JP4548928B2 - Electrode built-in body and wafer support member using the same - Google Patents

Electrode built-in body and wafer support member using the same Download PDF

Info

Publication number
JP4548928B2
JP4548928B2 JP2000333837A JP2000333837A JP4548928B2 JP 4548928 B2 JP4548928 B2 JP 4548928B2 JP 2000333837 A JP2000333837 A JP 2000333837A JP 2000333837 A JP2000333837 A JP 2000333837A JP 4548928 B2 JP4548928 B2 JP 4548928B2
Authority
JP
Japan
Prior art keywords
electrode
resin
ceramic body
recess
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000333837A
Other languages
Japanese (ja)
Other versions
JP2002141404A (en
Inventor
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000333837A priority Critical patent/JP4548928B2/en
Publication of JP2002141404A publication Critical patent/JP2002141404A/en
Application granted granted Critical
Publication of JP4548928B2 publication Critical patent/JP4548928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電極を内蔵したセラミック体や電極を内蔵した樹脂層を接合したセラミック体に、上記電極と電気的に接続される給電端子を備えた電極内蔵体とこれを用いたウエハ支持部材に関するものである。
【0002】
【従来の技術】
従来、オゾン発生器、静電吸着部材、酸素センサー、気化装置、ダイボンディング装置等には、セラミック体や樹脂層中に電極を内蔵した電極内蔵体が使用されている。
【0003】
例えば、半導体製造プロセスでは、ドライ化が急速に進み、エッチング装置、プラズマCVD装置、プラズマPVD装置、イオン注入装置、電子ビーム描画装置、イオンビーム描画装置、X線描画装置等の半導体製造装置では、半導体ウエハ(以下、ウエハという)を真空雰囲気中で処理するため、静電チャックやサセプタなどのウエハ支持部材が使用されている。
【0004】
図5に従来のウエハ支持部材の一例を示すように、このウエハ支持部材21は、円盤状をしたセラミック体22の上面をウエハWの設置面23とするとともに、上記セラミック体22中に電極24を埋設したもので、上記セラミック体22の下面には、上記電極24と電気的に接続される金属製の給電端子25を接合してある。
【0005】
また、上記ウエハ支持部材21を形成する板状セラミック体22と給電端子25とを接合する手段として、特開平5−101871号公報には、図6に示すように、電極24と給電ブロック体26をワイヤ27を介して電気的に接続したものを金型内に設置し、この金型内にセラミック原料を充填してホットプレスによって焼結させることにより、ワイヤ27によって電気的に接続された電極24と給電ブロック体26を一体的に埋設してなるセラミック体22を製作し、該セラミック体22の表面に露出する給電ブロック体26の雌ねじ部26aに給電端子25の雄ねじ部25aを螺合させることにより、給電端子25を電極24と電気的に接続するようにしたものが提案されている。
【0006】
また、特開平10―189696号公報には、図7に示すように、セラミック体22の下面に電極24と連通する穴22aを穿孔し、該穴22aの内壁面にメタライズ層28を形成した後、給電端子25を挿入し、ロウ材層29を介してロウ付けすることにより、給電端子25を電極24と電気的に接続するようにしたものが提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、図6に示す給電構造を有するウエハ支持部材21では、ホットプレスによりセラミック体22を焼結させる際に異材質の給電ブロック体26が埋設されていることから、その周囲のセラミック部に発生した応力が残留応力として残り、セラミック部にクラックが発生し易く製造歩留りが悪いといった課題があった。しかも、この給電構造の場合、ホットプレスのように大がかりな焼成装置を用いなければならないといった課題もあった。
【0008】
また、図7に示す接合構造を有するウエハ支持部材21では、ロウ付け後、セラミック体22、給電端子25、及びロウ材層29間における熱膨張差によって室温まで冷却する際に発生する残留応力によって、セラミックス体22に形成した穴22aのコーナー部を起点とするクラックが発生し易く製造歩留りが悪いといった課題があった。
【0009】
このように、いずれの給電構造においても製造歩留りが悪く、容易にかつ確実に内部電極との接続が可能な給電構造を有するウエハ支持部材は未だ得られていなかった。
【0010】
【課題を解決するための手段】
そこで、上記課題に鑑み、請求項1に係る発明は、電極を内蔵したセラミック体の表面又は電極を内蔵した樹脂層を接合したセラミック体の表面に、上記電極の一部が露出する凹部を設け、該凹部に上記セラミック体との熱膨張差が2×10 −7 /℃以下の金属からなる給電端子を挿入するとともに、該給電端子と上記凹部とを、導電性粒子を10〜90容量%の範囲で含有する樹脂系接着剤からなり弾性率が5〜90GPaの接着層にて接着固定して電極内蔵体を構成したものである。
請求項2に係る発明は、上記凹部の内径が1.5〜15mmの円形孔であり、上記凹部に挿入する上記給電端子の挿入部の外径と上記凹部の内径との差が0.05〜0.3mmであることを特徴とする。
請求項3に係る発明は、電極を内蔵したセラミック体の表面又は電極を内蔵した樹脂層を接合したセラミック体の表面に、上記電極の一部が露出する内径が1.5〜15mmの円形孔の凹部を設け、該凹部に挿入部の外径と上記凹部の内径との差が0.05〜0.3mmである給電端子を挿入するとともに、該給電端子と上記凹部とを、導電性粒子を10〜90容量%の範囲で含有する樹脂系接着剤からなる接着層にて接着固定したことを特徴とする。
【0011】
請求項に係る発明は、上記導電性粒子として、金、銀、銅、錫、アルミニウムのうちの少なくとも1種以上を用いたことを特徴とする。
【0012】
請求項に係る発明は、上記樹脂系接着剤を形成する樹脂として、エポキシ樹脂、シリコン樹脂、フッ素樹脂のいずれか1種を用いたことを特徴とする。
【0013】
請求項に係る発明は、上記電極内蔵体を形成する、電極を内蔵したセラミック体の表面又は電極を内蔵した樹脂層の表面をウエハの設置面としてウエハ支持部材を形成したことを特徴とする。
【0014】
請求項に係る発明は、請求項に係るウエハ支持部材において、電極が、静電吸着用電極又はプラズマ電極のいずれかであることを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0016】
図1は本発明に係る電極内蔵体の一例であるウエハ支持部材を示す断面図である。
【0017】
このウエハ支持部材1は、円盤状をしたセラミック体2の上面をウエハの設置面3とするとともに、上記セラミック体2中に電極4を埋設したもので、上記セラミック体2の下面には、上記電極4と電気的に接続される金属製の給電端子5を接合してある。
【0018】
また、図2に図1のウエハ支持部材における給電構造を拡大した断面図を示すように、セラミック体2の下面には、電極4の一部が露出する凹部2aを形成してあり、該凹部2aには給電端子5を挿入し、導電性粒子を10〜90容量%の範囲で含有する樹脂系接着剤からなる接着層6にて接着固定することにより、給電端子5を電極4と電気的に接続してある。
【0019】
そして、このウエハ支持部材1に内蔵する電極4を静電吸着用電極として用いる場合、設置面3に半導体ウエハ等のウエハWを載せ、このウエハWと電極4との間に電圧を加することで、ウエハWと電極4との間に誘電分極によるクーロン力や微少な漏れ電流によるジョンソン・ラーベック力等の静電吸着力を発現させ、ウエハWを設置面3に吸着固定させることができ、また、電極4をプラズマ発生用電極として用いる場合、設置面3の上方に設けた別のプラズマ発生用電極と電極4との間に高周波電力を加することで、両電極間にプラズマを発生させることができる。
【0020】
また、本発明によれば、セラミック体2の下面に穿孔した凹部2aに給電端子5を挿入し、樹脂系接着剤からなる接着層6にて接着固定してあることから、給電端子5の接合時にセラミック体2を破損させるようなことはなく、また、ウエハ支持部材1に使用中において、給電端子5とセラミック体2との接合部が別の熱源によって加熱されたり、給電端子5に加する電流や高周波電力によって発熱したりしたとしても、セラミック体2を破損させることがない。
【0021】
即ち、本発明によれば、セラミック体2と金属からなる給電端子5との間の熱膨張差による応力が発生したとしても、この応力を接着層6で吸収することができるため、セラミック体2の破損を防止することができる。
【0022】
また、接着層6を形成する樹脂系接着剤には導電性粒子を含有させて導電性を持たせてあることから、長期間にわたり安定した通電を行うことができる。
【0023】
しかも、従来のようにホットプレス装置を用いたり、ロウ付け等の高温に加熱したりする必要がないため、容易に製造することができる。
【0024】
ところで、給電端子5に加された電力をロスなく電極4へ通電するためには、接着層6に十分な導電性を持たせる必要があるが、導電性粒子の含有量が10容量%を下回ると、給電端子5と電極4との間の抵抗が大きくなって電力ロスを生じ易くなるとともに、接合部が異常発熱し、接着層6を劣化させてしまうことになる。ただし、導電性粒子の含有量が90容量%をえると、接着強度が低下し、給電端子5がセラミック体2の凹部2aから落下するおそれがある。
【0025】
その為、十分な接着強度を維持しつつ、十分な導電性を得るためには、接着層6を形成する樹脂系接着剤に含有させる導電性粒子は、10〜90容量%の範囲で含有することが良く、好ましくは20〜90容量%の範囲で含有することが良い。
【0026】
また、導電性粒子の材質としては、導電率が大きく、樹脂系接着剤との反応が小さく、しかも耐熱性に優れたものが良く、例えば、金、銀、銅、錫、アルミニウムを用いることができる。特に、金、銀、銅は導電率の点で好ましく、さらに樹脂系接着剤との反応が小さい点で金と銀が望ましい。なお、導電性粒子の最大粒子経は2〜50μmの範囲にあるものを用いることが好ましい。
【0027】
一方、接着層6を形成する樹脂系接着剤の樹脂材としては、エポキシ樹脂、シリコン樹脂、フッ素系樹脂及びこれらを混合した樹脂が、上述した導電性粒子との反応が小さく、さらに耐熱性に優れるとともに、経時変化が少ない点で好適である。
【0028】
また、−50℃〜200℃の温度範囲内における熱サイクルや温度変化に対し、セラミック体2と金属からなる給電端子5との熱膨張差による応力を吸収し、セラミック体2の破損を防止するためには、接着層6の弾性率を5〜90GPa、好ましくは10〜40GPa、望ましくは15〜35GPaとすることが良い。
【0029】
なぜなら、接着層6の弾性率が5GPa未満であると、−50℃〜200℃の温度範囲内における熱サイクルや温度変化によって給電端子5の緩みが生じ易く、給電端子5が脱落するおそれがあるからであり、逆に接着層6の弾性率が90GPaを超えると、セラミック体2と金属からなる給電端子5との間の熱膨張差による応力が吸収する効果が小さく、セラミック体2にクラックが生じ易くなるからである。
【0030】
ところで、セラミック体2を形成するセラミックスとしては、アルミナ質焼結体、窒化珪素質焼結体、窒化アルミニウム質焼結体等を用いることができる。
【0031】
また、給電端子5を形成する金属としては、セラミック体2との熱膨張差ができるだけ小さいものが良く、好ましくは熱膨張差が2×10-7/℃以下であるものが良く、例えばセラミック体2が窒化アルミニウ質焼結体からなる場合、給電端子5はFe−Co−Ni合金を用いれば良い。
【0032】
なお、セラミック体2に形成する凹部2aの形状としては特に限定するものではないが、円形であるものが製作性の点で好ましい。ただし、凹部2aの内径が15mmを超えると、切削加工時に凹部2aの開口エッジ部に欠けやクラックが発生し易くなり、逆に凹部2aの内径が1.5mmより小さくなると、給電端子5の径が小さくなり、リード線の取り付けにあたってネジ止め等の手段にて簡単に取り付けることができなくなるといった不都合がある。
【0033】
その為、セラミック体2に形成する凹部2aの内径は1.5〜15mmの円形孔とすることが良い。
【0034】
また、セラミック体2の凹部2aに挿入する給電端子5は、その挿入部5aの外径を、凹部2aの内径との差が0.05〜0.3mmとなるようにすることが良い。
【0035】
これは、凹部2aの内径と挿入部5aの外径との差が0.05mm未満では、挿入部5aを凹部2a内に挿入することが難しく、凹部2aのコーナー部等よりセラミック体2にクラックを発生させるおそれがあるからであり、逆に凹部2aの内径と挿入部5aの外径との差が0.3mmを超えると、給電端子5とセラミック体2に設けられた凹部2aの間の接着層6の層厚みが大きくなり、温度サイクルによる接着層6の膨張や収縮が、給電端子5と凹部2aとの間隔の変化に対して追従することができず、接着層6が凹部2aより剥離するおそれがあるからである。
【0036】
次に、給電端子5の接合方法について説明する。
【0037】
まず、電極4を埋設したセラミック体2を用意する。なお、セラミック体2は、セラミックグリーンシートを複数枚積み重ね、あるセラミックグリーンシート間に導体層を形成しておいたグリーンシート積層体を焼成することにより形成したものや、生のセラミック成形体上に導体層を配置し、該導体層を覆うように生のセラミック成形体上にセラミック粉末を充填し、圧力を加えて導体層を埋設した生のセラミック成形体を形成したあと焼成することにより形成したもの、あるいは上記導体層を覆うように生のセラミック成形体上にセラミック粉末を充填し、圧力を加えながら加熱して焼成することにより形成したものでも構わない。
【0038】
そして、セラミック体2の表面に研削加工にて電極4の一部が露出する凹部2aを穿孔する。この凹部2aの形成にあたっては、円柱状体の外周にダイヤモンド砥粒を電着等にて固着した工具を用い、セラミック体2にクラックを発生させないようにするため、送り速度を1mm/分以下の速度で行うことが好ましい。
【0039】
次に、この穿孔した凹部2aの内壁面(電極4の露出部も含む)に、導電性粒子を10〜90容量%の範囲で含有する樹脂系接着剤を塗布し、給電端子5の挿入部5aを凹部2a内に挿入する。しかる後、24時間以上室温で樹脂系接着剤を硬化させるか、あるいは150℃以下の温度で6時間程加熱して樹脂系接着剤を硬化させて接着層6を形成すれば良い。
【0040】
このように、本発明によれば、大きな熱を加える必要がないことから、セラミック体2と金属からなる給電端子5との熱膨張差による応力によってセラミック体2を破損させることなく、容易に製造することができる。
【0041】
以上、本発明の実施形態について説明したが、本発明は図1に示したものだけに限定されるものではなく、例えば、図3や図4に示す電極内蔵体にも適用することができる。
【0042】
図3は、本発明に係る電極内蔵体からなるウエハ支持部材の他の例を示す断面図で、電極4を内蔵したセラミック体2が、セラミック焼結体やサファイアからなる誘電体層11の上面をウエハの設置面3とし、上記誘電体層11の下面に電極4を、メッキ法やメタライズ法、あるいはCVD法、PVD法、スパッタリング法等の成膜手段にて形成し、上記電極4を覆うように上記誘電体層11の下面に、セラミック焼結体からなるベース12を接着剤やロウ材にて接合した接合構造体からなる以外は図1と同様の構造をしたもので、図2に示す給電構造にて給電端子5を接合してある。
【0043】
また、図4は、本発明に係る電極内蔵体からなるウエハ支持部材のさらに他の例を示す断面図で、電極4を内蔵したセラミック体2が、電極4を埋設した樹脂層13の上面をウエハの設置面3とするとともに、樹脂層13の下面に、セラミック焼結体からなるベース12を接着剤やロウ材にて接合した接合構造体からなる以外は図1と同様の構造をしたもので、図2に示す給電構造にて給電端子5を接合してある。
【0044】
また、本実施形態ではウエハ支持部材を例にとって説明したが、この他に、オゾン発生器、静電吸着部材、酸素センサー、気化装置、ダイボンディング装置等の電極内蔵体にも適用できることは言う迄もない。
【0045】
【実施例】
以下、本発明の具体例をウエハ支持部材を例にとって説明する。
【0046】
まず、セラミック体2を形成するため、平均粒子径が1.2μm程度である純度99.0%のAlN粉末に、バインダー及び溶媒のみを添加混合して泥漿を製作した後、ドクターブレード法にて厚さ0.5mm程度のAlNグリーンシートを複数枚製作し、このうち、数枚のAlNグリーンシートを積層した後、その表面にスクリーン印刷法でもってタングステン粉末に若干のAlN粉末を混ぜた金属ペーストからなる半円状膜を円形に敷設し、さらに残りのAlNグリーンシートを積み重ね、50kg/cm2の圧力で加圧圧着してグリーンシート積層体を形成した。その後、切削加工を施して円板状とした後、窒素雰囲気下で2000℃程度の焼成温度で2時間程度焼成することにより、純度99.0%の窒化アルミニウム質焼結体からなり、その内部に電極を埋設したセラミック体を得た。
【0047】
しかる後、セラミック体の外径を約200mm、厚みを8mmとした後、セラミック体の一方の主面(最も広い面)に、研摩加工を施して中心線平均粗さ(Ra)0.8μmの鏡面に仕上げて設置面を形成するとともに、セラミック体の他方の主面に電極の一部が露出する円形の凹部を研削加工にて穿孔し、凹部中に、導電性粒子として最大粒子径が20μmのAgを用い、10容量%の割合で添加したエポキシ系接着剤を塗布し、Fe−Co−Ni系合金からなる給電端子を挿入した後、150℃の温度で加熱硬化させて接着層を形成し、給電端子を凹部内に接着固定することによりウエハ支持部材を製作した。
【0048】
このようにして製作したウエハ支持部材は、給電端子の接合時にセラミック体を破損させることがなく、容易に製作することができた。
【0049】
【実験例】
(実験例1)
そこで、実施例のウエハ支持部材のうち、接着層を形成するエポキシ系接着剤に含有させる導電性粒子の割合を異ならせた時の給電端子と電極との間の抵抗値、給電端子の引っ張り強度、ウエハ支持部材に熱サイクルを加えた時の通電不良の発生率についてそれぞれ調べる実験を行った。
【0050】
そして、本実験では、給電端子と電極との間の抵抗値が0.5Ω以下であるものを良好とし、○で示し、0.5Ωを超えるものは不良とし、×で示した。また、給電端子の引っ張り強度においては、引っ張り強度が9.8N以上であるものを良好とし、○で示し、9.8N未満であるものを不良とし、×で示した。さらに、ウエハ支持部材に熱サイクルを加えた時の通電不良の発生率については、各試料をそれぞれ20個ずつ用意し、昇降温レートを50℃/分とし、−50℃と200℃でそれぞれ10分間保持する温度サイクルを1000サイクル実施後に、さらに200℃に加熱して1000時間保持した後、給電端子と電極との間の抵抗を測定し、初期の抵抗値に対する変化率を1%以下とできなかったものの発生率を示し、この発生率が5%以下であるものを良好とした。
【0051】
それぞれの結果は表1に示す通りである。なお、給電端子と電極との間の抵抗値は四端子法により測定した。
【0052】
【表1】

Figure 0004548928
【0053】
この結果、試料No.2〜9のように、導電性粒子の含有量が10〜90容量%の範囲あるものは、いずれも給電端子と電極との間の抵抗値を0.5Ω以下とすることができ、十分な導電性が得られるとともに、−50℃から200℃の熱サイクルに対しても抵抗値変化が少なく、熱サイクルによる導通不良発生率も5%以下と少なく、さらに、給電端子を強固に接合することができ、優れていた。
【0054】
この結果、接合層を形成する樹脂中に含有させる導電性粒子の含有量は10〜90容量%の範囲で含有すれば良いことが判る。
【0055】
(実験例2)
次に、接着層を形成する樹脂の種類及び導電性粒子の種類をそれぞれ異ならせ、実験例1と同様の実験を行った。
【0056】
それぞれの結果は表2に示す通りである。
【0057】
【表2】
Figure 0004548928
【0058】
この結果、試料No.12〜14,16,17,19,20,24のように、導電性粒子として金、銀、銅、錫、アルミニウムを用いるとともに、導電性接着剤を形成する樹脂成分として、エポキシ樹脂、シリコン樹脂、フッ素樹脂のいれか1種を用いることにより、給電端子と電極との間の抵抗値を0.5Ω以下とすることができ、十分な導電性が得られるとともに、−50℃から200℃の熱サイクル試験に対しても抵抗値の変化が少なく、導通不良率を5%以下に抑えることができ、さらに、給電端子を強固に接合することができることが判る。
【0059】
この結果、接合層を形成する樹脂系接着剤中に含有させる導電性粒子は、金、銀、銅、錫、アルミニウムを用いるとともに、樹脂系接着剤を形成する樹脂成分は、エポキシ樹脂、シリコン樹脂、フッ素樹脂のいれか1種を用いることが良い。
【0060】
【発明の効果】
以上のように、本発明によれば、電極を内蔵したセラミック体の表面又は電極を内蔵した樹脂層を接合したセラミック体の表面に、上記電極の一部が露出する凹部を設け、該凹部に給電端子を挿入するとともに、該給電端子と上記凹部とを、導電性粒子を10〜90容量%の範囲で含有する樹脂系接着剤からなる接着層にて接着固定して電極内蔵体を構成したことから、給電端子と電極との間の十分な導電性が得られ、かつ−50度〜200度の温度範囲で熱サイクルが加わったとしてもセラミック体を破損させることなく確実に給電端子を接合することができる。しかも、給電端子の接合時に大きな熱を加える必要がないため、給電端子の接続を容易に行うことができる。
【0061】
特に、上記導電性粒子として、金、銀、銅、錫、アルミニウムのうちの少なくとも1種以上を用いるとともに、樹脂系接着剤を形成する樹脂として、エポキシ樹脂、シリコン樹脂、フッ素樹脂のいずれか1種を用いれば上記効果を効果的に達成することができる。
【0062】
その為、本発明の電極内蔵体を用いて電極が静電吸着用電極又はプラズマ電極からなるウエハ支持部材を形成すれば、電極が静電吸着用電極である時には、ウエハを吸着固定するのに十分な静電気力を発生させることができ、また電極がプラズマ電極である時には、各種処理を行うのに十分なプラマを発生させることができる。
【図面の簡単な説明】
【図1】本発明に係る電極内蔵体の一例であるウエハ支持部材を示す断面図である。
【図2】図1のウエハ支持部材における給電構造を拡大した断面図である。
【図3】本発明に係るウエハ支持部材の他の例を示す断面図である。
【図4】本発明に係るウエハ支持部材のさらに他の例を示す断面図である。
【図5】従来の電極内蔵体の一例であるウエハ支持部材を示す断面図である。
【図6】図5のウエハ支持部材における給電構造の一例を示す拡大断面図である。
【図7】図5のウエハ支持部材における給電構造の他の例を示す拡大断面図である。
【符号の説明】
1,21:ウエハ支持部材 2,22:セラミック体 2a,22a:凹部
3,23:設置面 4,24:電極 5,25:給電端子 6:接着層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a built-in electrode body including a power supply terminal electrically connected to the ceramic body in which an electrode is embedded and a ceramic body in which a resin layer including the electrode is bonded, and a wafer support member using the same. Is.
[0002]
[Prior art]
Conventionally, an ozone generator, an electrostatic adsorption member, an oxygen sensor, a vaporizer, a die bonding apparatus, and the like have used a built-in electrode body in which an electrode is incorporated in a ceramic body or a resin layer.
[0003]
For example, in the semiconductor manufacturing process, the dry process rapidly progresses, and in semiconductor manufacturing apparatuses such as an etching apparatus, a plasma CVD apparatus, a plasma PVD apparatus, an ion implantation apparatus, an electron beam drawing apparatus, an ion beam drawing apparatus, and an X-ray drawing apparatus, In order to process a semiconductor wafer (hereinafter referred to as a wafer) in a vacuum atmosphere, a wafer support member such as an electrostatic chuck or a susceptor is used.
[0004]
As shown in FIG. 5 as an example of a conventional wafer support member, the wafer support member 21 has an upper surface of a disk-shaped ceramic body 22 as an installation surface 23 of the wafer W, and an electrode 24 in the ceramic body 22. A metal power supply terminal 25 electrically connected to the electrode 24 is bonded to the lower surface of the ceramic body 22.
[0005]
As a means for joining the plate-like ceramic body 22 forming the wafer support member 21 and the power supply terminal 25, Japanese Patent Laid-Open No. 5-101871 discloses an electrode 24 and a power supply block body 26 as shown in FIG. An electrode electrically connected through a wire 27 is placed in a mold, and a ceramic raw material is filled in the mold and sintered by hot pressing, whereby an electrode electrically connected by a wire 27 is provided. 24 and the power supply block body 26 are integrally embedded, and the male screw portion 25a of the power supply terminal 25 is screwed into the female screw portion 26a of the power supply block body 26 exposed on the surface of the ceramic body 22. Thus, a device in which the power supply terminal 25 is electrically connected to the electrode 24 has been proposed.
[0006]
Further, in Japanese Patent Laid-Open No. 10-189696, as shown in FIG. 7, a hole 22a communicating with the electrode 24 is formed on the lower surface of the ceramic body 22, and a metallized layer 28 is formed on the inner wall surface of the hole 22a. A power supply terminal 25 is inserted and brazed via a brazing material layer 29 so that the power supply terminal 25 is electrically connected to the electrode 24.
[0007]
[Problems to be solved by the invention]
However, in the wafer support member 21 having the power supply structure shown in FIG. 6, when the ceramic body 22 is sintered by hot pressing, the power supply block body 26 made of a different material is embedded, and thus generated in the surrounding ceramic portion. The remaining stress remains as residual stress, and cracks are likely to occur in the ceramic part, resulting in a problem in that the production yield is poor. Moreover, in the case of this power supply structure, there is a problem that a large-scale baking apparatus such as a hot press must be used.
[0008]
Further, in the wafer support member 21 having the bonding structure shown in FIG. 7, the residual stress generated when the ceramic body 22, the power supply terminal 25, and the brazing material layer 29 are cooled to room temperature due to the difference in thermal expansion after the brazing. There is a problem that cracks starting from the corners of the holes 22a formed in the ceramic body 22 are likely to occur and the manufacturing yield is poor.
[0009]
Thus, in any of the power feeding structures, the production yield is poor, and a wafer support member having a power feeding structure that can be easily and reliably connected to the internal electrode has not been obtained.
[0010]
[Means for Solving the Problems]
Accordingly, in view of the above problems, the invention according to claim 1 is provided with a recess in which a part of the electrode is exposed on the surface of the ceramic body incorporating the electrode or the surface of the ceramic body joined with the resin layer incorporating the electrode. In addition, a power feeding terminal made of a metal having a thermal expansion difference of 2 × 10 −7 / ° C. or less with respect to the ceramic body is inserted into the recess, and 10 to 90% by volume of conductive particles are connected between the power feeding terminal and the recess. Do Ri modulus of a resin-based adhesive containing a range of is that constitutes the bonded stationary electrode internal body by an adhesive layer of 5~90GPa.
The invention according to claim 2 is a circular hole in which the inner diameter of the recess is 1.5 to 15 mm, and the difference between the outer diameter of the insertion portion of the power supply terminal inserted into the recess and the inner diameter of the recess is 0.05. It is characterized by being -0.3 mm.
According to a third aspect of the present invention, there is provided a circular hole having an inner diameter of 1.5 to 15 mm from which a part of the electrode is exposed on the surface of the ceramic body containing the electrode or the surface of the ceramic body joined with the resin layer containing the electrode. The power supply terminal having a difference between the outer diameter of the insertion portion and the inner diameter of the concave portion of 0.05 to 0.3 mm is inserted into the concave portion, and the power supply terminal and the concave portion are connected to the conductive particles. Is bonded and fixed by an adhesive layer made of a resin adhesive containing 10 to 90% by volume.
[0011]
The invention according to claim 4 is characterized in that at least one of gold, silver, copper, tin and aluminum is used as the conductive particles.
[0012]
The invention according to claim 5 is characterized in that any one of an epoxy resin, a silicon resin, and a fluororesin is used as the resin for forming the resin adhesive.
[0013]
The invention according to claim 6 is characterized in that the wafer support member is formed with the surface of the ceramic body or the surface of the resin layer incorporating the electrode forming the electrode built-in body as the wafer installation surface. .
[0014]
The invention according to claim 7 is the wafer support member according to claim 6 , wherein the electrode is either an electrostatic chucking electrode or a plasma electrode.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0016]
FIG. 1 is a cross-sectional view showing a wafer support member which is an example of an electrode built-in body according to the present invention.
[0017]
The wafer support member 1 has an upper surface of a disk-shaped ceramic body 2 as a wafer installation surface 3 and an electrode 4 embedded in the ceramic body 2. A metal power supply terminal 5 electrically connected to the electrode 4 is joined.
[0018]
Further, as shown in FIG. 2 which is an enlarged cross-sectional view of the power feeding structure in the wafer support member of FIG. 1, a recess 2a in which a part of the electrode 4 is exposed is formed on the lower surface of the ceramic body 2. The power supply terminal 5 is inserted into 2a and bonded and fixed with an adhesive layer 6 made of a resin-based adhesive containing conductive particles in a range of 10 to 90% by volume, whereby the power supply terminal 5 is electrically connected to the electrode 4. Is connected to.
[0019]
When using an electrode 4 incorporated in the wafer support member 1 as an electrostatic attraction electrodes, placing the wafer W such as a semiconductor wafer to the installation surface 3, to mark pressurizing the voltage between the wafer W and the electrode 4 As a result, an electrostatic adsorption force such as a Coulomb force due to dielectric polarization or a Johnson-Rahbek force due to a minute leakage current can be expressed between the wafer W and the electrode 4, and the wafer W can be adsorbed and fixed to the installation surface 3. , in the case of using the electrode 4 as a plasma generating electrode, by indicia pressure to the high-frequency power between the different plasma generating electrode and the electrode 4 provided above the installation surface 3, a plasma between both electrodes Can be generated.
[0020]
In addition, according to the present invention, since the power supply terminal 5 is inserted into the recess 2a drilled in the lower surface of the ceramic body 2 and bonded and fixed by the adhesive layer 6 made of a resin-based adhesive, never such as to damage the ceramic body 2 when, also during use in the wafer support member 1, or the joint between the feeding terminal 5 and the ceramic body 2 is heated by another heat source, indicia pressure to the power supply terminal 5 even with or heating by the current and high-frequency power, there is no damaging the ceramic body 2.
[0021]
That is, according to the present invention, even if a stress due to the difference in thermal expansion between the ceramic body 2 and the power supply terminal 5 made of metal occurs, the stress can be absorbed by the adhesive layer 6, so that the ceramic body 2 Can be prevented from being damaged.
[0022]
In addition, since the resin-based adhesive forming the adhesive layer 6 is made conductive by containing conductive particles, stable energization can be performed over a long period of time.
[0023]
Moreover, since it is not necessary to use a hot press apparatus or to heat to a high temperature such as brazing as in the prior art, it can be manufactured easily.
[0024]
Meanwhile, in order to energize the electric power indicia pressurized to the power supply terminal 5 to without loss electrode 4, it is necessary to have sufficient conductivity to the adhesive layer 6, a 10% by volume content of the conductive particles If it falls below, the resistance between the power supply terminal 5 and the electrode 4 will increase, and it will become easy to produce a power loss, and a junction part will generate | occur | produce abnormally heat | fever, and the adhesive layer 6 will be deteriorated. However, the content of the conductive particles obtain super 90 volume%, the adhesive strength is lowered, the feeding terminal 5 is Re emesis dropping from the recess 2a of the ceramic body 2.
[0025]
Therefore, in order to obtain sufficient electrical conductivity while maintaining sufficient adhesive strength, the conductive particles contained in the resin-based adhesive forming the adhesive layer 6 are contained in a range of 10 to 90% by volume. It is preferable that it is contained in the range of 20 to 90% by volume.
[0026]
Moreover, as the material of the conductive particles, a material having a high conductivity, a small reaction with the resin-based adhesive, and excellent heat resistance is preferable. For example, gold, silver, copper, tin, or aluminum is used. it can. In particular, gold, silver, and copper are preferable from the viewpoint of electrical conductivity, and gold and silver are preferable from the viewpoint that reaction with the resin adhesive is small. In addition, it is preferable to use what the maximum particle diameter of electroconductive particle exists in the range of 2-50 micrometers.
[0027]
On the other hand, as a resin material of the resin-based adhesive forming the adhesive layer 6, epoxy resin, silicon resin, fluorine-based resin, and a resin obtained by mixing these resins have a small reaction with the above-described conductive particles, and further heat resistance. It is excellent in that it is excellent and changes with time are small.
[0028]
Further, the thermal cycle and temperature change within the temperature range of −50 ° C. to 200 ° C. absorbs stress due to the difference in thermal expansion between the ceramic body 2 and the power supply terminal 5 made of metal, and prevents the ceramic body 2 from being damaged. For this purpose, the elastic modulus of the adhesive layer 6 is 5 to 90 GPa, preferably 10 to 40 GPa, and desirably 15 to 35 GPa.
[0029]
This is because if the elastic modulus of the adhesive layer 6 is less than 5 GPa, easily occurs looseness of the feeding terminal 5 by thermal cycling or temperature change within the temperature range of -50 ° C. to 200 DEG ° C., but is late feeding terminal 5 from falling On the contrary, when the elastic modulus of the adhesive layer 6 exceeds 90 GPa, the effect of absorbing stress due to the difference in thermal expansion between the ceramic body 2 and the power supply terminal 5 made of metal is small, and the ceramic body 2 is cracked. It is because it becomes easy to occur.
[0030]
By the way, as ceramics which form the ceramic body 2, an alumina sintered body, a silicon nitride sintered body, an aluminum nitride sintered body and the like can be used.
[0031]
Further, the metal forming the power supply terminal 5 is preferably a metal having a difference in thermal expansion as small as possible with respect to the ceramic body 2, and preferably has a difference in thermal expansion of 2 × 10 −7 / ° C. or less. When 2 is made of an aluminum nitride sintered body, the feeding terminal 5 may be made of an Fe—Co—Ni alloy.
[0032]
The shape of the recess 2a formed in the ceramic body 2 is not particularly limited, but a circular shape is preferable in terms of manufacturability. However, if the inner diameter of the concave portion 2a exceeds 15 mm, chipping or cracking is likely to occur at the opening edge portion of the concave portion 2a during cutting, and conversely, if the inner diameter of the concave portion 2a is smaller than 1.5 mm, the diameter of the feeding terminal 5 This leads to a disadvantage that the lead wire cannot be easily attached by means such as screwing when attaching the lead wire.
[0033]
Therefore, the inner diameter of the recess 2a formed in the ceramic body 2 is preferably a circular hole having a diameter of 1.5 to 15 mm.
[0034]
In addition, the power supply terminal 5 to be inserted into the recess 2a of the ceramic body 2 is preferably configured such that the difference between the outer diameter of the insertion portion 5a and the inner diameter of the recess 2a is 0.05 to 0.3 mm.
[0035]
This is because if the difference between the inner diameter of the concave portion 2a and the outer diameter of the insertion portion 5a is less than 0.05 mm, it is difficult to insert the insertion portion 5a into the concave portion 2a, and the ceramic body 2 cracks from the corner portion of the concave portion 2a. is because there is a Re hyperemesis for generating the difference between the outer diameter of the inner diameter and the insertion portion 5a of the recess 2a in the opposite is more than 0.3 mm, between the recess 2a provided to the power supply terminal 5 and the ceramic body 2 The thickness of the adhesive layer 6 is increased, and the expansion and contraction of the adhesive layer 6 due to the temperature cycle cannot follow the change in the distance between the power supply terminal 5 and the concave portion 2a. there is a Re emesis be more peeling.
[0036]
Next, a method for joining the power supply terminals 5 will be described.
[0037]
First, the ceramic body 2 in which the electrode 4 is embedded is prepared. The ceramic body 2 is formed by stacking a plurality of ceramic green sheets and firing a green sheet laminate in which a conductor layer is formed between certain ceramic green sheets, or on a raw ceramic molded body. Formed by placing a conductor layer, filling a ceramic powder on a raw ceramic molded body so as to cover the conductor layer, forming a raw ceramic molded body in which a conductor layer is embedded by applying pressure and then firing. Alternatively, it may be formed by filling ceramic powder on a raw ceramic molded body so as to cover the conductor layer, and heating and firing while applying pressure.
[0038]
Then, a recess 2a in which a part of the electrode 4 is exposed is drilled in the surface of the ceramic body 2 by grinding. In forming the recess 2a, a tool in which diamond abrasive grains are fixed to the outer periphery of the cylindrical body by electrodeposition or the like is used, and the feed rate is 1 mm / min or less so as not to generate cracks in the ceramic body 2. It is preferable to carry out at a speed.
[0039]
Next, a resin adhesive containing conductive particles in a range of 10 to 90% by volume is applied to the inner wall surface (including the exposed portion of the electrode 4) of the perforated recess 2a, and the insertion portion of the feeding terminal 5 is inserted. 5a is inserted into the recess 2a. Thereafter, the resin adhesive may be cured at room temperature for 24 hours or more, or may be heated at a temperature of 150 ° C. or less for 6 hours to cure the resin adhesive to form the adhesive layer 6.
[0040]
As described above, according to the present invention, since it is not necessary to apply a large amount of heat, the ceramic body 2 can be easily manufactured without damaging the ceramic body 2 due to a stress due to a thermal expansion difference between the ceramic body 2 and the power feeding terminal 5 made of metal. can do.
[0041]
Although the embodiment of the present invention has been described above, the present invention is not limited to the one shown in FIG. 1 and can be applied to, for example, the electrode built-in body shown in FIG. 3 and FIG.
[0042]
FIG. 3 is a cross-sectional view showing another example of a wafer support member made of an electrode built-in body according to the present invention, wherein the ceramic body 2 containing the electrode 4 is an upper surface of a dielectric layer 11 made of a ceramic sintered body or sapphire. Is formed on the lower surface of the dielectric layer 11 by a film forming means such as a plating method, a metallization method, a CVD method, a PVD method, or a sputtering method, and covers the electrode 4. As shown in FIG. 2, the dielectric layer 11 has the same structure as that shown in FIG. 1 except that the base 12 made of a ceramic sintered body is joined to the lower surface of the dielectric layer 11 with an adhesive or brazing material. The power supply terminal 5 is joined in the power supply structure shown.
[0043]
FIG. 4 is a cross-sectional view showing still another example of a wafer support member composed of an electrode built-in body according to the present invention, in which the ceramic body 2 containing the electrode 4 covers the upper surface of the resin layer 13 in which the electrode 4 is embedded. 1 having the same structure as that of FIG. 1 except that it is made of a wafer mounting surface 3 and a bonded structure in which a base 12 made of a ceramic sintered body is bonded to the lower surface of the resin layer 13 with an adhesive or brazing material. Thus, the power supply terminal 5 is joined in the power supply structure shown in FIG.
[0044]
Further, in the present embodiment, the wafer support member has been described as an example, but in addition to this, it can be applied to an electrode built-in body such as an ozone generator, an electrostatic adsorption member, an oxygen sensor, a vaporizer, and a die bonding apparatus. Nor.
[0045]
【Example】
Hereinafter, a specific example of the present invention will be described taking a wafer support member as an example.
[0046]
First, in order to form the ceramic body 2, a slurry was prepared by adding only a binder and a solvent to an AlN powder having an average particle diameter of about 1.2 μm and a purity of 99.0%, followed by a doctor blade method. A plurality of AlN green sheets with a thickness of about 0.5 mm are manufactured. Among them, several AlN green sheets are laminated, and then a metal paste in which some AlN powder is mixed with tungsten powder by screen printing on the surface. A semi-circular film made of the above was laid in a circle, and the remaining AlN green sheets were stacked, and pressure-bonded at a pressure of 50 kg / cm 2 to form a green sheet laminate. Thereafter, it is cut into a disk shape and then fired at a firing temperature of about 2000 ° C. for about 2 hours in a nitrogen atmosphere, thereby forming an aluminum nitride sintered body having a purity of 99.0%. A ceramic body having an electrode embedded therein was obtained.
[0047]
Thereafter, after the outer diameter of the ceramic body is about 200 mm and the thickness is 8 mm, one main surface (widest surface) of the ceramic body is subjected to polishing to have a center line average roughness (Ra) of 0.8 μm. The mirror surface is finished to form an installation surface, and a circular recess in which a part of the electrode is exposed is drilled in the other main surface of the ceramic body by grinding, and the maximum particle size as conductive particles is 20 μm in the recess. After applying an epoxy adhesive added at a rate of 10% by volume, and inserting a feed terminal made of an Fe—Co—Ni alloy, the adhesive layer is formed by heating and curing at a temperature of 150 ° C. Then, the wafer supporting member was manufactured by bonding and fixing the power supply terminal in the recess.
[0048]
The wafer support member manufactured in this manner could be easily manufactured without damaging the ceramic body when the power supply terminals were joined.
[0049]
[Experimental example]
(Experimental example 1)
Therefore, the resistance value between the power supply terminal and the electrode when the ratio of the conductive particles to be included in the epoxy adhesive forming the adhesive layer in the wafer support member of the example is different, and the tensile strength of the power supply terminal An experiment was carried out to examine the occurrence rate of energization failure when a thermal cycle was applied to the wafer support member.
[0050]
In this experiment, the resistance value between the power supply terminal and the electrode was 0.5Ω or less as good, indicated by ◯, and the resistance value exceeding 0.5Ω was determined as poor and indicated by x. In addition, regarding the tensile strength of the power supply terminal, those having a tensile strength of 9.8 N or more were evaluated as good, and those having a tensile strength of less than 9.8 N were evaluated as poor and indicated by x. Furthermore, regarding the occurrence rate of the energization failure when the thermal cycle is applied to the wafer support member, 20 samples are prepared, the heating / cooling rate is 50 ° C./min, and 10 ° C. at −50 ° C. and 200 ° C., respectively. After 1000 cycles of holding the temperature cycle for 1 minute, after further heating to 200 ° C. and holding for 1000 hours, the resistance between the power supply terminal and the electrode can be measured, and the rate of change with respect to the initial resistance value can be 1% or less. The occurrence rate of those that did not exist was shown, and those with an occurrence rate of 5% or less were considered good.
[0051]
Each result is as shown in Table 1. The resistance value between the power supply terminal and the electrode was measured by the four-terminal method.
[0052]
[Table 1]
Figure 0004548928
[0053]
As a result, sample no. As for 2-9, what has the content of electroconductive particle in the range of 10-90 volume% can make the resistance value between a feeding terminal and an electrode 0.5 ohm or less, and is enough Conductivity is obtained, resistance value change is small even for thermal cycles from -50 ° C to 200 ° C, conduction failure occurrence rate due to thermal cycles is less than 5%, and power supply terminals are firmly joined It was possible and was excellent.
[0054]
As a result, it can be seen that the content of the conductive particles contained in the resin forming the bonding layer may be contained in the range of 10 to 90% by volume.
[0055]
(Experimental example 2)
Next, the same experiment as in Experimental Example 1 was performed by changing the type of resin forming the adhesive layer and the type of conductive particles.
[0056]
Each result is as shown in Table 2.
[0057]
[Table 2]
Figure 0004548928
[0058]
As a result, sample no. As in the case of 12-14, 16, 17, 19, 20, 24, gold, silver, copper, tin, and aluminum are used as conductive particles, and epoxy resin and silicon resin are used as resin components for forming a conductive adhesive. , 200 by using the Re or one not have a fluorine resin, the resistance value between the feeding terminal and the electrode can be less 0.5 .OMEGA, with sufficient conductivity can be obtained, from -50 ° C. It can be seen that there is little change in the resistance value even with respect to the heat cycle test at 0 ° C., the conduction failure rate can be suppressed to 5% or less, and the power supply terminals can be firmly joined.
[0059]
As a result, the conductive particles included in the resin adhesive forming the bonding layer use gold, silver, copper, tin, and aluminum, and the resin components forming the resin adhesive include epoxy resin and silicon resin. it is better to use a Re or one not have a fluorine resin.
[0060]
【The invention's effect】
As described above, according to the present invention, a recess in which a part of the electrode is exposed is provided on the surface of the ceramic body containing the electrode or the surface of the ceramic body joined with the resin layer containing the electrode. The power supply terminal was inserted, and the power supply terminal and the concave portion were bonded and fixed with an adhesive layer made of a resin-based adhesive containing conductive particles in a range of 10 to 90% by volume to constitute an electrode built-in body. Therefore, sufficient electrical conductivity between the power supply terminal and the electrode can be obtained, and the power supply terminal is securely joined without damaging the ceramic body even if a thermal cycle is applied in a temperature range of −50 ° C. to 200 ° C. can do. And since it is not necessary to apply a big heat at the time of joining of a power feeding terminal, a power feeding terminal can be connected easily.
[0061]
In particular, at least one of gold, silver, copper, tin, and aluminum is used as the conductive particles, and any one of an epoxy resin, a silicon resin, and a fluororesin is used as a resin for forming a resin adhesive. If seeds are used, the above effect can be achieved effectively.
[0062]
Therefore, if the electrode supporting body is formed by using the electrode built-in body of the present invention and the electrode is an electrostatic chucking electrode or a plasma electrode, when the electrode is an electrostatic chucking electrode, the wafer is sucked and fixed. sufficient electrostatic force can be generated, and when the electrode is a plasma electrode can generate sufficient plug's Ma to perform various processes.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a wafer support member which is an example of an electrode built-in body according to the present invention.
2 is an enlarged cross-sectional view of a power feeding structure in the wafer support member of FIG.
FIG. 3 is a cross-sectional view showing another example of a wafer support member according to the present invention.
FIG. 4 is a sectional view showing still another example of a wafer support member according to the present invention.
FIG. 5 is a cross-sectional view showing a wafer support member which is an example of a conventional electrode built-in body.
6 is an enlarged cross-sectional view showing an example of a power feeding structure in the wafer support member of FIG.
7 is an enlarged cross-sectional view showing another example of a power feeding structure in the wafer support member of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2: Wafer support member 2, 22: Ceramic body 2a, 22a: Recess 3, 23: Installation surface 4, 24: Electrode 5, 25: Feed terminal 6: Adhesive layer

Claims (7)

電極を内蔵したセラミック体の表面又は電極を内蔵した樹脂層を接合したセラミック体の表面に、上記電極の一部が露出する凹部を設け、該凹部に上記セラミック体との熱膨張差が2×10 −7 /℃以下の金属からなる給電端子を挿入するとともに、該給電端子と上記凹部とを、導電性粒子を10〜90容量%の範囲で含有する樹脂系接着剤からなり弾性率が5〜90GPaの接着層にて接着固定したことを特徴とする電極内蔵体。The surface of the ceramic body containing the electrode or the surface of the ceramic body joined with the resin layer containing the electrode is provided with a recess in which a part of the electrode is exposed , and the thermal expansion difference from the ceramic body is 2 × in the recess. is inserted a feeding terminal consisting of 10 -7 / ° C. or less of the metal, the power feed terminal and said recess and a, Do Ri modulus of a resin-based adhesive conductive particles contained in the range of 10 to 90% by volume An electrode built-in body, which is bonded and fixed with an adhesive layer of 5 to 90 GPa . 上記凹部の内径が1.5〜15mmの円形孔であり、上記凹部に挿入する上記給電端子の挿入部の外径と上記凹部の内径との差が0.05〜0.3mmであることを特徴とする請求項1に記載の電極内蔵体。The inner diameter of the recess is a circular hole of 1.5 to 15 mm, and the difference between the outer diameter of the insertion portion of the power supply terminal inserted into the recess and the inner diameter of the recess is 0.05 to 0.3 mm. The electrode built-in body according to claim 1, characterized in that: 電極を内蔵したセラミック体の表面又は電極を内蔵した樹脂層を接合したセラミック体の表面に、上記電極の一部が露出する内径が1.5〜15mmの円形孔の凹部を設け、該凹部に挿入部の外径と上記凹部の内径との差が0.05〜0.3mmである給電端子を挿入するとともに、該給電端子と上記凹部とを、導電性粒子を10〜90容量%の範囲で含有する樹脂系接着剤からなる接着層にて接着固定したことを特徴とする電極内蔵体。On the surface of the ceramic body containing the electrode or the surface of the ceramic body joined with the resin layer containing the electrode, a recess having a circular hole with an inner diameter of 1.5 to 15 mm from which a part of the electrode is exposed is provided. While inserting the power supply terminal whose difference of the outer diameter of an insertion part and the internal diameter of the said recessed part is 0.05-0.3 mm, this power supply terminal and the said recessed part are the range of 10-90 volume% of electroconductive particle. A built-in electrode body characterized by being bonded and fixed with an adhesive layer made of a resin-based adhesive contained in 1. 上記導電性粒子が、金、銀、銅、錫、アルミニウムのうちの少なくとも1種以上からなることを特徴とする請求項1乃至請求項3のいずれかに記載の電極内蔵体。The electrode built-in body according to any one of claims 1 to 3, wherein the conductive particles are made of at least one of gold, silver, copper, tin, and aluminum. 上記樹脂系接着剤を形成する樹脂が、エポキシ樹脂、シリコン樹脂、フッ素樹脂のいずれか1種からなることを特徴とする請求項1乃至請求項4のいずれかに記載の電極内蔵体。 5. The electrode built-in body according to claim 1, wherein the resin forming the resin-based adhesive is made of any one of an epoxy resin, a silicon resin, and a fluororesin. 請求項1乃至請求項のいずれかに記載の電極内蔵体を形成する電極を内蔵したセラミック体の表面又は電極を内蔵した樹脂層の表面をウエハの設置面とすることを特徴とするウエハ支持部材。Wafer support, characterized in that the surface of the claims 1 to resin layer with a built-in surface or electrode of the ceramic body with a built-in electrodes forming the electrode-built body according to any one of claims 5 and the installation surface of the wafer Element. 上記電極が、静電吸着用電極又はプラズマ電極のいずれかであることを特徴とする請求項に記載のウエハ支持部材。The wafer support member according to claim 6 , wherein the electrode is one of an electrostatic chucking electrode and a plasma electrode.
JP2000333837A 2000-10-31 2000-10-31 Electrode built-in body and wafer support member using the same Expired - Fee Related JP4548928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333837A JP4548928B2 (en) 2000-10-31 2000-10-31 Electrode built-in body and wafer support member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333837A JP4548928B2 (en) 2000-10-31 2000-10-31 Electrode built-in body and wafer support member using the same

Publications (2)

Publication Number Publication Date
JP2002141404A JP2002141404A (en) 2002-05-17
JP4548928B2 true JP4548928B2 (en) 2010-09-22

Family

ID=18809856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333837A Expired - Fee Related JP4548928B2 (en) 2000-10-31 2000-10-31 Electrode built-in body and wafer support member using the same

Country Status (1)

Country Link
JP (1) JP4548928B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908021B2 (en) * 2005-03-07 2012-04-04 日本特殊陶業株式会社 Electrostatic chuck, electrostatic chuck apparatus, electrostatic chuck manufacturing method, vacuum chuck, vacuum chuck apparatus, vacuum chuck manufacturing method, ceramic heater, ceramic heater apparatus, and ceramic heater manufacturing method
JP4510745B2 (en) 2005-10-28 2010-07-28 日本碍子株式会社 Bonding structure of ceramic substrate and power supply connector
JP4858319B2 (en) * 2007-06-07 2012-01-18 住友電気工業株式会社 Wafer holder electrode connection structure
TWI475594B (en) 2008-05-19 2015-03-01 Entegris Inc Electrostatic chuck
SG176059A1 (en) * 2009-05-15 2011-12-29 Entegris Inc Electrostatic chuck with polymer protrusions
US8861170B2 (en) 2009-05-15 2014-10-14 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
CN102986017B (en) 2010-05-28 2015-09-16 恩特格林斯公司 high surface resistivity electrostatic chuck
JP2015058904A (en) * 2013-09-20 2015-03-30 ダイキョーニシカワ株式会社 Formation method of conductive circuit to vehicular window panel
US10249526B2 (en) * 2016-03-04 2019-04-02 Applied Materials, Inc. Substrate support assembly for high temperature processes
WO2020004564A1 (en) * 2018-06-28 2020-01-02 京セラ株式会社 Method for producing member for semiconductor production apparatuses, and member for semiconductor production apparatuses
JP6702385B2 (en) 2018-09-27 2020-06-03 住友大阪セメント株式会社 Electrostatic chuck device
JP7339753B2 (en) * 2019-03-22 2023-09-06 京セラ株式会社 Wafer mounting structure, wafer mounting apparatus and base structure using wafer mounting structure
WO2023106445A1 (en) * 2021-12-08 2023-06-15 주식회사 미코세라믹스 Cryogenic susceptor and electric connector assembly used therein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236000A (en) * 1999-02-17 2000-08-29 Mitsui High Tec Inc Bump for connecting with outside
JP2000332091A (en) * 1999-05-25 2000-11-30 Toto Ltd Electrostatic chuck and treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236000A (en) * 1999-02-17 2000-08-29 Mitsui High Tec Inc Bump for connecting with outside
JP2000332091A (en) * 1999-05-25 2000-11-30 Toto Ltd Electrostatic chuck and treatment device

Also Published As

Publication number Publication date
JP2002141404A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
TW442888B (en) Electrostatic holding apparatus and method of producing the same
JP3154629U (en) Electrostatic chuck
JP4482472B2 (en) Electrostatic chuck and manufacturing method thereof
JP4548928B2 (en) Electrode built-in body and wafer support member using the same
KR101099891B1 (en) Body having a junction and method of manufacturing the same
JP3447495B2 (en) Power supply structure of wafer holding device
KR100553444B1 (en) Susceptors and the methods of manufacturing them
US7672111B2 (en) Electrostatic chuck and method for manufacturing same
JP2011061049A (en) Electrostatic chuck
US6122159A (en) Electrostatic holding apparatus
JP4331983B2 (en) Wafer support member and manufacturing method thereof
JP3685962B2 (en) Susceptor and manufacturing method thereof
JP3746935B2 (en) Susceptor and manufacturing method thereof
JP2001308165A (en) Susceptor and its manufacturing method
JP4436575B2 (en) Wafer support member and manufacturing method thereof
JP3728078B2 (en) Plasma generating material
JP2004071647A (en) Complex heater
JP2003086519A (en) Supporter of object to be treated, manufacturing method and treatment device thereof
JP4307218B2 (en) Wafer holding member and manufacturing method thereof
JP4502462B2 (en) Wafer support member and manufacturing method thereof
JP2003017552A (en) Ceramic heater, and electrostatic chuck incorporating same
JPH09237826A (en) Electrostatic chuck
JP2003017223A (en) Ceramic heater and electrostatic chuck with built-in ceramic heater
JP2002313531A (en) Planar ceramic heater and manufacturing method
JP2004259805A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4548928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees