JP2002141404A - Material having built-in electrode and wafer supporting member using the same - Google Patents

Material having built-in electrode and wafer supporting member using the same

Info

Publication number
JP2002141404A
JP2002141404A JP2000333837A JP2000333837A JP2002141404A JP 2002141404 A JP2002141404 A JP 2002141404A JP 2000333837 A JP2000333837 A JP 2000333837A JP 2000333837 A JP2000333837 A JP 2000333837A JP 2002141404 A JP2002141404 A JP 2002141404A
Authority
JP
Japan
Prior art keywords
electrode
power supply
supply terminal
resin
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000333837A
Other languages
Japanese (ja)
Other versions
JP4548928B2 (en
Inventor
Tsunehiko Nakamura
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000333837A priority Critical patent/JP4548928B2/en
Publication of JP2002141404A publication Critical patent/JP2002141404A/en
Application granted granted Critical
Publication of JP4548928B2 publication Critical patent/JP4548928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material having a built-in electrode which can provide enough conductivity between a power supply terminal and an electrode and can be reliably bonded with the power supply terminal without having the ceramic material damaged even if applied with a heat cycle in the temperature range of -50 to 200 deg.C, and also to provide a wafer supporting member using the same. SOLUTION: In the surface of the ceramic material 2 having a built-in electrode 4, a recess 2a is so formed as to expose part of the electrode 4. The power supply terminal 5 is inserted into the recess 2a, and the power supply terminal 5 and the recess 2a are bonded and fixed by an adhesive layer 6 formed of a resin-based adhesive containing conductive particles in the range of 10 to 90 vol.% to construct the material having a built-in electrode. A wafer installation face is formed on part of the surface of the ceramic material 2 other than part where the power supply terminal is bonded, to form the wafer supporting member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極を内蔵したセ
ラミック体や電極を内蔵した樹脂層を接合したセラミッ
ク体に、上記電極と電気的に接続される給電端子を備え
た電極内蔵体とこれを用いたウエハ支持部材に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a built-in electrode body having a power supply terminal electrically connected to the above-mentioned electrode, and a ceramic body having a built-in electrode or a resin body having a built-in electrode. The present invention relates to a wafer support member using the same.

【0002】[0002]

【従来の技術】従来、オゾン発生器、静電吸着部材、酸
素センサー、気化装置、ダイボンディング装置等には、
セラミック体や樹脂層中に電極を内蔵した電極内蔵体が
使用されている。
2. Description of the Related Art Conventionally, an ozone generator, an electrostatic attraction member, an oxygen sensor, a vaporizer, a die bonding apparatus, etc.
An electrode built-in body in which an electrode is built in a ceramic body or a resin layer is used.

【0003】例えば、半導体製造プロセスでは、ドライ
化が急速に進み、エッチング装置、プラズマCVD装
置、プラズマPVD装置、イオン注入装置、電子ビーム
描画装置、イオンビーム描画装置、X線描画装置等の半
導体製造装置では、半導体ウエハ(以下、ウエハという)
を真空雰囲気中で処理するため、静電チャックやサセプ
タなどのウエハ支持部材が使用されている。
For example, in a semiconductor manufacturing process, dryness is rapidly progressing, and semiconductor manufacturing such as an etching apparatus, a plasma CVD apparatus, a plasma PVD apparatus, an ion implantation apparatus, an electron beam lithography apparatus, an ion beam lithography apparatus, and an X-ray lithography apparatus is performed. In the equipment, semiconductor wafer (hereinafter referred to as wafer)
Is processed in a vacuum atmosphere, a wafer support member such as an electrostatic chuck or a susceptor is used.

【0004】図5に従来のウエハ支持部材の一例を示す
ように、このウエハ支持部材21は、円盤状をしたセラ
ミック体22の上面をウエハWの設置面23とするとと
もに、上記セラミック体22中に電極24を埋設したも
ので、上記セラミック体22の下面には、上記電極24
と電気的に接続される金属製の給電端子25を接合して
ある。
As shown in FIG. 5, an example of a conventional wafer support member is a wafer support member 21 in which the upper surface of a disk-shaped ceramic body 22 is used as a mounting surface 23 for a wafer W, An electrode 24 is embedded in the ceramic body 22.
And a metal power supply terminal 25 electrically connected to the power supply terminal 25.

【0005】また、上記ウエハ支持部材21を形成する
板状セラミック体22と給電端子25とを接合する手段
として、特開平5−101871号公報には、図6に示
すように、電極24と給電ブロック体26をワイヤ27
を介して電気的に接続したものを金型内に設置し、この
金型内にセラミック原料を充填してホットプレスによっ
て焼結させることにより、ワイヤ27によって電気的に
接続された電極24と給電ブロック体26を一体的に埋
設してなるセラミック体22を製作し、該セラミック体
22の表面に露出する給電ブロック体26の雌ねじ部2
6aに給電端子25の雄ねじ部25aを螺合させること
により、給電端子25を電極24と電気的に接続するよ
うにしたものが提案されている。
As means for joining the plate-shaped ceramic body 22 forming the wafer support member 21 and the power supply terminal 25, Japanese Patent Application Laid-Open No. Hei 5-101873 discloses an electrode 24 and a power supply terminal as shown in FIG. Block 26 is connected to wire 27
Is electrically connected via a wire 27, and is placed in a mold, and the mold is filled with a ceramic material and sintered by hot pressing to supply power to the electrode 24 electrically connected by the wire 27. The ceramic body 22 having the block body 26 integrally embedded therein is manufactured, and the female screw portion 2 of the power supply block body 26 exposed on the surface of the ceramic body 22 is manufactured.
An arrangement has been proposed in which the male screw portion 25a of the power supply terminal 25 is screwed into the power supply terminal 6 to electrically connect the power supply terminal 25 to the electrode 24.

【0006】また、特開平10―189696号公報に
は、図7に示すように、セラミック体22の下面に電極
24と連通する穴22aを穿孔し、該穴22aの内壁面
にメタライズ層28を形成した後、給電端子25を挿入
し、ロウ材層29を介してロウ付けすることにより、給
電端子25を電極24と電気的に接続するようにしたも
のが提案されている。
In Japanese Patent Application Laid-Open No. Hei 10-189696, as shown in FIG. 7, a hole 22a communicating with the electrode 24 is formed in the lower surface of the ceramic body 22, and a metallized layer 28 is formed on the inner wall surface of the hole 22a. After the formation, a power supply terminal 25 is inserted and brazed via a brazing material layer 29 to electrically connect the power supply terminal 25 to the electrode 24.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図6に
示す給電構造を有するウエハ支持部材21では、ホット
プレスによりセラミック体22を焼結させる際に異材質
の給電ブロック体26が埋設されていることから、その
周囲のセラミック部に発生した応力が残留応力として残
り、セラミック部にクラックが発生し易く製造歩留りが
悪いといった課題があった。しかも、この給電構造の場
合、ホットプレスのように大がかりな焼成装置を用いな
ければならないといった課題もあった。
However, in the wafer supporting member 21 having the power supply structure shown in FIG. 6, a power supply block 26 made of a different material is embedded when the ceramic body 22 is sintered by hot pressing. Therefore, there is a problem that the stress generated in the surrounding ceramic part remains as residual stress, cracks are easily generated in the ceramic part, and the production yield is poor. In addition, in the case of this power supply structure, there is a problem that a large-scale baking apparatus such as a hot press must be used.

【0008】また、図7に示す接合構造を有するウエハ
支持部材21では、ロウ付け後、セラミック体22、給
電端子25、及びロウ材層29間における熱膨張差によ
って室温まで冷却する際に発生する残留応力によって、
セラミックス体22に形成した穴22aのコーナー部を
起点とするクラックが発生し易く製造歩留りが悪いとい
った課題があった。
Further, in the wafer support member 21 having the bonding structure shown in FIG. 7, it occurs when the temperature is reduced to room temperature due to a difference in thermal expansion between the ceramic body 22, the power supply terminal 25, and the brazing material layer 29 after brazing. Depending on the residual stress,
There has been a problem that cracks starting from the corners of the holes 22a formed in the ceramic body 22 tend to occur and the production yield is poor.

【0009】このように、いずれの給電構造においても
製造歩留りが悪く、容易にかつ確実に内部電極との接続
が可能な給電構造を有するウエハ支持部材は未だ得られ
ていなかった。
As described above, in any of the power supply structures, the production yield is poor, and a wafer supporting member having a power supply structure capable of easily and reliably connecting to the internal electrodes has not been obtained yet.

【0010】[0010]

【課題を解決するための手段】そこで、上記課題に鑑
み、請求項1に係る発明は、電極を内蔵したセラミック
体の表面又は電極を内蔵した樹脂層を接合したセラミッ
ク体の表面に、上記電極の一部が露出する凹部を設け、
該凹部に給電端子を挿入するとともに、該給電端子と上
記凹部とを、導電性粒子を10〜90容量%の範囲で含
有する樹脂系接着剤からなる接着層にて接着固定して電
極内蔵体を構成したものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the invention according to claim 1 is directed to a method of forming the electrode on a surface of a ceramic body having a built-in electrode or a surface of a ceramic body joined with a resin layer having a built-in electrode. A concave portion where a part of is exposed,
A power supply terminal is inserted into the concave portion, and the power supply terminal and the concave portion are bonded and fixed with an adhesive layer made of a resin-based adhesive containing conductive particles in a range of 10 to 90% by volume. It is what constituted.

【0011】請求項2に係る発明は、上記導電性粒子と
して、金、銀、銅、錫、アルミニウムのうちの少なくと
も1種以上を用いたことを特徴とする。
According to a second aspect of the present invention, at least one of gold, silver, copper, tin, and aluminum is used as the conductive particles.

【0012】請求項3に係る発明は、上記樹脂系接着剤
を形成する樹脂として、エポキシ樹脂、シリコン樹脂、
フッ素樹脂のいずれか1種を用いたことを特徴とする。
According to a third aspect of the present invention, as the resin forming the resin-based adhesive, an epoxy resin, a silicon resin,
It is characterized by using any one of fluororesins.

【0013】請求項4に係る発明は、上記電極内蔵体を
形成する、電極を内蔵したセラミック体の表面又は電極
を内蔵した樹脂層の表面をウエハの設置面としてウエハ
支持部材を形成したことを特徴とする。
According to a fourth aspect of the present invention, the wafer supporting member is formed by setting the surface of the ceramic body having the built-in electrodes or the surface of the resin layer having the built-in electrodes as the mounting surface of the wafer. Features.

【0014】請求項5に係る発明は、請求項4に係るウ
エハ支持部材において、電極が、静電吸着用電極又はプ
ラズマ電極のいずれかであることを特徴とする。
According to a fifth aspect of the present invention, in the wafer supporting member according to the fourth aspect, the electrode is any one of an electrostatic attraction electrode and a plasma electrode.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0016】図1は本発明に係る電極内蔵体の一例であ
るウエハ支持部材を示す断面図である。
FIG. 1 is a sectional view showing a wafer supporting member which is an example of the electrode built-in body according to the present invention.

【0017】このウエハ支持部材1は、円盤状をしたセ
ラミック体2の上面をウエハの設置面3とするととも
に、上記セラミック体2中に電極4を埋設したもので、
上記セラミック体2の下面には、上記電極4と電気的に
接続される金属製の給電端子5を接合してある。
The wafer support member 1 has a disk-shaped ceramic body 2 as an upper surface serving as a wafer mounting surface 3 and an electrode 4 embedded in the ceramic body 2.
A metal power supply terminal 5 electrically connected to the electrode 4 is joined to the lower surface of the ceramic body 2.

【0018】また、図2に図1のウエハ支持部材におけ
る給電構造を拡大した断面図を示すように、セラミック
体2の下面には、電極4の一部が露出する凹部2aを形
成してあり、該凹部2aには給電端子5を挿入し、導電
性粒子を10〜90容量%の範囲で含有する樹脂系接着
剤からなる接着層6にて接着固定することにより、給電
端子5を電極4と電気的に接続してある。
FIG. 2 is an enlarged cross-sectional view of the power supply structure of the wafer support member shown in FIG. 1, and a concave portion 2a is formed on the lower surface of the ceramic body 2 so that a part of the electrode 4 is exposed. The power supply terminal 5 is inserted into the recess 2a, and is fixed by an adhesive layer 6 made of a resin-based adhesive containing conductive particles in a range of 10 to 90% by volume. It is electrically connected to

【0019】そして、このウエハ支持部材1に内蔵する
電極4を静電吸着用電極として用いる場合、設置面3に
半導体ウエハ等のウエハWを載せ、このウエハWと電極
4との間に電圧を引加することで、ウエハWと電極4と
の間に誘電分極によるクーロン力や微少な漏れ電流によ
るジョンソン・ラーベック力等の静電吸着力を発現さ
せ、ウエハWを設置面3に吸着固定させることができ、
また、電極4をプラズマ発生用電極として用いる場合、
設置面3の上方に設けた別のプラズマ発生用電極と電極
4との間に高周波電力を引加することで、両電極間にプ
ラズマを発生させることができる。
When the electrode 4 built in the wafer support member 1 is used as an electrode for electrostatic attraction, a wafer W such as a semiconductor wafer is placed on the installation surface 3 and a voltage is applied between the wafer W and the electrode 4. By applying the force, an electrostatic attraction force such as Coulomb force due to dielectric polarization or Johnson-Rahbek force due to a small leakage current is developed between the wafer W and the electrode 4 to attract and fix the wafer W to the installation surface 3. It is possible,
When the electrode 4 is used as a plasma generating electrode,
By applying high-frequency power between another electrode for plasma generation provided above the installation surface 3 and the electrode 4, plasma can be generated between the two electrodes.

【0020】また、本発明によれば、セラミック体2の
下面に穿孔した凹部2aに給電端子5を挿入し、樹脂系
接着剤からなる接着層6にて接着固定してあることか
ら、給電端子5の接合時にセラミック体2を破損させる
ようなことはなく、また、ウエハ支持部材1に使用中に
おいて、給電端子5とセラミック体2との接合部が別の
熱源によって加熱されたり、給電端子5に引加する電流
や高周波電力によって発熱したとしても、セラミック体
2を破損させることがない。
Further, according to the present invention, the power supply terminal 5 is inserted into the concave portion 2a formed in the lower surface of the ceramic body 2 and is adhered and fixed by the adhesive layer 6 made of a resin-based adhesive. 5 does not damage the ceramic body 2 at the time of bonding, and the joint between the power supply terminal 5 and the ceramic body 2 is heated by another heat source during use of the wafer support member 1 or the power supply terminal 5 is not heated. The ceramic body 2 is not damaged even if heat is generated by a current or high-frequency power applied to the ceramic body 2.

【0021】即ち、本発明によれば、セラミック体2と
金属からなる給電端子5との間の熱膨張差による応力が
発生したとしても、この応力を接着層6で吸収すること
ができるため、セラミック体2の破損を防止することが
できる。
That is, according to the present invention, even if a stress due to a difference in thermal expansion between the ceramic body 2 and the power supply terminal 5 made of metal is generated, the stress can be absorbed by the adhesive layer 6. Damage to the ceramic body 2 can be prevented.

【0022】また、接着層6を形成する樹脂系接着剤に
は導電性粒子を含有させて導電性を持たせてあることか
ら、長期間にわたり安定した通電を行うことができる。
Further, since the resin-based adhesive forming the adhesive layer 6 is made conductive by containing conductive particles, it is possible to stably supply electricity for a long period of time.

【0023】しかも、従来のようにホットプレス装置を
用いたり、ロウ付け等の高温に加熱する必要がないた
め、容易に製造することができる。
Further, since it is not necessary to use a hot press apparatus or heat to a high temperature such as brazing as in the conventional case, it is possible to manufacture easily.

【0024】ところで、給電端子5に引加された電力を
ロスなく電極4へ通電するためには、接着層6に十分な
導電性を持たせる必要があるが、導電性粒子の含有量が
10容量%を下回ると、給電端子5と電極4との間の抵
抗が大きくなって電力ロスを生じ易くなるとともに、接
合部が異常発熱し、接着層6を劣化させてしまうことに
なる。ただし、導電性粒子の含有量が90容量%を越え
ると、接着強度が低下し、給電端子5がセラミック体2
の凹部2aから落下する恐れがある。
In order to supply the electric power applied to the power supply terminal 5 to the electrode 4 without loss, the adhesive layer 6 must have sufficient conductivity. If the capacity is less than%, the resistance between the power supply terminal 5 and the electrode 4 becomes large and power loss is likely to occur. At the same time, the bonding portion generates abnormal heat and the adhesive layer 6 is deteriorated. However, if the content of the conductive particles exceeds 90% by volume, the adhesive strength decreases, and the power supply terminal 5 is connected to the ceramic body 2.
May fall from the concave portion 2a.

【0025】その為、十分な接着強度を維持しつつ、十
分な導電性を得るためには、接着層6を形成する樹脂系
接着剤に含有させる導電性粒子は、10〜90容量%の
範囲で含有することが良く、好ましくは20〜90容量
%の範囲で含有することが良い。
Therefore, in order to obtain a sufficient conductivity while maintaining a sufficient adhesive strength, the conductive particles contained in the resin-based adhesive forming the adhesive layer 6 must be in the range of 10 to 90% by volume. , And preferably in the range of 20 to 90% by volume.

【0026】また、導電性粒子の材質としては、導電率
が大きく、樹脂系接着剤との反応が小さく、しかも耐熱
性に優れたものが良く、例えば、金、銀、銅、錫、アル
ミニウムを用いることができる。特に、金、銀、銅は導
電率の点で好ましく、さらに樹脂系接着剤との反応が小
さい点で金と銀が望ましい。なお、導電性粒子の最大粒
子経は2〜50μmの範囲にあるものを用いることが好
ましい。
As the material of the conductive particles, those having a high conductivity, a small reaction with the resin-based adhesive, and an excellent heat resistance are preferable. For example, gold, silver, copper, tin, and aluminum may be used. Can be used. In particular, gold, silver, and copper are preferable in terms of electrical conductivity, and gold and silver are more preferable in that reaction with a resin-based adhesive is small. The conductive particles preferably have a maximum particle diameter in the range of 2 to 50 μm.

【0027】一方、接着層6を形成する樹脂系接着剤の
樹脂材としては、エポキシ樹脂、シリコン樹脂、フッ素
系樹脂及びこれらを混合した樹脂が、上述した導電性粒
子との反応が小さく、さらに耐熱性に優れるとともに、
経時変化が少ない点で好適である。
On the other hand, as the resin material of the resin-based adhesive forming the adhesive layer 6, epoxy resin, silicon resin, fluorine-based resin and a resin obtained by mixing these resins have a small reaction with the above-mentioned conductive particles, and Excellent heat resistance,
It is suitable in that there is little change with time.

【0028】また、−50℃〜200℃の温度範囲内に
おける熱サイクルや温度変化に対し、セラミック体2と
金属からなる給電端子5との熱膨張差による応力を吸収
し、セラミック体2の破損を防止するためには、接着層
6の弾性率を5〜90GPa、好ましくは10〜40G
Pa、望ましくは15〜35GPaとすることが良い。
In addition, due to a thermal cycle or a temperature change in a temperature range of -50 ° C. to 200 ° C., a stress due to a difference in thermal expansion between the ceramic body 2 and the power supply terminal 5 made of metal is absorbed, and the ceramic body 2 is damaged. In order to prevent this, the elastic modulus of the adhesive layer 6 is 5 to 90 GPa, preferably 10 to 40 GPa.
Pa, preferably 15 to 35 GPa.

【0029】なぜなら、接着層6の弾性率が5GPa未
満であると、−50℃〜200℃の温度範囲内における
熱サイクルや温度変化によって給電端子5の緩みが生じ
易く、給電端子5が脱落する恐れがあるからであり、逆
に接着層6の弾性率が90GPaを超えると、セラミッ
ク体2と金属からなる給電端子5との間の熱膨張差によ
る応力が吸収する効果が小さく、セラミック体2にクラ
ックが生じ易くなるからである。
If the elastic modulus of the adhesive layer 6 is less than 5 GPa, the power supply terminal 5 is easily loosened due to a heat cycle or a temperature change in a temperature range of -50 ° C. to 200 ° C., and the power supply terminal 5 falls off. On the contrary, if the elastic modulus of the adhesive layer 6 exceeds 90 GPa, the effect of absorbing the stress due to the difference in thermal expansion between the ceramic body 2 and the power supply terminal 5 made of metal is small, and the ceramic body 2 This is because cracks are more likely to occur.

【0030】ところで、セラミック体2を形成するセラ
ミックスとしては、アルミナ質焼結体、窒化珪素質焼結
体、窒化アルミニウム質焼結体等を用いることができ
る。
Incidentally, as ceramics forming the ceramic body 2, an alumina sintered body, a silicon nitride sintered body, an aluminum nitride sintered body, or the like can be used.

【0031】また、給電端子5を形成する金属として
は、セラミック体2との熱膨張差ができるだけ小さいも
のが良く、好ましくは熱膨張差が2×10-7/℃以下で
あるものが良く、例えばセラミック体2が窒化アルミニ
ウ質焼結体からなる場合、給電端子5はFe−Co−N
i合金を用いれば良い。
The metal forming the power supply terminal 5 preferably has a difference in thermal expansion from the ceramic body 2 as small as possible, and preferably has a difference in thermal expansion of 2 × 10 −7 / ° C. or less. For example, when the ceramic body 2 is made of an aluminum nitride sintered body, the power supply terminal 5 is made of Fe—Co—N
An i-alloy may be used.

【0032】なお、セラミック体2に形成する凹部2a
の形状としては特に限定するものではないが、円形であ
るものが製作性の点で好ましい。ただし、凹部2aの内
径が15mmを超えると、切削加工時に凹部2aの開口
エッジ部に欠けやクラックが発生し易くなり、逆に凹部
2aの内径が1.5mmより小さくなると、給電端子5
の径が小さくなり、リード線の取り付けにあたってネジ
止め等の手段にて簡単に取り付けることができなくなる
といった不都合がある。
The recess 2a formed in the ceramic body 2
The shape is not particularly limited, but a circular shape is preferable in terms of manufacturability. However, if the inner diameter of the concave portion 2a exceeds 15 mm, chipping or cracking is likely to occur at the opening edge of the concave portion 2a during cutting, and conversely, if the internal diameter of the concave portion 2a is smaller than 1.5 mm, the power supply terminal 5
Has a disadvantage that the diameter of the lead wire becomes small, so that the lead wire cannot be easily attached by means such as screwing.

【0033】その為、セラミック体2に形成する凹部2
aの内径は1.5〜15mmの円形孔とすることが良
い。
Therefore, the concave portion 2 formed in the ceramic body 2
The inner diameter of a is preferably a circular hole of 1.5 to 15 mm.

【0034】また、セラミック体2の凹部2aに挿入す
る給電端子5は、その挿入部5aの外径を、凹部2aの
内径との差が0.05〜0.3mmとなるようにするこ
とが良い。
The outer diameter of the insertion portion 5a of the power supply terminal 5 inserted into the concave portion 2a of the ceramic body 2 is set so that the difference from the inner diameter of the concave portion 2a is 0.05 to 0.3 mm. good.

【0035】これは、凹部2aの内径と挿入部5aの外
径との差が0.05mm未満では、挿入部5aを凹部2
a内に挿入することが難しく、凹部2aのコーナー部等
よりセラミック体2にクラックを発生させる恐れがある
からであり、逆に凹部2aの内径と挿入部5aの外径と
の差が0.3mmを超えると、給電端子5とセラミック
体2に設けられた凹部2aの間の接着層6の層厚みが大
きくなり、温度サイクルによる接着層6の膨張や収縮
が、給電端子5と凹部2aとの間隔の変化に対して追従
することができず、接着層6が凹部2aより剥離する恐
れがあるからである。
When the difference between the inner diameter of the recess 2a and the outer diameter of the insertion portion 5a is less than 0.05 mm, the insertion portion 5a is
This is because it is difficult to insert the inside of the concave portion 2a, and there is a possibility that cracks may be generated in the ceramic body 2 from the corners of the concave portion 2a or the like. When the thickness exceeds 3 mm, the thickness of the adhesive layer 6 between the power supply terminal 5 and the concave portion 2a provided in the ceramic body 2 increases, and the expansion and contraction of the adhesive layer 6 due to the temperature cycle are caused by the power supply terminal 5 and the concave portion 2a. This is because the adhesive layer 6 may not be able to follow the change in the distance, and the adhesive layer 6 may peel off from the concave portion 2a.

【0036】次に、給電端子5の接合方法について説明
する。
Next, a method of joining the power supply terminals 5 will be described.

【0037】まず、電極4を埋設したセラミック体2を
用意する。なお、セラミック体2は、セラミックグリー
ンシートを複数枚積み重ね、あるセラミックグリーンシ
ート間に導体層を形成しておいたグリーンシート積層体
を焼成することにより形成したものや、生のセラミック
成形体上に導体層を配置し、該導体層を覆うように生の
セラミック成形体上にセラミック粉末を充填し、圧力を
加えて導体層を埋設した生のセラミック成形体を形成し
たあと焼成することにより形成したもの、あるいは上記
導体層を覆うように生のセラミック成形体上にセラミッ
ク粉末を充填し、圧力を加えながら加熱して焼成するこ
とにより形成したものでも構わない。
First, a ceramic body 2 having electrodes 4 embedded therein is prepared. The ceramic body 2 is formed by stacking a plurality of ceramic green sheets and firing a green sheet laminate in which a conductor layer is formed between certain ceramic green sheets, or on a raw ceramic molded body. A conductor layer was arranged, and the green ceramic molded body was filled with ceramic powder so as to cover the conductor layer, pressure was applied to form a green ceramic molded body in which the conductor layer was buried, and then firing was performed. It may be formed by filling ceramic powder on a green ceramic molded body so as to cover the above-mentioned conductor layer, heating and firing while applying pressure.

【0038】そして、セラミック体2の表面に研削加工
にて電極4の一部が露出する凹部2aを穿孔する。この
凹部2aの形成にあたっては、円柱状体の外周にダイヤ
モンド砥粒を電着等にて固着した工具を用い、セラミッ
ク体2にクラックを発生させないようにするため、送り
速度を1mm/分以下の速度で行うことが好ましい。
Then, a concave portion 2a where a part of the electrode 4 is exposed is drilled in the surface of the ceramic body 2 by grinding. In forming the concave portion 2a, a feed rate of 1 mm / min or less is used to prevent cracks from being generated in the ceramic body 2 by using a tool in which diamond abrasive grains are fixed to the outer periphery of the columnar body by electrodeposition or the like. It is preferred to work at speed.

【0039】次に、この穿孔した凹部2aの内壁面(電
極4の露出部も含む)に、導電性粒子を10〜90容量
%の範囲で含有する樹脂系接着剤を塗布し、給電端子5
の挿入部5aを凹部2a内に挿入する。しかる後、24
時間以上室温で樹脂系接着剤を硬化させるか、あるいは
150℃以下の温度で6時間程加熱して樹脂系接着剤を
硬化させて接着層6を形成すれば良い。
Next, a resin adhesive containing conductive particles in a range of 10 to 90% by volume is applied to the inner wall surface (including the exposed portion of the electrode 4) of the perforated concave portion 2a.
Is inserted into the recess 2a. After a while, 24
The adhesive layer 6 may be formed by curing the resin-based adhesive at room temperature for at least one hour, or by heating the resin-based adhesive at a temperature of 150 ° C. or less for about 6 hours to cure the resin-based adhesive.

【0040】このように、本発明によれば、大きな熱を
加える必要がないことから、セラミック体2と金属から
なる給電端子5との熱膨張差による応力によってセラミ
ック体2を破損させることなく、容易に製造することが
できる。
As described above, according to the present invention, since it is not necessary to apply a large amount of heat, the ceramic body 2 is not damaged by stress caused by a difference in thermal expansion between the ceramic body 2 and the power supply terminal 5 made of metal. It can be easily manufactured.

【0041】以上、本発明の実施形態について説明した
が、本発明は図1に示したものだけに限定されるもので
はなく、例えば、図3や図4に示す電極内蔵体にも適用
することができる。
The embodiment of the present invention has been described above. However, the present invention is not limited to the embodiment shown in FIG. 1, but may be applied to, for example, the electrode built-in body shown in FIGS. Can be.

【0042】図3は、本発明に係る電極内蔵体からなる
ウエハ支持部材の他の例を示す断面図で、電極4を内蔵
したセラミック体2が、セラミック焼結体やサファイア
からなる誘電体層11の上面をウエハの設置面3とし、
上記誘電体層11の下面に電極4を、メッキ法やメタラ
イズ法、あるいはCVD法、PVD法、スパッタリング
法等の成膜手段にて形成し、上記電極4を覆うように上
記誘電体層11の下面に、セラミック焼結体からなるベ
ース12を接着剤やロウ材にて接合した接合構造体から
なる以外は図1と同様の構造をしたもので、図2に示す
給電構造にて給電端子5を接合してある。
FIG. 3 is a cross-sectional view showing another example of a wafer support member comprising an electrode-containing body according to the present invention, wherein a ceramic body 2 containing an electrode 4 is a dielectric layer made of a ceramic sintered body or sapphire. 11 is an installation surface 3 of the wafer,
An electrode 4 is formed on the lower surface of the dielectric layer 11 by a plating method, a metallization method, or a film forming means such as a CVD method, a PVD method, and a sputtering method. The lower surface has the same structure as that of FIG. 1 except that it has a joint structure in which a base 12 made of a ceramic sintered body is joined with an adhesive or a brazing material. Are joined.

【0043】また、図4は、本発明に係る電極内蔵体か
らなるウエハ支持部材のさらに他の例を示す断面図で、
電極4を内蔵したセラミック体2が、電極4を埋設した
樹脂層13の上面をウエハの設置面3とするとともに、
樹脂層13の下面に、セラミック焼結体からなるベース
12を接着剤やロウ材にて接合した接合構造体からなる
以外は図1と同様の構造をしたもので、図2に示す給電
構造にて給電端子5を接合してある。
FIG. 4 is a cross-sectional view showing still another example of a wafer support member comprising an electrode-containing body according to the present invention.
The upper surface of the resin layer 13 in which the electrodes 4 are buried is used as the wafer mounting surface 3 by the ceramic body 2 having the electrodes 4 embedded therein.
The structure is the same as that shown in FIG. 1 except that the base 12 made of a ceramic sintered body is joined to the lower surface of the resin layer 13 with an adhesive or a brazing material. And the power supply terminal 5 is joined.

【0044】また、本実施形態ではウエハ支持部材を例
にとって説明したが、この他に、オゾン発生器、静電吸
着部材、酸素センサー、気化装置、ダイボンディング装
置等の電極内蔵体にも適用できることは言う迄もない。
In this embodiment, the wafer support member is described as an example. However, the present invention is also applicable to an electrode built-in body such as an ozone generator, an electrostatic adsorption member, an oxygen sensor, a vaporizer, and a die bonding device. Needless to say.

【0045】[0045]

【実施例】以下、本発明の具体例をウエハ支持部材を例
にとって説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a first embodiment of the present invention.

【0046】まず、セラミック体2を形成するため、平
均粒子径が1.2μm程度である純度99.0%のAl
N粉末に、バインダー及び溶媒のみを添加混合して泥漿
を製作した後、ドクターブレード法にて厚さ0.5mm
程度のAlNグリーンシートを複数枚製作し、このう
ち、数枚のAlNグリーンシートを積層した後、その表
面にスクリーン印刷法でもってタングステン粉末に若干
のAlN粉末を混ぜた金属ペーストからなる半円状膜を
円形に敷設し、さらに残りのAlNグリーンシートを積
み重ね、50kg/cm2の圧力で加圧圧着してグリー
ンシート積層体を形成した。その後、切削加工を施して
円板状とした後、窒素雰囲気下で2000℃程度の焼成
温度で2時間程度焼成することにより、純度99.0%
の窒化アルミニウム質焼結体からなり、その内部に電極
を埋設したセラミック体を得た。
First, in order to form the ceramic body 2, Al having a mean particle diameter of about 1.2 μm and a purity of 99.0% was used.
N powder was mixed with only a binder and a solvent to produce a slurry, and then 0.5 mm thick by a doctor blade method.
A plurality of AlN green sheets are manufactured, and several AlN green sheets are laminated, and then a semi-circular metal paste made by mixing a small amount of AlN powder with tungsten powder by a screen printing method on the surface. The film was laid in a circular shape, and the remaining AlN green sheets were further stacked and pressed under a pressure of 50 kg / cm 2 to form a green sheet laminate. Then, after performing a cutting process to obtain a disc shape, the product is fired at a firing temperature of about 2000 ° C. for about 2 hours in a nitrogen atmosphere to obtain a purity of 99.0%.
And a ceramic body having electrodes embedded therein was obtained.

【0047】しかる後、セラミック体の外径を約200
mm、厚みを8mmとした後、セラミック体の一方の主
面(最も広い面)に、研摩加工を施して中心線平均粗さ
(Ra)0.8μmの鏡面に仕上げて設置面を形成する
とともに、セラミック体の他方の主面に電極の一部が露
出する円形の凹部を研削加工にて穿孔し、凹部中に、導
電性粒子として最大粒子径が20μmのAgを用い、1
0容量%の割合で添加したエポキシ系接着剤を塗布し、
Fe−Co−Ni系合金からなる給電端子を挿入した
後、150℃の温度で加熱硬化させて接着層を形成し、
給電端子を凹部内に接着固定することによりウエハ支持
部材を製作した。
Thereafter, the outer diameter of the ceramic body was reduced to about 200
mm and a thickness of 8 mm, one main surface (the widest surface) of the ceramic body is polished to a mirror surface having a center line average roughness (Ra) of 0.8 μm to form an installation surface. In the other main surface of the ceramic body, a circular concave portion where a part of the electrode is exposed is pierced by grinding, and Ag having a maximum particle diameter of 20 μm is used as the conductive particle in the concave portion.
Apply an epoxy adhesive added at a rate of 0% by volume,
After inserting a power supply terminal made of an Fe-Co-Ni-based alloy, the mixture is heated and cured at a temperature of 150 ° C to form an adhesive layer,
A wafer support member was manufactured by adhesively fixing the power supply terminal in the recess.

【0048】このようにして製作したウエハ支持部材
は、給電端子の接合時にセラミック体を破損させること
がなく、容易に製作することができた。
The wafer supporting member manufactured as described above could be easily manufactured without damaging the ceramic body at the time of joining the power supply terminals.

【0049】[0049]

【実験例】(実験例1)そこで、実施例のウエハ支持部
材のうち、接着層を形成するエポキシ系接着剤に含有さ
せる導電性粒子の割合を異ならせた時の給電端子と電極
との間の抵抗値、給電端子の引っ張り強度、ウエハ支持
部材に熱サイクルを加えた時の通電不良の発生率につい
てそれぞれ調べる実験を行った。
[Experimental example] (Experimental example 1) Therefore, in the wafer support member of the embodiment, when the ratio of the conductive particles contained in the epoxy-based adhesive forming the adhesive layer was changed, the distance between the power supply terminal and the electrode was changed. An experiment was conducted to examine the resistance value, the tensile strength of the power supply terminal, and the occurrence rate of energization failure when a thermal cycle was applied to the wafer support member.

【0050】そして、本実験では、給電端子と電極との
間の抵抗値が0.5Ω以下であるものを良好とし、○で
示し、0.5Ωを超えるものは不良とし、×で示した。
また、給電端子の引っ張り強度においては、引っ張り強
度が9.8N以上であるものを良好とし、○で示し、
9.8N未満であるものを不良とし、×で示した。さら
に、ウエハ支持部材に熱サイクルを加えた時の通電不良
の発生率については、各試料をそれぞれ20個ずつ用意
し、昇降温レートを50℃/分とし、−50℃と200
℃でそれぞれ10分間保持する温度サイクルを1000
サイクル実施後に、さらに200℃に加熱して1000
時間保持した後、給電端子と電極との間の抵抗を測定
し、初期の抵抗値に対する変化率を1%以下とできなか
ったものの発生率を示し、この発生率が5%以下である
ものを良好とした。
In this experiment, those having a resistance value of 0.5Ω or less between the power supply terminal and the electrode were regarded as good, indicated by ○, and those exceeding 0.5Ω were regarded as defective, and indicated by ×.
Regarding the tensile strength of the power supply terminal, those having a tensile strength of 9.8 N or more were regarded as good, indicated by ○,
Those having a value of less than 9.8 N were regarded as defective and indicated by x. Further, regarding the incidence rate of energization failure when a thermal cycle was applied to the wafer supporting member, 20 samples were prepared for each sample, and the temperature rising / falling rate was set to 50 ° C./min.
Temperature cycle for 10 minutes each at 1000C
After performing the cycle, heat to 200 ° C.
After holding for a period of time, the resistance between the power supply terminal and the electrode was measured, and the rate of change in the initial resistance value could not be reduced to 1% or less. Good.

【0051】それぞれの結果は表1に示す通りである。
なお、給電端子と電極との間の抵抗値は四端子法により
測定した。
The results are as shown in Table 1.
The resistance between the power supply terminal and the electrode was measured by a four-terminal method.

【0052】[0052]

【表1】 [Table 1]

【0053】この結果、試料No.2〜9のように、導
電性粒子の含有量が10〜90容量%の範囲あるもの
は、いずれも給電端子と電極との間の抵抗値を0.5Ω
以下とすることができ、十分な導電性が得られるととも
に、−50℃から200℃の熱サイクルに対しても抵抗
値変化が少なく、熱サイクルによる導通不良発生率も5
%以下と少なく、さらに、給電端子を強固に接合するこ
とができ、優れていた。
As a result, Sample No. In the case where the content of the conductive particles is in the range of 10 to 90% by volume, such as 2 to 9, the resistance between the power supply terminal and the electrode is 0.5 Ω.
Or less, sufficient conductivity is obtained, the resistance change is small even in a heat cycle from -50 ° C to 200 ° C, and the rate of occurrence of conduction failure due to the heat cycle is 5%.
% Or less, and the power supply terminal can be firmly joined, which is excellent.

【0054】この結果、接合層を形成する樹脂中に含有
させる導電性粒子の含有量は10〜90容量%の範囲で
含有すれば良いことが判る。
As a result, it is understood that the content of the conductive particles contained in the resin forming the bonding layer should be in the range of 10 to 90% by volume.

【0055】(実験例2)次に、接着層を形成する樹脂
の種類及び導電性粒子の種類をそれぞれ異ならせ、実験
例1と同様の実験を行った。
(Experimental Example 2) Next, the same experiment as in Experimental Example 1 was performed, except that the kind of the resin forming the adhesive layer and the kind of the conductive particles were different.

【0056】それぞれの結果は表2に示す通りである。The results are as shown in Table 2.

【0057】[0057]

【表2】 [Table 2]

【0058】この結果、試料No.12〜14,16,
17,19,20,24のように、導電性粒子として
金、銀、銅、錫、アルミニウムを用いるとともに、導電
性接着剤を形成する樹脂成分として、エポキシ樹脂、シ
リコン樹脂、フッ素樹脂のいづれか1種を用いることに
より、給電端子と電極との間の抵抗値を0.5Ω以下と
することができ、十分な導電性が得られるとともに、−
50℃から200℃の熱サイクル試験に対しても抵抗値
の変化が少なく、導通不良率を5%以下に抑えることが
でき、さらに、給電端子を強固に接合することができる
ことが判る。
As a result, Sample No. 12-14,16,
17, 19, 20, and 24, gold, silver, copper, tin, and aluminum are used as the conductive particles, and one of an epoxy resin, a silicon resin, and a fluororesin is used as a resin component that forms the conductive adhesive. By using the seed, the resistance between the power supply terminal and the electrode can be reduced to 0.5Ω or less, sufficient conductivity can be obtained, and −
It can be seen that even in a thermal cycle test at 50 ° C. to 200 ° C., the change in resistance value is small, the conduction failure rate can be suppressed to 5% or less, and the power supply terminal can be firmly joined.

【0059】この結果、接合層を形成する樹脂系接着剤
中に含有させる導電性粒子は、金、銀、銅、錫、アルミ
ニウムを用いるとともに、樹脂系接着剤を形成する樹脂
成分は、エポキシ樹脂、シリコン樹脂、フッ素樹脂のい
づれか1種を用いることが良い。
As a result, gold, silver, copper, tin, and aluminum are used as the conductive particles contained in the resin adhesive forming the bonding layer, and the resin component forming the resin adhesive is epoxy resin. , Silicon resin, or fluororesin is preferably used.

【0060】[0060]

【発明の効果】以上のように、本発明によれば、電極を
内蔵したセラミック体の表面又は電極を内蔵した樹脂層
を接合したセラミック体の表面に、上記電極の一部が露
出する凹部を設け、該凹部に給電端子を挿入するととも
に、該給電端子と上記凹部とを、導電性粒子を10〜9
0容量%の範囲で含有する樹脂系接着剤からなる接着層
にて接着固定して電極内蔵体を構成したことから、給電
端子と電極との間の十分な導電性が得られ、かつ−50
度〜200度の温度範囲で熱サイクルが加わったとして
もセラミック体を破損させることなく確実に給電端子を
接合することができる。しかも、給電端子の接合時に大
きな熱を加える必要がないため、給電端子の接続を容易
に行うことができる。
As described above, according to the present invention, a concave portion in which a part of the electrode is exposed is formed on the surface of the ceramic body containing the electrode or the surface of the ceramic body joined with the resin layer containing the electrode. A power supply terminal is inserted into the concave portion, and the power supply terminal and the concave portion are connected with conductive particles by 10 to 9 times.
Since the electrode built-in body was formed by adhering and fixing with an adhesive layer made of a resin adhesive contained in the range of 0% by volume, sufficient conductivity between the power supply terminal and the electrode was obtained, and -50 was obtained.
Even if a heat cycle is applied in a temperature range of degrees to 200 degrees, the power supply terminal can be securely joined without damaging the ceramic body. In addition, since it is not necessary to apply a large amount of heat when joining the power supply terminals, the connection of the power supply terminals can be easily performed.

【0061】特に、上記導電性粒子として、金、銀、
銅、錫、アルミニウムのうちの少なくとも1種以上を用
いるとともに、樹脂系接着剤を形成する樹脂として、エ
ポキシ樹脂、シリコン樹脂、フッ素樹脂のいずれか1種
を用いれば上記効果を効果的に達成することができる。
In particular, as the conductive particles, gold, silver,
The effect described above can be effectively achieved by using at least one of copper, tin, and aluminum and using any one of an epoxy resin, a silicon resin, and a fluororesin as a resin forming the resin-based adhesive. be able to.

【0062】その為、本発明の電極内蔵体を用いて電極
が静電吸着用電極又はプラズマ電極からなるウエハ支持
部材を形成すれば、電極が静電吸着用電極である時に
は、ウエハを吸着固定するのに十分な静電気力を発生さ
せることができ、また電極がプラズマ電極である時に
は、各種処理を行うのに十分なプラスマを発生させるこ
とができる。
Therefore, if a wafer supporting member is formed using an electrode for electrostatic attraction or a plasma electrode using the electrode built-in body of the present invention, when the electrode is an electrode for electrostatic attraction, the wafer is attracted and fixed. When the electrode is a plasma electrode, it is possible to generate sufficient plasma for performing various processes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電極内蔵体の一例であるウエハ支
持部材を示す断面図である。
FIG. 1 is a cross-sectional view showing a wafer support member as an example of an electrode-containing body according to the present invention.

【図2】図1のウエハ支持部材における給電構造を拡大
した断面図である。
FIG. 2 is an enlarged sectional view of a power supply structure in the wafer support member of FIG.

【図3】本発明に係るウエハ支持部材の他の例を示す断
面図である。
FIG. 3 is a sectional view showing another example of the wafer support member according to the present invention.

【図4】本発明に係るウエハ支持部材のさらに他の例を
示す断面図である。
FIG. 4 is a sectional view showing still another example of the wafer support member according to the present invention.

【図5】従来の電極内蔵体の一例であるウエハ支持部材
を示す断面図である。
FIG. 5 is a cross-sectional view showing a wafer support member as an example of a conventional electrode built-in body.

【図6】図5のウエハ支持部材における給電構造の一例
を示す拡大断面図である。
FIG. 6 is an enlarged cross-sectional view showing an example of a power supply structure in the wafer support member of FIG.

【図7】図5のウエハ支持部材における給電構造の他の
例を示す拡大断面図である。
FIG. 7 is an enlarged sectional view showing another example of the power supply structure in the wafer support member of FIG.

【符号の説明】[Explanation of symbols]

1,21:ウエハ支持部材 2,22:セラミック体
2a,22a:凹部 3,23:設置面 4,24:電極 5,25:給電端
子 6:接着層
1,21: Wafer support member 2,22: Ceramic body
2a, 22a: concave portion 3, 23: installation surface 4, 24: electrode 5, 25: power supply terminal 6: adhesive layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電極を内蔵したセラミック体の表面又は電
極を内蔵した樹脂層を接合したセラミック体の表面に、
上記電極の一部が露出する凹部を設け、該凹部に給電端
子を挿入するとともに、該給電端子と上記凹部とを、導
電性粒子を10〜90容量%の範囲で含有する樹脂系接
着剤からなる接着層にて接着固定したことを特徴とする
電極内蔵体。
1. The method according to claim 1, wherein the surface of the ceramic body including the electrodes or the surface of the ceramic body to which the resin layer including the electrodes is bonded is provided
The power supply terminal is inserted into the concave portion, and the power supply terminal and the concave portion are formed from a resin adhesive containing conductive particles in a range of 10 to 90% by volume. A built-in electrode body characterized by being adhered and fixed by an adhesive layer.
【請求項2】上記導電性粒子が、金、銀、銅、錫、アル
ミニウムのうちの少なくとも1種以上からなることを特
徴とする請求項1に記載の電極内蔵体。
2. The electrode built-in body according to claim 1, wherein said conductive particles are made of at least one of gold, silver, copper, tin and aluminum.
【請求項3】上記樹脂系接着剤を形成する樹脂が、エポ
キシ樹脂、シリコン樹脂、フッ素樹脂のいずれか1種か
らなることを特徴とする請求項1又は請求項2に記載の
電極内蔵体。
3. The electrode built-in body according to claim 1, wherein the resin forming the resin-based adhesive is any one of an epoxy resin, a silicon resin, and a fluororesin.
【請求項4】請求項1乃至請求項3のいずれかに記載の
電極内蔵体を形成する電極を内蔵したセラミック体の表
面又は電極を内蔵した樹脂層の表面をウエハの設置面と
することを特徴とするウエハ支持部材。
4. The wafer mounting surface according to claim 1, wherein the surface of the ceramic body or the surface of the resin layer containing the electrodes that forms the electrode built-in body according to claim 1 is used as the wafer mounting surface. A wafer support member characterized by the following.
【請求項5】上記電極が、静電吸着用電極又はプラズマ
電極のいずれかであることを特徴とする請求項4に記載
のウエハ支持部材。
5. The wafer supporting member according to claim 4, wherein said electrode is one of an electrostatic attraction electrode and a plasma electrode.
JP2000333837A 2000-10-31 2000-10-31 Electrode built-in body and wafer support member using the same Expired - Fee Related JP4548928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333837A JP4548928B2 (en) 2000-10-31 2000-10-31 Electrode built-in body and wafer support member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333837A JP4548928B2 (en) 2000-10-31 2000-10-31 Electrode built-in body and wafer support member using the same

Publications (2)

Publication Number Publication Date
JP2002141404A true JP2002141404A (en) 2002-05-17
JP4548928B2 JP4548928B2 (en) 2010-09-22

Family

ID=18809856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333837A Expired - Fee Related JP4548928B2 (en) 2000-10-31 2000-10-31 Electrode built-in body and wafer support member using the same

Country Status (1)

Country Link
JP (1) JP4548928B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287213A (en) * 2005-03-07 2006-10-19 Ngk Spark Plug Co Ltd Electrostatic chuck, electrostatic chuck device, and method of fabricating electrostatic chuck, vacuum chuck, vacuum chuck device and method of fabricating vacuum chuck, and ceramic heater, ceramic heater device and method of fabricating ceramic heater
KR100775884B1 (en) 2005-10-28 2007-11-15 니뽄 가이시 가부시키가이샤 Jointing structure between ceramic substrate and power supply connector
JP2008305968A (en) * 2007-06-07 2008-12-18 Sei Hybrid Kk Electrode connection structure of wafer holder
JP2012527125A (en) * 2009-05-15 2012-11-01 インテグリス・インコーポレーテッド Electrostatic chuck with polymer protrusions
US8861170B2 (en) 2009-05-15 2014-10-14 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
JP2015058904A (en) * 2013-09-20 2015-03-30 ダイキョーニシカワ株式会社 Formation method of conductive circuit to vehicular window panel
US9025305B2 (en) 2010-05-28 2015-05-05 Entegris, Inc. High surface resistivity electrostatic chuck
US9543187B2 (en) 2008-05-19 2017-01-10 Entegris, Inc. Electrostatic chuck
CN108701642A (en) * 2016-03-04 2018-10-23 应用材料公司 Substrate support for high-temperature technology
WO2020004564A1 (en) * 2018-06-28 2020-01-02 京セラ株式会社 Method for producing member for semiconductor production apparatuses, and member for semiconductor production apparatuses
JP2020155708A (en) * 2019-03-22 2020-09-24 京セラ株式会社 Wafer mounting structure, wafer mounting device using wafer mounting structure, and substrate structure
KR20210065895A (en) 2018-09-27 2021-06-04 스미토모 오사카 세멘토 가부시키가이샤 electrostatic chuck device
KR102479488B1 (en) * 2021-12-08 2022-12-21 주식회사 미코세라믹스 Cryogenic susceptor and electrical connector assembly for electrodes used therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236000A (en) * 1999-02-17 2000-08-29 Mitsui High Tec Inc Bump for connecting with outside
JP2000332091A (en) * 1999-05-25 2000-11-30 Toto Ltd Electrostatic chuck and treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236000A (en) * 1999-02-17 2000-08-29 Mitsui High Tec Inc Bump for connecting with outside
JP2000332091A (en) * 1999-05-25 2000-11-30 Toto Ltd Electrostatic chuck and treatment device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287213A (en) * 2005-03-07 2006-10-19 Ngk Spark Plug Co Ltd Electrostatic chuck, electrostatic chuck device, and method of fabricating electrostatic chuck, vacuum chuck, vacuum chuck device and method of fabricating vacuum chuck, and ceramic heater, ceramic heater device and method of fabricating ceramic heater
KR100775884B1 (en) 2005-10-28 2007-11-15 니뽄 가이시 가부시키가이샤 Jointing structure between ceramic substrate and power supply connector
JP2008305968A (en) * 2007-06-07 2008-12-18 Sei Hybrid Kk Electrode connection structure of wafer holder
US10395963B2 (en) 2008-05-19 2019-08-27 Entegris, Inc. Electrostatic chuck
US9543187B2 (en) 2008-05-19 2017-01-10 Entegris, Inc. Electrostatic chuck
JP2012527125A (en) * 2009-05-15 2012-11-01 インテグリス・インコーポレーテッド Electrostatic chuck with polymer protrusions
US8861170B2 (en) 2009-05-15 2014-10-14 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
US8879233B2 (en) 2009-05-15 2014-11-04 Entegris, Inc. Electrostatic chuck with polymer protrusions
US9721821B2 (en) 2009-05-15 2017-08-01 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
US9025305B2 (en) 2010-05-28 2015-05-05 Entegris, Inc. High surface resistivity electrostatic chuck
JP2015058904A (en) * 2013-09-20 2015-03-30 ダイキョーニシカワ株式会社 Formation method of conductive circuit to vehicular window panel
CN108701642A (en) * 2016-03-04 2018-10-23 应用材料公司 Substrate support for high-temperature technology
CN108701642B (en) * 2016-03-04 2023-07-14 应用材料公司 Substrate support assembly for high temperature processes
WO2020004564A1 (en) * 2018-06-28 2020-01-02 京セラ株式会社 Method for producing member for semiconductor production apparatuses, and member for semiconductor production apparatuses
JPWO2020004564A1 (en) * 2018-06-28 2021-07-15 京セラ株式会社 Manufacturing method of semiconductor manufacturing equipment members and semiconductor manufacturing equipment members
US11472748B2 (en) 2018-06-28 2022-10-18 Kyocera Corporation Manufacturing method for a member for a semiconductor manufacturing device and member for a semiconductor manufacturing device
KR20210065895A (en) 2018-09-27 2021-06-04 스미토모 오사카 세멘토 가부시키가이샤 electrostatic chuck device
US11318572B2 (en) 2018-09-27 2022-05-03 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
JP2020155708A (en) * 2019-03-22 2020-09-24 京セラ株式会社 Wafer mounting structure, wafer mounting device using wafer mounting structure, and substrate structure
JP7339753B2 (en) 2019-03-22 2023-09-06 京セラ株式会社 Wafer mounting structure, wafer mounting apparatus and base structure using wafer mounting structure
KR102479488B1 (en) * 2021-12-08 2022-12-21 주식회사 미코세라믹스 Cryogenic susceptor and electrical connector assembly for electrodes used therefor
WO2023106445A1 (en) * 2021-12-08 2023-06-15 주식회사 미코세라믹스 Cryogenic susceptor and electric connector assembly used therein

Also Published As

Publication number Publication date
JP4548928B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
KR100681253B1 (en) Support member for wafer
JP3323135B2 (en) Electrostatic chuck
KR101099891B1 (en) Body having a junction and method of manufacturing the same
JP6497248B2 (en) Wafer holder
JP3447495B2 (en) Power supply structure of wafer holding device
JPH11168134A (en) Electrostatic attracting device and manufacture thereof
EP0764342A1 (en) Electrostatic chuck
US7672111B2 (en) Electrostatic chuck and method for manufacturing same
KR100553444B1 (en) Susceptors and the methods of manufacturing them
JP2002141404A (en) Material having built-in electrode and wafer supporting member using the same
JP4331983B2 (en) Wafer support member and manufacturing method thereof
EP1300871A2 (en) Semiconductor processing apparatus and electrode member therefor
JP4275682B2 (en) Electrostatic chuck
JP3685962B2 (en) Susceptor and manufacturing method thereof
JP2005012144A (en) Electrostatic chuck
JP2001287982A (en) Susceptor and method for producing the same
JP2836986B2 (en) Electrostatic chuck and method of manufacturing the same
JP2003086519A (en) Supporter of object to be treated, manufacturing method and treatment device thereof
JP4454505B2 (en) Wafer support member
JP2003086663A (en) Holder of article being processed, processing unit and ceramic susceptor for semiconductor manufacturing device
JP3370489B2 (en) Electrostatic chuck
JP4502462B2 (en) Wafer support member and manufacturing method thereof
JP2002170871A (en) Electrostatic chuck
JP4184829B2 (en) Manufacturing method of electrostatic chuck
JP3854145B2 (en) Wafer support member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4548928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees