is applied in the plate-shaped ceramic body 2. 3 and a feeding terminal 5 electrically connected to each internal electrode 3 on the other main surface side of the plate-like ceramic body 2.
[0018]
The material for forming the plate-like ceramic body 2 is alumina sintered body, silicon nitride sintered body, aluminum nitride sintered body, boron nitride sintered body, barium titanate sintered body, calcium titanate. Ceramic sintered bodies such as sintered ceramics, yttrium-aluminum-garnet sintered bodies, yttria sintered bodies, etc. can be used, and among these, alumina-based sintered in terms of corrosion resistance against halogen-based corrosive gases It is preferable to use a sintered body or an aluminum nitride sintered body. Further, the heat received from the plasma gas by the wafer W held on the mounting surface 4 can be quickly released to the outside, and high thermal conductivity can be achieved from the viewpoint of making the temperature distribution of the wafer W uniform. It is desirable to use an aluminum nitride sintered body having a high rate.
[0019]
In addition, as the internal electrode 3 embedded in the plate-like ceramic body 2, the plate-like ceramic body 2 is prevented in order to prevent the plate-like ceramic body 2 from being cracked or damaged by the stress generated by the thermal expansion difference. It is preferable to use a material having a difference in thermal expansion as close as possible. For example, it is preferable to use any one of tungsten, molybdenum, and tantalum, or an alloy thereof.
[0020]
Further, as shown in FIG. 2A, the power supply terminal 5 has a brazing material layer 15 interposed in a recess 14 drilled so as to penetrate each internal electrode 3 on the other main surface of the plate-like ceramic body 2. The internal electrode 3 exposed to the inner wall surface 14 a of the recess and the power supply terminal 5 are electrically connected via the brazing material layer 15.
[0021]
Specifically, the other main surface of the plate-like ceramic body 2 penetrates the internal electrode 3 to form a recess 14, exposes the internal electrode 3 to the recess inner wall surface 14 a, and includes the recess including the internal electrode 3. A metallized layer 16 is formed on the inner wall surface 14a. The thickness of the metallized layer 16 may be about several tens of μm.
[0022]
The feeding terminal 5 is inserted while applying a brazing material to the inner wall surface 14a of the recess, and is brazed and fixed by heating in a predetermined high temperature atmosphere.
[0023]
However, when heat acts on the power supply terminal 5 as in brazing and fixing, if there is a large thermal expansion difference with the plate-like ceramic body 2, the plate-like ceramic body 2 is cracked by the thermal stress generated during that time. Occurs or breaks. Further, when heated in the atmosphere, the resistance value becomes large and the high-frequency power hardly flows if the material is easily oxidized.
For this reason, the power supply terminal 5 is formed of a material that has a similar thermal expansion difference from the plate-like ceramic body 2 described above and that has high heat resistance, in particular, that is excellent in heat resistance even at a high temperature of about 500 ° C. Preferably, for example, any one of tungsten, molybdenum, and tantalum, or an Fe—Ni—Co alloy can be used.
[0024]
These metals or alloys have a thermal expansion coefficient of 3 to 7 × 10 −6 / ° C., and the thermal expansion coefficient of the ceramic sintered body forming the plate-like ceramic body 2 (3 to 7.8 × 10 −6 / (° C.), it is possible to effectively prevent the plate-like ceramic body 2 from being damaged.
[0025]
Furthermore, as a material for forming the power supply terminal 5, the main component is any one of tungsten, molybdenum, and tantalum, or Fe—Ni—Co alloy, and the thermal expansion difference from the plate-like ceramic body 2 is 2 × 10 −. A sintered alloy having a temperature of 7 / ° C. or lower can also be used. When such a sintered alloy is used, it is preferable to use an alloy containing Cr or Co having an effect of enhancing oxidation resistance as a subsidiary component.
[0026]
Further, the wafer support member 1 of the present invention, at least in the projecting portion 5a of the feeding terminal 5, a conductor layer 6 made of silver copper brazing material are deposited.
[0027]
Therefore, if the wafer support member 1 of the present invention is incorporated as one electrode of the apparatus having the plasma generation mechanism shown in FIG. 3 and a high frequency power of, for example, 13.56 MHz and 1 kW is applied between the plasma generation electrode 38. Since heat generation at the power supply terminal 5 can be suppressed, oxidation of the power supply terminal 5 can be prevented to prevent the resistance value from increasing, and uniform plasma can be generated over a long period of time.
[0028]
Moreover, since the heat generation of the power supply terminal 5 can be suppressed, the occurrence of a hot spot in which the temperature of the mounting surface 4 located above the power supply terminal 5 is partially increased can be prevented. The temperature distribution can be suppressed to ± 5 ° C. or less, and the temperature distribution of the wafer W can be made uniform following the temperature distribution of the mounting surface 4.
[0029]
As a result, if the wafer support member 1 of the present invention is used, a uniform and uniform thin film can be applied to the wafer W, or fine processing can be performed, and film formation accuracy and etching accuracy can be improved.
[0030]
That is, when a high-frequency current is passed through a homogeneous conductor, the current density (δ) on the surface of the conductor increases, and the magnitude (δ) is expressed by Equation 1.
(Equation 1) Current density on the conductor surface δ = (2 / ωσμ) 1/2 where ω = 2πf (f: frequency), σ: conductivity, μ: permeability, and a conductor for smoothly flowing a high frequency. Is preferably as low as possible. For example, tungsten, molybdenum, tantalum, Fe—Ni—Co alloy (Kovar), Fe—Ni—Co—Cr alloy (Fe: 55 wt. %, Ni: 28% by weight, Co: 16% by weight, Cr: 1% by weight), the volume resistivity value is 3.4 times, 3.6 times, 8.5 times the volume resistivity value of silver, respectively. , 30 times and 31 times, and the resistance of the power supply terminal 5 becomes large. Therefore, the power supply terminal 5 generates heat when a high-frequency current is passed. However, the wafer support member 1 of the present invention has a protrusion 5a of the power supply terminal 5. On the surface of the wire, the resistance is higher than the material forming the feeding terminal 5. Value is small and a small resistance to the high frequency, silver, since the conductive layer 6 made of brazing material to either one metal or mainly of alloys or these metals copper are deposited, the feed terminal When high frequency power is applied to 5, the high frequency current easily flows through the conductor layer 6 deposited on the surface of the power supply terminal 5, and the conductor layer 6 has a small resistance value and a high current density (δ) as described above. Therefore, a high frequency current can flow smoothly.
[0031]
However, when using a silver copper brazing material, in order to achieve the effect described above, it is preferable to use the electrical resistance is less than 0.5mΩ · m. In addition, Zn, Cd, and Si can be used as subcomponents other than the main component.
[0032]
And according to the electric power feeding structure shown to Fig.2 (a), the electrical resistance for joining with the plate-shaped ceramic body 2 is put around the insertion part 5b of the electric power feeding terminal 5 inserted in the recessed part 14 of the plate-shaped ceramic body 2. FIG. Since the small brazing material layer 15 is provided, the high frequency waves that have flowed through the conductor layer 6 can flow through the brazing material layer 15 and be supplied to the internal electrodes 3.
[0033]
As a result, since the high-frequency current supplied to the power supply terminal 5 can flow smoothly without receiving a large resistance to the internal electrode, the heat generation of the power supply terminal 5 can be greatly reduced.
[0034]
However, in order to suppress the heat generation of the power supply terminal 5 as much as possible, it is important to make it easy for the high-frequency current to flow through the conductor layer 6. For this purpose, the layer thickness T of the conductor layer 6 is 1 μm or more, preferably 3 μm or more. Is preferably 10 μm or more, and may be formed in a practical range of 200 μm or less.
[0035]
In addition, as a formation means of the conductor layer 6, what apply | coated and baked the silver-copper brazing material can be used, and it is preferable to use a dense thing as much as possible.
[0036]
Next, another embodiment of the present invention will be described with reference to FIG.
[0037]
In the power feeding structure shown in FIG. 2B, when the plate-shaped ceramic body 2 is manufactured by hot pressing or the like, a part of the power feeding terminal 5 is embedded in the concave portion 14 on the other main surface side of the plate-shaped ceramic body 2. Thus, the surface area of the embedded portion 5 c of the power feeding terminal 5 is made larger than the surface area of the protruding portion 5 a of the power feeding terminal 5. The internal electrode 3 and the power supply terminal 5 are electrically connected via a conducting wire.
[0038]
Further, the surface of the projecting portion 5a of the feeding terminal 5 is a conductive layer 6 made of silver copper brazing material those deposited at 1μm or more layer thickness T.
[0039]
Also in this power supply structure, if high frequency power is applied to the power supply terminal 5, a high frequency current can easily flow through the conductor layer 6 deposited on the surface of the power supply terminal 5, and the conductor layer 6 has a small resistance value as described above. Since the density (δ) can be increased, a high-frequency current can flow smoothly.
[0040]
Furthermore, since the buried portion 5c of the power supply terminal 5 has a surface area larger than that of the protruding portion 5a and a resistance value smaller than that of the protruding portion 5a to facilitate high frequency flow, the high frequency flowing through the conductor layer 6 can be reduced. Can flow smoothly through the embedded portion 5 c of the power supply terminal 5 and can be supplied to the internal electrode 3.
[0041]
That is, in the power supply structure shown in FIG. 2B, the high-frequency current supplied to the power supply terminal 5 can flow smoothly without receiving a large resistance to the internal electrode 3, so that the heat generation of the power supply terminal 5 is greatly reduced. can do.
[0042]
As mentioned above, although embodiment of this invention was shown, this invention is not limited only to these embodiment, For example, in Fig.2 (a) (b), it is on the surface of the protrusion part 5a of the electric power feeding terminal 5. As shown in FIG. Although only the example in which the conductor layer 6 is provided is shown, the power supply terminal 5 may be entirely covered with the conductor layer 6.
[0043]
Further, FIG. 1 shows the wafer support member 1 having only the internal electrode 3 for applying high-frequency power. However, an electrostatic adsorption electrode is embedded in the plate-like ceramic body 2, and the electrostatic adsorption electrode and the wafer are embedded. The wafer W is forcibly adsorbed on the mounting surface 3 by energizing between it and W to generate an electrostatic adsorption force, or a heating electrode is embedded in the plate-like ceramic body 2. The wafer W on the mounting surface 4 may be heated to various processing temperatures by causing the heating electrode to generate heat and heating the wafer support member 1.
[0044]
Further, a high-frequency power and a DC voltage may be applied to the internal electrode 3 in the plate-like ceramic body 2 so that the internal electrode 3 for generating plasma has a function as an electrode for electrostatic adsorption. .
[0045]
Thus, it goes without saying that the present invention can be applied to improvements and changes made without departing from the scope of the invention.
[0046]
【Example】
Example 1
Here, the wafer support member 1 of the present invention having the power supply structure shown in FIG. 2A and the conventional wafer support member 31 having the power supply structure shown in FIG. An experiment was conducted to examine the heat generation of the power supply terminals 5 and 35 when high-frequency power was applied to the internal electrodes 3 and 33 of FIG.
[0047]
For the wafer support members 1 and 31 used in this experiment, first, a slurry was prepared by adding only a binder and a solvent to an AlN powder having an average particle diameter of about 1.2 μm and a purity of 99.0%, and mixing them. A plurality of green sheets having a thickness of about 0.4 mm were formed by the method. Among these, a paste of tungsten (W) mixed with AlN powder on two green sheets was laid with a screen printer to print a metal paste film forming an electrode. Then, the green sheet on which each metal paste film is laid and the remaining green sheet are laminated and thermocompression bonded at 80 ° C. and a pressure of 4.9 MPa to form a green sheet laminate, which is then cut into a disk shape The disk-shaped green sheet laminate is vacuum degreased and then fired at a temperature of about 2000 ° C. for 5 hours in a vacuum atmosphere to have an outer diameter of 200 mm, a plate thickness of 10 mm, and a film thickness of about 15 μm inside. The ceramic bodies 2 and 32 in which the internal electrodes 3 and 33 are embedded are manufactured, the surface of the plate-like ceramic bodies 2 and 32 on the side where the internal electrodes 3 and 33 are embedded is polished, and the wafer W is placed thereon. The mounting surfaces 4 and 34 were formed.
[0048]
Further, recesses 14 and 41 penetrating the internal electrodes 3 and 33 are formed on the surface opposite to the mounting surfaces 4 and 34 of the plate-like ceramic bodies 2 and 32, and the metallized layer 16 is formed on the recess inner wall surfaces 14a and 41a. Then, the wafer support members 1 and 31 were manufactured by brazing and fixing the power supply terminals 5 and 35 made of molybdenum.
[0049]
Further, in the wafer support member 1 of the present invention, a silver-copper brazing material was separately applied to the surface of the protruding portion 5a of the power supply terminal 5, and then baked to deposit the conductor layer 6 having a layer thickness T of 20 μm.
[0050]
In addition, as for the dimension of the electric power feeding terminals 5 and 35, all used the thing of the column shape of outer diameter 8mm. The metal constituting the metallized layer 16 is made of an alloy of silver, copper and titanium, and the brazing material is made of silver and copper brazing containing copper and silver in a weight ratio of 8: 2, respectively. It was fixed by brazing at a temperature of 900 ° C.
[0051]
Then, these c d c support member 1, 31 is placed in a vacuum processing chamber 39 of a device having a plasma generating mechanism shown in FIG. 3, the power feeding to put the c d wafer W on the mounting surface 4, 34 terminal 5 , together with by generating electrostatic attraction force is adsorbed to the surface 4, 34 placing a c d wafer W by applying a DC voltage of 500V between 35, the plasma generating electrode 38 and the wafer support comprises a vacuum processing chamber 39 between the feeding terminal 5 and 35 of the members 1, 31, 13.56 MHz, to measure the temperature distribution of the wafer W after the application of high frequency power 2 kW 3 minutes, the temperature distribution is less than ± 5 ℃ of c d c For those that were, it was judged that there was no large hot spot.
[0052]
As a result, conventional wafer support member 31 is feeding terminal 35 generates heat and the temperature of the wafer W positioned above the feeding terminal 35 by the heating partially increases, the temperature distribution of c d wafer W is ± and 8 ° C., whereas bad exceed ± 5 ° C., c d c support 1 of the present invention, since the heat generation of the power supply terminal 5 is hardly adversely affects the temperature of the wafer W on the mounting surface 4 without such a result was excellent can be kept within a substantially uniformly ± 5 ℃ the temperature distribution of c d wafer W.
[0053]
(Example 2)
Next, an experiment for measuring the temperature distribution of the wafer W in the same manner as in Example 1 was performed by changing the layer thickness T of the conductor layer 6 in the wafer support member 1 of the present invention.
[0054]
The results are as shown in Table 1. Incidentally, the temperature distribution in the surface of the c d wafer W is not less than ± 5 ℃ the temperature distribution of c d c is poor, indicated as "×", and good ones is less than ± 5 ℃, of which ± 5 Less than ± 3 ° C. and less than ± 3 ° C., Δ less than ± 3 ° C., more than ± 1 ° C. and less than ± 1 ° C. are marked with ◎.
[0055]
Each result is as shown in Table 1.
[0056]
[Table 1]
Figure 0003854145
[0057]
As a result, suppressing heat generation of the power supply terminal 5 by the layer thickness T of the conductive layer 6 and the above 1 [mu] m, the temperature variation of c d wafer W could be less than ± 5 ° C..
[0058]
As a result, it can be understood that the layer thickness T of the conductor layer 6 may be 1 μm or more in order to suppress the heat generation of the power supply terminal 5. In particular, if the layer thickness T of the conductor layer 6 is set to 3 μm or more, the heat generation of the power supply terminal 5 can be further suppressed, the temperature variation of the wafer W can be less than ± 3 ° C., and the layer thickness T of the conductor layer 6 can be reduced. By setting the thickness to 10 μm or more, heat generation at the power supply terminal 5 can be further suppressed, and the temperature variation of the wafer W can be made less than ± 1 ° C., which is excellent.
[0059]
Example 3
Next, the thickness T of the conductor layer 6 of the power supply terminal 5 is fixed to 2 μm, and the wafer support member 1 is manufactured by changing the material of the conductor layer 6. A high-frequency power of 13.56 MHz and 2 kW was applied between the electrodes 38, and an energization cycle test was performed in which supply and stop of the high-frequency power were each performed in units of 5 minutes. Then, the temperature distribution of the wafer W after repeating this energization cycle test 10,000 times is measured. If the in-plane temperature distribution of the wafer W is ± 5 ° C. or more, the temperature distribution of the wafer W is bad and is regarded as defective. Those with a temperature less than ± 5 ° C. were evaluated as good.
[0060]
Each result is as shown in Table 2.
[0061]
[Table 2]
Figure 0003854145
[0062]
As a result, the conductor layer 6, a silver, by using a brazing material containing copper as a main component of metal or these metals, 10,000 times without causing the heat generation of the power supply terminal 5 even after energization, c d c W temperature distribution is also uniform, could be stably using c d c support member 1 for a long period of time.
[0063]
【The invention's effect】
As described above, according to the present invention, one main surface of a plate-like ceramic body made of an alumina sintered body or an aluminum nitride sintered body in which an internal electrode is embedded is used as a mounting surface on which a wafer is placed, A part of the power supply terminal mainly composed of any one metal of tungsten, molybdenum, and tantalum or Fe—Ni—Co alloy is brazed and fixed to the concave portion provided on the main surface side through a silver-copper brazing material layer. together, the wafer support member formed by electrically connecting the internal electrode and the feeding terminal, at least the projecting portion of the feeding terminal, a conductor layer made of silver copper brazing material was deposited, and the conductor layer By connecting the silver and copper brazing material layer and the internal electrode , heat generation of the power supply terminal can be suppressed even when high frequency power is applied to the power supply terminal, and oxidation is prevented and increase in resistance value is prevented. be able to Together, there is no possible to generate a hot spot on the mounting surface is located above the feeding terminal, it is possible to soak the temperature distribution of the mounting face to ± 5 ℃ or less.
[0064]
In particular, heat generation of the power feeding terminal can be more effectively prevented by setting the thickness of the conductor layer to 1 μm.
[0065]
Therefore, if the wafer support member of the present invention is used, uniform plasma can be generated between the other plasma generating electrode and the temperature distribution of the wafer can be kept uniform. If an etching gas is supplied, highly accurate film formation and etching can be performed on the wafer.
[Brief description of the drawings]
1A and 1B are views showing an example of a wafer support member of the present invention, in which FIG. 1A is a perspective view thereof, and FIG. 1B is a sectional view taken along line XX of FIG.
2A is a partial enlarged cross-sectional view showing an example of the power supply structure for the wafer support member shown in FIG. 1, and FIG. 2B is a part showing another example of the power supply structure for the wafer support member shown in FIG. It is an expanded sectional view.
FIG. 3 is a schematic cross-sectional view showing an apparatus having a general plasma generation mechanism.
FIG. 4A is a partially enlarged sectional view showing an example of a conventional power supply structure for a wafer support member;
(B) is a partial expanded sectional view which shows the other example of the electric power feeding structure of the conventional wafer support member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,31 ... Wafer support member 2,32 ... Plate-shaped ceramic body 3,33 ... Internal electrode 4,34 ... Mounting surface 5,35 ... Feed terminal 5a ... Projection part 5b of feed terminal ... Insert part 5c of feed terminal ... Power supply terminal buried portion 6 ... conductor layers 14 and 41 ... concave portions 14a and 42 ... concave inner wall surfaces 15 and 43 ... brazing material layer 16 ... metallized layer 36 ... lead wire 37 ... cylindrical support 38 ... plasma generating electrode 39 ... Vacuum processing chamber W ... Semiconductor wafer

Claims (2)

内部電極を埋設したアルミナ質焼結体又は窒化アルミニウム質焼結体からなる板状セラミック体の一方の主面をウエハを載せる載置面とし、他方の主面側に備える凹部に、タングステン、モリブデン、タンタルのうちいずれか一種の金属又はFe−Ni−Co合金を主成分とする給電端子の一部を銀銅ロウ材層を介してロウ付け固定してなり、上記内部電極と上記給電端子とを電気的に接続したウエハ支持部材において、上記給電端子の少なくとも突出部に、銀銅ロウ材からなる導体層を被着してなり、該導体層と上記銀銅ロウ材層と上記内部電極とを接続したことを特徴とするウエハ支持部材。One main surface of a plate-like ceramic body made of an alumina sintered body or an aluminum nitride sintered body with an internal electrode embedded therein is used as a mounting surface on which a wafer is placed, and in a recess provided on the other main surface side, tungsten, molybdenum A part of the power supply terminal mainly composed of any one metal of tantalum or Fe-Ni-Co alloy is brazed and fixed via a silver-copper brazing material layer, and the internal electrode, the power supply terminal, in the wafer support member and electrically connected to, at least in the projecting portion of the feeding terminal, a conductor layer made of silver copper brazing material becomes by adhering, conductor layer and the silver-copper brazing material layer and the above internal electrode A wafer supporting member characterized in that is connected . 上記導体層の層厚みを1〜200μmとしたことを特徴とする請求項1に記載のウエハ支持部材。Wafer support member according to claim 1, characterized in that the layer thickness of the conductive layer is 1 0 ~200μm.
JP2001386228A 2001-12-19 2001-12-19 Wafer support member Expired - Fee Related JP3854145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386228A JP3854145B2 (en) 2001-12-19 2001-12-19 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386228A JP3854145B2 (en) 2001-12-19 2001-12-19 Wafer support member

Publications (2)

Publication Number Publication Date
JP2003188248A JP2003188248A (en) 2003-07-04
JP3854145B2 true JP3854145B2 (en) 2006-12-06

Family

ID=27595434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386228A Expired - Fee Related JP3854145B2 (en) 2001-12-19 2001-12-19 Wafer support member

Country Status (1)

Country Link
JP (1) JP3854145B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339144A (en) * 2005-05-31 2006-12-14 Ngk Insulators Ltd Plasma treatment device
JP2008060900A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Low-pass filter
JP5960384B2 (en) * 2009-10-26 2016-08-02 新光電気工業株式会社 Electrostatic chuck substrate and electrostatic chuck
US20230141651A1 (en) * 2019-10-18 2023-05-11 Kyocera Corporation Structure and heating device
WO2023027525A1 (en) * 2021-08-27 2023-03-02 주식회사 미코세라믹스 Ceramic susceptor

Also Published As

Publication number Publication date
JP2003188248A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
US6057513A (en) Joint structure of metal member and ceramic member and method of producing the same
TWI480972B (en) A wafer holding body for improving the connection method of the high-frequency electrode, and a semiconductor manufacturing apparatus including the same
JP2003160874A (en) Supporter for article to be treated, susceptor for semiconductor manufacturing apparatus and treatment apparatus
JP3447495B2 (en) Power supply structure of wafer holding device
JP3297637B2 (en) Wafer support member
JP2000077508A (en) Electrostatic chuck
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP3401120B2 (en) Wafer holding device
EP1300871A2 (en) Semiconductor processing apparatus and electrode member therefor
JP4331983B2 (en) Wafer support member and manufacturing method thereof
WO2001006559A1 (en) Wafer prober
JP3288922B2 (en) Joint body and method of manufacturing the same
JP2000243821A (en) Wafer support member
JP4275682B2 (en) Electrostatic chuck
JP4436575B2 (en) Wafer support member and manufacturing method thereof
JP3854145B2 (en) Wafer support member
JP2002141404A (en) Material having built-in electrode and wafer supporting member using the same
JP3728078B2 (en) Plasma generating material
JP3906087B2 (en) Wafer support member
JP3602908B2 (en) Wafer holding member
JP4454505B2 (en) Wafer support member
JP3771722B2 (en) Wafer support member
JP2003086519A (en) Supporter of object to be treated, manufacturing method and treatment device thereof
JP4439108B2 (en) Wafer support member
JP2001342079A (en) Ceramic junction body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Ref document number: 3854145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees